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Abstract. This paper revisits the two-hop forwarding policy in delay
tolerant networks (DTNs) and provides a rich study of their performance
and optimization which includes (i) Derivation of closed form expressions
for the main performance measures such as success delivery probability of
a packet (or a message) within a given deadline. (ii) A study of competi-
tive and cooperative operations of DTNs and derivation of the structure
of optimal and of equilibrium policies. (iii) A study of the case in which
the entity that is forwarded is a chunk rather than a whole message. For
a message to be received successfully, all chunks of which it is composed
have to arrive at the destination within the deadline. (iv) A study of the
benefits of adding redundant chunks. (v) The convergence to the mean
field limit.

1 Introduction

Through mobility of devices that serve as relays, Delay Tolerant Networks (DTNs)
allow non connected nodes to communicate with each other. Such networks have
been developed in recent years and adapted both to human mobility where the
contact process is between pedestrians [5], as well as to vehicle mobility [7].

The source does not know which of the nodes that it meets will reach the
destination within a requested time, so it has to send many copies in order to
maximize the successful delivery probability. How should it use its limited energy
resources for efficient transmission? Assume that the first relay node to transfer
the copy of the packet to the destination will receive a reward, or that some
reward is divided among the nodes that participated in forwarding the packet.
With what probability should a mobile participate in the forwarding, what is
the optimal population size of mobiles when taking into account energy and/or
other costs that increase as the number of nodes increase? If it is costly to be
activated, how should one control the activation periods?

We propose in this paper some answers to these questions using simple prob-
abilistic arguments. We identify structural properties of both static and dynamic
optimal policies, covering both cooperative and non cooperative scenarios.

This paper pursues the research initiated in [2] where the authors already
studied the optimal static and dynamic control problems using a fluid model
that represents the mean field limit as the number of mobiles becomes very
large. That work has been extended in [3] to model the separable nature of
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a packet, which is composed of K blocks called chunks. Only once all chunks
corresponding to a packet are received, the packet is considered to be available
at the destination. The authors of [3] also study adding H redundant chunks
such that the packet can be reconstructed at the destination once it receives any
K out of the K + H chunks.

In this paper we revisit the work of [2, 3] with the following differences. (i)
In [3] it is assumed that memory is limited so that a mobile can only carry one
chunk. In this paper we restrict to systems that do not have such constraints.
(ii) Both problems [2, 3] were modeled using a mean field limit. We consider here
the exact models and show that the mean field limit serves as a bound for the
performance of the original system. The bound becomes tight as the number of
mobiles increases.

In [4], a related optimal dynamic control problem was solved in a discrete
time setting. The optimality of a threshold type policy, already established in
[2] for the fluid limit framework, was shown to hold in [4] for some discrete
control problem. A game problem between two groups of DTN networks was
further studied in [4]. We complement these in the current work by focusing on
other types of game theoretical problems: those concerning competition between
individual mobiles. We obtain the structure of equilibrium policies and compare
them to the cooperative case.

2 Model

Consider n mobiles, and moreover, a single static source and destination. The
source has a packet generated at time 0 that it wishes to send to the destination.
Assume that any two mobiles meet each other according to a Poisson process
with parameter λ. Whenever the mobile meets the source, the source may for-
ward a packet to it. We consider the two hop routing scheme [1] in which a
mobile that receives a copy of the packet from the source can only forward it if
it meets the destination. It cannot copy it into the memory of another mobile.

Consider an active mobile with non-controlled transmission rate. Let T1 be
the first time it meets the source and let T1 + T2 be the first time after T1 that
it meets the destination. Denote

qρ = exp(−λρ), Qρ = Qρ(λ) = (1 + λρ) exp(−λρ)

Consider the event that the mobile relays a packet from the source to the desti-
nation within time ρ, i.e. T1 + T2 ≤ ρ. T1 + T2 is an Erlang(2) random variable
and therefore the probability of the above event is 1−Qρ. Note that Qρ − qρ is
the probability that T1 < ρ but that T1 + T2 > ρ.

Control problems.
We consider central control, in which the source decides whether to transmit

a packet when it is in contact with a mobile, and distributed control, in which
the mobiles are those who take decisions, concerning both the transmission of
packets to the destination as well as of receiving packets from the source.



DTN with two Hop Routing 3

As energy is limited or costly, we either limit the number of active mobiles,
or we control dynamically the transmission rate. The first case corresponds to
a static optimization problem; the decision variable ui then stands for the prob-
ability of participation. The dynamic control problem in which one controls
dynamically the transmission rates. An individual dynamic control ui of mobile
i then stands for a piecewise continuous function ui

t taking values in [0, 1].
We shall consider two control frameworks: a centralized control at the source,

and a decentralized control at the mobiles. When dynamic control is applied at
the source it will affect transmissions from the source to the mobiles. When
mobiles control the transmission then both transmission from the source to the
mobiles as well as those from the mobile to the destination are controlled1

Interpretation of a dynamic control policy. If a mobile meets the source
at time t then it receives a packet with probability ui

t. Moreover, in the case of
decentralized control at the mobiles, if at time t, a mobile has a packet and it
meets the destination then it delivers the packet with probability ui

t.
Define ζt(j) to be the indicator that the jth mobile among the n receives

the packet during [0, t]. {ζt(j)}j are i.i.d. with the expectation and the Laplace
Stieltjes Transform (LST) given by:

wj
t := E[ζt(j)] = 1− exp

(
−λ

∫ t

0

uj
sds

)

E [exp (−sζt(j))] = wj
t exp(−s) + (1− wj

t ) = 1− (1− exp(−s))wj
t

= 1− (1− exp(−s))(1− exp(−
∫ t

0

uj
sds) = g

(∫ t

0

uj
sds

)

where g(Z) = exp(−s) + (1− exp(−s)) exp (−sZ).
The probability that the destination does not receive a packet from mobile

j by time τ is given by E
[
exp

(
− λ

∫ τ

0
ζt(j)dt

)]
in the case of control at the

source, and by E
[
exp

(
− λ

∫ τ

0
ζt(j)u

j
tdt

)]
for the case of decentralized control

by the mobiles.

Dynamic control at the source: A state representation. Let Xt be the
number of mobiles with a copy of the packet at time t. We call Xt the state.
The intensity of the process that counts the number of contacts between nodes
with copies of the packet and the destination at time t is λXt. Thus the number
of contacts during the interval [0, τ ] between the destination and mobiles that
have copies of the packets is a Poisson random variable with intensity λ

∫ τ

0
Xsds.

Consider the dynamic control policy u assumed to be common to all mobiles.
Then Xt =

∑n
j=1 ζt(j) where {ζt(j)}j are i.i.d. The LST of Xt satisfies

X∗
t (λ) := E

[
e−λXt

]
= E

[
e−λ

(∑n

i=1
ζt(i)

)]
=

(
E

[
e−λζt(1)

])n

(1)

1 also receiving packets require energy. This is in particular the case if a mobile that
does not have the packet has to send periodically a beacon to signal its presence so
that the source would know when it is in transmission range.
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Conditioned on Xt for t ∈ [0, τ ], the number of packets that arrive at the des-
tination has a Poisson distribution with parameter λ

∫ τ

0
Xtdt. Define FD(τ) as

the probability that the destination receives the packet by time τ . Then

FD(τ) = 1− E

[
exp

(
−λ

∫ τ

0

Xtdt

)]
.

3 The static DTN game

It is assumed that the packet has to arrive at the destination τ units of time
after it was created, otherwise it brings no utility to the destination. Let ui

be the probability that mobile i participates. {ui, i = 1, ..., n} is a symmetric
equilibrium if ui have the same value for all i and if no mobile can benefit from
a unilateral deviation to some v 6= u.

Let p(v, u) be the probability that the tagged mobile is the first to deliver
the packet to the destination when it plays v and all others play u. A mobile
other than the tagged one delivers a packet to the destination during the interval
[0, τ ] with probability β := u(1−Qτ ). The probability that exactly k−1 mobiles
other than the tagged one deliver a packet to the destination within the time

interval is therefore:
∑n

k=1

(
n− 1
k − 1

)
βk−1(1 − β)n−k. Hence the probability of

the tagged mobile to receive the unit award, if it decides to participate, is

P (u) = (1−Qτ )
n∑

k=1

(
n− 1
k − 1

)
βk−1(1− β)n−k

k

=
(1−Qτ )(1− (1− β)n)

βn
=

(1− (1− (1−Qτ )u)n)
un

. (2)

We shall sometime write Pn,τ (u) in order to make explicit the dependence on n
and τ .

The utility and equilibrium A mobile that participates receives a unit of
reward if it is the first to deliver a copy of the packet to the destination. It further
pays some energy cost gτ where g > 0 is some constant. W(1, u) = P (u) − gτ
is thus the (expected) utility for a tagged mobile of participating when each of
the other mobiles participates with probability u. We assume that the utility
W(0, u) for not participating is zero for all u. The utility for a mobile that
participates with probability v when each other participates with probability u
is W(v, u) = vW(1, u). The following indifference property easily follows:

Lemma 1. If there exists a policy u such that W(1, u) = 0 then u is a symmetric
equilibrium.

P (u) is a continuous convex decreasing function, limu→0 P (u) = 1−Qτ and
P (1) = (1−Qn

τ )/n. Thus the utility for choosing to participateW(1, u) = P (u)−
gτ is a continuous convex decreasing function, limu→0W(1, u) = 1−Qτ − g(τ)
and W(1, 1) = (1−Qn

τ )/n− gτ . The utility for not participating is assumed to
be zero. Thus we have
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Lemma 2. If (1−Qn
τ )/n < gτ then there exists a unique symmetric equilibrium

u which is the unique solution of W(1, u) = W(0, u) = 0.

Numerical Examples Figure 1 presents the utility for choosing to participate
as a function of the strategy u of all other players for various values of the
maximum duration τ : τ = 1, 5, 20, 60. λ = 10 is taken to be a constant. The
other parameters are n = 100, g = 0.01. We obtain four curves (one for each τ).
We see that indeed for each value of τ there is a unique value of u for which
W(1, u) = 0, and this is the equilibrium. Here the curve that is the highest
corresponds to τ = 1, and the larger τ is, the lower the corresponding curve is.
This then implies that the equilibrium value of u increases with τ .

In Figure 2 we repeat the same but with a fixed value τ = 10 and varying
values of n: n = 3, 10, 30 and 100. Again, the larger n is, the larger is also the
curve. The equilibrium is thus increasing in n.

0,80,6 1

u

0,8

0,4

0,4
0

0,2

-0,4

Fig. 1. The utility of participating as
a function of u, for various values of
the duration τ .

0,2

0,8

u

0
0,6

0,4

0,4

0,6

10,2

0,8

Fig. 2. The utility of participating as
a function of u, for various values of
the number n of users.

4 The static control problem

We shall consider both the optimal symmetric control policy as well as the
general non-symmetric one. We recall that we consider this as a problem in
which the source controls the activation. A general activation policy is one that
activates mobile i with probability ui. A symmetric policy is one for which ui

are the same for all i. We consider here the utility

W(u) = Ps(u)− gτ

n∑

k=1

uk

where Ps(u) = 1−
n∏

k=1

(ukQτ + (1− uk)) = 1−
n∏

k=1

(1− (1−Qτ )uk)
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is the probability of successful transmission by time τ . The term gτ
∑n

k=1 uk

corresponds to a cost per expected energy.
Let Ud be the set of policies for which each uk is either 0 or 1. We next show

that the global utility for a general policy is minimized by a symmetric policy
and maximized by a policy in Ud.

Lemma 3. (i) There exists an optimal policy among Ud.
(ii) A necessary condition for a policy u to be globally optimal is the following:

Except for one mobile at most, the probability
of activating each mobile i is either ui = 0 or ui = 1. (3)

(iii) Any non-symmetric policy u performs strictly better than the symmetric
policy v that has the same sum

∑n
k=1 uk =

∑n
k=1 vk.

Proof. (i) Let u be a policy for which for some k, 0 < uk < 1. We show that
there exists a policy v ∈ Ud that performs at least as well. Since the utility is
linear in each uk, we can change uk to either 0 or to 1 without decreasing the
utility. Repeating this procedure for all the remaining j’s that are not extreme
points, we obtain a policy in Ud that performs at least as well as u. This implies
(i).
Choose an arbitrary u = (u1, ..., un). Consider now the problem of finding v ∈
W(u) under the constraint

∑n
i=1 vk =

∑n
i=1 uk. With this constraint, the policy

maximizes this objective if and only if it minimizes the function f(u) defined as

f(u) :=
n∑

k=1

ψ(uk) where ψ(u) = log(1− (1−Qτ )u).

ψ is a concave function of its argument, which implies that f is a Schur concave
function, see Appendix. For any policy u which does not satisfy (3), we can
construct a policy u′ which satisfies (3) and

∑n
k=1 u′k =

∑n
k=1 uk. Then u′

strictly majorizes u and therefore u strictly outperforms u′. In the same way one
shows that any policy performs strictly better than the symmetric policy that
has the same sum of components. ¦
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Fig. 3. Control case: Utility as a function of k
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In Figure 3 we compare the best solution among the symmetric policies and
the global optimal solution.

The left subfigure is obtained with the same parameters as used for the
equilibrium in Figure 1: g = 1, n = 100, λ = 10, τ = 1. The vertical axis corre-
sponds to the utility, and the horizontal axis corresponds to the integer k. There
are two curves. The top one is the utility under the non-symmetric policies,
and the bottom is the one corresponding to symmetric ones. In the top figure,
the integer k has the meaning that exactly k mobiles are activated. In the bot-
tom curve, each mobile participates with probability u. u is defined by the ratio
u = k/n. k varies between 1 to 10.

The right subfigure repeats the same experiment but with λ = 1 and with
n = 100. In both subfigures we see that there is indeed a difference between the
global optimal solution and the one obtained with the best symmetric policy.
The latter is indeed seen to provide a smaller optimum.

Remark 1. The fact that an optimal policy exists among Ud means that there is
an optimal number of mobiles that should participate. It can also be viewed as
an optimal coalition size. We plan to study in the future the question of optimal
coalition size in the case that there is competition between a given number N of
coalitions.

5 The dynamic DTN game

In the last section we assumed a static game: a mobile took one decision, at time
0, on whether to participate or not. We now consider a dynamic game in which a
mobile can switch on or off at any time. A pure policy ui for a mobile i consists
of the choice of time periods during which it is activated. ui

t = 1 if the mobile is
activated at time t and is zero if it is not. We may allow ui

t to take also values in
the interior of the unit interval. ui

t is then interpreted as a mixed strategy: the
mobile is activated at time t with probability ui

t. The energy cost for the mobile
is given by g

∫ τ

0
ui

tdt.
We introduce next threshold policies. A time threshold policy R is a policy

that keeps a mobile active till time R and then deactivates it. We shall identify
threshold equilibria for our problem. More precisely, assume that all mobiles use
threshold policies with a common threshold R. We shall consider deviation of a
single mobile to another threshold policy s and look for R such that s = R is an
optimal response of the deviating mobile.

The probability that the deviating mobile is the first to deliver the packet to
the destination is

Psucc(s,R) =





1− (Qs)n

n
if s ≤ R,

1− (Q
R
)n

n
+ Qn−1

R

(
qR(1−Qs−R)

+λRq
R
(1− qs−R

)
)

otherwise
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The first term corresponds to the event that the first successful delivery occurs
before time R, and the second term is related to its occurrence between time R
and s. More precisely, the second term corresponds to the event that no one of
the other n− 1 mobiles met the source till time R, where as the tagged mobile
either (i) did not meet the source before time R and then, during time interval
(R, s] met the source and then the destination, or (ii) it met the source at least
once before R but did not meet the destination before R, and then it met the
destination during (R, s].

The utility for a player who uses a threshold s while all others use a threshold
R is given by W(s,R) = Psucc(s,R)− gs.

R=1

R=2

R=3

R=4 R=5 R=6

R=12

Fig. 4. Equilibria in threshold policies: The utility W(s, R) (vertical axis) for a mobile
that uses a threshold policy s (horizontal axis) while all the other use a threshold policy
with R. Each curve corresponds to another value of R.

Figure 4 shows the utility W(s,R) for s varying between 0 and 20 and for
R = 1, 2, 3, 4, 5, 6, 12. The horizontal axis corresponds to s and the vertical axis
- to the utility. The remaining parameters are g = .001, λ = .049, n = 95. We
observe the following.

• There are many equilibria. For R between 3 and 5, the best response is
s = R and hence any value of R in the interval [3,5] is a symmetric threshold
equilibrium (for any horizon τ that is greater than R).

• 1 ≤ R < 3 are also equilibria but only for some value of τ . For example,
for R = 2, s = 2 is the best response as long as we restrict s to be smaller than
10.5; thus if τ ≤ 10.5 then all R’s between 2 and 5 are symmetric threshold
equilibria. If we restrict to τ ≤ 4 then the values of R in the whole range [1,5]
provide symmetric equilibria.

An alternative way to see the multiple equilibria phenomenon is by plotting
W(s,R) as a function of R for various values of s. We do so in Figure 5. This
time we take s = 1, 2, 3, 4, 5, 6, 12. The intersection of the curves corresponding
to the different values of s with the vertical axis are increasing with s. We indeed
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see that the best response to R = 3 is s = 3 but at the same time, s = 4 is the
best response to R = 4. (To get the best response for R = 3, we take a vertical
line that intersects the horizontal axis at R = 3. We see that the curve that
corresponds to s = 3 achieves the largest utility.)

r

7654321

0,01

0,005

0

-0,005

-0,01

Fig. 5. Equilibria in threshold policies: The utility
W(s, R) as a function of R for various values of s.

84 76

r

32

0,5

0
51

-1

-0,5

Fig. 6. The dynamic control
case: utility as a function of R.

6 The dynamic control problem

We consider the optimization problem restricted to symmetric policies, i.e. where
all mobiles use threshold policies and the threshold value R is the same for all
mobiles. Using the theory of Markov Decision Processes it can be shown that
there is no loss of optimality in doing so.

The global utility is then W(R) = 1− (QR)n − ngR. We have

∂W(R)
∂R

=
(Q

R
)nnλ2R

1 + λR
− ng,

∂2W(R)
∂R2

=
n(Q

R
)nλ2(nλ2R2 − 1)
(1 + λR)2

From the first derivative we see that W(R) is monotone. For all R sufficiently
large, it is negative if g < 1 and is positive if g > 1. From the second derivative
we see that W(R) is convex for R < 1/(λ

√
n) and is concave for R > 1/(λ

√
n).

An example is given in Figure 6. The experiment was done with n = 95.
Each curve corresponds to another value of the parameter g: g = 0.0001 (top
curve), g = 0.0033 (next to top), g = 0.001 and g = 0.002. We see that there
may be one or two optimal values to the threshold R: it is either an extreme
point (R = 0 or R = ∞) or it is an interior point.

Theorem 1. There exists a unique optimal threshold policy. A policy is optimal
only if (except for a set of Lebesgue measure zero) it agrees with this policy at
all t.
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Proof With X∗ defined in (1), we have

1− FD(n) = E

[
exp

(
−λ

∫ τ

0

Xtdt

)]
= exp

∫ τ

0

log(X∗
t (λ))dt

where the last equality follows from the Lévy Khinchine formula. Hence

P (no success) = exp
(∫ τ

0

log E [exp (−λXt)] dt

)

= exp
(

n

∫ τ

0

log γ

(∫ t

0

usds

)
dt

)

where γ(Z) := e−λ + (1− e−λ) exp (−λZ) (4)
Assume that u is not a threshold policy. Let v be the threshold policy that

transmits till time s∗ :=
∫ τ

0
utdt and then stops transmitting. Then for every t,

∫ t

0

usds ≤
∫ t

0

vsds

This implies that the first integral
∫ τ

0
is smaller under u and hence also the

success probability. ¦
A similar characterization of the optimal policy has been derived in [4] for

the case of discrete time.

7 Transmitting chunks

We assume below that a message is composed of K chunks. Consider some
mobile that wishes to get the message within some time τ . We wish to compute
the success probability (given by the probability to receive all K chunks within
time τ). Assume that there are initially zi nodes that have a copy of chunk i. It
is assumed that the source can send at most one chunk when meeting another
node. The dissemination of each chunk i follows the same dynamics as the one
described in Section 2. Thus the probability of successful delivery is given by

FD =
K∏

j=1

(
1− E

[
exp

(
−λ

∫ τ

0

Xj
t dt

)])
so that

log FD =
K∑

j=1

log z(uj) where z(uj) = 1− exp
(

n

∫ τ

0

log γ

(∫ t

0

uj
sds

)
dt

)

(5)
and where γ(Z) is given in (4). The above derivation follows the same steps as
in Theorem 1.

We shall study below ”constant” transmission policies which are special case
of dynamic policies, as well as general dynamic policies. With a constant trans-
mission policy ui, mobile i is active. It receives a chunk from the source after
an exponentially distributed time with parameter uiλ. Once it has a chunk,
it forwards it to the destination after an exponentially distributed time with
parameter λ.
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7.1 Optimal transmission policies

Consider now the following problems:

– (P1) Find a constant policy ui that maximize FD − gτ
∑K

i=1 ui,

– (P2) Find a dynamic policy u that maximizes FD − g
∫ τ

0

∑K
i=1 ui

sds.

Lemma 4. (i) Let ui be constant in time. Then z(ui) is concave in ui.
(ii) Let ui be a threshold policy with threshold parameter σ. Then z(ui) is concave
in σ.

Proof. We recall that a convex increasing function of a convex function is
convex, and that a concave increasing function of a concave function is concave.
We prove (ii). (i) is obtained in the same way. Let ui be a threshold policy with
parameter s. We have

Zt :=
∫ t

0

ui
rdr = min(s, t)

and thus
V (t) := log(γ(Zt)) = max[log(γ(t)), log(γ(s))]

Since log(γ(Zt)) is concave decreasing in Zt, it is concave decreasing in s. Now

w(s) :=
∫ τ

0

V (t)dt =
∫ τ

0

max[log(γ(t)), log(γ(s))]dt

is concave decreasing in s since it is the integral (over t) of concave decreasing
functions in s. Thus nw(s) is concave decreasing in s. Since 1 − exp is con-
cave decreasing, then 1− exp(nw(s)) is concave increasing. Since log is concave
increasing, we obtain the concavity of z. ¦
Theorem 2. Assume that the system is initially empty. Then
(i) the policy that achieves the maximum in P1 is one whose components ui are
all equal.
(ii) Each component ui of the policy u that achieves the maximum in P2 is a
threshold policy, and the thresholds s are the same for all i.

Proof. Let ui be given static policies. We have by Jensen’s inequality

log FD(u)
K

=

∑K
j=1 log z(τuj)

K
≤ log z

(∑K
j=1 τuj

K

)

with equality holding above only when ui is the same for all i. This establishes
(i).
(ii) The fact that one may restrict to threshold policies for each i follows by
applying the proof of Theorem 1 to each ui. So now let s(i) be the threshold
used by policy ui. Then we have again by Jensen’s inequality

log FD(u)
K

=

∑K
j=1 log z(s(j))

K
≤ log z

(∑K
j=1 s(j)

K

)
.

with equality holding above only when s(j) is the same for all j. ¦
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7.2 Adding Redundant Chunks

We add H redundant chunks and code them in a way to ensure that the reception
of any K chunks out of the K + H ones is sufficient for the destination to be
able to reconstruct the whole message.

Let Sn,p be a binomially distributed r.v. with parameters n and p, i.e.

P (Sn,p = m) = B(p, n, m) :=
(

n

m

)
pm(1− p)n−m

The probability of a successful delivery of the message by time τ is thus

Ps(τ, K, H) =
K+H∑

j=K

B(z(Zj),K + H, j), where Zi :=
∫ t

0

ui
sds.

Theorem 3. Assume that the system is initially empty and assume that infor-
mation is coded in a way that from any K different chunks out of K + H dif-
ferent chunks, the destination can reconstruct the whole original message (that
was composed by K initial chunks), Then
(i) the policy that achieves the maximum in P1 is one whose components ui are
all equal.
(ii) each component ui of the policy u that achieves the maximum in P2 is a
threshold policy, and the thresholds s are the same for all i.

Proof: Let A(K, H) be the set of subsets h ⊂ {1, ...,K + H} that contain
at least K elements. For example, {1, 2, ...,K} ∈ A(K, H). Fix pi such that∑K+H

i=1 pi = u. Then the probability of successful delivery by time τ is given by

Ps(τ,K, H) =
∑

h∈A(H,K)

∏

i∈h

z(Zi)

For any i and j in {1, ..., K + H} we can write

Ps(τ, K, H) = z(Zi)z(Zj)φ1 + (z(Zi) + z(Zj))φ2 + φ3

where φ1, φ2 and φ3 are nonnegative functions of {Z(pm),m 6= i,m 6= j}. For
example,

φ1 =
∑

h∈A{i,j}(H,K)

∏
m∈h

m 6=i, m 6=j

z(Zm)

where Av(K,H) is the set of subsets h ⊂ {1, ..., K + H} that contain at least K
elements and such that v ⊂ h.

Now consider maximizing FD(τ, K,H) over Zi and Zj .
Assume that Z ′i 6= Z ′j . Since z(·) is strictly concave, it follows by Jensen’s

inequality that z(Z ′i) + z(Z ′j) can be strictly improved by replacing Z ′i and Z ′j
by Zi = Zj = (Z ′i + Z ′j)/2. This is also the unique maximum of the prod-
uct z(Zi)z(Zj) (using again Jensen’s inequality applied to log z) and hence of
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FD(τ, K,H). This holds for any i and j and for any p′ ≤ p, hence it implies the
Theorem. ¦

The optimality of a symmetric choice of the transmission probabilities of
chunks has a direct implication on the monotonicity of the performance with
respect to the number H of redundant chunks.

Fix any τ , K and H. Let p∗ be the optimal probability of sending a chunk of
type i for these given τ , K and H. (As we saw, this does not depend on i). The
success probability under p∗ is the same as when increasing the redundancy to
H + 1 and using the vector (p∗, ..., p∗, 0). Thus the utility when using p∗ for a
given τ, K and H is the same as when we increase the redundancy to H +1 and
use the vector (p∗, ..., p∗, 0). By definition, the latter is smaller than the optimal
utility for the problem with τ,K, H + 1. We thus conclude that the utility is
increasing in the amount of redundancy of chunks.

8 Asymptotic approximations

8.1 The message model

We study the model of dynamic transmission control (by the source) of Section 2;
we shall consider the limit of the model (appropriately scaled) as the population
size grows to infinity.

Denote λ = nλ (n is the population size). Then for any population size n,
wt is the solution of the linear differential equation:

ẇt = utλ(1− wt) or equivalently,
dE[Xt]

dt
= utλ(n− E[Xt]).

Bound. Dente ξt(n) := Xt(n)/n where we add explicitly n in the notation
in order to stress the dependence of Xt on n. By Jensen’s inequality we have

FD(τ, n) = 1− E

[
exp

(
−λ

∫ τ

0

ξt(n)dt

)]
≤ 1− exp

(
−λ

∫ τ

0

wtdt

)
.

Tightness. We show that the bound is tight as n grows. Consider a sequence
of systems where the nth DTN has n mobiles and where the contact process in
the nth system is given by λ(n) = λ/n.

Note that wt = E[ξt(n)] does not depend on n. We shall establish that

lim
n→∞

FD(τ, n) = 1− lim
n→∞

E

[
exp

(
−λ

∫ τ

0

ξt(n)dt

)]
= 1− exp

(
−λ

∫ τ

0

wtdt

)
.

By the Strong Law of Large Numbers we have P-a.s.

lim
n→∞

ξt(n) = lim
n→∞

∑n
i=1 ζt(i)

n
= wt.
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It then follows from the bounded convergence theorem that limn→∞
∫ τ

0
ξt(n)dt =∫ τ

0
wtdt. Using again the bounded convergence Theorem we see that the corre-

sponding LST converge to the LST of the limit, i.e.

lim
n→∞

E

[
exp

(
−λ

∫ τ

0

ξt(n)dt

)]
= exp

(
−λ

∫ τ

0

wtdt

)

which establishes the tightness of the bound.

8.2 The chunk model

We extend the above model to the case of transmission of chunks which we
introduced in Section 7. If we denote by ζj

t (i) the indicator that the jth mobile
among the n receives chunk j during [0,t], then Xj

t =
∑n

i=1 ζj
t (i). We next define

ξj
t (n) :=

Xj
t (n)
n

, wj
t = E[ζj

t (i)] = 1− exp
(
−λ

∫ τ

0

uj
sds

)

As a direct extension of the case of message transfers, we have the following
bound due to Jensen’s inequality:

FD =
K∏

j=1

(
1− E

[
exp

(
−λ

∫ τ

0

Xj
t dt

)])
≤

K∏

j=1

(
1−

[
exp

(
−λ

∫ τ

0

wj
t dt

)])

Here again we can show as for the message-based model that the above bound
becomes tight as the number of players n increases.

9 Concluding Comments

This paper is part of our intensive ongoing research on performance issues and
optimal control of Delay Tolerant Networks (DTNs). Most of the existing analysis
of DTNs uses the mean field asymptotics to obtain explicit expressions and to
solve optimal control issues, or it uses Markov chain techniques which often do
not allow to obtain exact close form formulas for the steady state probabilities.
In obtaining these close form expressions we are able to carry the investigation of
DTNs on and solve various optimal control problems as well as non-cooperative
games.
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Appendix: Majorization and Schur concavity

Definition 1. (Majorization and Schur-Concave Function [6])
Consider two n-dimensional vectors d(1), d(2). d(2) majorizes d(1), which we
denote by d(1) ≺ d(2), if

∑n
i=1 d[i](1) =

∑n
i=1 d[i](2) and

k∑

i=1

d[i](1) ≤
k∑

i=1

d[i](2), k = 1, ..., n− 1, and

where d[i](m) is a permutation of di(m) satisfying d[1](m) ≥ d[2](m) ≥ ... ≥
d[n](m), m = 1, 2.

A function f : Rn → R is Schur concave if d(1) ≺ d(2) implies f(d(1)) ≥
f(d(2)). It is strictly Schur concave if strict inequality holds whenever d(1) is
not a permutation of d(2).

Lemma 5. [6, Chapter 3] Assume that a function g : Rn → R can be written as
the sum g(d) =

∑n
i=1 ψ(di) where ψ is a concave (resp. strictly concave) function

from R to R. Then g is Schur (resp. strictly) concave.


