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Abstract

Consider the situation in which a decision maker (Actor) has to decide which of several available
resources to use in the presence of an adversary (called Controller) that can prevent the Actor of receiving
information on the state of some of the resources. The Controller has a limitation on the amount of
information it can conceal. What information should it deny from the the Actor? How should the Actor
choose a resource as a function of the statistics of the states of the resources and of the non-concealed
information on the state of the others. We formulate this problem as a non-zero sum game and transform
it into an equivalent zero-sum game. We then propose ways to compute the most harmful behavior of
the Controller as well as the best choice of a resource for the Actor, and analyse their complexity.
We identify cases in which the exact solution is computationally intractable, and provide approximate
solutions with polynomial complexity. We present many motivating examples and explore numerically
the performance of the approximations.

I. INTRODUCTION

A. Overview

Exchange of information among different entities forms the basis of most technological advances
in the information era and also of social interactions. Several seminal advances in communication
systems have lead to schemes that maximize the rate of exchange of information. An aspect that
has received somewhat less attention, and is as important, is that of designing a framework for
deciding what information should be revealed and what should be concealed during exchange
of information among different entities so as to maximize their utilities. The main challenge
towards developing such a framework is that oftentimes such decisions depend on the objective
for exchange of information, and hence can only be determined on a case by case basis. The
contribution of this paper is to develop a rigorous mathematical framework for deciding what
information an entity should reveal when the objectives satisfy certain broad characterizations
that capture the essence of several communication and social systems.

We consider a system with two entities. The state of the system is a random vector of dimension
n. At any given time the first entity (controller) has complete information about the state of
the system, and must reveal a certain “minimum” amount of information about the system state
to the second entity. It can however choose the nature of the information it reveals subject to
satisfying the above constraint. The second entity (actor) takes certain actions based on the
information the controller reveals, and the actions are associated with certain utilities for both
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the controller and the actor which also depend on the state of the system. The same actions
and the system states fetch different utilities for the controller and the actor, and usually when
one entity has a high utility the other has a low utility. We devise a framework that enables the
controller to decide the information it would reveal, or equivalently conceal, so as to maximize
its own utility, and the actor to determine its actions based on the information it has about the
system so as to again maximize its utility.

B. Motivation

We first establish that this information concealing problem forms the basis of several commu-
nication systems.

1) Information concealing problems in wireless networks:

a) Cognitive radio networks: Consider a transmitter with access to n channels, whose qualities
constitute the state of the system. The transmitter needs to select one channel for transmission,
and the transmission quality of the selected channel determines the rate of successful trans-
mission. Hence, the transmitter probes the channels in order to assess their qualities before it
transmits any packet. A malicious entity, say a jammer, seeks to reduce the rate of successful
transmission. The jammer is usually assumed to accomplish its goal by generating signals that
interfere with the sender’s communication; however the jammer may be able to deteriorate
the transmission rate much more by preventing the transmitter from learning the states of the
channels. This may cause the transmitter to make a wrong choice, that is, select a channel with a
poor transmission quality, and thereby obtain a poor data rate for a while. Note that the jammer
can prevent the sender from learning the states of some channels, possibly by generating signals
that interfere with the corresponding probe packets or responses to these probes, and generating
such signals may consume less energy as compared to those that jam the actual transmission since
the probe packets are transmitted over shorter durations. We therefore consider the case where the
jammer blocks the probe packets and not the actual transmission. Furthermore, we assume that
the jammer knows the quality of the channels and can block the probes in at most k channels
since the blocking process consumes energy. Hence, the states of at most k channels can be
concealed from the transmitter. The transmitter selects the channel after it learns about the states
of the channels the jammer does not conceal. Note that the transmitter may either select a channel
whose state has been revealed or one whose state has been concealed; the latter may happen since
the fact that the jammer has concealed the state of a channel may indicate that the transmission
quality of the corresponding channel is good. The rate of successful transmission attained by the
transmitter determines the utility of the transmitter and the jammer. The information concealing
problem we described will enable the jammer (controller) to optimally determine which channels
it would conceal, and the transmitter (actor) to select the channel.

2) Information concealing problems in other information systems:

a) Query resolution networks: We next describe another communication system in which the
information concealing problem arises. Consider a client that needs to locate a desired informa-
tion. It queries some data bases to determine which of them has the information. The responses
constitute the state of the system and specify the probability with which the requested information
is present in the data base (as the search in response to such preliminary queries may not be
comprehensive and also the information may be dated). The responses reach the node through a
gateway that has a malicious entity which blocks some of the responses in order to undermine the
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information location service. The client needs to determine which database it would request the
information from based on the responses to its query, and again it may choose one it received a
response from or one it did not receive a response from (the latter may happen if the responses it
receives reveal low probabilities). The utility of the client and the malicious entity depends on the
probability that the client obtains the information it is interested in. The information concealing
problem we described will enable the malicious entity (controller) to optimally determine which
responses it would suppress and the client (actor) to determine which database it would query.

b) Buyer-Seller authentication in e-commerce: Next, consider an e-commerce system where a
buyer and a seller are bargaining. The authentication process between them proceeds in two
stages. The buyer has n pieces of information using which he can authenticate himself to the
seller. He reveals limited information about k of these pieces using which the seller can complete
the first stage of the authentication successfully if the buyer is who he claims to be (e.g.,
using some proof verification methods). Next, the seller identifies himself to the buyer, and
subsequently asks about complete information for one of the n pieces which may or may not be
among those that the buyer initially selects. The buyer provides the requested information and
the authentication is successful if again he is who he claims to be. This two-stage authentication
process allows each entity to identify himself once he has some (albeit incomplete) information
about the other participant. Now, the complete information the buyer reveals about any one piece
in the authenticating process may allow the seller to acquire more information about the buyer
than that required for mere authentication, e.g., information about his previous transactions with
other merchants, etc. This will for example allow him to bargain more effectively with the buyer
once the authentication is successful. Now, the different pieces of information the buyer possesses
about himself reveals different amount of information about him, and the buyer must select the k
pieces in the first stage so as to minimize the additional information he finally reveals to the seller.
The seller must subsequently select the piece in the second stage to acquire maximum possible
information about the buyer. The information concealing problem we described will enable the
buyer (controller) and the seller (actor) to attain their respective objectives by optimally selecting
the pieces in question.

3) Information concealing problems in social context:

a) Gambling: Consider a gambling game in which two gamblers have a common collection of
N cards each of which can have one of m colors. They randomly select a number for each card
and write the chosen number on one side of the corresponding card. Subsequently, they put all
cards in a bin, and the second gambler draws n cards randomly from the bin without observing
the numbers on them. The first gambler then observes the colors and the numbers of the cards
drawn and tells the second the numbers and the colors of k of these cards, and only the colors
of the rest of the cards. The second gambler needs to select one of these n cards (either a card
whose number it knows or one whose number it does not know), and the first pays him an
amount that equals the number on the selected card (if this number is negative then the second
pays the first). The first gambler (the controller) needs to select the k cards so as to minimize the
amount it pays, and the second needs to select a card so as to maximize the amount it receives.

b) Security systems: Consider a corrupt employee who sells secrets about the company’s security
system to some burglars. The building in which the company is located has n gates, and the
employee knows the efficacy of the security system at each gate (e.g., he may know the number
of guards at each gate which may be a random variable owing to the company’s security plan),
and based on the price the burglar has offered or in order to conceal his collusion in the event
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of an enquiry, the employee informs the burglar information about only k of these gates. He
also decides to select the gates whose information he reveals so as to minimize the probability
that the break in is successful since if there is a successful break-in a comprehensive enquiry is
likely to be launched. The burglar can break in through one among the n gates, and selects this
gate based on the information he obtains from the employee so as to maximize his chance of
success.

In both these examples, the information concealing problem we described will enable the con-
troller (first gambler or employee) and the actor (second gambler or burgler) to attain their
objectives by making appropriate selections.

C. Contribution and Challenges

Our first contribution is to provide a framework for investigating information concealing prob-
lems. We formulate this problem as a stochastic leader-follower game (Section III). We demon-
strate that the well-known Nash equilibrium solution concept can not be effectively used in this
game since the utilities of the players turn out to be functions rather than numbers. Subsequently,
we develop suitable solution concepts, that of point-wise Nash equilibria, that capture the
subtleties of this game. For example, the actor can learn about the system not only from the
information the controller reveals, but also from the choices of the controller regarding which
sources of information it conceals, since the fact that an information has been concealed may
provide important insight about its nature. Thus, the actor must determine its optimal action so
as to exploit the information contained in both of the above, and the controller must determine
what it should conceal considering that the actor will learn from both the above. For example,
in cognitive radio networks, a naive policy for the jammer would be to conceal the states of the
channels that have the k best transmission qualities. But, if the transmitter knows the jammer’s
policy, then it knows that the transmission quality of any channel whose state has been concealed
is at least as good as that of a channel whose state has been revealed, and thus, its best action
is to select a channel whose state has been concealed. But, if the jammer reveals the states
of some channels whose transmission qualities are better than those whose states it conceals,
the transmitter will be confused regarding the choice of the channel even when it knows the
jammer’s policy, and is therefore more likely to make a poor selection. Our framework formally
establishes that the naive policy described above is suboptimal for a controller (Lemma 3.1).

We next prove that there is one-to-one correspondence between the set of point-wise Nash
equilibria in the above game and the set of saddle points in a two-person zero-sum game
(Section IV-A), which we refer to as an equivalent game. This equivalence turns out to be
very useful as it implies that a point-wise Nash equilibrium exists for the original game and can
be computed using a linear program, since a saddle-point of any two-person zero-sum game can
be computed using a linear program. The equivalence is however somewhat surprising as the
controller and actor has different amount of information about the system, that is, the controller
has complete information whereas the actor only has partial information about the system state.
Since the policies and the utilities of each player depends on the information it has about the
system, the utilities of the two players turn out to be functions with different domains, and hence
their sum can not be defined, whereas the sum of the utilities in a two-person zero-sum game
is always zero. Furthermore, both players act simultaneously in two-person zero-sum games,
whereas in the information concealing problem, the sequence in which the two players can act
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is unique: the controller first needs to reveal information about the system state, and then the
actor can determine its actions.

We next investigate the computational aspects of the information concealing games. Our results
in this area constitute our second contribution since general results that can address the computa-
tional aspects in this case are not known in the game theory or approximation algorithm literature.
We first observe that the number of variables and constraints in the standard linear program
formulations for computing the saddle points of the equivalent games are super-exponential in
n, where n is the dimension of the state-space of the system. Thus, the linear program becomes
computationally intractable even for moderate values of n. Exploiting specific characteristics of
the game under consideration, we next obtain linear programs which compute the saddle-points
of the equivalent game and the optimal policies for the two players while using exponential
number of variables and constraints (Section IV-B). This significant reduction in computation
time enables the computation of the optimal policies for moderate n. We next obtain linear
time (O(n)) computable policies with provable performance guarantees for the two players
(Section V). Specifically, these policies attain utilities that differ from the utilities of the saddle
points by (a) constant factors in several important special cases, and (b) by factors that depend
only on the amount of information that the controller reveals to the actor, and do not depend on
n in the most general case.

II. RELATED LITERATURE

To the best of our knowledge, the information concealing game has not been investigated before.
The closest game that has been investigated before is that introduced by noble-laureate P. Aumann
et. al. [1]. They consider a family of K two-player matrix games {Gk(i, j)}, each of size I × J
and a probability p over the discrete set {1, .., }. The set of games and p are common knowledge.
Nature chooses one of these games with probability p and informs player 1 which of the games
is played. The same game will now be played again and again. Player 2 is not informed on
the game being played. At each time unit t = 1, 2, ..., player 1 chooses an action it among
I and simultaneously, player 2 chooses action jt in J . Player 1 then pays Gk(it, jt) to player
2. Player 2 does not observe the payment but both players observe the actions of each other.
Player 1’s policies are sequences of probability measures over I conditioned on the past actions
of both players Player 2’s policies are sequences of probability measures over J conditioned on
her past actions only. In this game, player 1 is confronted with the dilemma of whether to play
optimally in the game chosen by nature; if he does that (and if player 2 knows which strategy
is used by player 1), then player 2 will eventually be able to guess which is the game being
played, so that player 1 looses her advantage of being informed. If on the contrary, he uses a
strategy that does not utilize his knowledge of the game, then again he does not gain from being
informed. The main difference between this setting and our setting is that in this setting the
informed player does not directly control what information to reveal or to conceal to the other
player. Also, an important aspect of this setting is that the information chosen by nature does not
change with time and thus at any given time a player can exploit the knowledge he has acquired
from past interactions. We assume that the nature’s choice changes with time and the evolution
is temporally independent. The temporal independence and also our specific context imply that
the players can not exploit information acquired in the past, and hence the game effectively
starts fresh at each instant (our solutions therefore do not consider any temporal relation at all).
Thus, the formal questions that are answered and also the techniques used to obtain the answers
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substantially differ in the two cases.

Finally, information concealing has been extensively investigated in context of multi-media [2].
An example is the research on watermarking, where one tries to hide a signature in some
picture or audio recording in order to be able to identify it later. Informally speaking, these
scenarios consist of only one player who seeks to conceal as much information as possible. We
consider a scenario with two players such that both players act sequentially and the first conceals
information with the goal of degrading the performance of the second by decreasing the second’s
capabilities to make good action choices. Again, the formal questions that are answered and also
the techniques used to obtain the answers substantially differ in the two cases.

III. A MATHEMATICAL FRAMEWORK

We formulate the information concealing problem as a stochastic leader-follower game and
develop appropriate solution concepts for such games (Section III-A). We next elucidate the
terminologies and the solution concepts using the motivating examples presented in the previous
section (Section III-B). We finally demonstrate that the Nash-equilibrium for this game exhibits
several counter-intuitive properties which indicate that the computation of such equilibrium may
not be straight-forward (Section III-C).

A. Terminologies and Solution Concepts

We start by modeling the information concealing game as a stochastic leader-follower game
between two players: the controller and the actor. We describe the game in both the normal
form as well as in the strategic form. Let N = {1, . . . , n}.

• System state: The state of the system is an n-dimensional vector �X whose entries take
values in K = {0, ..., K − 1}. The state space is Kn. The random variables corresponding
to the components of the state vector may be dependent and can be described by a joint
probability distribution β.

• Information of the Controller: The controller knows the system state vector �X , and
thereby has full information.

• Actions of the Controller: The controller conceals the values of at most k components
of the system state vector from the actor; it decides which components it would conceal
based on its information. Thus, the controller’s action is a subset of N with cardinality k
or lower. Note that each such action determines a sub-vector of the system state, with size
n − k or more, that the actor observes. Let Ac(�x) denote the set of all such sub-vectors
when the controller’s information (i.e., the system state vector) is �x, and Ac = ∪�x∈KnAc(�x).

• Information of the actor: The actor knows the states of those components of the system
state vector which the controller does not conceal. Specifically, if c be the action taken
by the controller and the system state is �x, then the actor’s information �y consists of the
sub-vector of �x with components in N \ c. Therefore, from its information �y, the actor
knows the controller’s action (i.e., the subset of components a(�y) the controller conceals).
Let Ia be the set of all possible informations of the actor about the entries of the system
state vector. It consists of at least |Ac| × Kn−k elements.

• Actions of the actor: The actor selects one of the components of the system state vector.
Thus, its action is an integer l where 1 ≤ l ≤ n. Thus, N is the set of all actions of the
actor.
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• Payoff function: If a component of the system state vector has value i, then the expected
utility associated with that component is r(i) such that r(0) < r(1) < . . . < r(K − 1). If
the system state is �x, and the actor selects component l, then the payoff for the actor is
r(xl).

• Common Knowledge: Both the controller and the actor know n, k, K and the joint prob-
ability distribution for the system state vector β. These parameters are determined based
on goals and constraints of specific systems (e.g., k may be determined based on resource
constraints of the jammer in the cognitive radio network and the price the burglar has offered
in the security system) - investigation of how these parameters are determined is beyond
the scope of the current paper.

• Strategies:
– Behavioral strategies: A behavioral strategy of a player is a function from its infor-

mation set to the set of probability measures over its action space. More precisely, the
controller can decide randomly which components to conceal based on the system state
vector, and the actor can randomly select a component based on the revealed sub-vector.
Let u (v, respectively) be a behavioral policy of the controller (actor, respectively).
Then, u(�x) (v(�y), respectively) is the probability distribution used by the controller
(actor, respectively) for selecting its actions when its information is �x (�y, respectively).
Specifically, u(�x)�y (v(�y)i, respectively) is the probability with which the controller
(actor, respectively) conceals the sub-vector �y ∈ Ac(�x) (selects the component i ∈ N ,
respectively) when its information is �x (�y, respectively). Let U (V , respectively) be the
set of behavioral strategies for the controller (actor, respectively).

– Pure policies: Let Up ⊂ U (Vp ⊂ V , respectively) be the set of pure (deterministic)
behavioral policies for the controller (actor, respectively). A controller’s pure policy is
a function from Kn to Ac. An actor’s pure policy is a function from Ia to N .

– Mixed strategies: A mixed strategy of a player is a probability measure over its pure
policies. Let UM (VM , respectively) be the set of mixed strategies for controller (actor,
respectively).

Note that behavioral and mixed are alternate representations of the randomized policies of
the two players.

• Probability space: Any given joint probability distribution for the system state vector
β and strategies u and v for the controller and actor, respectively, define a probability
P u,v

β measure over the state, actions and informations of the two players. Let Eu,v
β be the

corresponding expectation operator.
• Utility:

– Utility of the actor: The actor’s utility is its expected payoff conditioned on its
information, and is therefore a function of its information. Specifically, when the actor’s
information is �y, the controller and the actor use (behavioral or mixed) strategies u and
v respectively, and the joint probability distribution of the system states is β, the actor’s
utility Ju,v,β

a (�y) is given by

Jβ,u,v
a (�y) = Eu,v

β [r(XB)|�Ya = �y],

where �Ya is the random information of the actor, Xi is the random state of the ith
component of the system state vector, B is the action of the actor. Hence, XB is the
random state of the component which is chosen possibly in a random way by the actor.
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– Utility of the controller: The controller’s utility is the negative of the expected payoff
of the actor conditioned on the controller’s information, and is therefore again a function
of the controller’s information. Specifically, when the system state vector is �x, and the
controller and the actor use (behavioral or mixed) strategies u and v respectively, the
controller’s utility Ju,v

c (�x) is given by

Ju,v
c (�x) = −Eu,v[r(xB)| �X = �x],

where �X is the random system state vector, xB is the Bth component of �x, B is
(potentially random) action of the actor when the system state is �x and the controller
and the actor use (behavioral or mixed) strategies u and v. Note that β is not used
explicitly in computing the above expectation. If however u, v depend on β, the value
of this expectation may depend on β.

• Controller’s and Actor’s goals: The controller and the actor seek to maximize their
respective utilities Ju,v

c (�x), Jβ,u,v
a (�y) for all values of their respective informations �x, �y.

Since the controller’s and actor’s utilities are functions and not numbers, we can not use Nash
equilibrium as a solution concept (unless we define an ordering between vectors). We however
use related solution concepts, that of, point-wise Nash equilibrium, which we define next.

Definition 3.1: Let u∗ and v∗ be behavioral or mixed strategies of the controller and actor
respectively. Then (u∗, v∗) is a point-wise Nash equilibrium if the following two conditions
hold:

• for each system state vector �x such that β(�x) > 0, u∗(�x) is a best response of the controller
against v∗ of the actor, i.e., u∗(�x) maximizes Ju,v∗

c (�x) among all strategies u of the controller,
and

• for each information �y of the actor which occurs with positive probability under β, u∗, v∗(�y)
is a best response of the actor against u∗ of the controller, i.e., v∗(�x) maximizes Jβ,u∗,v

a (�y)
among all strategies v of the actor.

B. Elucidating examples

We now elucidate the above terminologies using the examples in Section I-B.

In cognitive radio networks the system state vector constitutes the states of the channels, each
channel can be in K states, and r(i) is the expected rate of successful transmission of the
transmitter (actor) when it transmits in a channel that is in state i. The jammer’s (controller’s)
action is to conceal the states some (≤ k) channels and the transmitter’s action is to select
a channel for transmission. An example pure behavioral strategy of the jammer (denoted as
Greedy for Controller or GC), is to conceal the channels with k-best states, that is, those with k-
best expected rates of successful transmission (ties are broken in any pre-determined order). An
example pure policy of the transmitter, (denoted as Best Among Revealed for Actor or BRA), is to
select the channel that has the highest state among the revealed channels (ties are broken in any
pre-determined order). An example behavioral policy of the jammer that is not pure is to conceal
the states of as many channels that are in state K−1 as possible (subject to concealing the states
of at most k channels), and if fewer than k channels are in state K−1 then select the remaining
channels whose states are to be concealed uniformly among the channels that are not in state
K − 1. An example behavioral policy of the transmitter (denoted as Uniform among Concealed
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for Actor or UCA) that is not pure is to select a channel for transmission uniformly among
those whose states are concealed. Next, Ju,v

c (�x) is the negative of the expected rate of successful
transmission of the transmitter when the channel state vector is �x and the jammer and transmitter
use policies u, v respectively. Also, J β,u,v

a (�y) is the expected rate of successful transmission of
the transmitter when the jammer reveals �y to the transmitter, jammer and transmitter use policies
u, v respectively and the joint distribution of the channel state vector is β. For example, let u be
GC and v be UCA. Then Ju,v

c (�x) = −max S⊆N,|S|=k
P

i∈S xi

k
, and Jβ,u,v

a (�y) =
P

i∈a(�y) E(Xi|�y)

k
(note

that the conditional expectation in the latter depends on β). If the transmitter uses BRA, GC is
the best response of the jammer, and if the state processes of the channels are independent and
identically distributed, UCA is the best response of the transmitter against the GC policy of the
jammer .

In the authentication example for e-commerce, the seller (actor) may have different bargaining
powers associated with different informations it can learn about the buyer (controller), and the
buyer may not know the seller’s bargaining power associated with any piece even though he
knows the details about the piece. This is because different sellers may have access to different
data bases and therefore may be able to extract different amount of additional information about
the buyer from the same content. The buyer may however know the expected bargaining power of
the seller associated with each piece of information. This scenario can be modelled by assuming
that each different piece of information of the buyer can be in one of K states, and the bargaining
power associated with a particular state, say i, of a piece of information is a random variable
whose expectation r(i) is known to both the buyer and the seller. The system state vector consists
the states of the n pieces of informations the buyer has about himself. The buyer knows the
system state vector (note that the knowledge of the state of a piece of information implies that
the buyer knows the expected and not the exact value of the bargaining power associated with
that piece). The action of the buyer is to reveal limited information about some (n − k) pieces
of information in the first stage of the authentication: the seller can only determine �y the states
of these pieces of information from the limited information the buyer reveals (since although he
knows what databases he can search he does not know the details about any of these pieces). The
seller’s action is to select one piece for which it requests details. Next, J u,v

c (�x) is the negative
of the expected bargaining power of the seller when the system state vector is �x and the buyer
and the seller use policies u, v respectively. Also, J β,u,v

a (�y) is the expected bargaining power of
the seller when it observes �y in the first stage, the buyer and seller use policies u, v respectively
and the joint distribution of the system state vector is β.

In the gambling game, β can be obtained from the distribution that is simultaneously used to
draw the random numbers, and K is the cardinality of the support set of this original distribution.
Note that the random numbers drawn may be negative; we enumerate them using K positive
integers, and each such enumeration constitutes the state of a card. Thus, each card has K
possible states, and r(i) is the number associated with the ith state. The system state vector
consists the random numbers on the cards drawn by the second gambler (actor), and is known
only to the first. The action of the first gambler (controller) is to reveal the states of some
(≥ n − k) of these cards, which constitutes the information �y for the second and the second
gambler’s action is to select one card for examination of the number among those that it selected
initially. Next, Ju,v

c (�x) is the negative of the expectation of the random number on the card the
second finally (potentially randomly) selects for examination when the system state vector is �x
and the gamblers use policies u, v respectively. Also, J β,u,v

a (�y) is the expectation of the number
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on the card the second finally selects for examination, when it observes �y, the gamblers use
policies u, v respectively and the joint distribution of the system state vector is β.

The query resolution network and the security systems are similar to the cognitive radio network.
In the former, the system state vector constitutes the states of the databases, each database can
be in K states, and r(i) is the probability that the information sought is in a database that is in
state i. In the latter, the system state vector constitutes the states of the gates (e.g., the number
of guards at each gate), each gate can be in K states, each state represents a level of efficacy
of the security system at the gate and r(i) is the probability that the burglar will successfully
break in through a gate that is in state i.

C. Counter-intuitive properties of the point-wise Nash equilibrium

We now demonstrate that the point-wise Nash equilibrium exhibits several counter-intuitive
properties which suggests that the point-wise Nash equilibrium may not always consist of simple
policies that can be represented in closed form. This in turn motivates the design of efficient
frameworks for computing the point-wise Nash equilibrium, which is the focus of the next two
sections.

Consider the “Greedy for Controller” (GC) policy for the controller (Section III-B). This policy
conceals the components with k highest states. Intuitively, it seems that GC minimizes the
efficacy of the actor and therefore there always exists some policy v∗ for the actor such that
(GC, v∗) constitutes a point-wise nash equilibrium. The following lemma shows that this intuition
is unfounded, even when the joint probability distribution β is such that the state processes for
different components are mutually independent and identically distributed (i.e., even when all
channels are i.i.d. in cognitive radio networks).

Lemma 3.1: There may not exist any policy v∗ for the actor such that (GC, v∗) constitutes a
point-wise Nash equilibrium, even in systems where the state processes for different components
are mutually independent and identically distributed.

Next, consider a simple policy “ Statistically Best for Actor” (SBA) for the actor under which
it decides its action without exploiting any knowledge of the controller’s policy. Specifically it
selects the component i for which the expectation of the utility (r(Xi)) conditioned on the states
of channels whose states have been revealed is the maximum under β (it uses only β and not
the controller’s policy in determining the above conditional expectation). For example, when the
state processes of all components are mutually independent, K = 2 (i.e., each component has 2
states), if the state of a component that is in state 1 has been revealed, SBA selects the component
and otherwise SBA selects the component for which the expected reward is the maximum under
the prior distribution β. It may seem that at least in simple special cases, i.e., when K = 2,
there always exists some policy u∗ for the actor such that (u∗, SBA) constitutes a point-wise
Nash equilibrium. The following lemma shows that such intuition is founded.

Lemma 3.2: There may not exist any policy u∗ for the controller such that (u∗, SBA) constitutes a
point-wise Nash equilibrium, even in systems where the state processes for different components
are mutually independent and K = 2.

We prove lemmas 3.1 and 3.2 after obtaining some additional properties of the point-wise Nash
equilibrium (Section ??).
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IV. A COMPUTATIONAL FRAMEWORK FOR POINT-WISE NASH EQUILIBRIUM

The stochastic leader-follower game formulated in the previous section is clearly not a two-
person zero-sum game as the arguments of the controller’s and actor’s utility functions have
different dimensions, and hence the sum of these functions is not well-defined. Nevertheless, we
demonstrate that there exists an equivalent zero-sum game such that a policy pair (u, v) of the
controller and actor constitutes a point-wise Nash equilibrium in the original game if and only if
it constitutes a saddle-point in the equivalent game (Section IV-A). This equivalence implies that
there always exists a point-wise Nash equilibrium in the original game, and one such equilibrium
can be determined by solving a pair of linear programs. We develop a framework for computing
the point-wise Nash equilibrium using this equivalence (Section IV-B).

A. An equivalent two-person zero-sum game

Definition 4.1: Consider a game with two players: the controller and the actor. The action of
each player now is to select one of its pure behavioral policies in the stochastic leader-follower
game described in the previous section. When the two players select policies u, v respectively,
the utility of the actor under the joint probability distribution β for the system states is given by

Ru,v
β = Eu,v

β [r(XB)] =
∑
�x∈Kn

β(�x)Eu,v
β [r(xB)| �X = �x]. (1)

where B is the action of the transmitter under policies u, v and random system state vector �X .
The actor seeks to maximize its utility and the controller seeks to minimize the actor’s utility.
The game is clearly a two-person zero-sum game.

Clearly,

Ru,v
β = −

∑
�x∈Kn

β(�x)Ju,v
c (�x) ∀ u, v, β, (2)

and Ru,v
β =

∑
�y∈Kn

Prβ,u(�y)Jβ,u,v
a (�y) ∀ u, v, β. (3)

Definition 4.2: Let U and V respectively be the set of behavioral strategies of the controller and
actor in the two-person zero-sum game. The upper and lower values, Rβ, Rβ of the above game
are

Rβ = sup
v∈V

inf
u∈U

Ru,v
β Rβ = inf

u∈U
sup
v∈V

Ru,v
β .

For any u∗ ∈ U and v∗ ∈ V we have

inf
u∈U

Ru,v∗
β ≤ Rβ ≤ Ru∗,v∗

β ≤ Rβ ≤ sup
v∈V

Ru∗,v
β . (4)

Definition 4.3: If for some u∗ ∈ U and v∗ ∈ V , infu∈U Ru,v∗
β = supv∈V Ru∗,v

β then all inequalities
in (4) hold with equality and (u∗, v∗) are called saddle point policies, u∗ is the saddle-point
policy of the controller, v∗ is the saddle-point policy of the actor, and Ru∗,v∗

β is denoted as the
value of the game.

Two-person zero-sum games, with finitely many pure strategies for each player, are known to
ohave a saddle point within the mixed strategies which can be computed using standard linear
programs (see footnote at Section IV-B) For each player, there is a one-to-one correspondence
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between the class of its behavioral and its mixed strategies [3] such that for any policy of the
other player, the expected utility under the mixed strategy and the equivalent behavioral one is
the same. Thus, a saddle point exists within the behavioral policies as well.

Note that a pure policy for any player in this game is to select a particular action which corre-
sponds to a specific pure policy in the original game. Thus, there is a one-to-one correspondence
between the sets of pure policies for each player in the two games such that for each pure policy
for a player in a game the corresponding pure policy for the same player in the other game takes
the same actions if presented with the same information. Since a mixed-policy for any player
in any game is a probability distribution over the pure policies, there is a similar one-to-one
correspondence between the sets of mixed policies for each player in the two games. Thus,
it follows from the previous paragraph that there is a one-to-one correspondence between the
sets of mixed policies in the two-person zero-sum game and behavioral policies in the original
game, such that for each behavioral (mixed) policy for any given player in the original (two-
person zero-sum) game, the corresponding mixed (behavioral) policy for the same player in the
two-person zero-sum (original) game has the same utility [3]. It follows using same arguments
that similar correspondence exists between the sets of the behavioral policies in the two games.
Thus, for notational simplicity, we use the same notations (e.g., u, v, etc.) to denote the mixed or
behavioral policies in both games. The following theorem proves that a pair of policies constitute
a saddle point for the two-person zero-sum game if and only if it constitutes a point-wise Nash
equilibrium of the original game.

Theorem 4.1: A mixed or behavioral policy pair (u∗, v∗) is a point-wise Nash equilibrium in
the original game if and only if the corresponding mixed or behavioral policy pair (u∗, v∗) is a
saddle point pair in the two-person zero-sum game.

Proof: Assume that (u∗, v∗) is a point-wise Nash equilibrium. We show that it is a saddle-
point pair. From definition 4.3 and since there always exists a saddle-point pair in the two-
person zero-sum game [3], the above is indeed the case if (i) u∗ minimizes Rβ(u, v∗) and
(ii) v∗ maximizes Rβ(u∗, v). We show that (i) holds. Assume it does not. Then for some u,
Rβ(u, v∗) < Rβ(u∗, v∗). Hence, from (2), there exists some �x ∈ Kn such that Ju,v∗

c (�x) >
Ju∗,v∗

c (�x) and β(�x) > 0. This contradicts the assumption that (u∗, v∗) is a point-wise Nash
equilibrium. Thus, (i) holds. Using (3), it can be similarly shown that (ii) holds as well. Thus,
(u∗, v∗) is a saddle-point pair.

Conversely, assume that (u∗, v∗) is a saddle-point pair. We show that (i) in Definition 3.1 holds.
Assume it does not. Then for some �x and u, J u,v∗

c (�x) > Ju∗,v∗
c (�x) and β(�x) > 0. Define the

policy w for the jammer as the one that coincides with u if the channel state is �x and that
coincides otherwise with u∗. Then Rβ(w, v∗) < Rβ(u∗, v∗). This contradicts the assumption that
(u∗, v∗) is a saddle-point. Thus, (i) holds. It can be similarly shown that (ii) holds as well. Thus,
(u∗, v∗) is a point-wise Nash equilibrium.

Corollary 4.1: A point-wise Nash-equilibrium (u∗, v∗) exists in the original game.

The above corollary follows from Theorem 4.1 and the discussion between Definition 4.3 and
Theorem 4.1.

Henceforth, we focus on the properties and computations of the saddle-point.
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B. Computation of the saddle point

We now investigate the computation of a saddle-point. It follows from standard results that a
saddle point of a two-person zero-sum game can be computed using a linear program whose
number of variables equal the number of pure strategies of a player and the number of constraints
equal the number of pure strategies of the other player.1 This may sound quite encouraging at
first since solving LPs has polynomial complexity as a function of the number of decision
variables and constraints. Neverthless, the computation is intractable due to the huge number of
pure strategies Nc of the Controller and Na of the Actor, given by

Nc =

(
k∑

i=0

(
n

i

))Kn

and Na = n
Pk

i=0 (n
i)Kn−i

. (5)

(5) is obtained as follows.

• The Controller’s information has Kn possible values, and for each such information it can
choose

∑k
i=0

(
n
i

)
actions (note that

∑k
i=0

(
n
i

)
is the number of subsets of the components

of cardinality at most k).
• The Actor’s information has

∑k
i=0

(
n
i

)
Kn−i possible values, and for each such information

it can choose n actions.

Simplifying (5), the number of pure strategies of the controller (actor, respectively) in the original

game is at least
(

n
k

)
Kn

(n
min(
(

n
(n/2)

)
,Kn/2)

, respectively). The computation is therefore intractable
even for moderate values of n, K.

Next, exploiting system characteristics, we obtain linear programs for computing the saddle
point strategies such that their computation times are polynomials in (K n +k)

(
n
k

)
. Note that this

substantially reduces the computation time.

Henceforth, u (v, respectively) are the behavioral policies of the controller (actor respectively).

1) Saddle point for the controller: The following linear program obtains a saddle-point policy
for the controller.

LP-CONTROLLER: Min
∑
�y∈Ac

z(�y) s.t.

z(�y) ≥
∑

�x:�y∈Ac(�x)

β(�x)r(xi)u(�x)�y

∀ i ∈ N , �y ∈ Ac∑
�y∈Ac(�x)

u(�x)�y = 1 for all �x ∈ Kn

u(�x)�y ≥ 0 ∀ �x ∈ Kn, �y ∈ Ac(�x)

Theorem 4.2: The optimum solution {u(�x)�y}�y∈Ac(�x),�x∈Kn of LP-CONTROLLER constitutes the
saddle-point policy u∗ for the controller.

1For example, consider a matrix game whose entries are Ru,v where player I (minimizing) chooses a row u and player 2
(maximizing) chooses a column v. A saddle point policy for player 2 is obtained by maximizing

“
infu Ru,v

”
. Then for any

u, the value z is smaller than or equal to maxv

“
Ru,v

”
. Moreover the value is the largest constant with this property. The LP

is thus maxp∈Δ(VP ),z z s.t. z ≤ P
v∈VP p(v)Ru,v, ∀u ∈ UP . (Δ(VP ) are all probability measures over VP ).
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Proof:

From (3), for any u, v, β,∈ Kn

Ru,v
β =

∑
�y∈Ac

Prβ,u(�y)Eu,v
β [r(XB)|�Y = �y].

Given u ∈ U , consider a policy vu ∈ V such that for each �y ∈ Ac, vu(�y)j = 1 for some j such
that Eu

β [r(Xj)|�Y = �y] = maxi∈N Eu
β [r(Xi)|�Y = �y], and vu(�y)j = 0, for other values of j (i.e.,

under vu w.p. 1 B is a component i that attains the above maximum and hence vu is the actor’s
best response to controller’s strategy u). Note that

max
v∈V

Eu,v
β [r(XB)|�Y = �y] = max

i∈N
Eu

β [r(Xi)|�Y = �y] = Eu,vu

β [r(XB)|�Y = �y], ∀ �y ∈ Ac.

Thus,
sup
v∈V

Ru,v
β =

∑
�y∈Ac

Prβ,u(�Y = �y) max
i∈N

Eu
β [r(Xi)|�Y = �y] = Ru,vu

β . (6)

Thus,
Rβ = inf

u∈U
Ru,vu

β . (7)

Next,

Eu
β [r(Xi)|�Y = �y] =

∑
�x∈Kn

Eu
β [r(Xi)|�Y = �y, �X = �x]Prβ,u( �X = �x|�Y = �y)

=
∑
�x∈Kn

r(xi)Prβ,u(�Y = �y| �X = �x)Prβ,u( �X = �x)/Prβ,u(�Y = �y)

=
∑
�x∈Kn

r(xi)u(�x)�yβ(�x)/Prβ,u(�Y = �y).

From,
Eu

β [r(Xi)|�Y = �y]Prβ,u(�Y = �y) =
∑
�x∈Kn

r(xi)u(�x)�yβ(�x).

Thus, from (6) and (7),
Ru,vu

β =
∑
�y∈Ac

max
i∈N

∑
�x∈Kn

r(xi)u(�x)�yβ(�x)

and Rβ = inf
u∈U

∑
�y∈Ac

max
i∈N

∑
�x∈Kn

r(xi)u(�x)�yβ(�x).

Now, consider a feasible solution (u, z) of the LP-CONTROLLER, such that z is chosen so as to
minimize the value of the objective function subject to choosing u. The value of the objective
function is Ru,vu

β for any such pair.

Thus, if uO is the optimum solution of LP-CONTROLLER, Rβ = R
uO,v

uO

β . Thus, from (6),

Rβ = supv∈V RuO,v
β . Now, since a saddle-point always exists, it follows from Definition 4.3 that

any u′ ∈ U for which Rβ = supv∈V Ru′,v
β constitutes a saddle-point policy of the controller.

Thus, uO constitutes a saddle-point policy of the controller.
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The following corollary proves an intuitive property of saddle point policies of the controller,
and will help reduce the number of variables of LP-CONTROLLER.

Corollary 4.2: There exists a saddle-point policy u∗ of the controller in which it always conceals
the states of k components.

Proof: Consider an optimal solution (u, z) for which there exists �x ∈ Kn, �y ∈ Ac(�x) such
that u(�x)�y > 0 and |a(�y)| < k. Clearly, z(�y′) = maxi∈N

∑
�x′:�y′∈Ac(�x′) β(�x′)r(x′

i)u(�x′)�y′ ∀ �y′ ∈ Ac.
Consider a sub-vector of �y, �w, such that |a(�w)| = k. Note that �w ∈ Ac(�x

′) for all �x′ such that
�y ∈ Ac(�x

′).

Consider a new feasible solution (u′, z′) such that u′(�x′)�y′ = u(�x′)�y′ for all �x′, �y′ �∈ {�y, �w},
u′(�x′)�y = 0, for all �x′, u′(�x′)�w = u(�x′)�y + u(�x′)�w for all �x′, and
z′(�y′) = maxi∈N

∑
�x′:�y′∈Ac(�x′) β(�x′)r(x′

i)u
′(�x′)�y′ ∀ �y′ ∈ Ac. (Here, (u′, z′) is feasible since �w ∈

Ac(�x
′) for all �x′ such that �y ∈ Ac(�x

′)). Also,

{
�y′ : u′(�x′)�y′ > 0 for some �x′ ∈ Kn, and

|a(�y′)| < k} ⊂ {�y′ : u(�x′)�y′ > 0 for some �x′ ∈ Kn, and |a(�y′)| < k

}
. (8)

Clearly, z′(�y′) = z(�y′) for all �y′ �∈ {�y, �w}, z′(�y) = 0 and z′(�w) ≤ z(�w) + z(�y). Thus, the value
of the objective function under (u′, z′) is not higher than that under (u, z). Thus, (u′, z′) is also
an optimal solution of LP-CONTROLLER. Thus, due to (8), repeating this process we obtain
an optimal solution (u∗, z∗) of LP-CONTROLLER such that {�y ′ : u∗(�x′)�y′ > 0 for some �x′ ∈
Kn, and a(�y′) < k} = φ. The result follows.

Now, consider the following definition.

Definition 4.4: Let Ac,k = {�y : |a(�y)| = k, �y ∈ Ac} and Ac,k(�x) = Ac,k ∩ Ac,k(�x).

Due to Corollary 4.2, we only need to consider the variables z(�y) such that |a(�y)| = k. Also,
since for any �y and �x such that �y ∈ Ac(�x), xi = yi for any i ∈ N \a(�y), for any �y, i ∈ N \a(�y),
and yi < maxj∈N\a(�y) yj, the value of the right hand side of the lower bound constraint in LP-
CONTROLLER is less than or equal to that for �y, l ∈ N\a(�y), and yl = maxj∈N\a(�y) yj irrespective
of the choice of β, u. Thus, these constraints can be ignored as well, and LP-CONTROLLER can
be described as follows.

LP-CONTROLLER: Minimize
∑
�y∈Ac

z(�y) s.t.

z(�y) ≥ max
i∈N\a(�y)

r(yi)
∑

�x:�y∈Ac(�x)

β(�x)u(�x)�y, ∀ �y ∈ Ac,k

z(�y) ≥
∑

�x:�y∈Ac(�x)

β(�x)r(xi)u(�x)�y, ∀ i ∈ a(�y), �y ∈ Ac,k,∑
�y∈Ac,k(�x)

u(�x)�y = 1 ∀�x ∈ Kn

u(�x)�y ≥ 0 ∀ �x ∈ Kn, �y ∈ Ac,k(�x)

Henceforth, we will use this description of LP-CONTROLLER. Note that LP-CONTROLLER has
Kn
(

n
k

)
variables and (k + 1)

(
n
k

)
+Kn + Kn

(
n
k

)
constraints. Thus, the computation time of this

linear program is polynomial in (Kn + k)
(

n
k

)
.
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2) Saddle point for the actor: The following linear program obtains a saddle-point policy for
the actor.

LP-ACTOR: Maximize
∑
�x∈Kn

β(�x)z(�x)

z(�x) ≤
∑
i∈N

v(�y)ir(xi) ∀�y ∈ Ac(�x), �x ∈ Kn

v(�y)j ≥ 0 ∀ �y, j ∈ N∑
j∈N

v(�y)j = 1 ∀ �y ∈ Ac

Theorem 4.3: The optimum solution {v(�y)i}i∈N ,�y∈Ac of LP-ACTOR constitutes the saddle-point
policy v∗ for the actor.

Proof: From (2), for any u, v, β,

Ru,v
β =

∑
�x∈Kn

β(�x)Eu,v
β [r(xB)| �X = �x] =

∑
�x∈Kn

β(�x)
∑

�y∈Ac(�x)

u(�x)�y

∑
i∈N

v(�y)ir(xi).

Consider a policy uv ∈ U such that for each �x ∈ Kn, uv(�x)�y = 1 for some �y ∈ Ac(�x) such that∑
i∈N v(�y)ir(xi) = min�t∈Ac(�x)

∑
i∈N v(�t)ir(xi) and w(�x)�y = 0, for all other �y ∈ Ac(�x).

Since u(�x) is a probability distribution on Ac(�x),

inf
u∈U

∑
�y∈Ac(�x)

u(�x)�y

∑
i∈N

v(�y)ir(xi) = min
�y∈Ac(�x)

∑
i∈N

v(�y)ir(xi) =
∑

�y∈Ac(�x)

uv(�x)�y

∑
i∈N

v(�y)ir(xi).

Thus,
inf
u∈U

Ru,v
β =

∑
�x∈Kn

β(�x) min
�y∈Ac(�x)

∑
i∈N

v(�y)ir(xi) = Ruv,v
β (9)

(i.e., uv is the controller’s best response to actor’s v). Now, Rβ = supv∈V Ruv,v
β . Thus, from (9),

Rβ = sup
v∈V

∑
�x∈Kn

β(�x) min
�y∈Ac(�x)

∑
i∈N

v(�y)ir(xi).

Now, consider a feasible solution (v, z) of the LP-ACTOR, such that z is chosen so as to maximize
the value of the objective function subject to choosing v. The value of the objective function is
Ruv,v

β for any such pair.

Thus, if vO is the optimum solution of LP-ACTOR, Rβ = R
u

vO ,vO

β . Thus, from (9), Rβ =

infu∈U Ru,vO

β . Now, since a saddle-point always exists, it follows from Definition 4.3 that any

v′ ∈ V for which Rβ = infu∈U Ru,v′
β constitutes a saddle-point policy of the actor. Thus, vO

constitutes a saddle-point policy of the actor.

Definition 4.5: A policy v ∈ V of an actor is said to be sensible if it never selects a component
whose state has been revealed and which is in a state that is lower than the highest state among
the states of all components whose states have been revealed (i.e., v(�y)i = 0 if i �∈ a(�y) and
yi �= maxj∈N\a(�y) yj).

Observation 1: Note that Ru,v1

β = Ru,v2

β for any u ∈ U , v1, v2 ∈ V such that v1(�y)i = v2(�y)i for
any i ∈ a(�y) and

∑
i:i�∈a(�y),yi=j v1(�y)i =

∑
i:i�∈a(�y),yi=j v2(�y)i for each j ∈ {0, . . . , K − 1}.
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The following corollary proves an intuitive property of saddle point policies of the actor, and
will help reduce the number of variables of LP-ACTOR.

Corollary 4.3: There exists a sensible saddle-point policy v∗ of the actor.

Proof: Note that for any i ∈ N \ a(�y), xi = yi if �x is the system state vector (i.e.,
if �y ∈ Ac(�x)). Thus, the first constraint in LP-ACTOR can be written as z(�x) ≤ γ(�y) +∑

i∈a(�y) v(�y)ir(xi) for all �y ∈ Ac(�x), where γ(�y) =
∑

i∈N\a(�y) v(�y)ir(yi). Given a feasible
solution v, consider another feasible solution v ′ such that v(�y)′i = v(�y)i if i ∈ a(�y), v(�y)′i =∑

j∈N\a(�y) v(�y)j for some i such that i ∈ N \ a(�y) and yi = maxj∈N\a(�y) yj, and v(�y)′i = 0
otherwise. Note that v′ is a feasible solution as well which satisfies the property required in the
corollary, and the maximum value of the objective function for v (the maximization is w.r.t. z) is
not higher than that for v ′. This is because γ(�y′) ≥ γ(�y) for each �y and

∑
i∈N\a(�y) v(�y′)ir(xi) =∑

i∈N\a(�y) v(�y)ir(xi) for each �x, �y. The result follows.

.

Due to Corollaries 4.2 and 4.3 and the above observation, we only consider variables v(�y)
such that |a(�y)| = k and need to determine the components v(�y)j such that j ∈ a(�y) ∪ j ∈
(N \ a(�y)) ∩ {l : yl = maxm∈N\a(�y) ym}. Thus, LP-ACTOR can be re-written as follows.

LP-ACTOR: Maximize
∑
�x∈Kn

β(�x)z(�x)

z(�x) ≤
⎛
⎝1 −

∑
i∈a(�y)

v(�y)i

⎞
⎠ max

i∈N\a(�y)
r(yi)

+
∑

i∈a(�y)

v(�y)ir(xi) ∀ �y ∈ Ac,k(�x), �x ∈ Kn

v(�y)j ≥ 0, ∀ j ∈ a(�y), �y ∈ Ac,k∑
j∈a(�y)

v(�y)j ≤ 1, ∀ �y ∈ Ac,k

C. Discussion

Saddle point policies (and hence the related equilibrium strategies in the original game) enjoy
some robustness properties related to the order of moves.

More precisely, we may interpret the upper value as corresponding to the problem where first the
Controller chooses a strategy u without knowing the Actor’s strategy, and then the Actor chooses
a strategy knowing the choice of the Controller.2 We then say that the Actor has an information
advantage over the Controller. A symmetric interpretation holds for the lower value. The fact
that the upper and lower values are equal implies that the order of choices of strategies does
not matter. A player thus does not gain by having an information advantage. u∗ (resp. v∗) is a
saddle point policy for the Actor (resp. the Controller) if and only if it maximizes

(
infu∈U Ru,v

β

)
2The latter is seen by the fact that the term Ru,v

β maximized by the Actor in the definition of the upper value, is a function
of the Controller’s strategy u. On the other hand the term minimized by the Controller in the definition of the upper value is“

supv∈V Ru,v
β

”
and is not a function of v.
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(it minimizes
(

supv∈V Ru,v
β

)
, resp.); it thus has to be optimal in the game in which the other

player has the information advantage.

We illustrate the important implications of this property.. Consider the first motivating example
concerning jamming. We show that the GC policy need not be a saddle point policy. If it were,
then it should have the best performance even when the transmitter (i.e. the Actor) knows that
policy before choosing its own. But knowing the policy of the jammer, the transmitter knows
that the quality of any channel whose state has been concealed is at least as good as that of a
channel whose state has been revealed, and thus, the best action for him is to select a channel
whose state has been concealed. Now, if instead of using the GC policy, the jammer reveals
the states of some channels whose transmission qualities are better than those whose states he
conceals, the transmitter may be confused regarding the choice of the channel, and is therefore
more likely to make a poor selection. Thus we may expect the GC policy not to be a saddle
point. We shall illustrate this point in Section VI through numerical examples.

V. PERFORMANCE GUARANTEES USING POLYNOMIAL TIME COMPUTATION

We have proved that the saddle-point policies can be obtained by solving linear programs
whose number of variables is exponential in n and polynomial in K. Using fast algorithms
for solving linear programs, the saddle points can now be computed for moderate values of
n but the computation will still be intractable for large n. We therefore focus on obtaining
provable performance guarantees using polynomial time computable policies. We first consider
the important special case where the system consists of few classes of components such that all
components in each class are statistically identical and the number of states K is small (note that
each class may have a large number of components and therefore n can be large). We prove that
the saddle point policies can be computed in polynomial time in such systems (Section V-A).
Specifically, when the system consists of M classes of components, the saddle point policies
can be obtained by solving linear programs with O(n2KM) variables and O(n2KM) constraints
for arbitrary n, K, k, M. Thus, when all components are statistically identical (M = 1), the
computation time is polynomial in n, but exponential in K (note that K is small in most systems).
The result is interesting given that some intuitive policies do not constitute saddle point policies
even when all components are statistically identical (Lemma 3.1). We next show that provable
approximation guarantees can be obtained in arbitrary systems using some simple policies that
can be computed in almost linear time (either O(n) or O(nlogn)) time (Section V-B).

A. Polynomial time computation of saddle points in systems with constant number of classes of
components and constant number of states

We first formally define the notion of classes of components and motivate the investigation of the
special case where the system consists of a few classes and few states for the components. We
subsequently present a key technical property (Theorem 5.1) for systems with arbitrary number
of classes of components and states (Section V-A.1). Using this property and some additional
terminologies (Section V-A.2), we show how saddle point policies for the controller and actor
can be computed in polynomial time when K, M are constant (Sections V-A.3 and V-A.4).

Definition 5.1: Let �xi,j ∈ Kn be obtained by interchanging the ith and the jth components of
�x ∈ Kn. Let �yi,j ∈ Ac be obtained as follows: (a) if i, j �∈ a(�y) a(�yi,j) = a(�y), yi,j

i = yj,
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yi,j
j = yi, yi,j

l = yl, l �∈ a(�y) ∪ {i, j} (b) if i ∈ a(�y), j �∈ a(�y), then a(�yi,j) = a(�y) ∪ {j} \ {i},
yi,j

i = yj, yi,j
l = yl, l �∈ a(�yi,j) ∪ {i}, (c) if i �∈ a(�y), j ∈ a(�y), then a(�yi,j) = a(�y) ∪ {i} \ {j},

yi,j
j = yi, yi,j

l = yl, l �∈ a(�yi,j) ∪ {j}, (d) �yi,j = �y, otherwise.

Definition 5.2: Components i, j are said to be in the same class if β(�x) = β(�xi,j) for all �x ∈ Kn.
Note that the membership in the same class constitutes an equivalence relation and hence the
classes constitute a partition of N . Let the system consist of M classes, where 1 ≤ M ≤ n. The
classes are numbered as 1, . . . , M , and ni components are in class i where

∑M
i=1 ni = n. Let

a(�y, i) be the set of components in class i that have been concealed when the actor’s information
is �y. Note that a(�y) = ∪M

i=1a(�y, i).

Note that M can be determined from β and hence is also known to both players.

Several systems have large number of components but small or moderate number of classes
of components and states. For example, cognitive radio networks may have large number of
channels, but often, many of these channels are statistically identical, and hence the number of
classes of channels is often substantially less than the number of channels. Also, the total number
of states of these channels is likely to be moderate as well. Next, consider the gambling example
(Section I-B). The cards that have the same color constitute the same class as the distributions
of the random numbers are statistically identical for all cards of the same color. Usually, the
number of colors, or more generally number of types of cards (e.g., aces, jokers, etc.) is small
although the number of cards can be large.

We first present a key property of systems with arbitrary number of classes of components.

1) Symmetry among components in the same class:

Definition 5.3: Let u, v be behavioral policies of the controller and actor respectively and i, j ∈
N . The mirror image w.r.t (i, j) of the policy u (v, respectively), ui,j (vi,j, respectively) is a
policy obtained as follows: ui,j(�x)�y = u(�xi,j)�yi,j (vi,j(�y)i = v(�yi,j)j and vi,j(�y)j = v(�yi,j)i,
respectively).

Intuitively, ui,j (vi,j, respectively) treat i as j and j as i.

Definition 5.4: A policy u ∈ U (v ∈ V , respectively) is said to be symmetric w.r.t. (i, j) if
u = ui,j (v = vi,j, respectively). A policy u ∈ U (v ∈ V , respectively) is said to be symmetric
if it is symmetric w.r.t. each pair of components that are in the same class. Let U s ⊂ U and
Vs ⊂ V be the classes of all symmetric policies of the controller and actor respectively.

The following theorem shows the existence of a symmetric saddle-point.

Theorem 5.1: There exists a symmetric policy u ∈ U s (v ∈ Vs, respectively) for the controller
(actor, respectively) such that u (v, respectively) constitutes a saddle-point of the controller (actor,
respectively).

Proof: We prove the theorem for the controller, and the proof for the actor is similar. Let
Su ⊆ N×N be the set of tuples (a, b) such that a, b are in the same class and u is not symmetric
w.r.t. a, b. Clearly, Su = φ iff u ∈ Us. If there exists an optimal solution u of LP-CONTROLLER

such that Su = φ, then the result follows from Theorem 4.2. So, from Theorem 4.2, it is sufficient
to prove that if there exists an optimal solution u of LP-CONTROLLER such that S u �= φ, there
exists an optimal solution û of LP-CONTROLLER such that S û ⊂ Su. First note that ua,b is
an optimal solution of LP-CONTROLLER for any pair of components a, b that are in the same
class. Now, consider an arbitrary pair of components i, j ∈ Su, and a policy û ∈ U such that
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û(�x)�y = u(�x)�y +ui,j(�x)�y for each �x ∈ Kn and �y ∈ Ac(�x). Thus, clearly, û is an optimal solution
of LP-CONTROLLER. Also, note that S û = Su \ {(i, j)}. The result follows.

Using Theorem 5.1, we show that the computation time for LP-CONTROLLER and LP-ACTOR

can be substantially reduced when M and K are small.

2) Additional Terminologies:

Definition 5.5: Let l(�x) be a matrix with M rows and K columns and entries in 0, . . . , n such
that l(�x)i,j is the number of components of �x that are in class i and state j. Let L = {l : l(�x) =
l, �x ∈ Kn}. Let m(�y) be a matrix with M rows and K columns with entries in 0, . . . , a(�y) such
that m(�y)i,j is the number of components of �y that are in class i and state j. Let M�x = {m :
m(�y) = m, �y ∈ Ac,k(�x)}. Note that M�x1 = M�x2 if l(�x1) = l(�x2). Let Ml = ∪�x∈Kn,l(�x)=lM�x.
Let M = ∪l∈LMl.

With slight abuse of notation, we have used l,m to denote both the functions and the values of
the functions as well - the implication of specific usages are clear from the context.

Note that (a) |{�y : m(�y) = m, �y ∈ Ac,k(�x)}| depends on �x only through l(�x). and (b) |{�x :
l(�x) = l, �y ∈ Ac(�x)}| depends on �y only through m(�y). Thus, we can introduce the following
definitions.

Definition 5.6: Let Θ1(l,m) denote for one (representative) �x such that l(�x) = l the number of
�y in Ac,k(�x) such that m(�y) = m. Let Θ2(l,m) denote is the number of system state vectors
�x such that (a) l(�x) = l and (b) �y ∈ Ac(�x) for one (representative) �y such that m(�y) = m. Let
Θ3(m) = |�y ∈ Ac,k : m(�y) = m|, and Θ4(l) = |�x ∈ Kn : l(�x) = l|.
Note that both Θ2(l,m)Θ3(m) and Θ1(l,m)Θ4(l) constitute the number of tuples (�x, �y) such
that �x ∈ Kn, �y ∈ Ac,k(�x) and l(�x) = l,m(�y) = m. Thus,

Θ2(l,m)Θ3(m) = Θ1(l,m)Θ4(l)

Definition 5.7: Let

R1(m) = max
j:mi,j>0

r(j),

and R2(l,m, i) =

K−1∑
j=0

r(j)
li,j − mi,j

ni −
∑K−1

j=0 mi,j

.

Note that R1(m) is the expected reward the actor obtains when its information is �y such that
m(�y) = m and it selects a component whose state has been revealed and whose state is the
highest among those of the components whose states have been revealed. Also, R2(l,m, i) is
the expected reward the actor obtains when its information is �y such that m(�y) = m, the system
state is �x such that l(�x) = l and it selects a component of class i uniformly among a(�y, i).

Definition 5.8: Let C(m), 1 ≤ |C(m)| ≤ min(k, M), be the set of classes for which at least
one component’s state has been concealed when the actor’s information �y is such that m(�y) =
m. Let Φ(m, i) be the number of components of class i that have been concealed when the
actor’s information �y is such that m(�y) = m. Note that Φ(m, i) =

∑K−1
j=0 mi,j, and |C(m)| =∑M

i=1 min (Φ(m, i), 1) .

Finally, note that since β(�x) = β(�xi,j) for all i, j that are in the same class, β(�x1) = β(�x2) if
l(�x1) = l(�x2).
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Definition 5.9: Let β ′(l) denote β(�x) for some (representative) �x ∈ Kn such that l(�x1) = l, and
β ′′(l) = Θ4(�l)β

′(�l).

3) Polynomial time computation of saddle point policy of controller for constant K, M: We
now consider the simplification of LP-CONTROLLER.

Note that u is symmetric if and only if u(�x1)�y1 = u(�x2)�y2 whenever the following conditions
hold: (a) l(�x1) = l(�x2), (b) m(�y1) = m(�y2) (c) �y1 ∈ Ac(�x

1), �y2 ∈ Ac(�x
2). Let u′(l)m denote

u(�x)�y for some (representative) �x ∈ Kn, �y ∈ Ac,k(�x) such that l(�x) = l, m(�y) = m. Thus, each
u ∈ Us is uniquely described by us(l)m where us(l)m = Θ1(l,m)u′(l)m.

We now state LP-CONTROLLER-CLASS that computes {us(l)m} for the symmetric saddle point
strategy of the controller.

LP-CONTROLLER-CLASS: Minimize
∑

m∈M
η(�m) s.t.

∀ m ∈ M, η(m) ≥ R1(m ∈ M)
∑

l:m∈Ml

β ′′(l)us(l)m

η(m) ≥
∑

l:m∈Ml

β ′′(l)u(l)mR2(l,m, i)

∀ m ∈ M, i ∈ C(m)∑
m∈Ml

u(l)m = 1 for all l ∈ L
u(l)m ≥ 0 ∀ m ∈ Ml, l ∈ L.

(10)

Theorem 5.2: The optimum solution {us(l)m}m∈Ml,l∈L of LP-CONTROLLER-CLASS constitutes
a policy u∗ for the controller such that u∗ ∈ Us and u∗ is a saddle-point policy for the controller.

Proof: Consider the description of LP-CONTROLLER at the end of Section IV-B.1, and re-
strict the feasible solutions u to U s. From Theorem 5.1, the optimal solution of LP-CONTROLLER

constitutes a saddle point even with this restriction, and the optimal solution is clearly a sym-
metric strategy for the controller. It is therefore sufficient to show that there is a one-to-one
correspondence between the set of optimal solutions of LP-CONTROLLER-CLASS to that of
LP-CONTROLLER with the above restriction.

Consider LP-CONTROLLER and u ∈ U s. Let L(�y) = {l : l(�x) = l for some �x s.t. �y ∈ Ac(�x)}.
Note that L(�y) depends on �y only through m(�y), and can therefore be denoted as L(m(�y)) Note
that for each �y ∈ Ac,k, we can write the first constraint as

z(�y) ≥ R1(m(�y))
∑

l∈L(m(�y))

∑
�x:l(�x)∈L(m(�y)),�y∈Ac,k(�x)

β(�x)u(�x)�y

= R1(m(�y))
∑

l∈L(m(�y))

β ′(l)u′(l)m(�y)|{�x : l(�x) = l, �y ∈ Ac(�x)}| (since u ∈ Us)

= R1(m(�y))
∑

l∈L(m(�y))

β ′(l)u′(l)m(�y)Θ2(l,m(�y)). (11)
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Now, note that for each �y ∈ Ac,k, i ∈ a(�y), we can write the second constraint as

z(�y) ≥
∑

l∈L(m(�y))

∑
�x:l(�x)∈L(m(�y)),�y∈Ac,k(�x)

β(�x)u(�x)�yr(xi)

≥
∑

l∈L(m(�y))

β ′(l)u′(l)m(�y)Θ2(l,m(�y))

∑
�x:l(�x)=l,�y∈Ac(�x) r(xi)

Θ2(l,m(�y))
.

Let ν(i) denote the class of component i. Now, note that∑
�x:l(�x)=l,�y∈Ac(�x) r(xi)

Θ2(l,m(�y))
= R2(l,m(�y), ν(i)).

Thus, for each �y ∈ Ac,k, i ∈ a(�y), we can write the second constraint as

z(�y) ≥
∑

l∈L(m(�y))

β ′(l)u′(l)m(�y)Θ2(l,m(�y))R2(l,m(�y), ν(i)). (12)

The third constraint can be written as∑
m∈M�x

|{�y : m(�y) = m, �y ∈ Ac,k(�x)}|u′(l(�x))m = 1 for all �x ∈ Kn.

Since M�x depends on �x through l(�x) and can be denoted by Ml(�x), the third constraint can be
written as ∑

m∈Ml(�x)

Θ1(l(�x),m)u′(l(�x))m = 1 for all �x ∈ Kn. (13)

The fourth constraint can be written as

u′(l(�x))m(�y) ≥ 0 ∀ �x ∈ Kn, �y ∈ Ac,k(�x). (14)

We can write the objective function as
∑

m∈M
∑

�y:m(�y)=m z(�y).

Thus, from (11) to (14), there exists at least one optimal solution of LP-CONTROLLER-CLASS

in which z, u′ depend on �x, �y only through m(�y) and l(�x). Thus, we can rewrite the above
optimization as follows.

LP-CONTROLLER: Minimize
∑

m∈M Θ3(m)z(m)
z(m) ≥ R1(m)

∑
l∈L(m) β ′(l)u′(l)mΘ2(l,m) ∀ m ∈ M

z(m) ≥ ∑
l∈L(m) β ′(l)u′(l)mΘ2(l,m)R2(l,m, i) ∀ m ∈ M, i ∈ C(�m)∑

m∈Ml
Θ1(l,m)u′(l)m = 1 for all �l ∈ L

u′(l)m ≥ 0 ∀ �l ∈ L,m ∈ Ml
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We can write the first constraint as follows.

Θ3(m)z(m) ≥ R1(m)
∑

l∈L(m)

β ′(l)u′(l)mΘ2(l,m)Θ3(m) ∀ m ∈ M

= R1(m)
∑

l∈L(m)

Θ4(l)β
′(l)u′(l)mΘ1(l,m) ∀ m ∈ M

(since Θ2(l,m)Θ3(m) = Θ1(l,m)Θ4(l))

= R1(m)
∑

l∈L(m)

β ′′(l)u′(l)mΘ1(l,m) ∀ m ∈ M

(since Θ4(l)β
′(l) = β ′′(l)).

Similarly, the rest of the constraints can be written as

Θ3(m)z(m) ≥
∑

l∈L(m)

β ′′(l)u′(l)mΘ1(l,m)R2(l,m, i) ∀ m ∈ M, i ∈ C(m)

∑
m∈Ml

u′(l)mΘ1(l,m) = 1 ∀ l ∈ L

u′(l)mΘ1(l,m) ≥ 0 ∀ l ∈ L,m ∈ Ml

In the above linear program, we substitute (a) Θ3(m)z(m) with η(m) in the objective function
and the first two constraints, and (b) u′(l)mΘ1(l,m) with us(l)m in all the constraints. Clearly,
there is a one to one correspondence between the set of optimal solutions of LP-CONTROLLER

and the resulting linear program which is LP-CONTROLLER-CLASS.

Thus, LP-CONTROLLER-CLASS has O(n2KM) variables and O(n2KM) constraints. Thus, the
computation time of LP-CONTROLLER-CLASS is polynomial in n and exponential in K, M , and
hence polynomial in n if K, M are constants.

4) Polynomial time computation of saddle point policy of actor for constant K, M: We now
consider the computation of a symmetric saddle point strategy for the actor. Note that the actor’s
policy v is symmetric if and only if v(�y1)i = v(�y2)j whenever the following conditions hold:
(a) m(�y1) = m(�y2) (b) i, j are in the same class, and (b) either (i) i ∈ a(�y1), j ∈ a(�y2), or (ii)
i �∈ a(�y1), j �∈ a(�y2), y1

i = y2
j .

Consider a m ∈ M and a class i ∈ C(m). Then, let v′(m)i be the probability with which
a symmetric policy v selects one (representative) component, say j, that is in class i and has
been concealed, when the actor’s information state is a (representative) �y such that m(�y) = m
(i.e., v′(m)i = v(�y)j). Let vs(m)j = Φ(m, j)v′(m)j , j ∈ C(m), be the total probability with
which a symmetric policy v ∈ V s of the actor selects a component which is in class j and
whose state has been concealed, when the actor’s information state is a (representative) �y such
that m(�y) = m. Thus, v selects a component whose state has been revealed with probability
1 −∑j∈C(�y) vs(m (�y))j . From Corollary 4.3 it is sufficient to consider only sensible policies.
Thus, from Observation 1, vs(m)j , j ∈ C(m) uniquely specify a symmetric saddle point strategy
v ∈ Vs. We prove that the following linear program, LP-ACTOR-CLASS, computes the above.
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LP-ACTOR-CLASS: Maximize
∑
l∈L

β ′′(l)η(l) s.t.

η(l) ≤ (1 −
∑

i∈C(m)

)vs(m)iR1(m) +
∑

i∈C(m)

vs(m)iR2(l,m, i)

∀m ∈ Ml, l ∈ L
vs(m)i ≥ 0 ∀ i ∈ C(m),m ∈ M∑

i∈C(m) v(m)i ≤ 1 ∀ m ∈ M
Theorem 5.3: The optimum solution {vs(m)j}m∈M,j∈C(m) of LP-ACTOR-CLASS constitutes a
policy v∗ for the actor such that v∗ ∈ Vs and v∗ is a saddle-point policy for the actor.

Proof: Consider the description of LP-ACTOR at the end of Section IV-B.2, and restrict the
feasible solutions v to V s. From Theorem 5.1, the optimal solution of LP-ACTOR constitutes a
saddle point even with this restriction, and the optimal solution is clearly a symmetric strategy for
the actor. It is therefore sufficient to show that there is a one-to-one correspondence between the
set of optimal solutions of LP-ACTOR-CLASS to that of LP-ACTOR with the above restriction.

Consider LP-ACTOR and v ∈ Vs.

For each �x ∈ Kn and �y ∈ Ac,k(�x), we can write the first constraint as

z(�x) ≥ R1 (m(�y))

⎛
⎝1 −

∑
i∈C(m(�y))

∑
j∈a(�y,i)

v(�y)j

⎞
⎠+

∑
i∈C(m(�y))

∑
j∈a(�y,i)

v(�y)jr(xj)

= R1 (m(�y))

⎛
⎝1 −

∑
i∈C(m(�y))

v′ (m(�y))i Φ(m(�y), i)

⎞
⎠+

∑
i∈C(m(�y))

v′ (m(�y))i Φ(m(�y), i)

∑
j∈a(�y,i) r(xj)

Φ(m(�y), i)

( since v ∈ Vs)

= R1(m(�y))

⎛
⎝1 −

∑
j∈C(m(�y))

v′ (m(�y))i Φ(m(�y), i)

⎞
⎠+

∑
i∈C(m(�y))

v′ (m(�y))i Φ(m(�y), j)R2 (l(�x),m(�y), i) .

We can write the second constraint as

v′ (m(�y))i Φ(m(�y), i) ≥ 0, ∀ i ∈ C (m(�y)) , �y ∈ Ac,k.

For each �y ∈ Ac,k, we can write the third constraint as∑
i∈C(m(�y))

∑
j∈a(�y,i)

v(�y)j ≤ 1

∑
i∈C(m(�y))

v′ (m(�y))i Φ(m(�y), i) ≤ 1.

The objective function can be written as
∑

l∈L
∑

�x:l(�x)=l β(�x)z(�x), which equals
∑

l∈L β ′(l)
∑

�x:l(�x)=l z(�x).

Thus, clearly, there exists one optimum solution v ′, z which depend on �y and �x only through m
and l respectively. We can therefore rewrite LP-ACTOR as
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LP-ACTOR: Maximize
∑
l∈L

β′(l)z(l)Θ4(l)

z(l) ≤ (1 −
∑

i∈C(m)

)v′(m)iΦ(m, i)R1(m) +
∑

i∈C(m)

v′(m)iΦ(m, i)R2(l,m, i)

∀ m ∈ Ml, l ∈ L
v′(m)iΦ(m, i) ≥ 0 ∀ i ∈ C(m),m ∈ M∑

i∈C(m)

v′(m)iΦ(m, i) ≤ 1 ∀ m ∈ M

(15)

Now, we replace β′(l)Θ4(l) with β ′′(l) in the objective function, and v ′(m)iΦ(m, i) with vs(m)i

in all the constraints. The set of optimal solutions of the resulting linear program, which is LP-
ACTOR-CLASS, has one-to-one correspondence with that of the above linear program.

LP-ACTOR-CLASS has O(nKM) variables and O(n2KM) constraints. Thus, the computation time
of LP-ACTOR-CLASS is polynomial in n and exponential in K, M.

B. Approximation guarantees using polynomial time computable policies for arbitrary systems

Saddle point strategies can be computed in polynomial time when either n is a constant (using
LP-CONTROLLER or LP-ACTOR) or K, M are constants (using LP-CONTROLLER-CLASS or
LP-ACTOR-CLASS). The computation however becomes intractable when two or more of these
parameters are large. We now prove that simple linear (O(n)) or almost linear (O(nlogn) + K)
time computable policies can provably approximate the saddle point policies. Specifically, there
exists a O(n) time computable policy for the actor such that, irrespective of the policy of the
controller, the utility of the actor with this policy is at least 1/(min(k, M) + 1) times the max-
min utility of the actor for arbitrary k, M, n (Section V-C). Thus, the worst case approximation
guarantee of this policy is 1/(k + 1) (attained for large M), and the approximation guarantee
when all components are statistically identical (M = 1) is 1/2. Also, the approximation improves
with decrease in the number of classes and the number of components whose states can be
concealed. We next show that there exists a O(nlogn + K) time computable policy for the
controller such that, irrespective of the policy of the actor, the utility of the actor with this
policy is at most k + 1 times the actor’s min-max utility for arbitrary K, M, n, and at most
2 times the actor’s min-max utility for arbitrary K, n and M = 1 (i.e., when all components
are statistically identical) (Section V-D). Finally, we examine whether the above approximation
guarantees are tight (Section V-E).

C. Approximation guarantees using a linear time computable policy for the actor

Consider a symmetric sensible policy, denoted as vUNIFORM ∈ Vs, for the actor that (a) selects
each concealed class and a revealed component with equal probabilities, i.e., vs,UNIFORM(m)i =
1/ (|C(m)| + 1) for each m ∈ M, i ∈ C(m). Note that this uniquely describes any symmetric
sensible policy since a symmetric policy selects uniformly among the concealed components
in each class and a sensible policy selects only a revealed component with the highest state
whenever it selects a revealed component. Clearly, the actor needs O(n) time and memory to
select a component using this policy.
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We now prove the main result of this section.

Theorem 5.4: For any β, k, n, K, M ,

inf
u∈U

Ru,vUNIFORM

β ≥ 1

min(k, M) + 1
sup
v∈V

inf
u∈U

Ru,v
β .

Proof: Consider an arbitrary sensible policy v ∈ V s. Let T (l,m, v) be the utility of the
actor if the system state vector is �x such that l(�x) = l and the actor’s information is some �y
such that m(�y) = m and the actor uses the policy v. Then,

T (l,m, v) = (1 −
∑

i∈C(m)

vs(m)i)R1(m) +
∑

i∈C(m)

vs(m)iR2(l,m, i)

≤ max

(
R1(m), max

i∈C(m)
R2(l,m, i)

)
. (16)

Also,
inf
u∈U

Ru,v
β =

∑
l∈L

β ′′(l) min
m∈Ml

T (l,m, v). (17)

From (16) and (17),

inf
u∈U

Ru,vUNIFORM

β =
∑
l∈L

β(l) min
m∈Ml

T (l,m, vUNIFORM), where, (18)

T (l,m, vUNIFORM) =
R1(m) +

∑
i∈C(m) R2(l,m, i)

|C(m)| + 1

≥ max(R1(m), maxi∈C(m) R2(l,m, i)

min(k, M) + 1
(since |C(m)| ≤ min(k, M))(19)

Now, let v∗ be the optimal solution of LP-ACTOR-CLASS. Then, from Theorem 5.3 and (17),

sup
v∈V

inf
u∈U

Ru,v
β =

∑
l∈L

β ′′(l) min
m∈Ml

T (l,m, v∗).

Thus, from (18) it is sufficient to prove that T (l,m, vUNIFORM) ≥ T (l,m, v∗)/ (min(k, M) + 1)
for each l ∈ L,m ∈ M.

Since v∗ is sensible, the result follows from (16) and (19).

For K = 2, the approximation ratio can be improved slightly. In this case, for a symmetric
sensible saddle point strategy v of the actor,

∑
i∈C(m) vs(m)i = 1 if all revealed components are

in state 0 and
∑

i∈C(m) vs(m)i = 0 otherwise. Using the above, it follows that the actor’s policy
that selects (a) a component in state 1 if the state of at least one such component is revealed and
(b) each concealed class with equal probability, otherwise, attains a 1/ min(k, M) approximation
ratio.

D. Approximation guarantees using an almost linear time computable policy for the controller

Consider the Greedy for controller policy of the controller where it conceals the components
with k highest states and breaks ties randomly and uniformly. We denote this policy as uGC.
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Clearly, uGC ∈ Us. Note that the controller needs O(nlogn + K) time and O(n) memory to
decide its actions using this policy.

Theorem 5.5: For any β, k, n, K, M ,

sup
v∈V

RuGC,v
β ≤ (k + 1) inf

u∈U
sup
v∈V

Ru,v
β .

For any β, k, n, K such that M = 1, that is, all components are statistically identical,

sup
v∈V

RuGC,v
β ≤ 2 inf

u∈U
sup
v∈V

Ru,v
β .

Proof: We first provide a general framework for proving that

sup
v∈V

RuGC,v
β ≤ κ inf

u∈U
sup
v∈V

Ru,v
β

for an arbitrary κ and arbitrary β, k, n, K, M. We prove that

sup
v∈V

RuGC,v
β ≤ κ inf

u∈U
Ru,v′

β for some v ∈ V. (20)

Now, the result follows since infu∈U Ru,v′
β ≤ supv∈V infu∈U Ru,v

β = infu∈U supv∈V Ru,v
β .

Now, (20) can be proved as follows. Clearly,

sup
v∈V

RuGC,v
β =

∑
�x∈Kn

β(�x)θ(�x) (21)

for some real-valued function θ on Kn which depends on β, k, n, K, M. Let T ′(�x, �y, v′) be the
utility of the actor if the system state vector is �x and the actor’s information is �y and the actor
uses the policy v′. Then,

inf
u∈U

Ru,v′
β =

∑
�x∈Kn

β(�x) min
�y∈Ac(�x)

T ′(�x, �y, v). (22)

Thus, from (21) and (22), (20) follows if we can prove that for each �x ∈ Kn,

θ(�x) ≤ κ min
�y∈Ac(�x)

T ′(�x, �y, v).

We introduce some terminologies first. Consider an arbitrary �x ∈ Kn and �y ∈ Ac(�x). Let GC(�x)
be the set of components whose states have been concealed by uGC when the system state vector
is �x, D1(�x, �y) = GC(�x)\a(�y) , and D2(�x, �y) = a(�y)\GC(�x). Let �xGC be the actor’s information
under GC when �x is the system state vector.

Note that the actor’s best response to uGC is to select components whose states have been
concealed since the state of any such component is at least as high as that of a component whose
state has been revealed. Thus, θ(�x) =

∑
i∈GC(�x)

γ(�xGC)ir(xi) where γ(�xGC) is a probability
distribution on GC(�x) which depends on �xGC, β, k, n, K, M.

We now consider the general case, that is, arbitrary β, k, n, K, M and therefore need κ =
k + 1. We consider v′ that selects each concealed component w.p. 1/(|a(�y)| + 1) and the
revealed component with the highest state w.p. 1/(|a(�y)|+ 1). Then, T ′(�x, �y, v′) = (1/(|a(�y)|+
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1))
(
maxi∈N\a(�y) r(xi) +

∑
i∈a(�y) r(xi)

)
. Since |a(�y)| ≤ k as �y ∈ Ac(�x), the result follows if

we can show that

θ(�x) ≤ max
i∈N\a(�y)

r(xi) +
∑

i∈a(�y)

r(xi) ∀ �x ∈ Kn, �y ∈ Ac(�x). (23)

θ(�x) −
∑

i∈a(�y)

r(xi) =
∑

i∈GC(�x)

γ(�xGC)ir(xi) −
∑

i∈a(�y)

r(xi)

≤
∑

i∈D1(�x,�y)

γ(�xGC)ir(xi) −
∑

i∈D2(�x,�y)

r(xi) (since 0 ≤ γ(�xGC)i ≤ 1 ∀ i ∈ GC(�x))

≤
∑

i∈D1(�x,�y)

γ(�xGC)ir(xi)

≤ max
i∈D1(�x,�y)

r(xi)⎛
⎝ since

∑
i∈D1(�x,�y)

γ(�xGC)i ≤ 1 and 0 ≤ γ(�xGC)i ≤ 1 ∀ i

⎞
⎠

≤ max
i∈N\a(�y)

r(xi) (since D1(�x, �y) = GC(�x) \ a(�y) ⊂ N \ a(�y))

Thus, (23) follows.

We now consider the special case in which M = 1. Thus, all components are statistically
identical. In this case, from symmetry, γ(�xGC(�x))i = 1/k, for each i ∈ GC(�x), that is, the actor’s
best response is to select each concealed component w.p. 1/k. Thus,

θ(�x) =
∑

i∈GC(�x)

r(xi)/k. (24)

We consider v′ that selects (a) each concealed component w.p. 1/(2|a(�y)|) and the revealed
component with the highest state w.p. 1/2 if at least one component is concealed and (b) the
revealed component with the highest state if no component is concealed. Then,

T ′(�x, �y, v′) =

(
max

i∈N\a(�y)
r(xi) +

∑
i∈a(�y) r(xi)

|a(�y)|

)
/2.

Here, we assume that the second term in the sum is 0 if a(�y) = φ. Thus, from (24), the result
follows if we can show that∑

i∈GC(�x)

r(xi)/k ≤ max
i∈N\a(�y)

r(xi) +

∑
i∈a(�y) r(xi)

|a(�y)| ∀ �x ∈ Kn, �y ∈ Ac(�x). (25)
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If a(�y) = φ, the result clearly holds as then the left hand side is maxi∈N r(xi), and since
|GC(�x)| = k, maxi∈N r(xi) ≥

∑
i∈GC(�x) r(xi)/k. We therefore assume that a(�y) �= φ.

∑
i∈GC(�x)

r(xi)

k
−
∑

i∈a(�y) r(xi)

|a(�y)| ≤
∑

i∈GC(�x)

r(xi)

k
−
∑

i∈a(�y)

r(xi)

k
(since |a(�y)| ≤ k as �y ∈ Ac(�x))

≤
∑

i∈D1(�x,�y)

r(xi)

k

≤ max
i∈D1(�x,�y)

r(xi) (since |D1(�x, �y)| ≤ k as D1(�x, �y) ⊆ GC(�x))

≤ max
i∈N\a(�y)

r(xi).

Thus, (25) follows.

Note that when K = 2 the approximation factor turns out to be k (instead of k +1) for arbitrary
β, k, n, M . The proof is similar, but considers only states �y in which all revealed components
are in state 0 and considers a policy v′ for the actor that differs from the corresponding one in
the above proof in that it never selects any revealed component that is in state 0.

E. Tightness of the approximation guarantees

We now examine whether the approximation guarantees obtained so far are tight. We answer
the relevant questions in part, and outline several important open problems.

We prove that the approximation bound obtained for for the uniform policy of the actor is tight.
Specifically, given any ε > 0, there exists a system with components whose state processes
are mutually independent where the minimum utility obtained by the actor when it uses the
uniform policy exceeds 1/ (min(k, M) + 1) times the max-min utility in the system by at most
ε. Consider a system where M > 1. Let the first class consist of only 1 component which is in
state K − 2 w.p. 1− ε1 and in state 0 w.p. ε1. The components in the other classes are either in
states 0 or 1 (the probability distributions for the state processes for channels in different classes
are different). The state processes of the components are mutually independent. Let r(K − 2) =
1 − δ1, r(1) = δ2. Let v1 ∈ V be the policy that always selects the component in the first class.
Clearly Ru,v1

β = (1 − δ1)(1 − ε1) for any u ∈ U . Thus, supv∈V infu∈U Ru,v
β ≥ (1 − δ1)(1 − ε1).

Consider a u1 ∈ U that conceals the component from the first class, and selects the rest of the
components to be concealed in a round robin manner. Specifically, in the first round u1 selects
one component from classes 2, . . . , M each, repeats the process in second, third rounds etc. until
k components have been selected. Thus, min(k, M) classes are concealed. Clearly, the state of
the component that has the highest state among the revealed components is no more than 1.
Thus,

Ru,vUNIFORM

β ≤ (r(K − 2) + min(k, M)r(1)) /(min(k, M) + 1)

≤ (1 + min(k, M)δ2)/(min(k, M) + 1)

≤ (1 − δ1)(1 − ε1)

(min(k, M) + 1)
+ ε for sufficiently small δ1, δ2, ε1

≤ supv∈V infu∈U Ru,v
β

(min(k, M) + 1)
+ ε.
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Thus, infu∈U Ru,vUNIFORM

β ≤ (supv∈V infu∈U Ru,v
β /(min(k, M) + 1)

)
+ ε. The result follows. The

scenario where this approximation factor turns out to be tight however rarely arises in practice,
and as our numerical computations demonstrate, the minimum utility obtained by the uniform
policy closely approximates the max-min utility of the actor in general.

VI. NUMERICAL EXAMPLE

Through a simple example we shall illustrate several points: (i) we show that GC is in general
not a saddle-point strategy for the Controller, (ii) We illustrate the bound obtained with GC in
Theorem 5.5, (iii) We show symmetrical statements for the Uniform policy for the Actor, (iv)
Investigate tightness.

We consider n = 3 channels, K = 3 states per channel and M = 1 single class (i.e. all channels
are symmetric). We have taken k = 2 (two channels are concealed). The probability distribution β
for each channel is given by the following vector: β(−→x ) = (1/3, 1/3, 1/3). The reward function
considered is the following vector: r = (0, x, 1), where x = r(1) is the reward when the channel
is in state 1. We let x vary and compare numerically in figure 1 the following:

• value of the game
• the performance when the Actor uses the uniform strategy and Controller plays optimally

against it,
• the performance when the Controller uses the GC strategy and the Actor plays optimally

against it,
• The bounds in Theorem 5.4
• The bounds in Theorem 5.5
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Fig. 1. Approximation performance of the uniform policy compared to the optimal.

The figure confirms that the GC is not a saddle-point point for the Controller and that the
Uniform strategy is not a saddle-point for the Actor. However both these strategies are seen to
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perform well and to guarantee a performance close to the value of the ICG. The bounds given
by Theorems 5.4 and 5.5 are indeed seen to hold. The optimal strategy of the sender turned
out to choose the unconcealed channel with probability 1 for x = 0.7 or larger. It chooses with
probability 1 a concealed channel for x = 0.3 or loss. For x = 0.5 the sender’s policy was to
randomize between the two (it chose the unconcealed channel with probabilitly 0.4).

VII. CONCLUSIONS AND OPEN QUESTIONS

We have studied a leader-follower game where the actions of the leader (Controller) determine
the information available to the follower (Actor). By concealing information, the leader degrades
the performance of the follower that attempts to choose one out of several resources with the
best state among all. We have provided a rich body of computation and appproximation tools
for that problem along with mathematical foundations and complexity analysis.

The question of tightness of the approximation guarantees is only partially solved. The approx-
imation bound for the uniform policy of the Actor is indeed tight as we showed in Section V-E.
The question regarding the tightness of the approximation ratio obtained for the Greedy policy of
the Controller remains open. Other open problems include establishing that the computation of
the saddle point policies is NP-hard, and determining whether the approximation factors can be
substantially improved while using polynomial time computation. We plan to extend our study
to the stochastic game framework in which the states can change in time according to some
Markov structure.
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