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Abstract— In this paper, we present an analytical procedure
for the computation of the node isolation probability in an ad hoc
network in the presence of channel randomness, with applications
to shadowing and fading phenomena. Such a probability coin-
cides with the complement of the coverage probability, given that
nodes are distributed according to a Poisson point process. These
results are used to obtain an estimate of the connectivity features
for very dense networks. For the case of superimposed lognormal
shadowing and Rayleigh fading, the connectivity improvements
achievable by means of diversity schemes are investigated.

Index Terms— connectivity, coverage, ad hoc networks, noisy
channels.

I. INTRODUCTION

One of the research fields which have gained more attention
by the scientific community in the last few years is that of
self-organizing largely deployed wireless networks, variously
referred to as multihop, ad hoc or packet radio networks.
Slightly aside, a growing interest is deferred to wireless
sensor networks [1], which, while presenting peculiar features,
possess at the same time many of the characteristics of ad hoc
networks.
One of the issues of more concern, for such networks, is
that of limiting achievable performance, in terms of capacity,
connectivity and coverage [2], [3], [4], [5], [6], [7]. However,
almost all the published works rely on a simplistic model of
channel propagation, where the randomness inherently present
in radio communications is not considered. To the best of the
authors knowledge, only a few papers ([8], [9], [10], and [11]
for the unidimensional case) deal with such phenomena.
In particular, our work has been inspired by that of Bettstetter
et al. [9], who analise the connectivity of an ad hoc network
in the presence of lognormal shadowing. Their analysis starts
with a semi-analytical procedure for the computation of the
node isolation probability, from which, under the assumption
of dense networks, an estimate of the connection probability
can be obtained. At first, we computed, using a different
approach, similar to that used in [12] for different purposes, a
closed-form expression for the node isolation probability in the
presence of channel randomness (and, in particular, of shadow-
ing and fading phenomena). Lately, we found out that results
for the shadowing case had already been obtained by Orriss
and Barton [13], who subsequently extended the analysis to the

superposition of shadowing and fading phenomena [14], [15].
In this paper, we generalize their approach in order to account
for a generic random channel, and show that the previously
known results follow as special cases of our analysis.
We then show that, under our assumptions, the coverage prob-
ability, an important performance metric and design parameter
in sensor networks, coincides with the complement of the
node isolation probability. Further, under the assumption of
very dense networks (to be formalized later), we provide
an estimate of the probability that any finite portion of
the network is connected. The possibility of exploiting the
channel randomness by means of diversity schemes is also
considered, showing that the network connectivity features
may be enhanced with the adoption of multiple antennas
or equivalent diversity schemes. It is also shown that no
connectivity enhancements can be achieved by any random
power transmission selection technique. The analytical results
are compared with the outcomes of numerical simulations.
The paper is organized as follows: Sec. II presents the
framework and reports the computation of the node isolation
probability under the channel models mentioned above. The
results are then used in Sec. III to get an estimate for the
connection probability in very dense networks. The impact
of two basic diversity schemes is investigated in Sec. IV.
Sec. V concludes the paper indicating some directions for
future research.

II. NODE ISOLATION PROBABILITY ANALYSIS

A. System Model

Let N be a Poisson point process over the space R
2 of

intensity λ 1. The points of the process represent the location
of the devices. Given a finite Borel subset A ∈ R

2, the number
of points of N in A, denoted by N (A), is a Poisson random
variable of intensity λν(A), where ν(A) is the Lebesgue
measure of the set A. All devices transmit at a fixed power
level Ptx, and a white noise of power W is assumed to be
present at the receiver.
In our study of connectivity, we neglect the impact of interfer-
ence. Our results are thus valid in the presence of low traffic

1The assumption of a 2-dimensional space is not necessary in the analysis,
which may be easily generalized to the generic space R

d, d ≥ 2.



load or when an efficient MAC layer protocol is present, so
that we may disregard the mutual interference generated by
the devices. Although this may seem an optimistic assumption
(the impact of interference on connectivity is widely discussed
in [16], [17]), in our view the connectivity is a “limiting”
performance, representing in some sense the supremum of
the connectivity properties over the whole range of MAC
protocols, and thus this assumption is not limiting.
The modeling of propagation in a radio channel is a complex
task, which heavily depends on the environment under study
(indoor, outdoor urban, outdoor land etc.). The received power
is given by the product of Ptx and the path loss l, which is
usually described by means of random variables2. The mean
of the path loss is given by a law of the type Kr−α, where
K is a constant which depends on some physical layer system
features and r represents the transmitter-receiver distance 3.
The path loss exponent, α, is usually in the range (2, 4), while
for some particular application scenarios it can be taken as
large as 10 [19].
As far as the randomness inherently present in the radio
channel is concerned, two different effects are usually con-
sidered, which may be observed over different time (or space)
scales. The first, referred to as shadowing, reflects the different
propagation conditions which may be encountered by radio
waves due to buildings, terrain roughness, foliage and other
obstacles. In other words, it considers that two terminals,
located at the same distance by a transmitter, may experience
different received signal power. A widely acknowledged model
for shadowing predicts the received power to be lognor-
mally distributed (i.e. the received power, expressed in dB,
is normally distributed) around its mean [19]. The shadowing
phenomena are also referred to as “large scale” or slow fading,
to distinguish them from the “small scale” or fast fading
phenomena. The latter terms describe one of the peculiarities
of radio wave propagation, i.e. the rapid fluctuation of the
amplitude of a radio signal over a short period of time or travel
distance. (Since we are considering static networks, the fading
has in our case to be understood as a phenomenon which
acts over the spatial dimension.) In the presence of dense
multipath conditions, each received signal may be modelled
as the superposition of two orthogonal normal components, so
that the signal envelope is distributed as a Rayleigh random
variable. In turn, this leads to an exponential distribution for
the received power [20].
While such a model, which accounts for lognormal shadowing
and superimposed Rayleigh fading, is by no means omnicom-
prehensive, it is able to cover a wide range of environmental
conditions, providing precious guidelines for network design
and dimensioning.

2Note that, according to our definition, the path loss should be understood
as “path gain”.

3As widely discussed in [18], the fact that the path loss goes to ∞ when d
goes to zero may lead to optimistic conclusions in the analysis of scaling
laws for dense networks. However, this phenomenon appears as long as
we take interference into account. As stated therein, “For models neglecting
interferences (. . . ) these changes from a strict power law attenuation function
may be only second order effects on the performance of the network”.

Our analysis starts with the computation of the probability of
a node being isolated, denoted by PI , meaning that none of
the other nodes present in the network is able to communicate
with it. We denote by PS|Γ(y) the packet success probability
given that the received signal presents an average signal-to-
noise ratio (SNR) Γ = y. If good long codes are used,
the function PS|Γ tends to approach a step function [12]: in
such a case we will denote by Ψ the SNR threshold which
ensures the correct packet reception. (A similar model, called
“physical model”, has also been used in [3].) More generally,
PS|Γ(y) may be used to account for the peculiarities of
realistic modulation schemes or, as we will see, to add another
degree of randomness. In this work, we assume that the fading
processes on the various links are independent. While such
assumption clearly does not reflect a real network environment
(especially as the node density λ becomes large), it still
enables us to obtain some closed-form expressions which may
be used as estimates for more realistic situations and compared
with real testbeds. In particular, we could expect that, in the
presence of correlated links, the connectivity properties of the
network will degrade with respect to the independent case.
The analysis of coverage and connectivity in the presence of
channel randomness could, in principle, be addressed using
tools and results from stochastic geometry. In particular, our
model could be thought of as a classical Boolean model [21],
[22]. In that model, also known as Poisson grain model, to each
point of a Poisson point process (referred to as “germ”), a ran-
dom shape (called “grain”) is associated. The various grains,
which are usually assumed to be convex and isotropic, are
independent and identically distributed. For example, we could
consider circles with a fixed radius; this would correspond, in
our framework, to a deterministic propagation law. However,
when considering channel randomness, it turns out to be
difficult to formally define and describe the resulting grain
shapes. This prevents from a direct application of a stochastic
geometry approach. In the following, we will however show
that the formulas for the node isolation probability have a
close resemblance to those of the fraction volume in a Boolean
model; in such a way, we can consider an equivalent grain area
which describes the effects of channel randomness.
In a sensor network framework, one interesting performance
metric is the coverage probability, which plays a fundamental
role in intrusion detection and other applications [23], [24],
[25], [26], [27]. In particular, we focus on networks where
sensing relies on wave propagation laws which are those
which guide signal propagation in the ad hoc case. The node
isolation probability is the probability that a typical node is
not connected to any other nodes, i.e. that it is not covered
by the “footprint” generated by all other nodes. On the other
hand, the coverage probability Pcov is the probability that a
typical point is covered. Since N is a Poisson process, we can
exploit Slivnyak’s theorem [21], obtaining:

Pcov = 1 − PI . (1)

In case N is a more general point process (stationary ergodic),
the two quantities can be related by means of a Palm inversion



formula [21].
Another interesting meaning of PI is that, in the limit λ →
+∞, PI converges to zero at the same rate at which the
probability of having one infinite connected component in the
network converges to one [28]. Note, however, that the arising
of an infinite component does not imply network connectivity,
the latter requiring stronger conditions.

B. A Deterministic Path-Loss Model

The deterministic case will be used, in the following, as
a reference to show the impact of the channel randomness
induced by the shadowing and fading phenomena. In the case
of a deterministic channel model, there exist a deterministic
distance R (referred to, in the following, as the “communica-
tion range”), so that a node is able to communicate with all
the nodes lying within distance R. The signal-to-noise ratio
(SNR) in the presence of a transmitter-receiver distance of r

is given by:

γ(r) =
Ptxl(r)

W
, (2)

where in this case l(r) = Kr−α. The communication range
may be computed as the distance at which the SNR falls below
the threshold Ψ. Thus, we get:

R =

(

KPtx

WΨ

)
1
α

. (3)

This is indeed a classical Boolean model with deterministic
(circular) shapes, and the node isolation probability is given
by:

PI = e−λπR2

= e−λπ(KPtx
WΨ )

2
α

. (4)

C. The Impact of Channel Randomness

Let us consider a case where the channel model presents
a random component. We assume the path loss, given a
transmitter-receiver distance r, to be described by a proba-
bility density function (pdf) fl|r(·|·), or, equivalently, by the
corresponding cumulative distribution function Fl|r(·|·). We
denote by li the loss on the path between the intended device
and node i. A node is isolated if, for any i, the SNR Ptxli

W

falls below the threshold Ψ.
We define a random variable R, which will be referred to as
the communication range in the following, having cumulative
distribution function:

FR(a) = P [γ(a) ≤ Ψ] = P

[

l(a) ≤ WΨ

Ptx

]

=

= P

[

l(r) ≤ WΨ

Ptx

|r = a

]

= Fl|r

(

WΨ

Ptx

|a
)

. (5)

In the more general case where PS|Γ(·) is not a step function,
we have:

FR(a) = 1 −
∫ +∞

0

fl|r

(

Wx

Ptx

|a
)

PS|Γ(x)dx. (6)

Intuitively, the communication range determines the probabil-
ity that two devices, located at distance a from one another,

are able to successfully communicate with each other. The
deterministic path-loss model can be seen as a special case,
having the whole mass concentrated on a single value R.
We assume 0 < E[R2] < +∞. The cases E[R2] = 0 and
E[R2] = +∞ are trivial and of no interest: in the first case
our device is disconnected P-a.s., whereas in the second one it
is connected with all other devices P-a.s. Triviality extends also
to network connectivity (see [28] for a percolation argument).
We now compute the distribution of the number of one-hop
neighbors of a device. The derivation will thread the footprints
of [13].
Let us denote by Pn(r) the probability that there are n

nodes, within distance r from the intended device, which can
communicate in a single-hop fashion with it. The number
of devices with which our node can communicate directly
(referred to as one-hop neighbors in the following) follows
the distribution law Pn(+∞).
The event {n one-hop neighbors are present within distance
(x+ δx) } can be written as the union of three disjoint events
(up to the first order in δx):

1) there are n one-hop neighbors within distance x and no
nodes are present in the anulus C(x, x + δx);

2) there are (n − 1) one-hop neighbors within distance x

and one device in C(x, x+ δx) which can communicate
with the intended node;

3) there are n one-hop neighbors within distance x and one
device in C(x, x + δx) which cannot communicate with
the intended node.

Then, following [13] we can write for n ≥ 1:

Pn(x + δx) = Pn(x)[1 − 2πλxδx]+

+Pn−1(x)2πλxδx[1−FR(x)]+Pn(x)2πλxδxFR(x)+o(δx).
(7)

For n = 0, we have:

P0(x+δx) = P0(x)[1−2πλxδx]+P0(x)2πλxδxFR(x)+o(δx).
(8)

Taking δx → 0, we get:
{

∂Pn(x)
∂x

= 2πλx[1 − FR(x)][Pn−1(x) − Pn(x)], n ≥ 1;
∂P0(x)

∂x
= −2πλx[1 − FR(x)]P0(x).

(9)
Now, let us define the generating function of Pn(x) as:

Π(x, z) =

+∞
∑

n=0

Pn(x)zn. (10)

From (9) we get:

∂Π(x, z)

∂x
= 2πλx[1 − FR(x)](z − 1)Π(x, z). (11)

Hence,

∂ ln Π(x, z)

∂x
= 2πλx[1 − FR(x)](z − 1). (12)



Noting that Π(0, z) = 1, and hence ln Π(0, z) = 0, we get,
integrating (12) from 0 to +∞:

ln Π(+∞, z) = (z − 1)πλ

+∞
∫

0

2x[1 − FR(x)]dx =

= (z − 1)πλE[R2]. (13)

Inverting, we find that the number of one-hop neighbors
follows a Poisson distribution with intensity πλE[R2]. As a
corollary, the node isolation probability is given by:

PI = P0(+∞) = e−λπE[R2]. (14)

Note that (14) could be retrieved withour resorting to gener-
ating function, by simply integrating the second equation in
(9). An alternative method for finding the relationship (14) is
reported in the appendix.
The equation above predicts that our system behaves like a
Boolean model with equivalent average area Ŝ = πE[R2] [21].
Formula (14) is worth some comments. Indeed, it predicts
that channel randomness may have a beneficial impact on
network connectivity. This holds if and only if the physical
phenomenon which induces the randomness leads to an in-
crement in the second-order moment of the random variable
R.

D. Analysis in the Presence of Shadowing

In [9] a semi-analytical approach is presented for the
computation of the node isolation probability in a shadowing
environment. In particular, the procedure is based on the
distribution of the k-th nearest neighbor distances, but no
closed-form formula is obtained. By following the procedure
outlined in the previous subsection, we are able to get a closed-
form expression for PI , from which it is possible to clearly see
the impact of the different factors. Given a transmitter-receiver
distance ρ, the pdf of the path loss is given by [12]:

fl|r(a|ρ) =
1√

2πσa
e
− 1

2

(

ln a−ln(Kρ−α)
σ

)2

, (15)

where σ, the lognormal spread, is the standard deviation of the
Gaussian distribution describing the shadowing phenomenon.
We then have:

E[R2] =

+∞
∫

0

dρ2ρ

[

1 − Fl|r

(

WΨ

Ptx

|ρ
)]

=

=

+∞
∫

0

dρ2ρ

+∞
∫

WΨ
Ptx

da
1√

2πσa
e
− 1

2

(

ln a−ln(Kρ−α)
σ

)2

. (16)

Substituting x = ln a−ln Kρ−α

σ
=

ln
(

aρα

K

)

σ
, we get:

E[R2] =

+∞
∫

0

dρ2ρ

+∞
∫

ln(WΨρα

PtxK )
σ

dx
1√
2π

e−
x2

2 . (17)

Since the integrals converge absolutely, we may apply Fubini’s
theorem, getting:

E[R2] =

+∞
∫

−∞

dx

(

eσxPtxK

ΨW

) 1
α

∫

0

dρ2ρ
1√
2π

e−
x2

2 =

=

+∞
∫

−∞

dx

(

eσxPtxK

ΨW

)
2
α 1√

2π
e−

x2

2 =

=

(

PtxK

ΨW

)
2
α

+∞
∫

−∞

dx
1√
2π

e−
x2

2 + 2σx
α =

(

PtxK

ΨW

)
2
α

e

(√
2σ
α

)2

,

(18)

where we used the following integral [29]:

+∞
∫

−∞

dx
1√
2π

e−
x2

2 e±βx = e
β2

2 . (19)

Hence the node isolation probability is given by:

PI = e−λπ(PtxK

ΨW )
2
α e

(√
2σ
α

)2

. (20)

Please note that this result was implicitly derived in [13].
This suggests that the presence of lognormal shadowing im-
proves the connectivity properties of the network, as predicted
by the results in [10], [8]. Further, the node isolation proba-
bility is monotonically decreasing in the lognormal spread σ.
This fact may also be seen as a byproduct of a more general
result, which regards the possibility of finding a stochastic
ordering4 among the distributions of the communication range
with different values of the lognormal spread σ. Indeed, we
have:

FRσ
(a) = 1 −

∫ ΨW
KPtx

0

dx
1√

2πσx
e
− 1

2

(

ln(xaα)
σ

)2

=

=

∫

ln ΨW aα

KPtx
σ

−∞

dt√
2π

e−
t2

2 = Φ

(

ln ΨWaα

KPtx

σ

)

. (21)

It is then easy to see that we may write:

Rσ1
� Rσ2

, σ1 ≤ σ2. (22)

From [30], (22) is equivalent to

E[f(Rσ1
)] ≤ E[f(Rσ2

)], σ1 ≤ σ2 (23)

for any increasing function f(·). Hence, we have that:

E[Rh
σ1

] � E[Rh
σ2

], σ1 ≤ σ2, h ≥ 0. (24)

Taking h = 2 and recalling (14), we retrieve that the node iso-
lation probability decreases monotonically with the lognormal
spread σ.
In the limit σ → +∞ the behavior of the resulting network

4Given two random variables A and B, we say that A is stochastically
smaller than B, A � B if FA(x) ≥ FB(x) ∀x ≥ 0 [30].



will resemble that of a random graph [31], in that the spatial
component will become negligible. In such limiting regime,
the probability that a typical node is connected to any other
node tends to 1

2 . Indeed the probability of connection to a
node at distance ρ is:

1 − FRσ
(ρ) = Q

(

ln WΨρα

PtxK

σ

)

, (25)

which for any finite ρ tends to Q(0) = 1
2 as σ → +∞.

The probability that, given n other nodes in the network,
the typical node is isolated is 1

2n → 0 as n → +∞. Since
in our unbounded region there is P-a.s. an infinite number
of nodes, our network will P-a.s. not present any isolated
node, which provides an informal justification of the fact that
lim

σ→+∞
PI = 0. On the other hand, if σ → 0 we retrieve

the deterministic path–loss model previously analyzed. It is
interesting to note that in such limiting case, the connectivity
properties are driven only by the features of the underlying
spatial process; in this sense, we may regard the resulting
network as a geometric random graph [32] (this relationship
between ad hoc networks and geometric random graphs is
not new, see [33]). In some sense, the partial randomness
introduced by the lognormal shadowing may be expected to
produce a network similar to a small world [34], [35], which
is indeed known to present better connectivity properties than
geometric random graphs.
Related results are obtained in [36], where the authors, by
using a continuum percolation approach, show the beneficial
impact of spread-out connections (i.e., a spread-out density for
R in our setting) on the network connectivity keeping a fixed
E[R2]. On the other hand, we demonstrated that some forms
of channel randomness (e.g., lognormal shadowing) are able
to improve connectivity features by actually enlarging E[R2]
without any increase in Ptx. The interesting phenomenon
observed in [36] impacts the critical density at which network
percolation occurs. However, this is not directly related to
the node isolation probability, but to its relationship with the
probability of existence of an infinite component. Further,
in the limit λ → +∞ the enhancement due to spread-out
connections vanishes, since the probability of existence of an
infinite component tends to 1 at the same rate as PI (which
depends just on E[R2]) tends to 0 [28].
It is worth remarking that these results do not account for the
basic fact that a wireless channel, in reality, cannot amplify
a signal, so that the impact of lognormal shadowing in a real
setting is not completely clear.
In Fig. 1 we plotted some results, in terms of coverage
probability versus the node density λ for various values of the
lognormal spread σ. The other system parameters are α = 3.5,
Ptx = 1 mWatt, K = 10, W = 0.01 mWatt, Ψ = 10 dB. From
the curves it is evident that lognormal shadowing may have a
tremendous impact on network performance, leading to a large
performance enhancement, with respect to the deterministic
channel model (correspondent to σ = 0), even for low values
of the lognormal spread. In Fig. 2 we plotted the coverage

probability versus the lognormal spread for various values
of the path loss factor α, with Ptx = 1 mWatt, K = 10,
W = 0.01 mWatt, Ψ = 10 dB, λ = 0.01 m−2. The
asymptote represents the coverage probability achieved with
a deterministic channel model. Note that the path loss factor
α plays a substantial role only for a narrow range of values
for σ (those corresponding to the critical transition).
In order to validate our results, we simulated a 100m×100m

square, and took the same system parameters as above. We
considered a node density λ = 0.04 m−2 and varied σ between
0 (path loss only) and 3. The corresponding communication
graphs (in which two points are linked by an edge if and
only if the corresponding devices are connected to each other)
are plotted in Fig. 3, where it may be noticed the remarkable
impact of even a small variation of the lognormal spread σ.
We then computed the node isolation probability averaging
over 1000 simulations. The results, for the case σ = 0 and
σ = 2 are plotted in Fig. 4, where for the simulation results
we reported the mean value. It may be seen that our analysis
is able to closely follow the system behavior for a wide
range of node density, our analysis slightly overestimating the
node isolation probability. This effect is due to the fact that
our analysis has been carried out for an unbounded region,
neglecting thus the border effects that arise in the presence of
a finite area [37]. In such a case, in fact, nodes placed close
to the border regions are more likely to be isolated, since they
can connect only to devices placed in a region of area smaller
than πE[R2]. The border effect, in our example, has an impact
which is increasing with an increase in the mean covered area
πE[R2], as it may be seen in Fig. 4.d. This explains the small
mismatch between analysis and simulation data.
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E. Analysis in the Presence of Superimposed Lognormal Shad-
owing and Rayleigh Fading

The analytical procedure showed above may be easily
extended to more complex scenarios, such as that where
both lognormal shadowing and fast (Rayleigh) fading are
simultaneously present [14]. Let Γ be the average SNR
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Fig. 3. Communication graphs for α = 3.5, Ptx = 1 mWatt, K = 10,
W = 0.01 mWatt, Ψ = 10 dB, λ = 0.04 m−2.

(meaning that it is averaged over the variations of the small-
scale fading), and consider again a threshold-like success
probability, with threshold equal to Ψ. The instantaneous SNR
γ is exponentially distributed with mean Γ = y [20] so that
we have:

PS|Γ(y) =

+∞
∫

Ψ

dafγ|Γ(a|y) =

+∞
∫

Ψ

da
1

y
e−

a
y = e−

Ψ
y . (26)

10
−3

10
−2

10
−1

10
−2

10
−1

10
0

Node intensity (m−2)

N
od

e 
is

ol
at

io
n 

pr
ob

ab
ili

ty

analysis
simulation

(a) σ = 0

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

Node intensity (m−2)

N
od

e 
is

ol
at

io
n 

pr
ob

ab
ili

ty analysis
simulation

(b) σ = 1
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(c) σ = 2
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(d) σ = 3

Fig. 4. Node isolation probability for α = 3.5, Ptx = 1 mWatt, K = 10,
W = 0.01 mWatt, Ψ = 10 dB.

Substituting in (14), we obtain:

PI = e
−λπ

[

+∞
∫

0

da
+∞
∫

0

dρPS|Γ( aPtx
W )2ρfl|r(a,ρ)

]

=

= e

−λπ







+∞
∫

0

da
+∞
∫

0

dρe
− ΨW

aPtx 2ρ 1√
2πσa

e
− 1

2

(

ln a−ln(Kρ−α)
σ

)2






=

e
−λπ

(

+∞
∫

−∞
dx

+∞
∫

0

dρ 1√
2π

e
− x2

2 2ρe
−ΨW e−σxρα

KPtx

)

. (27)

From [29] we have:

+∞
∫

0

dρ2ρe
−ΨW e−σxρα

KPtx =
2

α
Γ

(

2

α

)(

ΨWe−σx

KPtx

)− 2
α

, (28)

where Γ(·) represents the usual Gamma function.
Then, applying (28) and (19) to (27), we obtain:

PI = e
−λπ 2

α
Γ( 2

α )( ΨW
KPtx

)
− 2

α e

(√
2σ
α

)2

. (29)

Since yΓ(y) ≤ 1 for any y ≤ 1, equality holding only for
y = 1, we have that, for α > 2 (note that the case α = 2
corresponds to free-space propagation, so that for any real
system it is α > 2) Rayleigh fading reduces the connectivity
properties of the network. This holds for any σ, so that the
negative influence of the Rayleigh fading does not depend on
the underlying shadowing phenomena.
In Fig. 5 a comparison between lognormal shadowing and su-
perimposed shadowing and Rayleigh fading is shown. Notice
that the Rayleigh fading, although having a negative impact



on the connectivity properties of the network, does not change
much the coverage probability.
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Fig. 5. Coverage probability vs. node density: the impact of Rayleigh fading;
Ptx = 1 mWatt, K = 10, W = 0.01 mWatt, Ψ = 10 dB, α = 3.5,
σ = 0, 3, 6 (a larger value of σ corresponds to a curve to the left).

F. Random Transmission Power Selection

The main result we can draw from (14) is that any
mechanism able to increase the second-order moment of the
transmission range enhances the network performance. Since
the mean value of the transmission range is determined by
physical layer constraints (noise, average transmission power,
SNR threshold and path loss factor), it seems quite natural
to look for a technique able to enhance the variance of the
transmission range. In this view, the easiest thing to do would
be to allow the terminals to independently randomly choose a
power level Ptx according to a distribution FPtx

(·) on which
we pose only a constraint on the mean value, namely:

E[Ptx] =

+∞
∫

0

da [1 − FPtx
(a)] = ω. (30)

We get the following:
Proposition 1: Given an ad hoc network where nodes

are distributed according to a Poisson point process of in-
tensity λ, and in the presence of a deterministic channel
model/lognormal shadowing/superimposed Rayleigh fading
and lognormal shadowing, under the constraint (30), it is not
possible to reduce the node isolation probability by means of
any transmission power random selection scheme .

Proof: For the three channel models considered, we have:

E[R2|Ptx] = ξ(Ptx)
2
α , (31)

where ξ =
(

K
WΨ

)
2
α for the case of deterministic chan-

nel, ξ =
(

K
WΨ

)
2
α e

(√
(2)σ

α

)

for lognormal shadowing and

ξ = 2
α
Γ
(

2
α

) (

K
WΨ

)
2
α e

(√
(2)σ

α

)

for superimposed lognormal
shadowing and Rayleigh fading. Then, applying the total
expectation theorem:

E[R2] = E
[

E[R2|Ptx]
]

= ξE
[

(Ptx)
2
α

]

. (32)

For α ≥ 2, (·) 2
α is a concave function. Then, applying Jensen’s

inequality, we have:

E[R2] = ξE
[

P
2
α

tx

]

≤ ξE[Ptx]
2
α = ξω

2
α . (33)

Since the r.h.s. of (33) is what we would get by taking Ptx =
ω, we obtain that connectivity cannot be improved by means
of any random selection scheme for the transmission power 5.

III. CONNECTIVITY ANALYSIS AND RESULTS

A. Asymptotic Connectivity

One of the most important issues in ad hoc networks is that
of connectivity, which can be posed in the following way:
given a ball of radius c (or any other finite convex subarea
of the plane), what is the probability that the nodes therein
forms a connected topology? In general, this question cannot
be answered exactly (see [22] for more details). However, we
may still get some insight when the network is “very dense”,
meaning that the intensity of our driving process N goes to
infinity. This corresponds, roughly speaking, to a situation
where the network is “not far” from connectivity, meaning that
the probability of a node to be isolated is vanishing. In such
a situation, the probability of the network being connected
tends to the probability that no isolated nodes are present.
This approximation, which clearly offers an optimistic bound
on the probability of the network to be connected, has been
shown in [9] to provide good results. Furthemore, such result
is known to hold for the case of deterministic channel model
[38], [32]. Consider balls of radius ρ, Dρ. The number of
points in Dρ forms a Poisson r.v. with intensity λπρ2. Let us
introduce the following approximations:

(i) the region Dρ is sufficiently large, so that border effects
may be neglected [37];

(ii) the probability that a node is isolated, given that there
are n nodes in Dρ, is given by PI ;

(iii) given n nodes in Dρ, the events Ik =
{node k is isolated}, k = 1, . . . , n are independent.

As a consequence, the probability of the event {absence of
isolated nodes in Dρ| n nodes are present} is given by
(1 − PI)

n. Using the total probability theorem, we have:

P [A] =
∞
∑

n=0

e−λπρ2

[

λπρ2(1 − PI)
]n

n!
= e−λπρ2PI . (34)

where A is the event {absence of isolated nodes}. Notice that
the approximations introduced above, while clearly represent-
ing a simplistic picture of the network behavior, have proven
in [9] to provide a satisfactory level of approximation.
Denoting by C the event {the network is connected}, we have:

lim
λ−→∞

P [A] − P [C] = 0. (35)

It is worth noting that such approximation is known to hold
for the unidimensional case [39], [22].

5Note, however, that in a 3-dimensional network, if α < 3, random power
selection schemes could indeed improve network connectivity.



The node isolation probability PI is a function of Ptx; we shall
allow Ptx to be a function of λ as well. Thus the dependence
of P [A] on λ is through the behavior of λPI .
Using (35), we shall say that the network is asymptotically
connected if lim

λ→+∞
P [A] = 1.

Under the approximations (i)−(iii), from (34) a necessary and
sufficient condition for asymptotic connectivity of any finite
Dρ is:

lim
λ→∞

λPI = 0. (36)

Let us assume that we are in the presence of a deterministic
channel model/lognormal shadowing/superimposed Rayleigh
fading and lognormal shadowing, and let the transmission
power scale as:

Ptx =

(

1

πξ
· ln λ + c(λ)

λ

)
α
2

, (37)

where the expression of ξ depends on the channel model (see
§II-F). For the three channel models considered, we have PI =

e−λπξ(Ptx)
2
α . Using the expression (37), we have:

PI = e−(ln λ+c(λ)) =
e−c(λ)

λ
.

From (36), a necessary and sufficient condition for asymptotic
connectivity is e−c(λ) → 0, from which a necessary and
sufficient condition for asymptotic connectivity is:

lim
λ−→∞

c(λ) = +∞. (38)

It is worth noting that the scaling law of the transmission
power for asymptotic connectivity in dense networks is insen-
sitive to the presence of shadowing and/or fading phenomena
(up to a multiplicative factor). This insensitivity is really im-
portant since it provides guidelines for a robust dimensioning
of the network. Otherwise stated, the planning of an ad hoc
network can be made relying on a simplistic deterministic
channel model. On the other hand, a factor of great importance
is the path loss factor α, so that a conservative value of such
parameter should be considered in the dimensioning phase.
In order to check for the validity of relationship (35), which
has been derived under some simplifying approximations, we
simulated a 100m × 100m, with the same parameters of §II-
D but with a transmission power of 10 mWatt. Simulations
were run for σ = 3, 4 and, in order to overcome the border
effect, a toroidal distance metric was used [37]. The results,
averaged over 1000 simulations, are shown in Fig. 6 in terms
of 95% confidence interval. As it may be seen, the simulation
results closely follow the predicted ones for both cases, slightly
underestimating the network connection probability.

B. Connectivity for Networks with Unreliable Devices

The asymptotic analysis can be easily extended to the case
of unreliable devices [4], [11], where each device is assumed
to be active with probability p. We let p be a function of
λ (which allows for an engineering tradeoff between devices
reliability and nodes density), and study scaling laws for the
transmission power. Let the channel be characterized by a path
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Fig. 6. Connection probability vs. node density in the presence of lognormal
shadowing; Ptx = 10 mWatt, K = 10, W = 0.01 mWatt, Ψ = 10 dB,
α = 3.5, σ = 3, 4.

loss factor α, regardless of the possible presence of shadowing
and/or Rayleigh fading and let Ptx(λ) denote the transmission
power. Then, under approximations (i) − (iii), and threading
the footprints of [4], [11], it is easy to show that the followings
hold:

(a) a necessary and sufficient condition for asymptotic con-
nectivity is given by:

lim
λ→+∞

λp(λ)e−λp(λ)(Ptx(λ))
2
α = 0. (39)

(b) If p = lim
λ→+∞

p(λ) satisfies 1 < p < 0 and Ptx(λ) =
(

1
πξ

· ln λ+c(λ)
λ

)
α
2

, the network is asymptotically con-

nected at distance d if c(λ) satisfies

c(λ) ≥ ζ ln λ, (40)

where ζ > 1−p
p

. Furthemore, the network is asymptoti-
cally connected only if c = lim

λ→+∞
c(λ) = +∞.

(c) Let p(λ) be p(λ) = λ−γ , where 0 < γ < 1 . Then a
sufficient condition for asymptotic network connectivity
at distance d is given by:

p(λ) [Ptx(λ)]
2
α ≥ ζ

ln λ

λ
, (41)

where the constant ζ satisfies ζ > 1 − γ.

IV. IMPROVING NETWORK CONNECTIVITY THROUGH

DIVERSITY

In this section we explore the possibility of improving the
connectivity of the network in the presence of superimposed
Rayleigh fading and lognormal shadowing by using multiple
antennas at the receiver side. It is clear that, for the time being,
the use of multiple antennas for ad hoc networks does not
represent a viable solution: the increase in cost, complexity
and battery drain for the devices do not allow any practical
application of such diversity schemes. However, apart from
the theoretical importance of the issue, it is worth noting that
diversity can be exploited not only by using multiple antennas,



but also by means of cooperation schemes [40], [41], where
the spatial dimension of the network itself is used as a diversity
factor.
Assuming that M antennas are present at the receiver, and that
they are spaced apart, so that the paths from the transmitter
to the receiver antennas may be considered independent, we
study the impact of two signal processing technique, namely:

• best path selection (BPS): among the M received signals,
the one with the largest SNR is decoded;

• maximal ratio combining (MRC): the M received signals
are combined in such a way to maximize the overall SNR
(see [20] and [42] for more details).

It is worth noting that the two models above lead to the same
results which could be retrieved by other diversity schemes.
For example, the first scheme is equivalent either to a diversity
scheme which employs M antennas at the transmitter or to a
time diversity scheme, where M replicas of the signal are
sent out after a time longer than the coherence time of the
channel [43]. On the other hand, performance equivalent to
MRC are known to be reachable by employing the well-
known Alamouti scheme [44]. However, in the presence of
transmitter-based diversity schemes, a corresponding increase
in the transmitted power is required. (In reality, also the
adoption of such signal processing techniques implies an
additional power consumption.)
Let us focus on the first scheme; given an average SNR of
Γ = y, the probability that at least one path presents a SNR
greater than Ψ is:

PS|Γ(y) = 1 −
M
∏

k=1

Ψ
∫

0

daifγi|Γ(ai|y) =

= 1 −





Ψ
∫

0

da
1

y
e−

a
y





M

= 1 −
(

1 − e−
Ψ
y

)M

=

= −
M
∑

h=1

(

M

h

)

(−1)he−
hΨ
y . (42)

Substituting (42) in (14), together with (15), we get:

PI = exp

{

λπ

M
∑

h=1

(

M

h

)

(−1)h·

·







+∞
∫

0

da

+∞
∫

0

dρe
−hΨW

aPtx 2ρ
1√

2πσa
e
− 1

2

(

ln
aρα

K
σ

)2
















=

= exp

{

λπ

M
∑

h=1

(

M

h

)

(−1)h·

·





+∞
∫

−∞

dx

+∞
∫

0

dρ
1√
2π

e−
x2

2 2ρe
−hΨW e−σxρα

KPtx











. (43)

Applying again (28) and (19), we get:

PI = e







λπ
M
∑

h=1
(M

h )(−1)h 2
α

Γ( 2
α )( hΨW

KPtx
)
− 2

α e

(√
2σ
α

)2






=

= e







λπ 2
α

Γ( 2
α )( ΨW

KPtx
)
− 2

α e

(√
2σ
α

)2
M
∑

h=1
(M

h )(−1)hh
− 2

α







. (44)

Since
M
∑

h=1

(

M

h

)

(−1)hh− 2
α ≤ −1,

we may conclude that the use of receiver diversity with best
path selection improves the connectivity properties of the
resulting network, as expected. Note, however, that the scaling
for asymptotic connectivity remains unchanged.
In case of MRC, the system behaves as if the channel con-
sisted of an M -Nakagami fading superimposed to lognormal
shadowing [20]. The pdf of the instantaneous SNR is given
by:

fγ|Γ(a|y) =

(

M

y

)M
aM−1

Γ(M)
e−M a

y ,

where Γ(·) is the Gamma function. Note that for M = 1 we
obtain the usual expression for Rayleigh fading. The ccdf is
given by:

PS|Γ(y) = P [γ > Ψ|Γ = y] = 1 − Fγ(Ψ) =
Γ
(

M, MΨ
y

)

Γ(M)
,

(45)
where Γ(·, ·) is the incomplete Gamma function [29]. Since
M is an integer, the expression above simplifies to:

PS|Γ(y) = e−M Ψ
y

M−1
∑

h=0

(

MΨ

y

)h
1

(h + 1)!
. (46)

Proceeding as above, the node isolation probability turns out
to be:

PI = exp







−λπ

M−1
∑

h=0

1

(h + 1)!





+∞
∫

0

da

+∞
∫

0

dρe
− ΨW

aPtx ·

·
(

MΨW

aPtx

)h

2ρ
1√

2πσa
e
− 1

2

(

ln a−ln(Kρ−α)
σ

)2]}

, (47)

that after some algebra reduces to:

PI = exp

{

−λπ
2

α
e

(√
2σ
α

)2
(

ΨW

KPtx

)− 2
α

·

·
M−1
∑

h=0

1

(h + 1)!
MhΓ

(

h +
2

α

)

}

. (48)

Since

M−1
∑

h=0

1

(h + 1)!
MhΓ

(

h +
2

α

)

≥ Γ

(

2

α

)

,



also receiver-based diversity with MRC improves the network
connectivity.
For both BPS and MRC, the connectivity improvement could
be predicted by estabilishing a stochastic ordering among the
distributions of the communication range R in the presence of
different number of antennas. It suffices to note that for both
schemes, if M1 ≤ M2, PS|Γ,M1

≤ PS|Γ,M2
, where PS|Γ,x is

the probability of successful reception given an average SNR
of Γ and in the presence of x antennas. Substituting in (6), it
is easy to see that a stochastic ordering among the distribution
corresponding to different values of M is possible:

RM1
� RM2

M1 ≤ M2, (49)

and the connectivity improvement follows along the arguments
outlined in §II-D.
Some results, in terms of coverage probability, for both the
schemes analysed, are reported in Fig. 7 and Fig. 8. As it may
be seen, both schemes improves network performance. It is
worth noting that with BPS the coverage enhancements tend
to saturate, so that it does not seem of interest to go beyond
M = 3, while with MRC the performance improvement tends
to considerably increase with M . A direct comparison of the
performance achieved by both schemes is represented in Fig. 9,
where it may be seen that MRC outperforms the simpler BPS
scheme, and that the performance achievable with BPS and
M = 4 antennas may be obtained also by limiting the number
of antennas to M = 2 and employing a MRC scheme.
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Fig. 7. Coverage probability vs. node density: the impact of receiver diversity
with best path selection algorithm; Ptx = 1 mWatt, K = 10, W = 0.01
mWatt, Ψ = 10 dB, α = 3.5, σ = 3

V. CONCLUSIONS

In this paper we have presented an analytical procedure
for the computation of the node isolation probability in an
ad hoc network in the presence of channel randomness, with
a particular emphasis on the effect of lognormal shadowing
and Rayleigh fading phenomena. We have shown that the
node isolation probability decreases as the lognormal spread
σ increases, and investigated the negative effect of Rayleigh
fading. We proved that no connectivity improvement may
be achieved by using random transmission power selection
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Fig. 8. Coverage probability vs. node density: the impact of receiver diversity
with maximal ratio combining; Ptx = 1 mWatt, K = 10, W = 0.01 mWatt,
Ψ = 10 dB, α = 3.5, σ = 3

10
−5

10
−4

10
−3

10
−2

10
−1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node density (m−2)

C
ov

er
ag

e 
pr

ob
ab

ili
ty

M=2, MRC
M=4, MRC
M=2, BPS
M=4, BPS

Fig. 9. Coverage probability vs. node density: comparison of best path
selection (BPS) and maximal ratio combining (MRC); Ptx = 1 mWatt, K =
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schemes. The node isolation probability coincides with the
complement of the coverage probability, given that nodes are
distributed according to a Poisson point process; otherwise it
is possible to relate the two quantities through an inversion
formula.
From the node isolation probability we can get, under some
simplifying approximations, a closed form formula for the
probability of the network being connected in the presence
of a very large device density. Simulation results have been
presented, which show the soundness of the proposed proce-
dure.
For the case of superimposed shadowing and Rayleigh fading,
the connectivity improvement achievable by means of two sim-
ple diversity schemes, best path selection and maximal ratio
combining, has been investigated; a general stochastic ordering
relationship has been found for both schemes, showing the
beneficial impact of the use of diversity schemes.
Directions for future work include the generalization of the
results to more general node placement distributions and
a study of the impact of various mobility patterns on the



connectivity results found for a static scenario.
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APPENDIX

In order to carry out the computation of the node isolation
probability, we may follow an approach inspired by that of
Zorzi et al. [12] for the analysis of the outage probability
in packet radio networks. We consider a ball of radius c,
Dc and condition on the number of nodes present, denoted
by k. Notice that the k points of N in Dc are uniformly
distributed. We compute the node isolation probability under
such conditions. Then, we apply the total probability theorem
to uncondition on k (noting that the number of nodes present
in Dc forms a Poisson random variable of intensity λπc2).
Finally, we pass to the limit c → +∞ to get the node isolation



probability. Thus:
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Then,
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where the passage to the limit is justified if the integral con-
verges absolutely (this corresponds to the condition E[R2] <

+∞).
Substituting (6) in (51) we retrieve (14).


