A Queueing Model for HTTP Traffic over IEEE 802.11 WLANS

Daniele Miorandi * §, Arzad A. Kherani * and Eitan Altman *

* INRIA, 2004, Route des Lucioles — Sophia Antipolis (France)
email:{daniele.miorandi,alam,eitan.altman}@sophia.inria.fr
" Department of Information Engineering — Padova (Italy)
email:daniele.miorandi@dei.unipd.it

Abstract

We consider an IEEE 802.11 based wireless LAN where an access point is used to connect a fixed
number of users to the web or to a shared file system. Users alternate between activity periods
(corresponding to the download of a file) and idle periods (corresponding to think times). We first
consider the interaction of TCP with the IEEE 802.11 MAC protocol, and get approximate expressions
This result is then

used to develop a queueing model, which is used to determine the mean session delay in presence of

for the TCP throughput in presence of n. competing persistent connections.

short—lived flows. The analysis also accounts for the TCP delayed ACK option. Comparison with
simulation outcomes is provided, validating the model and providing guidelines for network designers.
A particular emphasis is devoted to the impact of the advertised window size; in particular, it is proved

that setting it to a small value leads to insensitivity of mean file transfer times to the file size distribution.

1 Introduction

IEEE 802.11 [1] is the de facto standard for wireless
local area networks (WLANs). WLANSs aim at provid-
ing wireless connectivity to the Internet, representing
a valid alternative to classical Ethernet LANs. Even if
performance cannot be directly compared to those ob-
tainable by means of a wired connection, it seems that
future developments of the standard (namely, IEEE
802.11a), capable of transferring data at rates up to
54 Mb/s, will make it an even more attractive solu-
tion for ensuring nomadic connectivity. Since wireless
access to the Internet is the most common application
of this kind of networks, it is reasonable to assume
that the traffic will be carried over the well-known
TCP/IP protocol suite [2]. Hence, an important is-
sue to address is the interaction between the 802.11
MAC and the closed—loop nature of TCP. This is ac-
complished in the first part of the paper, where we es-
timate the throughput achieved by TCP in a WLAN
scenario with many concurrent persistent connections.
In particular, it turns out that, due to the extremely
high overhead encompassed by the protocol and the
absence of an explicit duplexing mechanism, the feed-
back traffic (namely, that constituted by the flow of
TCP acknowledgment packets) has an extremely neg-
ative effect on TCP throughput. This motivated us
to study the impact of ACK thinning techniques, such
as the delayed ACK option for TCP [3, 4] and some

modifications, such as those presented in [5]. The re-
sults obtained in the first part, in terms of attained
service rate, are then used to evaluate the network per-
formance in presence of short-lived flows. We model
the network as a processor sharing queue with state—
dependent service rate, and compute the mean session
delay for HTTP traffic. Results are first derived for
exponentially distributed file size, and are then gen-
eralized applying insensitivity results, along the lines
of [6]. In particular, we analyse the impact of the
TCP maximum congestion window size on the mean
session delay. It turns out that, by setting this pa-
rameter to a large value, unfairness problems do arise,
leading to an overall performance worsening in pres-
ence of heavy tailed file size distribution. All results
are compared with the outcomes of numerical simula-
tions. The analysis is also extended to a generalized
delayed ACK technique. Evidence is provided that,
under a careful tuning of some system parameters, de-
layed ACK techniques can help in reducing the mean
session delay.

The paper is organized as follows. Sec. 2 reports a
broad description of the network scenario, of the 802.11
MAC protocol and of the delayed ACK mechanism.
The throughput analysis for persistent TCP connec-
tions is presented in Sec. 3. The analysis of session
delay for short—lived flows is presented in Sec. 4; Sec. 5
concludes the paper.

2 The Network Scenario

We consider a WLAN where an access point (AP) pro-
vides access to web or a shared file system to (n — 1)
hosts (also referred to as stations or nodes in the fol-
lowing). At any instant of time, a host is download-
ing (or, receiving) at most one file via the AP. This
file transfer is controlled using TCP. After the com-
pletion of a file transfer, a host waits for a random
amount of time before initiating another file transfer
request. The size of the requested files in successive
requests are assumed to be independent and identi-
cally distributed. The TCP controlled Data traffic
flows in the downlink direction (from the AP to the
hosts) while the TCP Acknowledgement traffic flows
from the hosts to the AP. The AP and various nodes
use the IEEE 802.11 MAC protocol for transmission
of their data (TCP DATA packets in case of AP and
TCP ACK packets in case of nodes). Relevant details
of the IEEE 802.11 protocol are summarized in Sec.
2.1.

The number of active file transfers is now time—
varying. The variation in the number of concurrent file
transfers is in turn determined by the effective service
rate seen by the active file transfers. The effective
rate at which a file is served at any instant of time is
determined by the interaction between MAC and the
closed—loop behaviour of TCP controlling the ongoing
file transfers.

The problem that we address in this work is that of
obtaining the average performance seen by the hosts.
The approach is to first study the detailed interaction
between the IEEE 802.11 MAC and TCP with a fixed
number of file transfers to obtain the effective service
rate of the files as a function of the number of concur-
rent file transfers (Sec. 3). This is then used to obtain
a queueing model that captures the time varying be-
haviour of the number of concurrent file transfers, thus
providing us with a node’s average perceived perfor-
mance (Sec. 4).

2.1 Protocol Description

In the IEEE 802.11 standard, the medium access con-
trol is based on a distributed CSMA/CA mechanism
[1]. A node listens to the channel for a time equal
to the distributed inter—frame spacing (DIFS). If the
medium is sensed idle, then a random backoff is gen-
erated. During the backoff the node continues sensing
the channel. If, at the end of the backoff, the medium
is still idle, the node starts transmitting. Since no
channel load sensing mechanism is provided, an ex-
plicit acknowledgment is necessary to inform the node
of the success/failure of its transmission. To accom-

plish that, when a node receives a packet, after a
short interframe spacing (SIFS), it sends a short ACK
packet to inform the source of the outcome of the
previous trasnmission. The length of the backoff in-
terval, expressed in slots, is uniformly chosen in the
set {0,1,...,CW — 1}, where CW denotes the ac-
tual contention window size. At the beginning, CW
is set to a predefined value CW,,;,. If a collision or
loss occurs, the contention window of the nodes in-
volved in the collision is doubled and another trasmis-
sion attempt is made. The contention window cannot
grow indefinitely, but may reach a maximum value of
27CWin = CWinaee; moreover, if a packet incurs m
collisions, where m > =, it is dropped. If a trans-
mission is detected while the backoff counter has not
reached zero, its value is frozen and reloaded as soon
as the channel is sensed idle for a DIFS.

An optional RTS/CTS mechanism is encompassed by
the standard to avoid the well-known hidden terminal
problem of CSMA—based MAC protocols. In this case,
after a DIFS and a random backoff, a RTS packet is
sent to the intended destination. After a SIFS, the
destination replies with a CTS, signalling to all the
stations in range the foreseen duration of the packet
exchange. After a SIFS, the sender starts the trans-
mission of the data packet. In this way, a virtual chan-
nel sensing mechanism is provided, since all the sta-
tions which received the CTS may update their net-
work allocation vector (NAV) and go in stand-by for
the whole duration of the packet exchange (the chan-
nel is “virtually” sensed busy). As shown in [7], the
use of the RT'S/CTS mechanism let the network per-
formance be less sensitive to the mutual interference
generated by a high number of devices. In the fol-
lowing we will assume that the RTS/CTS exchange
precedes any packet transmission.

At the physical layer, the standard encompasses three
different options: infrared, frequency hopping and di-
rect sequence CDMA. We focus on the last option (the
one currently implemented), and, furthermore, use the
parameters described for operations in the 2.4 GHz
ISM band, known as 802.11b [8].

2.2 Delaying ACK Techniques

When running over bandlimited channels, such as wire-
less ones, one of the basic techniques to improve TCP
throughput is to thin the feedback traffic, by reducing
the flow of TCP acknowledgment packets. In this way,
more bandwidth is ensured to the forward TCP link,
achieving thus a higher throughput. This mechanism
presents some drawbacks. The main one is that, by
thinning the TCP ACK flow, the congestion window
grows slower, and this results, in general, in an in-

creased session delay for short TCP sessions [4], which
are known to constitute most of the traffic carried
over the Internet. However, this drawback can be, if
not eliminated, seriously mitigated, by using adaptive
techniques such as the ones described in [5]. Further,
problems arise at both the beginning and the end of
a file transfer. Indeed, at the beginning of a TCP
connections, if the TCP initial window size is set to
a value less than d, a timeout necessarily takes place.
Such problem may be solved by enlarging the initial
window size to a value greater than 1 [9]. On the other
hand, nothing can be done for the end of a file trans-
fer, where, if the number of packets is not a multiple
of d, time has to be “wasted” waiting for a timeout
expiration.

The standard delayed ACK technique for TCP [3] sug-
gests that an ACK packet should be sent every d = 2
received packets. If no packet is received for more than
a timeout period 7,,¢, an acknowledgment packet has
to be generated. It is clear that by further reducing
the frequency with which ACKs are sent, we may, in
principle, gain bandwidth, at the expense of a much
slower growth of the congestion window at the begin-
ning of the connection or after a packet loss. In re-
ality, the value of d cannot be indefinitely increased,
since this would cause harmful expirations of the TCP
sender timeout, which result in an overall performance
degradation. Further, in the case of short sessions,
increasing d increases the probability of incurring a
timeout at the end of a file transfer, with a negative
impact on the mean session delay.

In Tab.1 we report the parameters we use for eval-
uation purposes. Tp and Tpyy represent the time
necessary to transmit the long PLCP preamble and
the physical-layer header, respectively. (We treat the
case of long PLCP header; the analysis is the same
for short PLCP preamble.) As far as the transmission
rates are concerned, we assume ideal channel condi-
tions; hence all hosts use a data rate of Rgqtq = 11
Mb/s. Further, we take the control rate to be equal to
Reontrot = 2 Mb/s and assume that TCP packets are
Lrcp = 8000 bits long. The length of TCP/IP header
is Lypy = 320 bits, whereas the length of the RTS
and CTS packets are given by Lrrs = 180 bits and
Lers = 112 bits, respectively. A MAC-layer ACK
consists of Lycx = 112 bits. The overhead added by
the MAC layer (MAC header plus FCS field) amounts

to Lyrac = 272 bits.
The raw trasmission times of a TCP data packet
and a TCP ACK, disregarding the backoff, are given,

Parameter Value
Tslot 20/“5
Tsrrs 10us
Tprrs d0us
Tp 144 s
Truy 48us
CWin 32

CWonas 1024
m 7

0% 5

Table 1: Parameters of 802.11 (long PLCP preamble)

respectively, by:

Lrrs
Trcp_data = Tprrs +Tp + TPy + ———— +Tsirs +Tp +
Rcontrol
Lers
+Tpuy + +Tsirs +Tp +Tpyy +
Rcontrol
Lyac + Lipa + Lrcop Lack
+Tsirs +Tp +TPuy +
Rdata Rcontrol
_ Lrrs
Trcp.ack =Tprirs +Tp +Tray + +Tsirs +1p +
Rcontral
L L + L
Ty + —CST8 4 A Tgpg +Tp + Tppy + MAC T ZIPH
Rcont'rol Rdata
Lack
+Tsirs +Tp +Tpay + .
Rcontrol

Note that a TCP ACK packet consists just of the
TCP/IP header, of length L;py.

3 Persistent TCP Connections:
Throughput Analysis

In this section we find the effective service rate that
the TCP controlled file transfers get when the num-
ber of file transfers is fixed and each of these files are
of infinite length. In order to do this, we find the
probability of collision owing to multiple simultaneous
transmission attempts when there are n. concurrent
TCP connections. Let ny(< n. 4+ 1) be the expected
number of backlogged nodes (i.e., nodes having pack-
ets to be transmitted). We then find the expected time
required for a successful transmission of a packet. The
relation between n. and n; will be made explicit later.

We now thread the footprints of [10], enhancing the
model by considering that, at backoff stage k, the aver-
age backoff time is % if k <~yand mwzw
for v < k < m. Furthermore, we neglect the packet
drops which take place due to attained maximum num-
ber of retransmissions. Hence, denoting with Po the
collision probability, and considering it to be indepen-
dent of the backoff stage (this has been observed in [7]

Collision probability
8
T

)
o
T

01f

0 I I I 1
0 5 10 15 20 25 30
Number of backlogged nodes

Figure 1: Collision probablity as a function of the
number of backlogged nodes.

to provide good approximation), we get for the average
backoff time:

_(1-Fo) 1 (2Pc)
Ty = OWnin 55,
1= P} 29CWpm — 1 "
-—5F 5 (PG —P&). (1)

The complete derivation of this relation is reported in
[11]. Thus, since n, nodes are backlogged, we may,
as in [10], find the collision probability by numerically
solving (1) together with:

1 nbfl
Poc=1—-[(1-— .
¢ (Tb)

An alternative fixed point formalization of such pro-
cedure for the computation of the collision probability
is reported in [12].
The probability of dropping a packet can be estimated
as Pyrop = PA'. Numerical results for Po and Pyyop as
a function of n; are presented in Fig. 1 and Fig. 2.
Observe that, when using the RT'S/CTS mechanism,
collisions may occur only on RTS packets. By op-
timistically considering that retransmissions are trig-
gered after a SIFS (i.e. when no CTS is detected by
the sender), we get that the average time “lost” in
each collision is:

(2)

L
Teot =Tprrs + Ty +Tp +Tppy + Rni +Ts1Fs.
control (3)

Since the collision probability P¢ is assumed to be in-
dependent of the backoff stage of a node, the number
of collisions that a node sees before succeding in trans-
mission is a geometric random variable. Since the node
loses, on an average, 1., amount of time for each col-
lision, the average total time “wasted” in collisions for

Packet drop probability
© S
T

~
T

. . . .
0 5 10 15 20 25 30
Number of backlogged nodes

Figure 2: Packet drop probability as a function of the

number of backlogged nodes.

any succesful packet transmission may be computed
as:

m—1
TW = Tcoll . Z k}(l — Pc)Pg ~
k=0
+o00 PC
~ . — k — -
~ Lcoll kgok(]- PC)PC Tcoll 1_ PC, (4)

where the approximation is based on the assumption
that no packet drop takes place due to reached maxi-
mum number of retransmissions. Similarly, the mean
number of backoff periods which precede a succesful

m —+oo
transmission is given by 3 k(1-Po)PE™' = 3 k(1
k=1 k=1

Po)PE! = 0.

tempts transmitting at a rate T%,’ the mean total time
spent in backoff can be estimated as:

Since each backlogged node at-

T

Tipo = ———2——
)

()
Note that, to keep the notation clear, the dependence
of Ty, Po, Tw and Ty, on ny is suppressed.

We now use the above results to obtain Srop(ne, d),
the throughput achieved by a single TCP connection
in presence of n. competing connections, where each
receiver is employing delACK parameter d. As far as
TCP is concerned, we work under the following as-
sumptions:

e the retransmission timer at the TCP source is
large enough so that no timeouts take place;

e the transmit buffers at the nodes are well-dimensioned,

in the sense that no packet drop takes place due
to buffer overflow;

x10°

Throughput (b/s)

~

.
1 2 3 4 5 6 7 8 9 10
delACKs parameter d

Figure 3: TCP throughput vs. delACK parameter d
for the single station case.

Since packet drops due to contention are considered
negligible, and the network operates over a lossless
channel, the TCP congestion window would grow. How-
ever this growth can not continue indefinitely, since the
TCP window is bounded by the receiver’s advertised
window W*. Thus TCP window will stabilize, after a
transient phase, at the maximum TCP window W*.

3.1 Single station

We start with an analysis of the simplest case, namely
a single TCP connection between the access point (AP)
and the station, so that n., = 1. Let us consider the
case W* > 1; a study of the impact on throughput
of the value of W* is reported in the appendix, com-
plementing the results of [13] to the single-hop case.
Thus, with high probability, both nodes will be back-
logged and contend for the channel so that n, = 2.
The collision probability can be found by specializing
(1) and (2) to the case n, = 2, obtaining Pc as the
solution of:

1 (1-Po) 1—(2Pc)”
Pr 2 CWonin 1—2P-
1—P) 29CWyin — 1 .
- 5 (PL— P&, (6)

giving Pc &~ 0.060. Accordingly, the throughput for
standard TCP can be estimated as:

Lrcp
TTCP_data + TTCP_ack + 2Ttbo + QTWE’?)
To consider the case where the host employs the
del ACK mechanism, we note that with probability
% no acknowledgment will be sent by the receiver, so
that no contention for the channel takes place. Thus,

Srcp(l,1) =

for W* > d, we get the following approximate expres-
sion for the TCP throughput:

1
Srcp(l,d) = Lrcp - | Trop_data + p (Trcp_ack~+

d—1 CWypm —177"

d 2

+2T0 + 2Tw) + (8)
Results are plotted in Fig. 3, together with outcomes
of ns—2 [14] simulations (obtained with W* = 1000).
It is worth noting that the gain achieved with delACK
increases with the data rate of the network. For ex-
ample, using the parameters of 802.11a, and assuming
that the MAC-layer ACK is sent at 6 Mb/s and that
the highest bit rate (54 Mb/s) is used on the forward
link, we get for the case d = 2 a throughput gain of
26.7 % .

3.2 Multiple stations

In the case of multiple competing connections, we con-
sider two extreme cases in order to get (tight) bounds
on the TCP throughput. First we consider a collision—
free scenario, where a sort of round robin token—passing
between different connections takes place. In such a
case, given n. connections, we get:

S”?Ccp(nc’ 1) = LTCP'{nc : [TTCP_datu +Trep_ack+
+ (CWmln - 1)Tslot]}_1 . (9)

In the second scenario, we take into account the mu-
tual interference among competing connections. Let
us assume that, for all TCP connections, W* = 1.
This assumption relies on the fact that in WLANS the
bottleneck is represented by the shared radio channel,
so that the network performance should not depend
much on the actual value of W* (an indepth discussion
for the single station case is reported in the appendix).
Hence, for any connection, the receiver has an ACK
waiting to be sent with probability 1/2, which is also
the probability that it contends for the channel. Con-
sidering the AP to be always backlogged, the average
number of units contending for the channel is given by:
ny = 1+ . Based on this approximation, and since,
for any connection, an ACK is sent for every received
TCP packet, we obtain:

coll

STep(ne,1) = Lrep - [ne - (Trep_data~+
+Trcp.ack + 2Tmo + 2T,)] ", (10)

where Ty, and Ty, are computed assuming n; back-
logged nodes.

Intuitively, the “collision model” should well pre-
dict network performance for small values of n.. On

Aggregated Throughput (b/s)

* - ns2
2k collision-free model (9)
—&— collision model (10)
- [15)

. ,
2 4 6 8 10 12 14
Number of persistent TCP connections

Figure 4: Aggregated throughput vs. number of per-
sistent TCP connections.

the other hand, for a large number of hosts, our as-
sumptions (no buffer overflows and no timeout expira-
tions) are not valid any more. In this situation TCP
is expected to effectively reduce the congestion in the
network, so that, in most cases, only one node will at-
tempt transmitting. In this regime, the “collision—free
model” is thus expected to provide a reasonable esti-
mate of the network performance. Numerical results
for the aggregated throughput are plotted in Fig. 4,
where the two formulas above are compared with sim-
ulation results and with the model presented in [15]
(the latter has been modified since it already accounts
for d = 2). It is worth remarking that, for small values
of n., the collision model predicts a larger throughput
than the collision—free model. While this seems coun-
terintuitive, it results from the more aggressive behav-
ior nodes show in presence of contention.

The approximate formulas defined above can be easily
extended to the case of delayed ACK. The extension
of the collision—free model is trivial, and leads to:

Step(ne,d) = Lrep - {nc - [Trcp_datat

d4+1 (CWyin — DT, -t
+=. TTC’P,ack . (vin) lot:| })

|
d d 2
(11)
As far as the “collision model” is concerned, we con-
sider this time an average number of hosts contending

for the channel equal to ny = 1+ 55 (this corresponds
to W* = d). Then,

Scl(ne,d) = Lrep - {ne - [Trop.data+

1 d+1 -t
+E “Trep_ack + 3 (Tipo + Tw)} } - (12)

The level of approximation we may get with the pre-

X 10

@
S
T

* ns2
~&- collision-free model
—&— collision model

@
N
T

Throughput (b/s)

. I .
1 2 3 4 5 6 7 8 9
DelACK parameter d

Figure 5: TCP throughput vs. Del ACK parameter d,
n. = 10.

vious formula has been tested through extensive nu-
merical simulations. In Fig. 5 we reported the TCP
throughput, as a function of d, for n. = 10 (in ns2 we
set W* = 1000).

4 Short—lived TCP flows: mean
delay analysis

It is widely acknowledged that, although a study of
throughput for persistent TCP connections is of inter-
est to characterize the network performance, it does
not reflect the end—user perception. In a web brows-
ing scenario, the web page delay is indeed the per-
formance metric influencing user perception. Assum-
ing that a web page transfer corresponds to a TCP
session, we characterize thus network performance in
terms of mean session delay for short-lived TCP flows.
As far as traffic patterns are concerned, we assume an
ON/OFF model for HTTP traffic. Nodes alternate
between activity and idle periods. Active periods cor-
respond to the download of a web page, whose size, in
bits, will be denoted by X. Off periods, referred to as
think times, correspond to the time elapsed between
the end of a download and the beginning of the next
one. We assume that think times are exponentially
distributed with mean % The file size distribution,
where not otherwise stated, is assumed to be general
with mean E[X].

4.1 An affine model for the single sta-
tion case

Let us start by considering a single TCP connection.
In the previous section, we noted that the maximum
congestion window size has a negligible impact on the

ns2, W =1

ns2, W>1 analytical

Mean Session Delay (s)
95% Conf.Int.(s)

0.1099
[0.0956, 0.1243]

0.1064
0.0928, 0.1199)]

0.1095

Table 2: Session delay for short TCP connections, mean and 95% confidence interval.

connection throughput. Hence, we base our analysis
on the assumption W* = 1. Under such an assump-
tion, 802.11 MAC provides, in our scenario, contention—
free access to the wireless channel. Thus, the average
round trip time is given by Trcp_data + TP ack +
(CWinin — 1) « Tsior. Furthermore, we should take
into account the time spent in the connection setup
phase, based on a three-way handshaking. Neglecting
the propagation delay, and considering that the third
packet necessary to setup the connection may be pig-
gybacked within a data frame, the mean connection
setup time may be written as:

E[Tsetup] =2-[Tprrs +Tp+Truv+
(CWinin — 1) Ts10t n LIPH+
2 Rdata
Lack

|

+Tsrrs +Tp +Tppy + (13)

Rcont'rol

TCP encompasses a 4—way handshake to close down
the connection; however, after the delivery of the last
TCP segment, the file is taken to be sent to the des-
tination, and hence we may neglect it in the calcula-
tions. For transmitting a message of size X (in bits),
after some easy algebra we obtain an average session
delay of:

X

——‘ (TTCP,data‘F

E[Tsession] = E[Tsetup] + IVL
TCP

X
+TTC’P_ack + (Cszn - 1)Tslot) - (’VL —‘_
TCP
Lrcp — Xmod Lrcp

X

{LTCP J > (14)
In order to validate the model, we simulated 10000 file
transfers over 802.11b'. The file size, X, is Pareto—
distributed with mean 30 KByte and shape factor 8 =
1.5. The results are reported in Tab.2. As expected,
the more aggressive behavior induced by a larger value
of W* leads to better performance in terms of session
delay.
Notice that the above model is approximately affine in

Rdata

11n reality ns2 implementation of TCP provides bit padding
and, hence, all the [ﬁ-‘ packets generated present a payload
of size equal to Lrcp. Furthermore, no explicit connection

closing is provided.

A(n — 1) A(n —2)

/\/\/\/\
© o o - -1
\/\/\/\/

HPn—1

A(n — 3)

Figure 6: Transition probability diagram of the
Markov chain J(t).

the file size:

ElX
E[Tsession] ~ E[Tsetup]+L []
TCP

(Trepryaye + Trep,..+

1>Tslot) .

Furthermore, the mean session delay shows insensitiv-
ity properties with respect to the file size distribution,
depending only on the mean file size. Simulation re-
sults have confirmed such a system feature.

(15)

4.2 Concurrent TCP sessions: a queue-
ing model

Now we use the results obtained till now to compute
the mean session delay in presence of concurrent TCP
sessions.We consider a WLAN scenario, with one AP
and (n — 1) stations. We work under the following
assumptions:

(1) for each connection, W* = 1;

(i4) each session corresponds to a file transfer; file
sizes are independent and identically distributed.
In particular, X is exponential with mean E[X];

(7i7) after the completion of a file transfer, a node gen-
erates a random think time, which is exponen-
tially distributed with mean A~'.

Let us denote by J(¢) the number of connections ac-
tive at time ¢; J(t) is a continuous time random process
which takes values in the state space S = {0,1,...,n—
1}. We assume that the active sessions are served ac-
cording to a processor sharing discipline with state—
dependent service rate. Furthermore, we denote by
C the “system capacity” (in terms of effective aggre-
gated TCP rate) when there are k connections active,
expressed in b/s. Hence, any of the k active connec-
tions is served at a rate T' Since files are exponen-
tially distributed, the rate at which each of the k active

sessions finishes is given by %[’VX] Hence, the rate at
which one of the k active nodes moves to the OFF
state is given by up = % Then, the process J(t)
is a continuous time Markov chain, whose transition
structure is depicted in Fig. 6. This birth—death pro-
cess can be solved to obtain the stationary probability
distribution:

AF(n—1)(n—2)...
H1-.-HE

(1+ Z Ai(n— 1)(n 52 (n—z))

(n=F)

T =

(16)
The “system capacity” C is computed, under assump-
tion (7), according to the collision model: C(k) =
k- S5 (k,1). Note that, by using the collision—free
model, our model reduces to a classical processor shar-
ing system, for which Cy = C' Vk, leading to the model
used in [16] for assessing the performance of HTTP
traffic over EDGE. The average session delay can then
be computed by means of Little’s Law, summing the
mean setup time:

E[Tsession} = (17)

where E[Y] = Z krmp and A = X Z (k+ 1)7y. Insen-

k=0
sitivity of the stationary probablhty distribution 7y,

with respect to the file size and think time distribu-
tions follows from an approach similar to that in [6].
In particular, this implies insensitivity of the mean ses-
sion delay.

In Fig. 7 a first comparison between analytical and
numerical results is presented. Think times are ex-
ponentially distributed with mean A=! = 10 s, the
average file size is 30 Kbytes and two file size distri-
butions are used, Pareto (with shape factor 8 = 1.5)
and exponential. Simulations are run for both W* =1
and W* = 1000; each stations download 300 files and
buffers are dimensioned in such a way that no packet
drops take place. Notice that, when W* = 1, similar
results, in terms of mean session delay, are achieved
by Pareto and exponential distributions. Further, in
this case the ns2 outcomes show a good match with
the analytical results. For exponentially distributed
file sizes, the mean session delay shows a very weak
dependence on the value of W*. On the other hand,
in the case of Pareto distribution, the mean session
delay shows a high variability with W*. In particular,
a very large value of W* leads to a much higher mean
session delay. This phenomenon can be understood
as follows: assume there is only one session active,
which corresponds to the transfer of a very large file
(an “elephant”), and that the TCP window size has

A ns2 - Pareto
—8- ns2 - Pareto W=1

© - ns2 - Exponential
—#— ns2 - Exponential W'=1
—— analysis (17)

0.2

Mean session delay (s)

I 1 1
10 12 14 16 18 20 22 24 26 28 30
Number of stations

Figure 7: Mean delay for short-lived TCP flows vs.
number of stations.

reached its stationary behavior and is thus equal to
W*. In such conditions, if the AP transmission queue
is served according to a FCFS policy, the elephant is
going to get most of the network resources, arising
starvation problems for the other incoming sessions (a
similar behavior has already been observed in [17] in
the context of wireline networks). In practice, an in-
crease in the value of W* leads to a smaller mean ses-
sion delay for elephants, while increasing it for small
files transfer (the “mice”). This is basically due to
the implicit unfairness of the FCFS policy according
to which the packets waiting in the AP transmission
queue are served. By setting W* = 1 (or, alterna-
tively, by changing the scheduling at the AP queue),
we force a round-robin scheduling of the various ac-
tive sessions, so that the increase in fairness leads to
a decrease in session delay. Furthermore, note that,
with W* = 1, we achieve not only better performance
in presence of short-lived flows, but also get insensi-
tivity w.r.t. the file size distribution. It is indeed clear
that, from a network designer point of view, having a
system which behaves in a predictable manner regard-
less of the traffic characteristics (which indeed may
change due to protocol evolution etc.) is a very de-
sirable property, so that setting a low value for the
advertised window size represents a good choice from
an engineering perspective.

To check the ability of the model to track the system
behavior for high loads (where the terms “load” refers
to the queueing model), avoiding numerical instability
problems related to ns2, we acted on the mean think
time. Results are plotted in Fig. 8, where the ana-
lytical results are compared with the outcomes of nu-
merical simulations (we reported the 95% confidence
interval) for n = 11, W* = 1 and Pareto-distributed
file size.

0.3 * - analysis (17)
— ns2

Mean session delay (s)

Average think time (s)

Figure 8: Mean delay for short-lived TCP flows vs.
average think time.

All the analysis above relies on the assumption of in-
finite AP transmission buffer and (consequently) no
timeout expiration. Let us now focus on a more re-
alistic scenario, where the buffer size B (expressed in
packets) is indeed finite. Then, we can distinguish
among three different regimes. For W* < B we re-
trieve the behavior previously described. The case
W* ~ B is the one which leads to the worst perfor-
mance. In this regime, indeed, the unfairness of the
FIFO policy according to which the buffer is served
causes mice to experience losses, leading to a lower
degree of fairness and higher session delay. For W* >
B, on the other hand, also elephants will experience
losses; in this regime TCP effectively reduces the con-
gestion and provides a “fair” sharing of the network
resources. In this case, then, we expect the mean
session delay of elephants to increase (owing to fre-
quent losses) and that of mice to decrease (since the
elephants are now frequently reducing their window
sizes). As a result, an overall performance improve-
ment can be expected. It is also natural to expect
that any value of W* > B would give same perfor-
mance.

In Fig. 9 we reported some simulation results of these
regime. With n 21 nodes, we set the AP trans-
mitting buffer size to B = 30 packets, simulated the
transfer of Pareto—distributed files and varied W* from
5 to 35 (packets); note that, as expected, in this re-
gion the session delay is first an increasing function of
W* < B, and then flattens out when W* > B.

4.3 On the use of delayed ACK for short
TCP connections

The analysis (both the affine model for the single sta-
tion case and the modified Engset model for the mul-

]
o
]

o

e

I
T

Mean session delay (s)
°
e <
&
T

0.121

I I 1 I 1
5 10 15 20 25 30 35 40
Maximum TCP window size W

Figure 9: Mean delay for short-lived TCP flows vs.
W+*, B =30, n=21.

tiple stations case) can be extended to account for the
use of delayed ACK, under the assumption W* = d,
yielding similar results. The problem is here to ac-
count for the interaction with the receiver—based de-
layed ACK timer, which can expire (under our as-
sumptions) at the end of a file transfer. As we show
n [11], the timeout interval may have a great impact
on network performance and, in particular, the choice
of a high timeout value may have a negative effect on
session delay.

Results for the single station case (obtained with 74, =
40 ms) are presented in Tab.3, for d varying from
1 (i.e. standard TCP) to 5. Simulations consisted
in the transmission of 10000 Pareto—distributed files,
with W* = 1000 and a large buffers. We think there is
no real reason to go beyond d = 5, since, as it is appar-
ent from simulation results, increasing too much the
number of delayed ACK has not a beneficial impact
on network performance. This may be understood by
considering the effect of the timeout at the end of the
file transfer. Indeed, by increasing d, we increase the
probability that the receiver will be forced to send an
ACK due to timeout expiration. To investigate the im-
pact on session delay of the slower congestion window
growth, we simulated also the dynamic delayed ACK
scheme proposed in [5]. Surprisingly, we obtain results
worse than the “standard” d = 2 option, namely an
average session delay of 0.1080 s, with a 95% confi-
dence interval of [0.0980,0.1180] s.

On the whole, we may thus conclude that, by choosing
an initial window size equal to d, and by appropriately
tuning the timeout interval, the delayed ACK option,
with d = 2,3,4 may overperform standard TCP and
also the more complex multi—threshold scheme pro-
posed in [5].

We evaluated also the impact on network performance

d=1

d=2

d=3

d=14

d=5

0.1064
[0.0928, 0.1199]

0.1044
0.0934,0.1154]

0.1053
0.0951, 0.1156]

0.1043
0.0945,0.1141]

0.1090
0.0993, 0.1188]

Table 3: Session delay for short TCP connections with delayed ACK, mean and 95% confidence interval (s),

Tout = 40 ms.

—— d=1
o d=2
—0- d=3
O Dyn.DelACK [5]

Average session delay (s)

1)

L L L L L L ,
10 15 20 25 30 35 40 45 50
Number of nodes

Figure 10: Average session delay vs. number of sta-
tions.

of the delayed ACK option in presence of concurrent
TCP connections. By taking advantage of the results
for the single station case, we limited ourselves to the
cases d = 1,2,3 and to the scheme of [5]. The ini-
tial congestion window size was varied accordingly.
HTTP traffic is modelled as done for the standard
TCP case, with Pareto—distributed file sizes and expo-
nential think times. Simulations were run with W* =
1000. Results are presented in Fig. 10. Notice that, for
a large number of stations, delayed ACK lead to a con-
siderable reduction of the mean session delay, making
it an attractive choice for hot—spot scenarios.

5 Conclusions

In this paper we have analysed the network perfor-
mance of an 802.11-based WLAN in presence of HTTP
traffic. We have derived bounds for the TCP through-
put in presence of n. competing persistent connec-
tions, for both standard TCP and generalized delayed
ACK techniques. These results have then been em-
ployed to develop a queueing model which has enabled
us to estimate the mean session delay for short-lived
flows. Insensitivity of the results with respect to the
file size distribution has been shown to hold in pres-
ence of a small value of the advertised window size. In
presence of a large advertised window size, unfairness

problems do arise, leading to an overall performance
worsening for heavy—tailed distributed file size. The
effect of limited buffers size has been investigated, and
its impact on both fairness and session delay has been
discussed. Generalized delayed ACK techniques have
also been analysed, and it has been shown that, under
a careful tuning of some system parameters, they can
lead to an overall performance enhancement in terms
of both throughput and session delay.

These results provide precious guidelines for network
designers, showing in particular the positive effect of
a small advertised window size option on network be-
havior and the benefits deriving from the use of gen-
eralized delayed ACK techniques.

6 Acknowledgments

This work was partially supported by the Indo—French
Center for Promotion of Advanced Research (IFCPAR)
under research contract number 2900-IT. The work
of D. Miorandi was partially supported by Fond. A.
Gini.

References

[1] IEEE standard for Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Spec-
ifications, IEEE Std., Aug 1999.

[2] V. Jacobson and M. J. Karels, “Congestion avoid-
ance and control,” in Proc. of Sigcomm, Stanford,
CA, 1988.

[3] R. Braden, “Requirement for Internet hosts —
communication layers,” RFC 1122, Oct 1989.

[4] M. Allman, “On the generation and use of TCP
acknowledgment,” ACM Computer Commuica-
tion Review, vol. 28, Oct 1998.

[5] E. Altman and T. Jimenez, “Novel delayed ACK
techniques for improving TCP performance in
multihop wireless networks,” in Proc. PWC,
Venice, Italy, 2003.

[6] D. P. Heyman, T. V. Lakhsman, and A. L. Nei-
dhardt, “A new method for analysing feedback—
based protocols with applications to engineering

web traffic over the Internet,” in Proc. of Sigmet-
rics, Seattle, 1997.

[7] G. Bianchi, “Performance analysis of the IEEE
802.11 distributed coordination function,” IFEE
Journal on Sel. Areas in Comm., vol. 18, pp. 535—
547, 2000.

[8] Supplement to 802.11-1999, Wireless LAN MAC
and PHY specifications: Higher Speed Physical
Layer (PHY) extension in the 2.4 GHz band,
IEEE Std., Sep 1999.

[9] M. Allman, S. Floyd, and C. Partridge, “Increas-
ing TCP’s initial window,” RFC 2414, Sep 1998.

Y. C. Tay and K. C. Chua, “A capacity analy-
sis for the IEEE 802.11 MAC protocol,” Wireless
Networks, vol. 7, pp. 159-171, 2001.

D. Miorandi and E. Altman, “On the effect
of feedback traffic in IEEE 802.11b WLANSs,”
INRIA, Tech. Rep. RR4908, 2003. [Online].
Available: http://www.inria.fr/rrrt/rr-4908.html

A. Kumar, E. Altman, D. Miorandi, and
M. Goyal, “New insights from a fixed point
analysis of single cell IEEE 802.11 WLANSs,”
INRIA, Tech. Rep. RR5218, 2004. [Online].
Available: http://www.inria.fr/rrrt/rr-5218. html

K. Chen, Y. Xue, and K. Nahrstedt, “On setting
TCP’s congestion window limit in mobile ad hoc
networks,” in Proc. ICC, Anchorage, USA, 2003.

The network simulator ns2. [Online]. Available:
http://www.isi.edu/nsnam/ns

M. Heusse, F. Rousseau, G. Berger-Sabbatel, and
A. Duda, “Performance anomaly of 802.11b,” in
Proc. INFOCOM, S. Francisco, US, 2003.

N. K. Shankaranarayanan, Z. Jiang, and
P. Mishra, “Performance of a shared packet wire-
less network with interactive data users,” Mobile
networks and applications, vol. 8, pp. 279-293,
2003.

A. A. Kherani and A. Kumar, “On processor
sharing as a model for TCP controlled HT'TP-like
transfers,” in Proc. of ICC, Paris, France, 2004.

A Impact of the maximum TCP
congestion window size W*

Under the assumptions reported in §3 (no timeout ex-
piration and no packet losses), the congestion window
would grow indefinitely. Assume that there is a max-
imum limit, W* on the TCP congestion window size
(this indeed may be thought as the limit imposed by

the receiver by means of an appropriate setting of the
advertised window). Due to the aforementioned as-
sumptions, after some period (transient phase), TCP
congestion window will stabilize at W*. For the mo-
ment, let us focus on a single connection: the couple
(X5, Xp) will denote the number of packets queued at
the sender and receiver side, respectively. Clearly, we
have that Xg(t)+ Xp(t) = W*. Furthermore, assume
that the reception of a MAC layer ACK represents a
renewal instant for the process (Xg(t), Xp(t))2. Then,
embedding at such instants, (Xg(n), Xp(n)) repre-
sents a Markov chain, as depicted in Fig. 11 for the
case W* = 4. Due to the particular transition struc-

12
12
N
" 2
12 1
12
V X
s

Figure 11: Structure of the embedded Markov chain,
W* = 4.

X4

q

i

ture, the resulting Markov chain can be easily solved,
leading to the following stationary probability distri-
bution:

P[(Xs(n), Xp(n)) = (@, B)] = Tap =

s (B)=(@W*—a), a=1,...,W* -1,
= ﬁ (o, B) = (a, W* —a), a=0,W*,
0 otherwise.
(18)

To compute the throughput we may work in the fol-
lowing way: except for the “extremal” states, in all the
other states a packet is acknowledged with probabil-
ity 1/2, due to the fair access to the medium provided
by the 802.11 DCF 3. In the state (0, W*) this occurs
with probability one. However, the time it takes to
accomplish the transition is state-dependent. In par-
ticular, considering that collisions are possible in all

2This is strictly true only if we assume a geometric backoff
is present at the MAC layer, which is clearly just an approx-
imation of the complex 802.11 MAC behavior. Note that, by
appropriately expanding the state space, we could account for
the real protocol behavior.

3Note that DCF provides only long-term fairness, but suffers
from short—term unfairness.

)
T

W) (s)

Figure 12: Behavior of ¢(-).

but the extremal states, we have, using Markov re-

newal reward theorem: -
1 341 *
S =1L 5 Z T+ To,w~ |- Z T,5°
ij=1,..,W*—1 ij=1,..,W*—1 a2l
1 CW) - 1 — o :gzw;vd:moo
! |:§(TP + TA) + Ttbo + Tw:| + o, W * (TA + Tslot%é sr *ns e
CWoin ~ 1Y
prwvea (T + a2 =D)L 19
After some algebra, the equation above reduces to: i
(20) i 2 * ¢ DelACsKspavamelserd ’ s ° 10

S = 9
Ta+Tp+ o(W*)

2(W" = 1) (oo +Tw) + Te10t (CWmin—1) o} Figure 13: TCP throughput for the single-station case
we vs. delACK parameter d for two values of W*.

where ¢p(W*) =
average time spent in collision resolution. It is then
routine to check that, if W* > 1:

8926 _ 2(Ttbo + Tw) - Tslot(OWmin - 1) <0
OW=* (W*)2 ’

so that ¢(-) is monotone decreasing. The behavior of
the function ¢(-) is plotted in Fig. 12. As a result, an
increase in W* leads to a throughput enhancement;
the analysis may be extended to the case of delACK
with similar results. Theoretical and simulation re-
sults for W* = d and W* > d are plotted in 13.
These results complete the analysis of [13] for the case
of a single-hop network.

