
Telecommunication Systems 25:1,2, 129–155, 2004
 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Markovian Model for TCP Analysis in a
Differentiated Services Network

CHADI BARAKAT ∗ and EITAN ALTMAN {cbarakat;altman}@sophia.inria.fr
INRIA, 2004, route des Lucioles, 06902 Sophia Antipolis, France

Abstract. In a Differentiated Services network, the use of TCP by an application impacts the service it gets
from the network. TCP congestion control algorithms are designed to provide a fair sharing of resources
in a best effort network as the current Internet. TCP is not conscious of the new services proposed by
DiffServ, namely the different priorities packets are injected with into the network. Many schemes have
been proposed to support TCP traffic in a DiffServ network. These schemes have been often validated with
simulations. In this paper we propose an analytical model to study the performance of TCP in a DiffServ
network under the different proposed schemes. The model is based on a Markovian fluid approach. We
present first a general version of the model, then we specify it to the different proposed schemes. For
each scheme, we compute the throughput achieved by a TCP connection. We compare then the service
differentiation provided by the proposed schemes under different subscription levels, different reservations,
and different round-trip times. Our model forms a good tool for the evaluation of new solutions to support
TCP traffic in a DiffServ network.

Keywords: differentiated services, TCP, buffer management, Markovian modeling, performance evalua-
tion and comparison

Introduction

There has been an increasing interest these last years in enhancing the traditional best ef-
fort service of the Internet to provide new applications with some guarantees in terms of
bandwidth, losses, and end-to-end delay. Differentiated Services architecture (DiffServ)
is considered as the most promising approach in this field for reasons of scalability and
incremental deployment [Clark and Fang, 5; Nichols et al., 18]. Flows asking for a bet-
ter service than the traditional best effort one are monitored at the edge of the network.
Their parameters (rate, burst size) are compared to the contract signed between the user
and the service provider. Packets compliant with the contract are marked with a high pri-
ority. Those violating the contract are shaped, rejected, or injected into the network with
a low priority. The priority level of packets is carried in the DS field of the IP header.
In the core of the network, high-priority packets are privileged over low-priority ones.
This privilege can be in the form of a better scheduling (e.g., priority scheduling) as with
the Premium service architecture [Jacobson et al., 14; Nichols et al., 18], or in the form
of a lower drop probability as with the Assured service architecture [Clark and Fang, 5;
Heinanen et al., 11]. The main advantage of the DiffServ framework is that packets in

∗ Corresponding author.



130 BARAKAT AND ALTMAN

the network are treated as a function of their priority level and not as a function of the
flow they belong to. No per-flow information needs to be stored in routers. This eases
the task of routers which have to deal with a small number of priority levels rather than
a large number of flows. Complexity is pushed to the edge of the network. This makes
the framework scalable, flexible, and easy to introduce into the Internet.

The utility of such framework to uncontrolled flows is clear. An uncontrolled flow
is a one whose rate is not reduced when packets are lost in the network. These flows are
generated using UDP, the best effort transport protocol. An example is a real time video
or audio flow. An application using UDP has an idea on the rate of its packets. It asks
the network for a certain bandwidth as a function of the quality of service it desires. The
network can reject or mark with low priority the packets of this application exceeding the
reserved bandwidth. What the network guarantees is a small drop probability for high-
priority packets. The drop probability for low-priority packets depends on the load of the
network. The application gets then a minimum quality as a function of the bandwidth
it reserves, and this quality improves when low-priority packets succeed to cross the
network.

The problem of DiffServ appears with transfers using TCP [Jacobson, 13], the re-
liable connection-oriented transport protocol of the Internet. The congestion control al-
gorithms of TCP are well suited to the current best effort service. The window increases
until a packet is lost. The TCP source assumes here that the network is congested and
reduces its window consequently. This guarantees a good utilization and a fair sharing
of network resources. But with the proposed DiffServ architecture, an application using
TCP may ask the network for a better service (e.g., more throughput) by reserving a cer-
tain bandwidth. If at the edge of the network non-compliant packets are rejected, TCP
will reduce its rate when it reaches the reserved bandwidth. The application using TCP
fails then to use the bandwidth it is paying for as well as any unreserved bandwidth in
the network. The solution to this problem is to let non-compliant packets get into the
network as low-priority packets. This improves TCP performance since the rate can now
reach larger values. But, the injection of packets of different priority levels causes addi-
tional problems: TCP is not aware of the reservation. The loss of a low-priority packet
is not distinguished from the loss of a high-priority packet, and the rate is reduced in
the same manner regardless of the reserved bandwidth. In a DiffServ network, the loss
of a packet of a certain priority level means a congestion of the resources associated to
this priority level, and not of all the resources as in a best effort network. TCP does
not see this partitioning of resources and it divides its window by two whenever a loss
occurs.

Many works have studied this misbehavior of TCP in a DiffServ network and many
improvements have been proposed [Basu and Wang, 4; Clark and Fang, 5; Feng et al.,
7, 8; Yeom and Reddy, 21, 22]. The main conclusion of these studies is that TCP is
unable to realize its target throughput in a DiffServ network. The target throughput of a
TCP connection is defined as the reserved bandwidth plus a fair share of any unreserved
bandwidth. Moreover, a connection with a small reservation has been shown to achieve
better performance than a connection with a large reservation. Indeed, a connection with



MARKOVIAN MODEL FOR TCP ANALYSIS 131

a large reservation has a large window and it is more affected by the loss of a low-priority
packet than a connection with a small reservation. These works have also shown the
well known problem of TCP unfairness in presence of different round-trip times (RTT).
A connection with small RTT achieves better performance than a connection with long
RTT. Some solutions have been proposed to alleviate these problems. These solutions
consist in either changing TCP sources, or marking TCP flows differently at the edge of
the network, or changing the behavior of network routers.

The performance of the different schemes proposed in the literature to support TCP
traffic in a DiffServ network has been often evaluated by simulations [Clark and Fang, 5;
Feng et al., 7, 8; Yeom and Reddy, 21]. In [Yeom and Reddy, 22], a mathematical model
has been proposed to calculate the throughput of a connection as a function of the drop
probability of packets from different priority levels. Three schemes have been compared.
However, the extension of this work to other possible schemes is not straightforward.
Further, it does not allow to study the impact of the parameters of the other connections
(e.g., RTT, reserved bandwidth) on the performance of the connection under study. All
the exogenous traffic is modeled in [Yeom and Reddy, 22] with the packet drop probabil-
ity, and the dynamics of the connection under study is assumed to have no impact on this
probability. This might be the case of a large number of connections sharing the network,
but it is not certainly the case when a small number of connections is multiplexed.

In this paper we present a general Markovian model able (i) to calculate the per-
formance of all the connections sharing a bottleneck router, and (ii) to account for the
different solutions already proposed, or to be proposed. Using this model, we compare
the performance of some schemes proposed to support TCP in a DiffServ network. In
the next section we present a brief overview of the different schemes we consider in
this paper. In section 2 we explain our Markovian model. In section 3 we compute
the throughput of a TCP connection as a function of two functions: the reaction of a
TCP connection to congestion signals, and the probability that a particular connection
reduces its rate upon congestion. By appropriately setting these two functions, we are
able to specify our model to all proposed schemes. Section 4 explains how these two
functions must be set. In section 5 we simplify the model in the case of large number
of connections, and we give closed-form expressions for TCP throughput. In section 6
we present some numerical results and compare the different schemes. The paper is
concluded in section 7.

1. TCP in a DiffServ network

We summarize first the main objectives of an ideal DiffServ scheme supporting TCP
traffic:

• The available bandwidth must be efficiently utilized.

• In the case when the sum of reservations is less than the total available bandwidth (the
under-subscription case), each connection must realize its reservation. The difference



132 BARAKAT AND ALTMAN

between the total available bandwidth and the total reservation must be shared equally
by the different connections.

• In the case when the sum of reservations is larger than the total available bandwidth
(the over-subscription case), the available bandwidth must be distributed among the
different connections proportionally to their reservations.

Note that even if an efficient admission control algorithm is deployed, the over-
subscription case could happen on a certain link due to the dynamic routing inside a
DiffServ domain.

The original proposition to support TCP transfers in a DiffServ network is due
to Clark and Fang [5]. At the edge of the network, the transmission rate of the TCP
connection is compared to the reserved bandwidth. A time sliding window mechanism
(TSW) has been proposed to measure the rate of the connection. The time window
determines how much the past is important, or in other words it determines the time
interval over which the rate of TCP is averaged. The transmission rate of a window-
based flow control protocol as TCP can be defined as the window size divided by the RTT
of the connection. Thus, the time window must be in the same order of the RTT. Two
priority levels have been proposed in [Clark and Fang, 5] for packet marking. A packet
that arrives at the edge of the network and finds the rate of the connection smaller than
the reservation, is marked with a high priority and is called an IN packet. A packet
that arrives and finds the rate of IN packets equal to the reservation, is marked with a
low priority and is called an OUT packet. In network routers, IN and OUT packets are
buffered in the same queue and are scheduled in a FIFO manner. This guarantees an
in-order delivery of packets which is necessary for TCP operation. The differentiation in
the service comes from the different probabilities network routers drop these two types of
packets at the onset of congestion. A variant of RED (Random Early Detection) [Floyd
and Jacobson, 10] is proposed to implement this difference in the drop probability. This
variant, called RIO (RED IN/OUT) [Clark and Fang, 5], has two minimum thresholds
instead of one. As with RED, the average length of the queue is calculated using an
exponentially weighted moving average algorithm. When this average length exceeds
the lower minimum threshold, OUT packets are probabilistically dropped in order to
signal congestion to TCP sources. The buffer starts to drop probabilistically IN packets
when the average queue length (sometimes the average number of IN packets in the
buffer) exceeds the upper minimum threshold. Note that instead of dropping packets,
the router can signal congestion to TCP sources by setting the ECN (Explicit Congestion
Notification) bit in the IP header [Floyd, 9].

As we described in the introduction, this scheme has some problems to satisfy the
objectives we defined at the beginning of the section. Due to the saw tooth window
variation of TCP (figure 1), a connection is obliged to transmit a certain amount of
OUT packets in order to realize its reservation. Since OUT packets are very likely to
be dropped, the connection may not realize its reservation. Moreover, a connection with
a large reservation must transmit more OUT packets than a connection with a small
reservation. Also, a connection with a large reservation has in general larger window



MARKOVIAN MODEL FOR TCP ANALYSIS 133

Figure 1. The saw tooth variation of TCP window.

than a connection with a small reservation which makes it more affected by the loss of
an OUT packet. This explains the bias of the scheme proposed in [Clark and Fang, 5]
against connections with large reservations.

The first and the most intuitive solution to this problem is to change TCP in a way
that the source reduces differently its window when OUT or IN packets are lost [Feng
et al., 7; Yeom and Reddy, 21]. To do that, the source needs to know the priority level
of the lost packet. Also, it needs to know the bandwidth reserved by the connection.
The loss of an IN packet is an indication that the network is congested and that the
congestion window needs to be divided by two as in standard TCP. The loss of an OUT
packet is an indication that the unreserved bandwidth in the network is congested. The
source divides then its window into two parts. The first part corresponds to the number
of unacknowledged IN packets and the second part to the number of unacknowledged
OUT packets. The number of unacknowledged IN packets is estimated as the product
of the reserved bandwidth and the RTT. The window is reduced by half the number of
unacknowledged OUT packets. The main problem with this solution is that it requires
a change at the source and a knowledge of the priority level of the lost packet, which is
difficult to implement.

The other solutions try to give some advantage to connections with large reserva-
tions over connection with small reservations. The objective is to help the former con-
nections to send more OUT packets than the latter ones, and this is without changing the
TCP protocol. The first solution proposed in the original paper describing RIO [Clark
and Fang, 5] is based on the saw tooth variation of TCP window. On average, the trans-
mission rate of a TCP connection varies between 2/3 and 4/3 of its throughput. To
be able to realize its reservation, a TCP connection must be protected from the other
connections until it reaches 4/3 of its reservation. The idea of [Clark and Fang, 5] is
to change the marker so that it marks packets as OUT when the rate of the connection
exceeds 4/3 of the reserved bandwidth. We call this proposition the Saw Tooth Marking
scheme. It has the drawback of injecting into the network during some periods more IN
packets than what is promised.

The second solution [Yeom and Reddy, 21] proposes to drop OUT packets in net-
work routers according to the reserved bandwidth. The authors in [Yeom and Reddy, 21]



134 BARAKAT AND ALTMAN

show that dropping OUT packets with a probability inversely proportional to the band-
width reserved by the connection improves the performance. We call this solution the
Inverse Drop Probability scheme. Its main drawback is that it requires that network
routers know the bandwidth reserved by every connection.

The last scheme we consider is the one that proposes to mark packets with three pri-
ority levels instead of two [Heinanen et al., 11, 12; Yeom and Reddy, 21]. A RED buffer
with three thresholds is used in routers. The idea is to protect the OUT packets of a con-
nection transmitting at less than its fair share from the OUT packets of a connection ex-
ceeding its fair share, and this by giving packets of the former connection some medium
priority while giving low priority to those of the latter connection. However in this case,
and in contrast to Saw Tooth Marking, we are not injecting into the network more high-
priority packets than what is promised. This solution can be considered as a means to
give priority to some OUT packets over other OUT packets but not over IN packets.

2. The Markovian fluid model

We outline in this section our Markovian model for the evolution of the rate of a TCP
connection sharing a path with other TCP connections in a DiffServ network. Consider
N TCP connections sharing a bottleneck of bandwidth µ. Let Xi(t) be the transmission
rate of connection i at time t . It is equal to the window size divided by the RTT of the
connection. The N connections increase their rates (by increasing their windows) until
the network gets congested. The congested router starts then to drop packets in order to
signal the congestion to TCP sources. A source receiving a congestion signal reduces
its rate, then it resumes increasing it. The other sources continue increasing their rates.
This continues until the next congestion event.

Let tn denote the time at which the nth congestion event occurs, and let Dn =
tn+1 − tn. Denote by Xi,n the transmission rate of connection i at time tn and by X+

i,n its
transmission rate just after tn (after the disappearance of the congestion). X+

i,n is equal
to Xi,n if connection i did not reduce its rate at tn, and to Ri(Xi,n) otherwise. Ri(Xi,n) is
a function of Xi,n usually equal to Xi,n/2 [Jacobson, 13].

We introduce now some assumptions in order to analyze the process {X1,n, X2,n,

. . . , XN,n}. In the following, we use this process to calculate the throughput achieved by
each connection.

Assumption 1. We assume first that queueing times in network nodes are small com-
pared to the propagation delay. This holds with active buffer management techniques as
RED [Floyd and Jacobson, 10]. Among many others, RED aims to reduce the length of
queues in network routers in order to reduce the end-to-end delay. A RED router starts
to drop packets before the overflow of the buffer. The remaining space in the buffer is
used to absorb bursts of packets. The RTT of a connection, say i, is then approximately
constant denoted by Ti , and the transmission rate of the connection varies linearly with
the window size. The congestion appears when the sum of the rates of all connections



MARKOVIAN MODEL FOR TCP ANALYSIS 135

reach the total available bandwidth µ. Thus, instants tn are given by1

N∑
i=1

Xi(tn) = µ. (1)

Assumption 2. We consider long TCP transfers and we suppose that the sources are
always sending in the congestion avoidance mode [Jacobson, 13; Stevens, 20]. Slow
start phases are ignored. This is possible since the new versions of TCP avoid this
phase in most of the cases [Fall and Floyd, 6]. Using assumption 1 and the results
from [Lakshman and Madhow, 17], the rate of a connection can be considered to in-
crease linearly as a function of time. This increase continues until the source receives
a congestion signal, where it reduces its rate and starts again its linear increase. Thus,
Xi,n+1 = X+

i,n+αiDn ·αi is a constant function of Ti and of the frequency of ACKs sent
by the TCP receiver. During congestion avoidance, the congestion window increases
by one packet when a window’s worth of ACKs are received [Stevens, 20]. Thus, αi is
equal to 1/T 2

i when the receiver acknowledges every data packet and to 1/(2T 2
i )when it

acknowledges every other data packet (Delay ACK mechanism enabled [Stevens, 20]).

Assumption 3. The third assumption we make is that only one connection reduces its
rate upon a congestion, and that the probability that a connection reduces its rate is
a function of its rate and the rates of the other connections at the moment of conges-
tion. This is again the aim of the new buffer management techniques (e.g., RED [Floyd
and Jacobson, 10]) that implement random drop in order to send congestion signals to
connections consuming more than their fair shares of the bottleneck bandwidth while
protecting connections consuming less than their fair shares [Floyd and Jacobson, 10].
We further assume that the reaction of the connection receiving the first congestion sig-
nal is quick so that the congestion in the network disappears before other packets from
other connections are dropped.

Let Ui,n be a random variable equal to 1 if source i reduces its rate at time tn and
to 0 otherwise. We always have

∑N
i=1 Ui,n = 1, since only one connection is supposed to

reduce its rate upon congestion (assumption 3). The probability that Ui,n is equal to one
is a function of the all rates at time tn. Let pi(X1,n, X2,n, . . . , XN,n) denote this prob-
ability. It represents the probability that the dropped packet upon congestion belongs
to connection i. This probability together with Ri(Xi,n) form the two functions of our
model that need to be specified in order to cover all the proposed schemes. Later, we
explain how to specify these two functions.

Theorem 1. The process {X1,n, X2,n, . . . , XN,n} can be described as a homogeneous
Markov process of dimension N − 1.

1 Equation (1) assumes that rates of connections are fluid. If rates of connections are discrete, tn will be the
first instant at which the sum of rates is larger than µ.



136 BARAKAT AND ALTMAN

Proof. For any congestion event n, the transmission rates of the N connections are
related by (1). Thus, the problem can be analyzed by considering only the rates of N−1
connections. In the particular case of N = 2, we get a one-dimensional model.

Concerning the Markovian property of the model, it is easy to show that the state
of the process of rates at time tn+1 depends only on its state at time tn. Indeed, for any i
and any n we have,

Xi,n+1 = Xi,n + Ui,n
(
Ri(Xi,n)−Xi,n

) + αiDn. (2)

Summing over all the i and using (1), we get

Dn =
∑N
i=1 Ui,n(Xi,n − Ri(Xi,n))∑N

i=1 αi
. (3)

Given that Ri(Xi,n) and the value taken by Ui,n are only a function of the process
state at time tn, Xi,n+1 is therefore only a function of the process state at time tn and
the Markovian property holds. The process is homogeneous since the process state at
time tn+1 depends only on its state at time tn and not on n. �

Using the recurrence (2) and the probability function pi , we can define all the
transitions of our Markov chain. Denote by X the state space of this chain upon con-
gestion. For each state X = (x1, . . . , xN) ∈ X (xi is the transmission rate of source i
upon congestion), the chain can jump to N different states at the next congestion event.
This depends on which source reduces its rate at the current congestion event. Denote by
Fi(X) = (fi,1, . . . , fi,N ) the next state of the Markov chain, given that the Markov chain
is in state X and that the source which reduces its rate is i. Using (2), for j = 1, . . . , N ,
and for any X = (x1, . . . , xn) ∈ X , we can write

fi,j =




xj + (xi − Ri(xi))αj∑N
m=1 αm

if j 
= i,

Ri(xi)+ (xi − Ri(xi))αi∑N
m=1 αm

if j = i.

Denote by � = (πX)X∈X the stationary distribution of our Markov chain. To compute
this distribution, we discretisize the Markov chain by supposing that the rate of a TCP
connection takes a finite set of values between 0 and the total bandwidth µ. The trans-
mission rate of a TCP connection at the next congestion event predicted by (2) is then
rounded to the closest value in this set of values. We get then a discrete-time disrecte-
space Markov chain for which we can compute numerically the stationary distribution
by writing the system of balance equations. We did different runs for many scenarios
and we always found that this stationary distribution exists and is unique. From now
on, we put ourselves in the stationary regime, and we remove the time index n from all
random variables and processes, e.g., Xi,n becomes Xi .



MARKOVIAN MODEL FOR TCP ANALYSIS 137

3. Calculation of the throughput

The throughput of a connection say i, or equivalently the time average of its transmission
rate, is equal to

Xi = lim
t→∞

1

t

∫ t

0
Xi(u) du = lim

n→∞

∑n−1
m=0

∫ tm+1
tm

Xi(u) du∑n−1
m=0Dm

= lim
n→∞

(1/n)
∑n−1
m=0(Xi,m + Ui,m(Ri(Xi,m)−Xi,m))Dm + αi(Dm)2/2

(1/n)
∑n−1
m=0Dm

.

Given that the system has a unique stationary regime, the limit exists and is equal to

Xi = E[(Xi + Ui(Ri(Xi)−Xi))D + αi(D)2/2]
E[D] . (4)

Let Dj(X) denote the time until the next congestion event when the system is in state
X ∈ X and source j reduces its rate. Using (3), we have

Dj(X) = xj − Rj(xj )∑N
m=1 αm

.

Thus,

Xi =
∫

dπX
(∑N

j=1 pj(X)(xiDj(X)+ αi(Dj(X))2/2)+ pi(X)(Ri(xi)− xi)Di(X)
)

∫
dπX

∑N
j=1 pj(X)Dj(X)

.

(5)
This equation shows that the throughput of a connection is a function of many parame-
ters. First, it is a function of some constant parameters as µ, N , and αi . Second, it is a
function of two other parameters that can be changed to improve the service provided to
applications using TCP. These latter two parameters are the probability function pi(X)
and the amount by which the rate of a connection is reduced when a congestion sig-
nal is received Ri(xi). The schemes we compare in this paper set differently these two
parameters.

4. Application of the model to real schemes

Suppose that the system is in state X = (x1, . . . , xN) ∈ X in the stationary regime. We
find in this section the expressions of the two functions pi(X) and Ri(xi) for the different
DiffServ schemes we are considering in this paper.

4.1. Standard TCP with RIO

A source i asks the network for bandwidth µi . Packets below the reserved bandwidth are
marked as IN and those exceeding the reserved bandwidth are marked as OUT. When
a congestion appears at the bottleneck, the router starts to drop OUT packets with a



138 BARAKAT AND ALTMAN

certain probability. Connections transmitting at less than their reserved bandwidths are
protected. The probability that a connection transmitting OUT packets reduces its rate
is a function of (i) the probability at which the network drops OUT packets, (ii) the rate
of its OUT packets, and (iii) the total rate of OUT packets crossing the bottleneck at the
moment of congestion. If there is no OUT packets in the network (all the connections are
transmitting at less than their reservations), congestion remains and the router starts to
drop IN packets. When an OUT or IN packet is dropped, the corresponding connection
divides its rate by two. Thus, Ri(xi) = xi/2 in this case and in all the subsequent cases
where standard TCP is used.

The probability that a connection reduces its rate upon a congestion is equal to 0
when it is transmitting only IN packets and there is at least one connection transmitting
OUT packets. It is equal to 1 if it is the sole connection transmitting OUT packets. Next
we study the case when the connection is transmitting OUT packets together with other
connections. The last case, that of all the connections transmitting only IN packets, will
be directly deduced.

Upon a congestion, a RIO buffer treats OUT packets from all connections in the
same way. Let q be the probability that an OUT packet is dropped at the bottleneck and
let V be the result of the probabilistic drop applied to a packet. It is equal to 1 if the
packet is really dropped and to zero otherwise. Denote by Y = 1, . . . , N the number of
the connection to which the dropped OUT packet belongs. In the following we denote
by PX(A) the probability that event A happens given that the system is in state X ∈ X
upon congestion. We have

pi(X)=PX(Y = i | V = 1) = PX(Y = i and V = 1)

PX(V = 1)

= PX(Y = i) · PX(V = 1 | Y = i)∑N
m=1 PX(Y = m) · PX(V = 1 | Y = m)

For m = 1, . . . , N , PX(V = 1 | Y = m) is no other than q. Thus, pi(X) is equal to
PX(Y = i) which is the probability that an OUT packet belongs to connection i given
that the system is in state X. This probability is equal to the ratio of the rate at which
connection i is sending OUT packets and the total rate of OUT packets. Thus,

pi(X) = PX(Y = i) = xi − µi∑N
m=1(xm − µm)1{xm > µm} ,

where 1{} is the indicator function.
Similarly, we can calculate the probability that connection i reduces its rate when

all connections are transmitting only IN packets. Again, all packets are treated in the
same way by the RIO buffer. pi(X) is equal in this case to the probability that an IN
packet belongs to connection i, which is equal to the ratio of the rate at which connection



MARKOVIAN MODEL FOR TCP ANALYSIS 139

i is sending IN packets (xi) and the total rate at which IN packets are sent (µ). We can
then write the general expression of pi(X). For any X ∈ X we have

pi(X) =




xi

µ
if

N∑
m=1

1{xm > µm} = 0,

(xi − µi)1{xi > µi}∑N
m=1(xm − µm)1{xm > µm} otherwise.

4.2. Modified TCP with RIO

Packets are marked with two priority levels and RIO buffers are used in network routers.
Thus, pi(X) is the same as in the previous section. The difference is in the function
Ri(xi). If an IN packet is lost, the source divides its rate by two as with standard TCP.
If the dropped packet is an OUT packet, the proposed scheme [Feng et al., 7; Yeom and
Reddy, 21] consists in only dividing the rate of OUT packets by two. We consider in
our model that the dropped packet from connection i is an IN packet if at the moment
of congestion source i is transmitting at less than its reservation, otherwise it is an OUT
packet. Thus, the transmission rate of connection i just after it reduces its rate is equal
to

Ri(xi) =


xi

2
if xi < µi ,

µi + xi − µi
2

otherwise.

4.3. Inverse drop probability scheme

Standard TCP with two priority levels is used, therefore Ri(xi) is equal to one half xi .
The difference in this case is that packets of different connections (IN and OUT) are
not treated in the same way in the core of the network. The idea proposed in [Yeom and
Reddy, 21] is to drop OUT packets from a connection with a probability that varies as the
inverse of its reservation. However, the drop probability of IN packets is not specified.
IN packets are actually dropped when all connections are transmitting at less than their
reservations. In this case and according to our objectives (section 1), the throughput of
a connection must be proportional to its reservation. It is known that the throughput of a
TCP connection varies as the square root of the packet drop probability [Altman et al., 2;
Barakat, 3; Lakshman and Madhow, 17; Padhye et al., 19]. Thus, in order to achieve
the above objective, we propose to drop IN packets with a probability that varies as the
inverse of the square of the reservation. We add this new feature to the proposed scheme.

As in the case of RIO with standard TCP, the router tries first to drop OUT packets.
If these packets do not exist, IN packets will be dropped. Again, a connection reduces
its rate with probability 1 if its the sole connection exceeding its reservation, and with
probability 0 if it is transmitting only IN packets and there is at least one other connection
transmitting OUT packets. For the remaining two cases, we consider first the case when



140 BARAKAT AND ALTMAN

the connection is transmitting OUT packets together with other connections. The other
case will be directly deduced.

Suppose that the bottleneck router drops OUT packets of source m = 1, . . . , N
with a probability q/µm, q is a constant. Suppose also that the system is in state X ∈ X
when the congestion occurs. Then,

pi(X) = PX(Y = i) · PX(V = 1 | Y = i)∑N
m=1 PX(Y = m) · PX(V = 1 | Y = m) = PX(Y = i)/µi∑N

m=1 PX(Y = m)/µm
.

As in the case of RIO, PX(Y = m) is equal to

P(Y = m) = xm − µm∑N
j=1(xj − µj )1{xj > µj }

.

Thus,

pi(X) = xi/µi − 1∑N
m=1(xm/µm − 1)1{xm > µm} .

When all connections are only transmitting IN packets, the problem is similar. The
difference is in the drop probability that we propose to take inversely proportional to the
square of the reservation. The general expression of pi(X) for this scheme is then,

pi(X) =




xi/µ
2
i∑N

m=1 xm/µ
2
m

if
N∑
m=1

1{xm > µm} = 0,

(xi/µi − 1)1{µi > xi}∑N
m=1(xm/µm − 1)1{xm > µm} otherwise.

4.4. Saw tooth marking scheme

Standard TCP, two priority levels and RIO buffers are used, thus Ri(xi) = xi/2. The dif-
ference here is in the marker operation. The flow of connection i contains OUT packets
when its rate exceeds 4µi/3. The rate of its OUT packets at the moment of congestion is
equal to xi − 4µi/3 rather than xi − µi . The new expression of the probability function
pi(X) is then

pi(X) =




xi

µ
if

N∑
m=1

1

{
xm >

4µm
3

}
= 0,

(xi − 4µi/3)1{xi > 4µi/3}∑N
m=1(xm − 4µm/3)1{xm > 4µm/3} otherwise.

4.5. Standard TCP with three drop priorities

In this scheme, the source makes two reservations instead of one. Denote these reser-
vations by µi,1 and µi,2 with µi,1 < µi,2. Standard TCP is used at the source, therefore



MARKOVIAN MODEL FOR TCP ANALYSIS 141

Ri(xi) = xi/2. Packets are marked with three priority levels or three colors. Packets
exceeding µi,2 are marked with low priority (red color). Those exceeding µi,1 but not
µi,2 are marked with medium priority (yellow color). Packets sent at a rate slower than
µi,1 are marked with a high priority (green color).

As in the RIO case, the network starts first to drop low-priority packets. This
happens when one of the sources, say i, is exceeding its upper reservation µi,2. If those
packets do not exist, medium-priority packets are dropped. Medium-priority packets
exist in the network when one of the sources, say i, is exceeding its lower reservation
µi,1. If it is not the case, the network drops high-priority packets.

All packets belonging to a certain priority level are treated in the network in the
same manner. A connection reduces its rate upon congestion with probability 1 if it is
transmitting alone above a certain level. It reduces its rate with probability 0 if it is
transmitting below a level and there is another connection transmitting above the same
level. In the other cases, the probability that a connection reduces its rate is equal to the
probability that the dropped packet belongs to this connection. Similarly to the RIO case
we can write,

pi(X) =




xi

µ
if

N∑
m=1

1{xm > µm,1} = 0,

(xi − µi,1)1{xi > µi,1}∑N
m=1(xm − µm,1)1{xm > µm,1}

if
N∑
m=1

1{xm > µm,1} > 0

and
N∑
m=1

1{xm > µm,2} = 0,

(xi − µi,2)1{xi > µi,2}∑N
m=1(xm − µm,2)1{xm > µm,2}

otherwise.

To compare this scheme to previous ones, the two reservations µi,1 and µi,2 must be
set as a function of the desired throughput µi . If we look at the saw tooth variation of
TCP rate in figure 1, we see that on average and in order to realize a throughput µi , the
connection rate should vary between 2µi/3 and 4µi/3. Based on that, we give packets
below 2µi/3 the highest priority, packets between 2µi/3 and 4µi/3 the medium priority,
and packets above 4µi/3 the lowest priority. This corresponds to µi,1 = 2µi/3 and
µi,2 = 4µi/3. The three drop priorities scheme is compared later to the other schemes
with these particular values of the two reservations. Other values can be always used.

5. Case of a large number of connections

We present in this section closed-form expressions for the throughput when a large num-
ber of TCP connections share the bottleneck. We look for closed-form expressions of the
throughput that are independent of the parameters of the other connections, but rather de-
pendent on some parameters describing the state of the network (e.g., loss process, band-



142 BARAKAT AND ALTMAN

width, subscription level). This is similar to the approach used in [Yeom and Reddy, 22]
where the state of network is represented by the packet drop probability and the sub-
scription level. Later, we will describe how both approaches can be related together to
obtain the same results.

We focus on a particular connection i. We assume that the process of times between
congestion events {Dn} is independent of the rate of connection i. We further assume
that these times are identically and exponentially distributed with intensity λ and with
average d = 1/λ. This very probably holds given the large number of connections that
are multiplexed at the bottleneck. We suppose that the process of congestion events is
known. Consider for the moment that we are able to get the intensity of {Dn} by probing
directly the bottleneck router. Later we explain how it can be calculated on end-to-end
basis by using the probability that a packet is dropped or the percentage of dropped
packets. Given the assumption that the process of congestion events is Poisson, we can
write (4) as follows:

Xi = E[Xi] + E
[
Ui(Ri(Xi)− Xi)

] + αid.
Using the PASTA (Poisson Arrivals See Time Averages) theory [Kleinrock, 16, chap-
ter 5], the expectation of the rate of connection i at moments of congestion (E[Xi]) is
equal to the time-average of the rate of the connection or its throughput (Xi). Thus, using
the above equation, the throughput of connection i can be written as the solution of:

E
[
Ui

(
Xi − Ri(Xi)

)] = p̄i(Xi)E
[(
Xi − Ri(Xi)

) | Ui = 1
] = αid. (6)

p̄i(Xi) is the probability that connection i reduces its rate at a congestion event. It is
equal to the expectation of the conditional probability pi(X) = PX(Ui = 1). Recall that
PX(A) denotes the probability that event A holds given that the N TCP connections are
in state X = (x1, . . . , xN ).

Next, we will express p̄i(Xi) as only a function of the throughput of connec-
tion i (Xi). The impact of the rates of the other connections will be eliminated by using
the bottleneck bandwidth µ and the subscription level. Consider for example the RIO
case and denote by ρ the subscription level or the ratio of the total bandwidth reserved
and the total available bandwidth. ρ < 1 means under-subscription and ρ > 1 means
over-subscription. Given the large number of connections, the total rate of OUT packets
at the moments of congestion can be approximated by (1 − ρ)µ when ρ < 1 and by 0
otherwise. The total rate of IN packets can be approximated by ρµ when ρ < 1 and by
µ otherwise. Thus, there is no need for the rates of the other connections in the calcu-
lation of pi(X). We can express this probability as a function of Xi , µ and ρ. We will
explain later how this calculation can be done for each scheme. Clearly, this will not
work with the Inverse Drop Probability scheme where we need the bandwidth reserved
by each connection rather than the total reservation.

Further simplification is required to solve the nonlinear system (6) for Xi . The
nonlinearity comes from the dependency between Ui and Xi . We propose two possible



MARKOVIAN MODEL FOR TCP ANALYSIS 143

approximations to solve this dependency. The first approximation is to suppose that
these random variables are independent. From (6) we get

p̄i(Xi)(Xi − Ri(Xi)) = αid.
Ri(Xi) is the expectation of Ri(Xi), hence it is equal to Xi/2 in case of standard TCP.
This approximation is equivalent to assuming that connection i reduces its rate at con-
gestion moments with a constant probability p̄i(Xi). We already studied such approx-
imation in [Altman et al., 1] where we assumed that the rate of the TCP connection
decreases at some potential loss moments with a probability independent of its transmis-
sion rate. The result of this approximation is an exponentially distributed time between
moments at which connection i reduces its rate (at which Ui is equal to 1) with a mean
equal to d/p̄i(Xi).

The second approximation consists in considering a fixed-point approach as the
one used in the literature [Lakshman and Madhow, 17; Padhye et al., 19; Yeom and
Reddy, 22]. This approach consists in taking Xi constant when Ui = 1, i.e. when the
rate of connection i is reduced. Denote this constant by X0. The rate of connection i
changes then in the stationary regime between Ri(X0) and X0 (figure 1) with a time
average Xi . In our case where the probability pi(X) increases with the transmission rate
of the connection, this should give better result than the previous approximation. In the
case of standard TCP, Ri(X0) is equal to X0/2 and thus,

X0 = 4Xi
3
. (7)

This is also the value of X0 in the case of modified TCP when Xi < µi . Now, in the
particular case of modified TCP and Xi > µi , Ri(X0) is equal to µi + (X0 − µi)/2 and
thus,

X0 = µi + 4(Xi − µi)
3

. (8)

Using (6) we can write for the case of the second approximation,

E
[
Ui

(
Xi − Ri(Xi)

)] = p̄i(Xi)
(
X0 − Ri(X0)

) = αid. (9)

We chose to work with this second approximation. Using (9) where X0 and Ri(X0) can
be expressed as a function of Xi , we can compute explicitly the throughput of connec-
tion i. Again, by appropriately specifying the two functions p̄i(Xi) and Ri(X0), we can
cover all the proposed schemes. Ri(X0) is given in section 4 for the different schemes
as a function of X0. We still have to calculate p̄i(Xi). We exclude from our calculation
the inverse drop probability scheme since it requires the knowledge of the bandwidth
reserved by the different connections not only the total reservation. If we assume that all
the connections have approximately the same reservation, this scheme will be identical
to Standard TCP with RIO.



144 BARAKAT AND ALTMAN

5.1. Standard TCP with RIO

Using (7) and (9) we write,

p̄i(Xi)Xi = 3αid

2
= 3αi

2λ
. (10)

Consider first the case ρ < 1. The total rate of OUT packets crossing the bottleneck at
the moments of congestion is equal to (1 − ρ)µ. Thus, we write p̄i(Xi) as follows:

p̄i(Xi) = E
[
pi(X)

] = 1

(1 − ρ)µE
[
(Xi − µi)1{Xi > µi}

]
. (11)

The term E[(Xi − µi)1{Xi > µi}] is equal to the average area between the rate of
connection i, its reservation µi and two reductions of its rate (i.e., the dark areas in fig-
ure 1) divided by the average duration of a TCP cycle (i.e., average time between two
consecutive reductions of the rate of the connection). We use here the PASTA theory to
equate moments upon congestion events to moments at arbitrary time moments. Note
that a TCP cycle can include many congestion events. To compute the above expecta-
tion, we reconsider the fixed-point approach where the rate of connection i oscillates
in the stationary regime between X0/2 and X0, with X0 = 4Xi/3. It is clear that X0

is greater than the reserved bandwidth µi since the network is not over-subscribed and
some bandwidth exists for low-priority packets. Hence,

p̄i(Xi) =




(X0 − µi)2
X0(1 − ρ)µ = (4Xi − 3µi)2

12Xi(1 − ρ)µ if
X0

2
= 2Xi

3
< µi ,

Xi − µi
(1 − ρ)µ otherwise.

Solving equation (10) for Xi , we get

Xi =




µi

2
+

√
µ2
i

4
+ 3αi(1 − ρ)µ

2λ
if µi <

√
2αi(1 − ρ)µ

λ
,

3µi
4

+
√

9αi(1 − ρ)µ
8λ

otherwise.

(12)

We still have to consider the case ρ > 1. Xi is always smaller than the reserved band-
width since there is no place left for OUT packets. The probability that connection i
reduces its rate upon congestion is simply

p̄i(Xi) = E

[
Xi

µ

]
= Xi

µ
.

This gives the following expression for the throughput:

Xi = min

(√
3αiµ

2λ
,

3µi
4

)
. (13)



MARKOVIAN MODEL FOR TCP ANALYSIS 145

The minimum operator is used to make sure that the throughput in case ρ > 1 cannot
exceed 3µi/4 (no OUT packets are transmitted).

5.2. Modified TCP with RIO

The analysis for the over-subscription case (ρ > 1) is similar to that in the previous
section. We get the same expression for the throughput as (13). In the under-subscription
case and using (8) and (9), we write

p̄i
(
Xi

)(
Xi − µi

) = 3αi
2λ
.

p̄i(Xi) is given by (11). The transmission rate of connection i is always above the
reservation which gives

p̄i
(
Xi

) = Xi − µi
(1 − ρ)µ.

Solving for the throughput Xi , we get

Xi = µi +
√

3αi(1 − ρ)µ
2λ

.

5.3. Saw tooth marking

The calculation here is similar to that in the case of RIO with Standard TCP with a small
difference in the definition of ρ. Given that the marker at the edge of the network starts
to mark packets as OUT when the rate of connection i exceeds 4µi/3 rather than µi ,
we define ρ as (

∑N
i=1 4µi/3)/µ. The network contains 4/3 more IN packets than in

the RIO case. The under-subscription case corresponds always to ρ < 1 and the over-
subscription case to ρ > 1.

Consider the case ρ < 1. Using (7) and (9), we have

p̄i
(
Xi

)
Xi = 3αi

2λ
,

p̄i
(
Xi

) = 1

(1 − ρ)µE

[(
Xi − 4µi

3

)
1

{
Xi >

4µi
3

}]
.

The throughput can be simply obtained by substituting µi by 4µi/3 in (12). It follows
for ρ < 1,

Xi =




2µi
3

+
√

4µ2
i

9
+ 3αi(1 − ρ)µ

2λ
if µi <

√
9αi(1 − ρ)µ

8λ
,

µi +
√

9αi(1 − ρ)µ
8λ

otherwise.



146 BARAKAT AND ALTMAN

When ρ > 1, the throughput can be calculated similarly to the case of RIO with Standard
TCP. The difference is that in this case the throughput of connection i can go until µi ,

Xi = min

(√
3αiµ

2λ
,µi

)
.

5.4. Standard TCP with three drop priorities

The analysis is similar to that in the RIO case. Define ρ1 and ρ2 as the two ratios indicat-
ing how the bandwidth µ is allocated to different priority levels (ρk = ∑N

i=1 µi,k/µ). We
have ρ1 < ρ2. We distinguish three regions instead of two. The first region corresponds
to ρ1 < ρ2 < 1. The expression of the throughput in this case is obtained by substituting
µi by µi,2 and ρ by ρ2 in (12). The second region corresponds to ρ1 < 1 < ρ2 and the
throughput is obtained by substituting µi by µi,1 and ρ by ρ1 in (12). The third region
corresponds to 1 < ρ1 < ρ2 and the throughput is given by (13) after the substitution of
µi by µi,1.

In order to compare this scheme to previous ones, we need to set µi,1 and µi,2 as a
function of the throughput desired by the connection (µi). As in section 4, we set µi,1 to
2µi/3 and µi,2 to 4µi/3. Similarly, ρ1 is equal to 2ρ/3 and ρ2 to 4ρ/3. We have then
the following expression for the throughput,

For ρ <
3

4
,

Xi =




2µi
3

+
√

4µ2
i

9
+ 3αi(1 − 4ρ/3)µ

2λ
if µi <

√
9αi(1 − 4ρ/3)µ

8λ
,

µi +
√

9αi(1 − 4ρ/3)µ

8λ
otherwise.

For
3

4
< ρ <

3

2
,

Xi =




µi

3
+

√
µ2
i

9
+ 3αi(1 − 2ρ/3)µ

2λ
if µi <

√
9αi(1 − 2ρ/3)µ

2λ
,

µi

2
+

√
9αi(1 − 2ρ/3)µ

8λ
otherwise.

For
3

2
< ρ, Xi = min

(√
3αiµ

2λ
,
µi

2

)
.

5.5. Relation with the probability approach

In the literature [Lakshman and Madhow, 17; Padhye et al., 19; Yeom and Reddy, 22],
the probability with which packets of different priority levels are dropped in the network
is used instead of the intensity of congestion events (λ). The advantage of the former
approach is that the drop probability is a measure that can be computed end-to-end. This
can be done by simply counting the number of drops to the total number of packets



MARKOVIAN MODEL FOR TCP ANALYSIS 147

transmitted. The relation between the two approaches is however quite simple, and by
some transformation we can prove that our results are similar to those found in [Yeom
and Reddy, 22]. Of course, our study remains more general than [Yeom and Reddy, 22]
and since it accounts for more DiffServ schemes. Consider, for example, the scheme of
standard TCP with RIO buffers which is also considered in [Yeom and Reddy, 22]. Let
pIN and pOUT be respectively the probabilities that IN and OUT packets are dropped in
the network. Assume that the bottleneck link is fully utilized. The intensity of losses
is no other than the drop probability times the rate of packets. Thus, in the under-
subscription case we have

pIN = 0, λ = pOUT(1 − ρ)µ.
And in the over-subscription case,

λ = pINµ, pOUT = 1.

Substituting in (12) and (13), λ and ρ by their values as a function of pIN and pOUT, one
can find the same expressions for the throughput as those found in [Yeom and Reddy, 22]
for the standard TCP with RIO scheme.

6. Some numerical results

We solve numerically our model for the case of two concurrent TCP connections. This
gives a Markov chain of dimension 1. The performance of the different schemes is
compared according to the objectives we presented at the beginning of section 1. The
two connections share a bottleneck of bandwidth µ = 1.5 Mbps. TCP packets are of
total size 552 packets (MSS + TCP/IP header). Reservations are expressed in kbps.
The receivers are supposed to acknowledge every data packet which gives αi = 1/T 2

i

packets/s2. Recall that αi is the rate at which the transmission rate of connection i
increases versus time. By using this value for αi , we obtain the throughput in packets/s.
First, we give the two connections the same RTT (100 ms) and we study the performance
of the different schemes under different reservations and different subscription levels.
Second, we study the impact of the difference in RTT on the service differentiation
provided by the different schemes.

6.1. Impact of the reservation

We change the reservations of the two sources in a way that their sum is constant and
equal to ρµ; ρ indicates how much bandwidth is reserved by the two connections. We
consider three values of ρ: 0.5, 1 and 1.5. For each ρ and according to the objectives in
section 1, we define a factor F that characterizes how much connection 1 is favored with
respect to connection 2. For ρ < 1, the network is under-subscribed and the two sources
must share fairly the excess bandwidth. We define F in this case as the ratio of X1 −µ1

and X2 − µ2. The optimal scheme is the one that gives the closest F to 1 [Yeom and
Reddy, 21]. An F > 1 means that the scheme is in favor of connection 1.



148 BARAKAT AND ALTMAN

Figure 2. Performance comparison for a 50% total reservation.

For ρ � 1, the network is over-subscribed. The bandwidth must be shared propor-
tionally to the reservation. We define F in this case as the ratio of X1/µ1 and X2/µ2.
Again, the optimal scheme is the one that gives the closest F to 1, and an F > 1 means
that the scheme is in favor of connection 1.

In figures 2–4, we plot the factor F respectively for the three cases ρ = 0.5, 1 and
1.5. The X-axis shows the reservation of source 1 in Kbps. We vary this reservation
between 0 and ρµ/2. For all the schemes and as one must predict, F converges to 1
when the reservation of source 1 moves to that of source 2.

In the under-subscription case, the original RIO scheme gives the worst service.
The source with the small reservation achieves better performance than that with the
large reservation. The other schemes improve the service. They give connection 2 more
chance to increase its rate above its reservation which improves its throughput.

In the over-subscription case the situation changes. This is more depicted in fig-
ure 4. In this case, the original RIO scheme gives better performance than the proposed
solutions (except the three colors scheme). The problem here is that the source with
the large reservation is transmitting almost always IN packets and rarely OUT packets.
Thus, it cannot profit from the high priority we give to OUT packets. The increase in
the priority of OUT packets helps the source with the small reservation which achieves
better throughput.



MARKOVIAN MODEL FOR TCP ANALYSIS 149

Figure 3. Performance comparison for a 100% total reservation.

The comparison between the different schemes requires also a calculation of the
bottleneck bandwidth utilization ((X1+X2)/µ). Two schemes with the same F will have
different performances if they do not utilize equally the available bandwidth. In table 1
we give the average utilization for all schemes under different subscription levels. For a
given level, we average the utilization over all the possible values of µ1 andµ2. The table
shows that the different schemes give approximately the same utilization. The scheme
proposing a change in TCP sources gives a better utilization in the cases of ρ = 0.5 and
ρ = 1, but it gives also the best factor F in these two cases. The three figures showing
F as a function of µ1 and µ2 for different ρ (figures 2–4) are then enough to compare
the performances of the different schemes.

6.2. Impact of the round-trip time

The bias of TCP against connections with long RTT is known [Floyd and Jacobson, 10;
Lakshman and Madhow, 17; Padhye et al., 19]. Long RTT connections take long time
to recover from window reduction in contrast to small RTT connections which increase
quickly their windows and grab most of the bandwidth. This is known to cause a problem
of unfairness. In a best effort network, connections with different RTT crossing the
same bottleneck fail to share equally the available bandwidth. In a DiffServ network,
the increase in the RTT of a connection reduces also its throughput. This deteriorates



150 BARAKAT AND ALTMAN

Figure 4. Performance comparison for a 150% total reservation.

Table 1
The utilization of the bottleneck bandwidth.

Total reservation
50% 100% 150%

Window division 92.87% 88.57% 85.96%
Two drop priorities 85.72% 85.09% 85.68%
Three drop priorities 85.72% 85.68% 85.09%
Saw tooth marking 85.72% 85.70% 85.72%
Inverse drop probability 85.26% 85.09% 83.64%

the service if the throughput of the connection is already less than its fair share of the
bandwidth given by the objectives in section 1. But, this improves the service if this
connection whose RTT increases is using more than its fair share of the bandwidth.

We study in this section how much the difference in RTT impacts the service pro-
vided by the different DiffServ schemes. In other words, we study how much a scheme
resists to a difference in RTT. We suppose that the two connections are asking for the
same bandwidth (µ1 = µ2). We set T2 to 50 ms and we vary T1 between 50 ms and
500 ms. Ideally, the two connections must achieve the same throughput independently
of their RTT. To quantify the impact of the change in T1 on the service, we use the



MARKOVIAN MODEL FOR TCP ANALYSIS 151

Figure 5. Fairness index for a 0% total reservation.

fairness index defined in [Jain et al., 15],

I = (X1 +X2)
2

2((X1)
2 + (X2)

2)
.

This index is an increasing function of fairness. It varies between 1/2 when one of
the two connections is shut down and 1 when the two connections realize the same
throughput. We plot in figures 5–8, the index I as a function of the ratio T1/T2 for four
values of ρ: 0, 0.5, 1 and 1.5.

The zero reservation case corresponds to a best effort network. All the schemes
achieve the same performance (figure 5). The fairness deteriorates as T1 increases. The
small RTT connection (i.e., 2) gets better and better performance. A small reservation
as for ρ = 0.5 protects the long RTT connection and improves the service (figure 6).
Indeed, as T1 starts to increase, the throughput of connection 1 drops, but at a certain
point it fells below its reservation and the connection starts here to send only high-
priority packets. It becomes then protected from the other connection. This improves the
fairness compared to the best effort network. All schemes other than RIO with standard
TCP improve further the service. With these schemes, the long RTT connection has
more chances to stay above its reservation.



152 BARAKAT AND ALTMAN

Figure 6. Fairness index for a 50% total reservation.

In the case of ρ = 1, the situation changes (figure 7). Connections are transmitting
at approximately their reservation when T1 = T2. In this case, it is better not to help
a connection to exceed its reservation because this will profit for the connection with
small RTT instead of the connection with long RTT. Thus, RIO in this case gives better
performance than the other schemes. We see approximately the same results in figure 8
where the total reservation is equal to 150% the available bandwidth. The connections in
this case are transmitting at less then their reservations. The throughput of connection 1
deteriorates and that of connection 2 increases until the point where the throughput of
connection 2 reaches its reservation. Connection 2 starts here to transmit low-priority
packets. It is better here not to help this connection to increase its rate above its reserva-
tion. For this reason, the RIO scheme gives better performance than the others.

6.3. Discussion of the results

Our results show the problem of TCP in a DiffServ network which is reported in the
literature [Basu and Wang, 4; Clark and Fang, 5; Feng et al., 7, 8; Yeom and Reddy,
21, 22]. A connection asking for a large bandwidth is unable to realize its fair share of
the bandwidth. The different proposed solutions try to solve the problem by helping this
connection to exceed its reservation more than a connection with a small reservation.
In an under-subscribed network, this improves the performance. However, in an over-



MARKOVIAN MODEL FOR TCP ANALYSIS 153

Figure 7. Fairness index for a 100% total reservation.

Figure 8. Fairness index for a 150% total reservation.



154 BARAKAT AND ALTMAN

subscription network, the source with the small reservation profits from this help since
it is the most likely to transmit above its reservation.

Our results also show that the difference in RTT deteriorates the service provided
by the network. Some schemes resist better than others to this difference. Again here,
the optimal scheme depends on the subscription level. In an under-subscription case,
schemes helping the source to exceed its reservation give better performance. In an
over-subscription case, the sources are transmitting at less than their reservations and it
is better in this case not to help a connection to exceed its reservation.

When choosing a scheme, the difficulty of its implementation must also be consid-
ered. The scheme proposing a change in TCP sources is very difficult to be implemented.
Moreover, it does not give the best performance in case of over-subscription. The scheme
dropping packets inversely proportional to the reservation gives good performance but
its implementation is also very difficult. If the network is well dimensioned so that it
cannot be over-subscribed, a simple scheme such as saw tooth marking gives good per-
formance. If over-subscription is unavoidable, the implementation of the three colors
scheme allows a good performance under all subscription levels. The power of the three
colors scheme comes from the fact that it gives some priority to some OUT packets over
other OUT packets (necessary for the under-subscription case) but it guarantees that this
does not exceed the priority of IN packets (necessary for the over-subscription case).

7. Conclusions

We present in this paper a Markovian model for the study of TCP performance in a
Differentiated Services network. Our model accounts for the different mechanisms in
a DiffServ architecture (marking, dropping), the parameters of the TCP connection (re-
served bandwidth, round-trip time, packet size, frequency of ACKs), the parameters of
the other TCP connections sharing the same bottleneck with the studied connection, and
the available bandwidth in the network. We outline first a general version of the model
that depends on two functions: the reaction of a connection to congestion signals, and the
probability that a particular connection reduces its rate upon congestion. We calculate
the general expression of the throughput of a connection. We specify then the general
model to the different proposed DiffServ schemes by simply finding the expressions of
the two functions. We also present a simplification of the model in case of large number
of connections. Explicit expressions for the throughput are provided and the relation
with the models studied in the literature is established. Finally, we solve the model for
the different schemes and we show numerically how much the new propositions im-
prove the performance with respect to the original DiffServ scheme. Mainly, we study
the service differentiation provided by a scheme and how much it resists to a difference
in the subscription level, in the reservation, and in the round-trip time. We believe that
our model is a good tool for the validation of new solutions aiming at improving the
performance of TCP in a DiffServ network.



MARKOVIAN MODEL FOR TCP ANALYSIS 155

References

[1] E. Altman, K. Avratchenkov and C. Barakat, TCP in presence of bursty losses, in: ACM SIGMET-
RICS, 2000.

[2] E. Altman, K. Avratchenkov and C. Barakat, A stochastic model for TCP/IP with stationary random
losses, in: ACM SIGCOMM, 2000.

[3] C. Barakat, TCP modeling and validation, IEEE Network 15(3) (2001) 38–47.
[4] A. Basu and Z. Wang, A comparative study of schemes for differentiated services, Bell Labs Technical

Report (1998).
[5] D. Clark and W. Fang, Explicit allocation of best effort packet delivery service, IEEE/ACM Transac-

tions on Networking 6(4) (1998) 362–373.
[6] K. Fall and S. Floyd, Simulation-based comparisons of Tahoe, Reno, and SACK TCP, Computer

Communication Review 26(3) (1996) 5–21.
[7] W. Feng et al., Understanding TCP dynamics in a differentiated services Internet, IEEE/ACM Trans-

actions on Networking (1998).
[8] W. Feng et al., Adaptive packet marking for providing Differentiated Services in the Internet, in:

Internat. Conf. on Network Protocols, 1998.
[9] S. Floyd, TCP and explicit congestion notification, Computer Communication Review 24(5) (1994)

10–23.
[10] S. Floyd and V. Jacobson, Random early detection gateways for congestion avoidance, IEEE/ACM

Transactions on Networking 1(4) (1993) 397–413.
[11] J. Heinanen et al., Assured forwarding PHB group, RFC 2597 (1999).
[12] J. Heinanen, T. Finland and R. Guerin, A two rate three color marker, Internet draft (1999).
[13] V. Jacobson, Congestion avoidance and control, in: ACM SIGCOMM, 1988.
[14] V. Jacobson, K. Nichols and K. Poduri, An expedited forwarding PHB, RFC 2598 (1999).
[15] R. Jain, D. Chiu and W. Hawe, A quantitative measure of fairness and discrimination for resource

allocation in shared computer systems, DEC Research Report TR-301 (1984).
[16] L. Kleinrock, Queueing Systems, Wiley, New York, 1975.
[17] T.V. Lakshman and U. Madhow, The performance of TCP/IP for networks with high bandwidth-delay

products and random loss, IEEE/ACM Transactions on Networking 5(3) (1997) 336–350.
[18] K. Nichols, V. Jacobson and L. Zhang, A two-bit differentiated services architecture for the Internet,

Internet draft (1997).
[19] J. Padhye, V. Firoiu, D. Towsley and J. Kurose, Modeling TCP throughput: A simple model and its

empirical validation, in: ACM SIGCOMM, 1998.
[20] W. Stevens, TCP slow-start, congestion avoidance, fast retransmit, and fast recovery algorithms, in:

RFC 2001.
[21] I. Yeom and A. Reddy, Realizing throughput guarantees in differentiated services networks, TAMU-

ECE-9806 (1998).
[22] I. Yeom and A. Reddy, Modeling TCP behavior in a differentiated-services network, TAMU ECE

Technical Report (1999).


