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Abstract

The purpose of this paper is to study the loss probabilities of messagesfifdyil/ K queueing system where in addition
to losses due to buffer overflow there are also random losses in the incoming and outgoing links. We focus on the influence
of adding redundant packets to the messages (as in error correction coding, e.g. Reed—Solomon code, etc.). In the first part
we use multi-dimensional probability generating functions for solving the recursions which generalize those introduced by
Cidon et al. [IEEE Trans. Inform. Theory 39 (1) (1993) 98] for computing the loss probabilities and derive analytical formulae
for a special case. In the second part of the paper we use combinatorial arguments and Ballot theorem results to alternatively
obtain the loss probabilities. The analytical results allow us to investigate when does adding redundancy decrease the loss
probabilities.
© 2003 Elsevier Science B.V. All rights reserved.

Keywords:Queueing analysis; Forward error correction; Poisson process; Loss probabilities; Generating functions; Ballot
theorems

1. Introduction

The loss probability of packets in queueing networks is an important performance measure in telecom-
munication networks and some other applications. Rapid progress in the development of fiber optics
allows to achieve a bit error rate of 1¥; information loss is then essentially due to congested nodes and
buffer overflow. However, in wireless networks random losses of packets also occur in the channels/links
apart from congestion losses.

Often, when a message is divided into several packets, the loss of one packet results in the loss of the
whole message. In order to reduce the loss probabilities, one may add redundant packets, so that lost
packets can often be reconstructed. Indeed, there exist erasure recovery codes that, iyraddimdant
packets to a message, enable to reconstruct kpasses (segb,7—9]and references therein). We note,
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however, that by adding redundant packets, the workload increases and thus the loss probability of a packe
may increasgl]. Alternatively, if redundancy is added in such a way that the total workload remains
unchanged then this will result in a decrease in the throughput of useful information transmitted by the
source. Thus there are two types of tradeoffs to be studied (according to whether we want to keep the tota
transmitted throughput the same, or only the throughput corresponding to useful transmitted information).

In this paper we are concerned with studying the loss probabilities of messages in queueing systems
where in addition to losses due to buffer overflow there are also random losses on the incoming and outgo:
ing links to the bottleneck node. In particular, we study the tradeoffs mentioned in the previous paragraph.

The problem of analyzing loss probabilities due to congestion losses in the presence of redundant pack
ets has been addressed in earlier wg84,7,8] In [7], the authors have used an approximation based
on the assumption of independence between consecutive losses, and have shown that redundancy resu
in a decrease of loss probabilities by 10-100. Exact numerical methods based on recufSiplesl ito
an opposite conclusion, i.e., adding redundancy causes an increase in the loss probabilities. Explicit ex:
pressions for the losses have then been develodddgland references therein which allowed to obtain
regions of parameters in which forward error correction (FEE€)seful. In particular, ifd] information
theoretical type of channel capacity has been obtained for channels with congestion losses (and gener:
service and inter-arrival times). All these references studied models where losses are only due to conges
tion. Such models are useful in fiber-optic networks, where the main source of losses in the network is
indeed overflow of the bottleneck buffer(s). There are however other situations in which non-negligible
amount of losses may also occur at the links, such as in wireless and in satellite communications.

The goal of this paper is therefore to determine the role of redundant packets in networks in which
losses may be due to both phenomena: link losses (which weaodibm lossésand losses due to buffer
overflow (which we caltongestion loss@sWe obtain expressions that permit us to study two scenarios
for adding FEC. In the first, we assume that the global transmission rate is unchanged, so that whern
adding FEC we reduce the rate of useful information. We then analyze how does the received rate of
useful information depend on the FEC. In the second scenario we keep the rate of useful information
unchanged; adding FEC then increases the congestion and hence the losses, but on the other hand alloy
one to recover some lost packets. It should be noted that not only is our model a generalization of the
previous worK4,5,8]in considering both congestion as well as random losses, but also the first scenario
that we investigate has not been considered earlier even in the context of congestion log%es, 18y

The paper is structured as follows. $ection 2we present our model and its motivation.3ection 3
we present our main results derived using an algebraic approach involving multi-dimensional generating
functions; the proof is provided iAppendix A In Section 4we provide numerical examples and discuss
the region where adding redundancy improves the performan&ediion Sve employ a combinatorial
approach using Ballot theorems to obtain explicit expressions for loss probabilities employing techniques
developed irf8]. Finally, we conclude irBection 6with directions for further work.

2. Themodd and its motivation

We consider networks consisting of a noisy link (in which random losses occur) followed by a bottleneck
buffer, or more generally, of a buffer that is in-between two noisy links. The latter is a suitable model

! The technique of transmitting redundant information with original information is called FEC.
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Fig. 1. A motivational scenario: FEC for satellite communication.

for satellite connections (sdgg. 1) in which there is a noisy uplink and a noisy downlink connection

with further losses that may be due to congestion inside the satellite (in which the buffer sizes are
typically much smaller than in the terrestrial networks). We assume throughout that a packet that is
corrupted before it arrives to the bottleneck queue is discarded and thus does not occupy any space in the
buffer.

In the analysis below we shall model random losses in the incoming link (uplink) and congestion
losses at the node. We consider®pM/1 queue with a finite buffer of siz& (including the packet in
service). We assume that losses can be caused either by a buffer overflow or randomly with probability
r in the incoming link. The arrival process from the source is assumed to be Poisson wittarai¢he
service times of packets is exponentially distributed with ratélence, the effective arrival process to
the system (buffer) can be assumed to be Poisson witmgaﬁf(l — PA. Definer 21 — r, péxe/u,
andp, = p/r. We present a recursive scheme for computiiag ») which is the probability ofj losses
(including random losses in the incoming link and congestion losses at the node) aroonggecutive
packets in such a model.

Remark 1. The case when there are losses in both the incoming and outgoing links can be analyzed
once we haveP(j, n). For example, let the random loss probability in the outgoing link bed letP;,

be the probability ofj losses among consecutive packets of a message when there are random losses
with probability in the incoming link, congestion losses due to buffer overflow at the node and random
losses with probability: in the outgoing link. Then

j :
Pin= Z (n_J+w)uw(l—u)”_jP(j—w,n).

w=0 w
Thus knowingP(j, n), which is the loss probability in the model we consider (i.e., random losses in the
incoming link and congestion losses at the node) one can obtain the loss probabilities for the case when
random losses can occur both in the incoming and the outgoing links.
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3. Approach using gener ating functions: main results

For the system with Poisson arrivals with rateand exponential transmission ratein steady state,
the probability of finding packets in the system at an arbitrary epoch is given by

_r
Zzlio i
Define Q; (k) to be the probability that packets out of leave the system during an inter-arrival epoch.
We have

Qik) = poft, O0<k<i-—1, Qi()=d', wherea:=1+p)L ()
Denote byP{(j, n) the probability of; losses in a block of consecutive packets, given that thereiare

packets in the system just before the arrival of the first packet in the block. Since the first packet in the
block is arbitrary, we have

I13) = 1)

K
P(j.n) =Y (i) Pi(j.n). (3)
i=0
The recursive scheme for computi®j(j, n) is then
r, j=0,
PiG,H=13r j=1, i=01,....,K-1, (4)
0, j=2
1, j=1,
P(j, 1) = 5
KPP o j=ojz2 ©
Forn > 2 we have
i+1 i
PAGom) =7 ) Qi PYy 4 (in =D +rY QP (j—Ln—1), 0<i<K-1,
k=0 k=0
K
PEGom) = Qx() Py (j—1n—1). (6)
k=0

Next, we state the main results, whose detailed proofs are given in the next section. Define the probability
generating function (PGF)

9. = Y3 Y PGin).

j=0n=1
Let x1(y, z) andxz(y, z) be the solutions inr of x> — (1 + p — rpy2x + 7pz) = 0:
1+ p —royz+ /(L4 p — rpy2)2 — 47pz
2 9
1+ p —rpyz— /(1 + p — rpy2? — 4ipz
5 :

Xl(y» Z) =

x2(y, z2) =
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We shall often write simplyc; andx; for x1(y, z) andxz(y, z). Define, for allk > 1, 8 = xk — x5,
¢r = (F+1Y)281 — 8. Let Ry = (L0 7%

Proposition 1. The PGF g is given by

(y,7) = L
PTG oy
x [(F+1Y)RE, + 30X + 20(@p) X F(y — @) — apy) A(y, 2) + rzy(@p)*B(y, 2],  (7)

whereA(y, z) and B(y, z) solve

(zpa(axl)K+1(y<f —axy) —Fa)  z02(F(x1 — p) + rxly(oexl)K>> (A(y, z))

zpo(ax2) KT (y(r — axp) — Fa) 2P (F(x2 — p) + MXay(ax2)X) B(y, z)
1— K
a1- ole)ozxfﬂy + (A — axp)axi(ry +r) ( 1 1 )
=(-1 1K . (8)
1- axz)ax§+1y + (1 — ax)axa(ry +r) ( 2 )
1- X2
Fory = 0, Proposition Isimplifies to
_ R _
q9(0.2) =77 _KFZ [Rit1— 20" A0, 2)]. (9)

Having obtained the probability generating function, the explicit expressions for the required probabilities

can be obtained by invertingy, z). In particular we shall focus oR,(> j, n), the probability of losing

more than;j packets out ofi. We investigate, in particular, the casesjof 0, 1, in order to be able to

decide whether adding a redundant packet to each message results in a decrease of the loss probability.
To stress the dependence of the different quantities (such as thg)R@FRhe random loss parameter

r and oni, we shall sometimes addand X explicitly to the notation as subscript (e.g. we shall write

q*(y,2)). The next corollary shows that there is a simple product form expression for the probability

of no losses among consecutive packets. In this product, the first term corresponds to the probability

of no random losses (in a system that has no congestion losses), and the second one corresponds to th

probability of no congestion losses (in a system that has no random losses, and in which the arrival rate

is reduced taA).

Corollary 1. The following holds
(i) ¢}(0.2) = g5 (0. 72)F,

(i) PMO,n)=7r"Py(O,n).
Proof. From(9) we have

Ry

q:0,7) = fl [Rh, — 205 A0, 2], (10)

—rz
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where
AM0, 2) = (1 — axy)oaxy[(1 — xf)/(l — x1)]
T 22ra?(p(ax) K+ (xz — p) + plax2) K+ (xy — p))
Now
A Rk -1 K AFA
46'(0.2) = T—[Ryhs — 20" AT (0. 2)],
where
A0, 2) = (1 — axpaxi[(1—xf)/(1— xp)]
0T 2202(p(axy) K (xz — p) + plax2) K i(xy — p)
Thus,
A - Rg -1 =_ K AFr = Rk -1 K Ar
g5 (0,7z) = T ?Z[RKJrl —rzpt Ay (0, 72)] = s }_FZ[RKJrl —zp" A(0, 2)].
Hence (i) follows. Now,
PO 1) = 1 10,2 _ 1 n 15 (0, 7z)
ra (n—21! 9zn1 — (—=D1! a(rz)n1 =0
from which (ii) follows. O

Proposition lyields the following corollary.

Corollary 2. The probability of losing one packet out of n consecutive packeisP(1, n) is given by

aq(y, z)

: = ["FAE + [ R
y y=0

P(1,n) =[z""1

with

_ Rk 1 K+1 . Zrp
F1@) = 3= ARk = 2@p)” " AQ I | =14 7= ],

R .
Fa(y) = 1—’;Z[R;1_1 + oK — 2(ap) X TIFA(O, 2) + rz(ap)  B(O, 2)].

whereA (0, z) and B(0, z) are values ay = 0 of A(y, z) and B(y, z) defined irProposition Jand A (0, z)
is the derivative ofA(y, z) with respect to yevaluated aty = O.

One can derive expressions fat0, z), B(0, z), A(0, z) from (8) and hence an explicit expression for
P(1, n) by looking for the corresponding coefficients in the Taylor's expansiois ahd F,. But finding
Taylor's expansions may be computationally involvedSkrction Swe provide an alternative approach
for directly evaluatingP,(> j,n),Vj,0 < j <n — 1. Of course fotj = n, P,(> n,n) = 0.
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4. Numerical examples

In this section we compare the loss probabilities of a whole group adnsecutive packets, which
we call a block, with and without additional redundant packets. The group of packets that include the
original block plus the additional redundant packets (if these are added) is called a frame. If at least
packets out of these consecutive- j packets reach the destination then no loss of frame occurs. In this
section we restrict ourselves to the casg ef 0, i.e., no redundancy anjd= 1, one redundant packet per
n packets. Without loss of generality, we may scale the time so that the service rate iguaitly: In the
numerical examples we are looking only at the random losses in the incoming link with probaaiiity
congestion losses. We talkke = 25. When we numerically compare®}(> 0, n) with P,(> 1,n + 1)
we always obtained®,(> 1,n + 1) < P,(> 0, n), which should be of no surprise: this observation
means that if redundancy is added in such a waytttetotal load on the system remains unchantet
indeed redundancy improves performance in terms of loss probabilities. However, the assumption that
the total load remains the same means that the throughputuééfeinformation decreases (in real time
applications this would mean that a higher compression rate should be used before transmission). This
type of comparison (keeping the total load unchanged) has not been performed previgady7i)3]
even for the case of congestion losses only. For example, if we ezttlindant packets io(which gives
frames ofn + k) and if the load is unchanged, then this means that the throughput of useful information
carried by a frame has decreased by a factor/of + k). Yet we have less losses of packets. Thus the
guestion that needs to be addressed is whether we ggoouiputin this case. Let us define the goodput
as the throughput arriving well to the destination. Then this is given by

(input rate of blocks x # x Py(Zk,n+k).

So a meaningful thing to compare#5(0, n) with (n/(n + 1)) P,(< 1, n + 1) for fixed A. In Fig. 2 we
plot the relative gain, i.e.,
m/n+1))P(<1ln+1) — PO,n)

PO, n) )

FromFig. 2we observe that the benefits of adding FEC grows as the amount of random losses increases,

and also ag increases. Also for very low (very close to 0) and very low (as compared to buffer size)

we loose by adding FEC=ig. 3 plots the same curve for = 0.99. We observe that curves for= 0.3

andA = 0.99 are identicat > 0.1 and largen and forr close to 0 the difference is very small.

(11)

Remark 2. Consider a scenario in which there are only random losses (with probad)ilejd no
congestion losses. Then we have

P,(0,n) = (1— 1", P,(L,n) =nr(l—r"2 (12)

If we want to study the effect of adding FEC on recovering from different type of losses we can compare
the relative gain defined if11) for the cases when= 0 (congestion losses but no random losses) to the
case when there are no congestion losses but only random losses with loss probabilities ¢h#&n by
We plot this comparison iRig. 4and observe that FEC is more helpful in recovering from random losses
than congestion losses.

Next we look at the case where the transmission of useful information is kept unchanged when adding
redundancy. This implies that the total packet arrival rate increases due to adding redundancy. We assume
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Fig. 2. [n/(n + L)) P(< 1,n + 1) — P(0, n)]/ P(0, n) as a function of: for varyingr with » = 0.3.

that the rate at which frames arrive is the same for the two cases and is giverrbthe case of no
redundancy, the rate at which packets arrive is p = nxand in case of redundangay= p = (n + 1)x.

A frame is lost in the latter case if more than one packet is lost outiofl consecutive packets. We are
thus interested in the differend@ = P (> 0, n) — Py4+1:(> 1,n + 1). If D > 0 then the redundancy
decreases the loss probability of messages. Observe that

D=1- PnX(O’ n) - [1 - P(n+1)x(o7 n+ 1) - P(n+l)x(1’ n—+ 1)]
= Puipx(Ln+1) + Pui1)c(0,n + 1) — Poy(0, n). (13)

We next plot the relative gaifd/ Px(> 0, n) as a function of: for x = 0.03 (this means the loailx,
varies from 0.03 (for = 1) t0 0.75 (forn = 25)) inFig. 5and forx = 0.4 (load varying from 0.4 to 10)

in Fig. 6. The curves show that for fixedthere exists a value of the frame size at which the gain obtained
by adding FEC as defined {i3) is maximum. These figures can thus be used in order to optimize the
size of blocks to which we should add FEC.

Remark 3. FromFig. 5we observe that for = 0.1, adding one redundant packet for a block size of 10
packets will result in the maximum gain ib. The redundant packet can be constructed as follows: let
the packet sizes be sa¥f bits. Then theth, 1 < i < M, bit of the redundant packet is obtained by an
XOR operation on théh bits of all the 10 packets.
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All the above curves establish that we benefit from adding redundancy miserot very small, and
this is a valid remark or observation at any load. However when the random loss probability is very low
(close to 0) we may loose by adding redundancy.

5. Combinatorial approach using ballot theorems

We next employ combinatorial arguments together with the Ballot theoféjte alternatively ob-
tain explicit expressions for all the probabilities of the previous section. In particular, we shall find the
probability P¢(j, n). Let us denote the loss probabilities in a system with no random losses but only
congestion losses and Poisson arrival process with paraimebsr P¢(j, n), 0 < j < n. Observe that
these probabilities can be obtained frigh

Consider the case whejt losses consist 0f.(0 < j, < j) random losses ang.(0 < j. < j)
congestion losses. Far= 1 we have,P¢(j, n) from (4) and (5) We shall now deal witm > 2. For
jr = 0, we havePq(j, n) = (L—r)"P*(j., n) with j. = j andP*(j., n) given from[8]. We next consider

2 Observe that here we are looking at the case when the random losses (if any) occur before the frame enters the buffer. The
complementary case of random losses occurring after the frame leaves the node can be handled as dReusaddliind
then one can obtain the loss probabilities for the case when random losses can occur both in the outgoing and in the incoming
link.
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the case foj, > 1. The number of ways in whic}) random losses can occur amoplpsses |5(’ ). We
calculate the probability of one such outcome. The probability depends on the position of the lost packets
in the frame. Let us denote by the position of theth random loss, ¥k i < j, in the original frame.

Alsoi < r; <n—(j,—i). Thusry = 1, when the first packet was lost by random loss@gne: n, when

the last packet was lost by random loss.

The following analysis is for the case ¢f > 2,r1 # 1,r; # nandj. = 1,r # 1 orn. We shall
supplement the analysis with the other cases at appropriate places. Observe that the random losses ¢
beisolatedor they can occur in burst. In fact since our message length is fir)itehe probability that
all the random losses occur in a bursti6.2 Also observe that only the packets of the original message
which are not subject to random losses havepihtentialsof getting lost at the queue due to congestion
(as we have assumed these are the only packets that actually reach the queue). Thus we shall look :
the packets of the original message between conseautngom loss event#\ random loss event is
formed of consecutive random losses. Say that consecutive packets actually coming to the queue an
are not corrupted due to link losses formiaterval. Let T be the number of such intervals. Thiiis
includes

3 Although bursty loss occurrence is more a characteristic of congestion losses.
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Fig. 5. D/ P«(> 0, n) as a function of: for differentr andx = 0.03. Observe that the load changes witalso.

e The interval consisting of packets coming to the queue before the first random loss event

(if ro # 1).
e The interval consisting of packets coming to the queue after the last random loss evgnt (if).
e The interval consisting of packets coming to the queue between two random loss events.

Let k; be the number of consecutive random losses inttheandom loss event.

Remark 4. The value off’ depends on, j, and the position of random losses. For exampleifer j,,
T=0,forn=j,+1,T=1,etc.

Define

2(t) 1= Z ky.
h=1

We now distribute thg, congestion losses in tiintervals of lengthg, — 1, rijk, — 1, — L, Py ik, —
Fitk, — 1, ..., n—ry -1 — 1. Letn, be the number of congestion losses infttesuch interval. Observe
that (for2<y <T —1)

0 < ny <MiN(ritz-1) — rzp-n — 1, Jjo)-
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Fory=1,0<n, <min(r1 — 1, jo)andfory = 7,0 < n, < min(n — ryr—1) — 1, j). Also,n, satisfy
Z)T;:l ny = j.. Now the number of ways in which, losses can occur in theh interval is

Flyz(v—1) — Fz(v—1) — 1

ny

-1 — -1
(rl ) for y=1, <n F2(r- ) for y=T
ny nr

We shall calculate the probability of one such event. We shall look at three types of intersibats
with the first arrival after a random loss event and ends with the last arrival before a random loss event;
B-starts with the arrival of the first packet of the message, (# 1) and ends with the last arrival before
the first random loss event;-starts with the first arrival after the last random loss event and ends with
the arrival of the last packet of the message (it~ n).

In a sample path witly, > 2,1 # 1,r; # n, and with A; an interval of typeA, the order of
occurrence of the intervals 8 — A1 — Ay--- — Ar_p, — C.Forj. > 2,r1 = 1,r; # n, the order
iSA1 - Az--- — Ar_1 — C and no interval of typeB. For j, > 2,r, # 1,r; = n, the order is
B — Ai---Ar_1 and no interval of typeC. Similarly, for j, > 2, = 1,r; = n, there will be no

and
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interval of type eitheB or of typeC. For j, = 1, there can either be intervals— C or C or B and no
interval of typeA can occur. Let the queue length at the beginning ofithenterval bex and at the end
of the interval bes.

We shall first calculate the probability of a path that starts witackets in the buffer, ends wiih
packets in the buffer, has losses in it by congestion and consistapt= (r14.(y—1) —r.(y—1) — 1) arrival
events. We employ the arguments agdhto evaluate this probability. However here in our analysis we
also need to know the queue length at the arrival of the last packet of an interval. We shall denote this
probability by P, g (1, ay). Let f; denote thgith lost packet. We shall decompose an interval into three
types of events as follows: (¥),(f1)—the first packet to be lost i given that upon the arrival of the
first packet of the interval there a#gpackets in the buffer; (iiS( f;, fi.1)—packetf, 1 is lost given that
packetf; was lost; (i) U( f,.,, B)—packetf, is the last to be lost and the queue length at the arrival of
the last packet of the interval & '

Observe that an interval consists of the succession of evenig), S(f1, f2), S(f2, f3), ...,
S(fu,~1 fn,), U(fn,» B)- L€tV (f1), s(fi, fir1) @andu(f,,, B) be the probabilities of the eve, (f1),
S(fi, fix1) andu(f,,, B), respectively. Thus '

ay—ny+la,—ny+2 ay

Papnga)= > Y o Y v(f)s(fi f2) - 5(fay-1, n)U(fuy, -

A=l fo=fit+1 fﬂ)r:ﬁly*1+1

The computation of the probabilitieg ( f1) ands(f;, fir1) is similar to that in[8]. However the com-
putation ofu(f, , ) requires some combinatorial arguments. We shall, for completeness summarize the
results in the following proposition and shall provide the proof for the expressian fr. B).

Proposition 2. The probabilitiesv, (f1), s(f1, fi+1) andu(f,,, B) are given as

1, =1
ok (f2) = { S
0, o.w.
0, fl =< K- «,

o = , K, 14
e f1) L b ki@t LK), o @« (14)
sCfi, fir1) = ﬁ@(ﬁﬂfﬁfl)(lf, K), (15)

P20, o) +k—-p(K, B, fu, < ay,
u(fu,, B) =191, fa, =a, and =K, (16)

Ov ‘fn(v - a}’ and ﬂ # K,
whereg, («, B) is defined as the probability of a path that starts witpackets in the buffeends withg
packets in the buffer and consistsioéventgarrivals and departuresand is defined as

H
Po(e, B) = €y(ct. ) + Y Wo¥ 27, (17)

r=1
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wherefora > 1,8>1

@H=3 n n
€@ ) = . W—T(Kikl) #—mwl)

( 0 )(n—a+ﬁ)/2 < 1 )(77-1-&—5)/2
X - - b
1+p 1+p

Wa = (Ea (Ol, 0)7 60[-‘1—2(0[7 0)= cees €qp2(H-1) (Ol, 0))7
Z= (Enfoz(oa IB)’ er)ftfo(O» ,B)’ s Ep—@—2(H-1) (O, ;B)),

0 €(0,0) €4(0,00 ... ex-1(0,0
0 0 62(0, O) s €2H—2) (0, O)
. . . . . n—o—p
r=|: L N e 18)
0 0 0 ... €2(0,0)
0 0 0 ... 0

ande,(0,8) = €, 1L, B = 1, @0 = 1/ + p)ey 1@ D), @ > 1,6(0,0) = (1/(L+
P))ey—2(1, 1) where—oco < T < oo takes on values in the sum in the definitioregiv, g) in (18) so
that the binomial coefficients are proper.g. in the first sum if18) (n + « — B)/2 > (K + 1) and
n>m+a—p)/2—71K+1.

Proof. For proofs ofEgs. (14) and (153e€[8]. We shall here provide a proof f&qg. (16) Observe that

for f,, = a,, B = K, u(f,,, B) = 1. Forg # K, u(f,,, B) = 0. We look at the casg, < a,. Observe

that after thef, th packet there are, — f,, more packets to come. And at the lossfpfth packet, the
buffer is full, that is queue length i&. Thus we need the probability of a path that starts when there are
K packets in the buffer ends withpackets, consists of@, — f,,,) + K — $ events (arrivals and service
completions) anaho packets are losfThis is nothing but the pfobabiIitq?z(av_ﬂvHK_ﬂ(K, B) from the
definition in(17). O

We also need the probability of the evolution of a path after the end of intépeaid before the start of
interval A; 11 and havingk; (> 1) packets lost by random losses. Observe that the duration of this random
loss event has the distribution of the sunkp# 1 independent exp) distributed random variables, i.e.,
Erlangk; + 1, 1). Let X; be the number of service completions €xpin an interval with distribution
F x F x --- (k-time9 = F* where F ~ exp(A) and* denotes the convolution operation. Then the
probability thatA; ends withB; packets (including the last arrival in the intervg)) in the buffer and
A;y1 starts withg, packets (not including the first arrival in the interv&l, 1) in the buffer and has;
random losses can be written as

o ETHS (B1—B2) ‘ ]
Jo ﬁ dF* &), i 0 < po < Bu,
o _ N — — LS m
P(Xz = ,81 ,32, kz) = Zf:ﬂl OOO € n(jlj‘s) dF*(k[+l) (S), if 132 — 0, (19)
0, B2 > B1.
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Remark 5. Indeed, the end of service times are a Poisson process with intensitge PGF of the
number of such points during a fix intervAlis G(z) = exp(—u(1—z)7). If T is a random interval then
itis G(z) = E[exp(—u (1 —2)T] = T*(u (1 — z) whereT*(s) is the Laplace—Stieltjes transform Bf If
T were exponentiali) then this would give

A 1 0z A P

G(z) = = - , wheref= — = ——.
@ A+pu@ld—-—20 z1—-(A-p):z A4+ 1—0p

We see thatG (z) is the PGF ofY = X — 1 whereX has a geometric distribution with parameteiso
P(Y = n) = (1—6)"6. The number of points in an Erlarigf- 1, 1) RV, sayX;, has thus the distribution
of the convolution ok; + 1 copies ofY, which gives

k; + 1)!
P(X; =n) = Z (I;)Ien(l —plitl,
Vit Ay =ki+1 yalya! Yn:

This can now be used to for the expression&lLid).

We will now consider a path in which the first packet (outnopackets in a frame) seégackets
in the buffer, and out of packets in a framej, packets are lost by random lossggackets are lost
by congestion losseg, + j. = j with T intervals. Letr; be the position of théth random loss. Let
P[l;(jc, jr, T, n) be the probability of such a paftithen forr; # 1 andr; # n, j, > 2 andforj, =1 and
ri1#1lorn:

B;=K ap=K n=jr Jjr Jr— Jr= Zh 131"1
Pier j Ty =ri @ =" 3" > 2> Z >
B,=0,0<g<T—1a;=1,0<h<T—1r1=2ki=1 ko= kr—p=1
. T-2 . . . . : . T-2
n—j,—ap n—jr— 1“: n—jr—3 ;=1 ai min(as, j.) Min(az, jo—n1) min(ar—1, je—> 521 n)
ar=1 az=1 ar_1=1 n1=0 n,=0 ny_1=0

x C(ny, a1) P gy (n1, a1) P(X1 = Po — a1, k1) C(n2, az) P, g, (n2, az)
X P(Xo = B1—ap, k) -+ - C(nr—_1, ar—1) Pia;_,,p, ) (N7-1, ar—1)
X P(X7_1=Br—o—ar_1,kr—_1)C(nr, ar) Pu, ., (nr, ar), (20)

whereY , fi = Ofori < Oanday = r —1,ar = n— jo — Y Ftan ket = jo — X0 2 ka,
nr = j.— Z}f;ll ny. Also C(n, a) = a'/(a — n)'nl. We now consider the other cases:

e j, =1,r. = 1. hereT = 1 andk; = 1. For this case we can Writej,(jc,j,, T,n) asr(l —
"ty o P(Xo =i — o, D) P§ (jo,n — 1) with Pg (-, ) obtained ag8] and P(Xo = -, -) having
same distribution agl9).

4 We use the subscript to distinguish the notation frorSection 3
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e jr=1,r1=n:hereagaif = 1andk; = 1. We can writeP! (jc, j., T, n) asr(1—r)" P (je,n — 1)
with P¢(-, -) obtained as ifi8].
e j,>2,r1=1rj #n:we have

PL(jes jon Ton) = rr(L= )" 33" P(Xo =i — Po. k) P (je. jr — ku. T.n — ko).
ki=1 Bo=0

with Pfo(., -, -, -) given as in(20).
e j,>2,r#1,r;, =n:we have

B,=K a=K n—jr jr Jje—kr Jr=Yn—skn

Pl jn Ty =rF@ =i Y S OYy Y- Z

B,=0,0<g<T—10=1,0<h<T—1r1=2kr=1ky_1=1

n—jr—ay n—jr—Y ry a; n—j,= Y152 @ min(ay, j.) min(az, jo—n1) min(ar_1. je—Y_1—4 1)
a2=1 a3=1 a1,1=l n1=0 I12=O n1,1=0

x C(ng, a1) P gy (n1, a)) P(X1 = Bo — a, k1)C(n2, az) P, p,) (N2, az)

X P(Xo = B1—ap, k2) - - - C(nr—_1, ar—1) P, ,,p, ) (N7-1, ar—1)

X P(Xr-1 = Br-2 —ar-1,kr-1)C(nr, ar) P, p,_,)(n1, ar). (21)
whereY _, fi = Ofori < Oanday = ri—1,ar = n— j, — Y. g ai, ki = jr — Y.r_kn,
nr = je— ZIT:_ll Np.

e j,>2,rp=1r; =n:we have

Jrooi
P (jes jrs Ton) = r" (L= )" Y " " P(Xo =i — Bo, k1) P)°(je, Jr — k1, T, n — k1)
1=1 Bo=0
with P;fO(-, -, -, -) in last equation given b{21).

Having obtained the expressions we have (with appropriate range for val@ig¢s of

P;(Jc,Jr,n)zzP},(Jc,Jr,T,n) and P;(J,n)z(j )P;(Jc,Jr,n).

T

And finally,

K
Py(jin) =Y IIG)Py(j.n),
i=0
wherell(i) is defined inEq. (1) The probabilityP,(j, n) here is the same as the probabilRyj, n) in
Section 3



P. Dube et al./ Performance Evaluation 53 (2003) 147-167 163

6. Conclusion and scope of further research

We have studied the steady state loss probabilities of messages My &fil/K queue where
there are both random losses and congestion losses using an algebraic approach involving generat-
ing functions and a second approach based on ballot theorems. The explicit expressions we obtained
allowed us to investigate numerically when it is profitable to add FEC, and what should the opti-
mal block size be when we add a single redundant packet per block (e.g. using an XOR
operation).

Our method can easily be generalized to include multiple sessions (by generalizing the recursions
in [4] to include random losses also). Also instead of fixed random loss probabilities, we can include
the case where loss probabilities are dependent on the state of the channel, e.g. one can employ the
Gilbert loss model for channe[g] or its generalizatiorj3]. We can write recursions for the steady
state loss probabilities as a function of channel state Psay; n, s), i.e., conditioned on the stateof
the channel upon arrival. If we assume that during the arrival of a message the channel state remains
unchanged, say (this is the case when the time scale of the Markov chain describing the channel is
considerably slower than the duration it takes for amessage to be served) the unconditional loss probability
P{(j, s) is

S
PEGjin) = PA(jn, ) Pe(s),

s=1

where S is the total number of possible channel states &1d) is the steady state probability that

the channel is in state Another interesting direction will be to model bursty sources. The source can

be modeled as an Interrupted Poisson process and again recursive equations can be written for loss
probabilities.

Appendix A. Proof of Proposition 1

Define

K
nj,n(x)é inP,-"(j, n), n>1 j=>0.
i=0

It follows from (6) for n > 2,

K— i+1 K-1 i
i (X) = Z Qi) Py (in—D+r Y XY QP (j—1n—1)
i=0 k=0 i=0 k=0

K
+x5 Y 0k Py (j—Ln— 1),
k:O

We substitutg?) in the last equation, introdues;, (x) and also use the facts that, (0) = P§(j, n) and
1— pa = a. We then obtainfon > 2,j> 1
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K-1 i
Tin(x)=F Z X! (Z PP (Gon— 1) + o PY( n — 1))
i=0 k=0
K-1 i-1
+r2x’( ,oozk“Pi“k(j—1,n—1)—|—oz’P8(j—1,n—1))
i=0 k=0
K-1
+ xX (Z pdTrPe  (j—Ln—1+aXPiG—1n— 1))
=0

1— (ax)X

T o 7 j-1,n-1(0)

K-1 i
=7 in ( pak+le+17k(j, n—1+ ai+1Pg(j, n— l)) +r

o
try f ox (T j—1n-1(x) = Tj—1,-1(0) = x* PR (j —1.n — 1))
par(ax)® _ I
T gy L@ = 7100 — 0 PR~ L = 1)

K-1
+xX (Z pd P (-1 n—1) +a"Pi(j—1.n— 1))
k=0

- = 2
= (in,-,n1<x>—(ax>’<n,-,n1(a—1))— " (i—<ax>K)nj,n1(0)

1—oax \ax 1—oax \ax
o 1—(an)X _
e 1(0) + r (T 1) — @) @)
1— (ax)X _
e ———71,-1(0) + ap(@) 7y 1@ + (@) 1,-1(0). (A.1)

Define, with some abuse of notation, the generating functiaff'¢of, n)

T(x, 3, D= Y > ¥ ). (A.2)

j=0 n=1

When we fixy and|z| < 1, the above generating function is polynomiakirand therefore an analytic
function. In order to usé€A.1), which holds only fom > 2 and; > 1, we note that

oo o ) o X )
S V) =y, 2) = Y o) = Y yira ) + moa()

j=1n=2 n=1 Jj=0
=n(x,y,z) —n(x,0,z) —n(x, y,0 + 7(x, 0, 0).

From(4) and (5)we get

1—xX

I (A.3)

7(x,0,0) =r
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and

—xK 1—xK

1
7(x,y,0) =7 * 4 yr + yxk. (A.4)
1—x 1—x

In (A.3) and (A.4) as well as in the rest of the paper, we understand that fer 1 and for all K,
(1—x%¥)/(1 — x) = K. Thus we obtain

w(x,y,z2) —n(x,0,2)
1—xX po?

=yXK+r y+7_‘ i[7'[()(, y, Z)—JT(X, 0’ Z)]
1—x 1— axax
= 2
B 1rfa0(x (Ol-x)KZ[ﬂ(a_l’ Y Z) - T[(a_l’ 0’ Z)]
- 2 1 1 _ K
LG (ax)X ) z[7(0, y, z) — 7(0, 0, 2)] + foz—(ax) z[7(0, y,2) — (0, 0, 2)]
1—ax \ax 1-oax
K -1 1 iiad — K™t
+ap(ax)tzy| m(a ", y, 2) + pﬂ(O, v, 2) |+ 1 Omyz(zr(x, ¥, 2) — (ax) (@™, y, 2))
1— (ax)k
=+ ramym(o’ Y, Z)
1—xK z
=yxK +r al y+F por e [7(x, y,2) — 7(x, 0, 2)]
1—x (1— ax)ax
rpayz ra+ry

+

1
JT(X, Y, Z) + ,()Ol((X)C)K y— < n(a_l’ Yy, Z) + —7T(O, Yy, Z)
1—ax 1—ax 0

Y = 20\ K
P P) (0, v, 2) - 7(0, 0, )] + D [n(a‘l, 0. +7(0.0, Z>}
(1— ax)ax 1—ox P
rOtyZ (O{X)Kn(o, y, Z)- (A5)
1—oax

We note that in order to establish the prooRwbposition 1it follows from (3) that it suffices to obtain
m(x, y,z) atx = p, since

q(y,z2) = Rxn(p, y, 2). (A.6)

From(A.5), we have

[7(p, y.2) = 7(p, 0, )] (L = (7 + rpy)2)

1-p¥ 1

oyt (y-7- 2 (e [n(a—l, y,2)+ =m0, , z)}
—p o P

1
+ zi(par) Kt [n(al, 0,2) + ;n(o, 0, z)] + rpyz [n(p, 0,2) +

=" +r

(ap)X

(0, y, z)i| .

To compute the functiorr(p, y, z) it suffices to compute the functions in the square brackets as well
asn(p, 0, z). To do that, we first compute,, by proceeding in the same manner agAnl). Since
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P¢(0,n) = 0 we have fon > 2,

_ 21 _ 2 K T (ax)X
o (X) =7 — o u-1(X) — 7 (ax) o p—1(e™ ) + ra—————m0,,—1(0)
1—oaxax 1—oax 1—oax
2
_ po 1
) (— — (OtX)K> 70,,—1(0).
—oax \ax

By taking the generating function of both sides of the above equation and substifi)gve can write

1— K
(1 —oax)axn(x,0,2)=r 1 a

(1 — ax)ax + rpa®zm(x, 0, 7)
—x

1
— Fpa (ax)* 1z [n(a—l, 0,2) + ;n(o, 0, z)] + 7o (x — p)z7(0, 0, 2).
(A.7)
From(A.5), we have

(1 — ax)ax — pa?rz)[n(x, y, z) — m(x, 0, 2)]
K

——y + 2pa@n) (1 — @) - o+ 1y)]

= (1 — ax)ayx* T 4 (1 — ax)axr 1

1 1
X [n(a_l, v, 2) + ;n(O, v, z)i| + Fpaz(ozx)K+1z [n(oz_l, 0,2+ ;n(O, 0, z)i|

+ a?rpxyzr(x, v, 7) + o*F(x — p)z[(0, y, z) — 7(0, 0, 2)] + ’rxyz(ax)X7(0, y, z). (A.8)
Substituting(A.7) in (A.8) yields
(1 — ax)ax — pa®(Fz + Ixy2)m(x, y, 7)

1—xK

— K+1
1—x

= (1 — ax)ayx* ! + (1 — ax)ax(ry + 7) + zpa(ax)" T (y(r — ax) — ra)

X [n(a—l, y,2) + %n(o, Y, z)} + za®(F(x — p) + Xy(ax)®)7(0, y, 2). (A.9)

For each = 1, 2, whenx = x;(y, z), the term that multiplieg(x, y, z) in the left-hand side dEq. (A.9)
vanishes. Sincer(x, y, z) is polynomial inx and therefore analytic iw, the left-hand side ofA.9)
vanishes att = x;(y, z). Thus by substituting; for x into (A.9), we obtain two equation€g. (8)
with two unknowns:A(y, z) = [r(a™2, y, 2) + (1/p)7(0, y, z)] and B(y, z) = m(0, y, z). Eq. (7)of the
proposition, finally, follows fron{A.9) with x = p and(A.6).
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