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Abstract. We study optimal static routing problems in open mul-
ticlass networks with state-independent arrival and service rates. Our
goal is to study the uniqueness of optimal routing under different sce-
narios. We consider first the overall optimal policy that is the routing
policy whereby the overall mean cost of a job is minimized. We then
consider an individually optimal policy whereby jobs are routed so that
each job may feel that its own expected cost is minimized if it knows
the mean cost for each path. This is related to the Wardrop equilibrium
concept in a multiclass framework. We finally study the case of class
optimization, in which each of several class of jobs tries to minimize
the averaged cost per job within that class; this is related to the Nash
equilibrium concept. For all three settings, we show that the routing
decisions at optimum need not be unique, but that the utilizations in
some large class of links are uniquely determined.

I. INTRODUCTION

We consider the problem of optimally routing in networks. Much
previous work has been devoted to the routing problem in which at each
node one may take new routing decisions. We consider a more general
framework in which the sources have to decide how to route their traffic
between different existing paths. (These two problems coincide in the
case where the set of paths equals to the set of all possible sequences of
consecutive directed links which originate at the source and end at the
destination.) In ATM (one of the leading architectures for high speed
networks) environment, this problem arises when we wish to decide on
how to route traffic on a given existing set of virtual paths or virtual
connections. Our framework thus allows us to handle routing both in
a packet switching as well as in a circuit switching environment. We
consider three different frameworks:
(i) Overall optimization criterion, where a single controller makes the
routing decisions [9], [10], [12], [17].
(ii) Individual optimality, in which each routed individual chooses its
own path so as to minimize its own cost. An individual is assumed
to have an infinitesimally small impact on the load in the network and
thus on costs of other individuals. This framework has been exten-
sively investigated in transportation science [5], [8], [16], and was also
considered in the context of telecommunication [11] and in distributed
computing [9], [10], [11]. The suitable optimization concept for this
setting is of Wardrop equilibrium [18]; it is defined as a set of routing
decisions for all individuals such that a path is followed by an individ-
ual if and only if it has the lowest cost for that individual.
(iii) Class optimization; a class may correspond to all the traffic gen-
erated by a big organization. It may represent a service provider in a
telecommunication in case that it is the service providers that take the
routing decisions for their subscribers. A class contains a large amount
of individuals and has a nonnegligible impact on the load in the net-
work. Each class wishes to minimize the cost per individual, averaged
over all individuals within that class. The suitable optimization con-
cept for this approach is that of Nash equilibrium [8]; it is defined as a
set of routing decisions for the different classes such that no class can
decrease its own cost by unilaterally deviating from its decision. This
approach was used in telecommunication applications in [15], [14], in
load balancing problems in distributed computer systems [13], [9], [10]
and in transportation science in [8].

An optimization problem does not necessarily have a unique solu-
tion. If they are not unique, it is necessary to make clear the range
and characteristics of the solutions, in particular, when we calculate
numerically the optimal solutions and when we intend to analyse the
effects of the system parameters on the optimal solutions. [11] already
studied the first two approaches (overall and individual optimization)
and characterized the uniqueness for a particular cost structure, that
of open BCMP queueing networks [3] with state-independent arrival
and service rates. We extend here these results to a fairly general cost
function. We also extend substantially results obtained in [15] for the
uniqueness of class optimization.

In Section II we provide the notation and some assumptions used in
this paper. In Section III we obtain the overall optimal solution, and

discuss the uniqueness of the overall optimal solution. In Section IV
we show similar results on the uniqueness of the individually optimal
solution. Some results on uniqueness for class optimization are pre-
sented in Section V. Numerical examples are presented in Section VI,
and the paper ends with a concluding section VII.

II. NOTATION AND ASSUMPTIONS

We consider an open network model that consists of a set � contain-
ing � links. We assume that in the network there are pairs of origin and
destination points. We call the pair of one origin and one destination
points an O-D pair. The unit entity that is routed through the network
is called a job. Each job arrives at one of the origin points and departs
from one of the destination points. The origin and destination points
of a job are determined when the job arrives in the network. Jobs are
classified into � different classes. For the sake of simplicity, we assume
that jobs do not change their class while passing through the network.
A class � job may have one of several different origin-destination pairs.
A class � job with the O-D pair ( ���
	 ) originates at node � and desti-
nates for node 	 through a series of links, which we refer to as a path,
and then leaves the system. We assume that links are class-dependent
directional, i.e. for each class, there is a given direction in which the
flow can be sent.

In many previous papers (e.g. [15]), routing could be done at each
node. In this paper we follow the more general approach in which a job
of class � with O-D pair ( ���
	 ) has to choose one of a given finite set of
paths (see also [11], [16]). We call this set the paths of job class � O-D
pair ( ���
	 ).

We assume that we can choose the job flow rate of each path in order
to achieve a performance objective. A path may be a given sequence
of links that connect the origin and destination nodes. But we allow
path to be some more general object. It may contain a number of sub-
paths; we assume however that once the job flow rate of a path is given,
the job flow rate of each subpath in the path is fully determined (and
is not the object of a control decision). That is, the relative flow rate
of each subpath in the same path is governed by some fixed transfer
proportions (or probabilities) between the links. For example, one may
consider paths that include noisy links, where lost packets have to be
retransmitted locally over the link. Thus, some given proportion of the
traffic in this path use a direct subpath (no losses) whereas other have
to loop (this models losses and retransmissions). Another example of a
path containing several subpaths is a network in which switches route
arriving traffic in some fixed proportions between outgoing links (sub-
paths); if this proportion is not controlled by the the entity that takes
routing decision for the class, then resulting routes from the outgoing
links are still considered as a single path. The solution of a routing
problem is characterized by the chosen values of job flow rates of all
paths.
Notation regarding the network:��
����

= Set of O-D pairs for class � jobs.� 
����� = Set of paths that class � jobs of O-D pair 	�� � 
����
flow

through.� 
����
= Set of all paths for class � jobs, i.e.,

� 
������ ������ �"!$# � 
����� .

% ���'&( � �*),+ if -�� � 
�� & �� and � � ��./�0
otherwise.

Notation regarding arrivals to the network and flow rates:1 
����� = Rate at which class � jobs join O-D pair 	2� � 
���� .1 
����
= Total job arrival rate of class � jobs, i.e.,

1 
���� �43�5��� ��!$# 1 
����� .

6
= System-wide total job arrival rate, i.e.,

6 �873 ��9;: 1 
"��� .< 
����( = Rate at which class � jobs flow through path - .



2��� ( = Percentage of the rate < 
����( that pass through link � , for - ��� 
���� .� 
����� = Rate at which class � jobs visit link � , � 
����� � 3( ��� ��!$# ��� ( < 
"���( .1 �
	 ���$� 1 
���� � 6 and
�
� ( are given constants (and not decision variables).

Notation regarding service and performance values in the open net-
work:� 
����� = a constant denoting the service rate of class � jobs at link � .� 
����� � � 
������� � 
����� . Utilization of link � for class � jobs.� � �873 ��9;: � 
"���� . Total utilization of link � .1�� 
����� =Mean cost of class � jobs at link � .� � 	 � � � = Weighted cost per unit flow in link � .� 
����( =Average class � cost of path -;� - � � 
���� � � � + ��������������� .2�

=Overall mean cost of a job (averaged over all classes).� 
����
=Overall mean cost of a job of class � .

Notation regarding vectors and matrices:� ��� � : � �
� ������� � ��� �"! where # means ‘transpose’. We call this the
utilization vector.$ �%� � 
 : �: � � 
 : �� �����
��� � 
 : �� ��������� � 
"���: �� 
����� ������� � � 
����� �
������� � ! , i.e, the vector of total flows over all links.&

=
� 1 
 : �: � 1 
�: �� ��������� 1 
 � �: � 1 
 � �� ������� � ! , i.e., the arrival rate vector.

x =
� < 
 : �: � < 
 : �� ���
����� < 
 � �: � < 
 � �� ������� � ! , i.e., the path flow rate vector.' =
� ( 
 : �: � ( 
 : �� ��������� ( 
 � �: � ( 
 � �� �����
� � ! , i.e., the vector whose elements

are
( 
����� � 	 � � 
"��� � � � + �)������������� ; the elements

( 
����� will corre-
spond to some Lagrange multipliers.*

=
� + 
�: �: � + 
 : �� �����
��� + 
 � �: � + 
 � �� �
����� � ! , i.e., the vector whose elements are+ 
����� �,� � � � � � + �)������������� ; the elements

+ 
����� will correspond to
some Lagrange multipliers.
T =

� � 
 : �: � � 
�: �� ��������� � 
 � �: � � 
 � �� ������� �"! , i.e., the vector whose elements
are
� 
����( � - � � 
"��� � � � + ����������� ��� .

x

"���

=
� < 
����: � < 
����� ������� �"! , i.e., the path flow rate vector for class � jobs.& 
����

, ' 
���� , and T

����

are defined similarly.
x - � =

� < 
 : �: � < 
�: �� �����
��� < 
�� - : �: ���
����� < 
"��. : �: ������� �"! , i.e., the path flow
rate vector for jobs of the classes other than class � .

/
=

01111111
2

% :
::
: % :
:: � ����� % : �:
: % : �: � �����% :
:� : % :
:�3� ����� % : �� : % : ��3� �����
...

. . .
...

. . .% � ::
: % � :: � ����� % �3�:
: % �3�: � �����% � :� : % � :�3� ����� % �3�� : % �3��3� �����
...

. . .
...

. . .

465555555
7 i.e., the incident matrix

whose 	98 �;:�� element is % ����&( � , - � � 
���� � � � + ����������� ����� 	 �� 
�� & � � � . � + ��������������� , where 8 � -=< � - :3 > 9 :@? � 

> � ? and : �

	A< � & - :3 > 9 : ? � 

> � ? .

x B y =
3DC < C9E�C , i.e., the inner product of vectors x

��� < : � < � ������� � !
and y

�%� E : � E � ������� �"! .
We make the following assumptions on the cost:
B1: The cost over a path is given by as a weighted sum of link-by-link
costs over the path: associated with each link � � � there is a cost� � 	 � � � per flow unit, that depends on the utilization of the link (The
function

� �
does not depend on the class � !). There is further a class

dependent weight factor � 
"���� per link � . Thus, the cost per unit flow of
class � on link � is �� 
����� � � � � � 
����� . Thus the average cost per unit flow
of class � job that passes through path - �F� 
���� is� 
����( � 3� �HG ��� ( �� 
����� � 3� �HG ��� (� 
����� � � 	 � � �)� (1)

I
Each term in the sum is positive even if the directions of flows are not the same.JLK ��!$#MON K M and PK �"!'#M are defined at the end of the section (Assumption B1)

(For examples of such costs, see [11].)
B2:

� �@Q � 0 ��RS�UT � 0 ��R � , and
� � 	 0 � is finite.

B3: The set � is composed of two disjoint sets of links:
(i) �WV , for which

� � 	 � � � are convex and strictly increasing (in the
interval where they are finite),
(ii) �YX , for which

� � 	 � � � � � � are constant (independent of � � ).
B4:

� � 	 � � � are continuous. Moreover, they are continuously differen-
tiable whenever they are finite.Z +\[ Z^] cover in particular the cost that is mostly used in network-
ing games in telecommunications, which is the expected queueing de-
lay in BCMP queueing networks [3] with state-independent arrival and
service rates. Denote�U_ = �`_ 	9a � = � ? b M 9Dc N � �HGed . This is the same as � except that � � � 0
for all � ���OX .

The overall mean cost of a job,
�

, can be written as

� �873 ��9;: 3( ��f ��!$# <

����(g � 
����( � +g 3� ��G � � � � 	 � � �)�

The mean cost of a job of class � ,
� 
����

, can be written as� 
���� � 3( �hf �"!$# <

����(1 
���� � 
����( � +1 
"��� 3� ��G � 
����� � � 	 � � �)�

Note that the following conditions should be satisfied

for each � � + �)�������
��� ��� 3
( ��� �"!'#i < 
����( � 1 
����� � 	2� � 
���� � (2)

< 
"���(kj 0 � - � � 
���� � (3)

We can express (2) as l 7� & 9 : l ( ��� ��! & # % � & �( � < 
"� & �( � 1 
����� � 	 � ��
���� �
or, equivalently, / ! x

� & � (4)

III. OVERALL OPTIMAL SOLUTION

The problem of minimizing the overall mean cost is

minimize:
� � +6 3� ��G � � � � 	 � � � (5)

with respect to x s.t.
/ ! x

� & � x j 0 � (6)

where � � � l 7��9;: � 
"���� � � 
"���� and
� 
����� � l ( �h� �"!$# ��� ( < 
����( . Note that

(6) are the same as (2) and (3), respectively. We call the above problem
the overall optimization problem, and its solution the overall optimal
solution. Definem 
"���( �on 	 6 � � � n < 
����( , i.e., class � marginal cost of path -;� - �� 
���� �'� � + ��������������� .
t =
� m 
 : �: � m 
 : �� �����
��� m 
 � �: � m 
 � �� �����
� � ! is the gradient vector of the func-

tion
6 �

, i.e., the vector whose elements are
m 
"���( � - � � 
���� �'� �+ ������������� � .

An application of Kuhn-Tucker conditions yields the following [2]:
Lemma III.1: px is optimal for problem (5) if and only if

t 	 px �@B 	 x [ px � j 0 � for all x (7)

such that
/ ! x

� &
and x j 0 �

From condition B1 we see that
�

depends only on the utilization of
each link, � � , which results from the path flow rate matrix. It is possible,
therefore, that different values of the path flow rate matrix result in the
same utilization of each link and the same minimum mean cost.

We define below the concept of monotonicity of vector-valued func-
tions with vector-valued arguments.
Definition Let F 	rq � be a vector-valued function that is defined on a
domain s�tvuAw and that has values F 	 x � in uAw . This function is
monotone in s if for every pair x � y �xs 	 x [ y �UB �F 	 x � [ F 	 y � � j 0 �
It is strictly monotone if, for every pair x � y �xs with x y� y, 	 x [ y �@B�
F 	 x � [ F 	 y � �{z 0 �

We need the following property:
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Lemma III.2: Assume
Z +,[ Z ] , and let �;� �YV . Then

(i)
� � 	 � � � is finite if and only if its derivative

� .� 	 � � � is finite.
(ii) If

� .� 	 � � � is infinite then for any x for which the load on link � is � � ,
the corresponding cost

� 	 x � is infinite.
Proof. (i) Due to the convexity of

� �
,
� � 	 � � � � � b Mc � .� 	�� � � 	 � ���� � � .� 	 � � �)� By B2, if

� � 	 � � � � R then � � z 0
, which implies by the

latter equation that
� .� 	 � � � is infinite.

For the converse, assume that
� � 	 � � � is finite. Then by continuity,��� z 0

such that
� � 	 � � < � � is finite. Since

� �
is convex,

� .� 	 � � � �� - : 	 � � 	 � � < � � [ � � 	 � � �3� and is thus finite as well. (ii) If
� .� 	 � � � is

infinite then by (i),
� � 	 � � � is infinite; moreover, � � z 0 by assumption

B2, so that
� 	 � � � R (by (5)).

For the function t 	 x � we have the following.
Lemma III.3: Assume

Z +`[ Z ] . Whenever finite, t 	 x � is monotone
but is not strictly monotone, i.e., for arbitrary x and x . 	 x y� x . � , if

� 	 x �
or
� 	 x .9� is finite then	 x [ x . � B � t 	 x � [ t 	 x . � � z 0 if � _ y� � . _ � (8)� 0

if �`_ � � . _ � (9)

where � _ � � _ 	 x � and � . _ Q � � _ 	 x . � are the utilization vectors that
x and x . result in, respectively.
Proof. Assume that � _ y� � . _ . Then	 x [ x . �@B � t 	 x � [ t 	 x . � �� 73 ��9;: 3( ��� ��!$# 	 < 
����( [ < & 
����( � � m 
����( 	 x � [ m 
����( 	 x . � �

� 73 ��9;: 3( ��� ��!$# 3� �HG 	 < 
����( [ < & 
����( �
	 (10)��� (� 
����� �
� � � 	 � � � [ � � 	 � .� ���A< � � � 	 � � 	 � � �	 � � [ � .� 	 � � 	 � .� �	 � .� ���
� 3� ��G�� 	 � � [ � .� � �
� � � 	 � � � [ � � 	 � .� ��� (11)

< � � � 	 � � 	 � � �	 � � [ � .��	 � � 	 � .� �	 � .� ��� z 0 (12)

(The second equality above follows from (1). The last inequality fol-
lows from the strict monotonicity of

� � 	 � � � , as well as the fact that
its derivative is increasing in � � , and the derivative remains increas-
ing when multiplied by � � . Due to Lemma III.2, if

� 	 � � is finite then� .� 	 � � � is finite for all links � � � (and similarly for
� 	 � . � ). The last

inequality follows since by condition
Z��

,
� � 	 � � � are strictly monotone

and � � 	 � � 	 � � � � 	 � � are increasing for � � �YV . Therefore we have the
relations (8) and (9).

Theorem III.4: Assume
Z + [ Z ] and that there exists some finite

feasible solution. Then the utilization in each link � � � V is uniquely
determined and is the same for all overall optimal solutions.
Proof. Suppose that the overall optimal policy has two distinct solutions�
x
�

and �x, which result in the utilization vectors
�� _ Q � � _ 	 �x � and��U_ Q � �`_ 	 �x � , respectively, and

��`_ y� ��`_ . Then we have from Lemma
III.1, t 	 �x � B 	 �x [ �x � j 0 � t 	 �x �@B 	 �x [ �x � j 0 �
Hence 	 �x [ �x � B � t 	 �x � [ t 	 �x � � � 0 � From Lemma III.3 we have 	 �x [ �x � B�
t 	 �x � [ t 	 �x � �@z 0 � since

��U_ y� ��`_ . This leads to a contradiction. That
is, if there exist two distinct optimal solutions, the utilization vectors of
both the solutions must be the same. Note that the utilization of link��� � X is considered always zero. Naturally, in that case, l � ��Ged � �
must be unique but each of � � �U� � � X , need not be unique.

Note that even when the utilization in each link is unique, the overall
optimal solution may not be unique. This is due to the fact that

�
de-

pends only on � (see (5)) (thus if x is overall optimal then any solution
x . that gives rise to the same value of � will be optimal as well). In
Section 5 of [11] there is an example of the cases where more than one
optimal solution exists.

Now let us consider the range of the optimal solutions. From the
above, we obtain the following relations that characterize the range of
the optimal solutions.

73 ��9 : 3( ��� �"!'# �
� ( <

"���(� 
����� � � � � �;� �YV � (13)

3� �HGed 73 ��9;: 3( �h� ��!$# ��� ( <

����(� 
����� � 3� �HG d � � �

and for � � + �)����������� ���3
( �h� �"!$#i < 
����( � 1 
����� ��	2� � 
���� � (14)

< 
����( j 0 � - � � 
���� � (15)

where the value of each � � is what an optimal solution x results in.
From the relations (13)-(15) we see that optimal path flow rates belong
to a convex polyhedron. Then we have the following proposition about
the uniqueness of the optimal solutions.

Corollary III.5: The overall optimal solution is unique if and only
if the total number of elements in x does not exceed the number of
linearly independent equations in the set of linear equations (13)–(14).

IV. INDIVIDUALLY OPTIMAL SOLUTION

By the individually optimal policy we mean that jobs are sched-
uled so that each job may feel that its own mean cost is minimum if
it knows the mean cost

� 
����( 	 x � of each path of O-D pair 	 �/- � � 
����� ,� � + ��� � �"� � . By the individual optimization problem we mean the
problem of obtaining the routing decision that achieves the objective of
the individually optimal policy. We call the solution of the individual
optimization problem the individually optimal solution or the equilib-
rium. In the equilibrium, no user has any incentive to make a unilateral
decision to change his route. Wardrop [18] considered this equilibrium
for a transportation network and defined it through two principles: a
policy is equilibrium if for each individual of a class, the delay along
paths which are actually used between the source and destination are
(i) the same, and (ii) they are smaller than or equal to the delays along
paths not used. It is well known that the solution of Wardrop equilib-
rium can be obtained by a single mathematical problem that is obtained
by a transformation of the cost [16].

We assume that there is a routing decision and that x is the path flow
rate matrix which results from the routing decision. The individually
optimal policy requires that a class � job of O-D pair 	 should follow a
path

�- that satisfies � 
����P( 	 x � �������( ��� �"!'#i � 
����( 	 x � (16)

for all 	 � � 
���� � � � + �����
��������� . If a routing decision satisfies the
above condition we say the routing decision realizes the individually
optimal policy.
Definition The path flow rate vector x is said to satisfy the equilibrium
conditions for a multi-class open network if the following relations are
satisfied for all 	2� ��
���� � � � + ��������������� ,� 
����( 	 x � j � 
"���� � < 
����( � 0 � (17)� 
����( 	 x � � � 
"���� � < 
����( z 0 � (18)3

( ��� ��!$#i < 
����( � 1 
����� � (19)

< 
����( j 0 � - � � 
����� � (20)

where � 
"���� �������( ��� �"!'#i � 
"���( 	 x �$� 	2� � 
���� �$� � + �����
�����
�
Note that (17)-(20) are identical to the relations�

T 	 x � [ / A � B x � 0 � (21)
T 	 x � [ / A j 0 � (22)/ ! x [ & � 0 � (23)

x j 0 � (24)

where A
� � � 
�: �: � � 
�: �� �����
��� � 
 � �: � � 
 � �� �����
� � ! , i.e., the vector whose

elements are � 
"���� � 	 � ��
���� � � � + �)�������
����� . The above definition
is the natural extension of the notion of Wardrop [18] equilibrium to
our setting.
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Theorem IV.1: Assume
Z + [ Z^] . There exists an individually opti-

mal solution x which satisfies the relations (21)-(24).
Proof. Define �� 	 x � by

�� 	 x � � +6 � 3� �HG ��� b Mc � � 	�� � 	 � < 3� ��G d � � � � � �
Note that �� 	 x � is a convex increasing function of x. Then by (1),� 
"���( 	 x � � nn < 
����( 	 6 �� 	 x �3�)�
Introduce the following convex nonlinear program: minimize �� 	 x �
with respect to x s.t. (23)-(24). The Kuhn-Tucker conditions are the
same as (21)-(24). Therefore, the program should have an optimal so-
lution which must satisfy relations (21)-(24).

Corollary IV.2: Assuming
Z + [ Z^] , px is an individually optimal

solution if and only if it is feasible and T 	 px �{B 	 x [ px � j 0 � for all x s.t./ ! x
� &

and x j 0 �
Proof. Similar to the proof of Lemma III.1.

Lemma IV.3: Assume
Z +U[ Z ] . Whenever finite, the function T 	 x �

is monotone but is not strictly monotone. That is, for arbitrary x and
x . 	 x y� x . � , if T 	 x � are finite or T 	 x . � are finite then	 x [ x . � B �T 	 x � [ T 	 x . � � z 0 if � _ y� � . _ � (25)� 0

if �U_ � � . _ (26)

where �`_ and � . _ are the utilization vectors that x and x . result in,
respectively.
Proof. This Lemma can be proved by the same way as that for the
Lemma III.3. Assume that � _ y� � . _ . Then	 x [ x . �@B �T 	 x � [ T 	 x . � �� 73 ��9;: 3( �h� ��!$# 3� �HG � 	 < 
����( [ < & 
����( � 	 �
� (� 
"���� 	 � � 	 � � � [ � � 	 � .� �3�

� 3� ��G�� 	 � � [ � .� � 	 � � 	 � � � [ � � 	 � .� �3� z 0
The last inequality follows since by B3,

� � 	 � � � are strictly monotone
for �;� �WV . Therefore we have the relations (25) and (26).

Theorem IV.4: Assume
Z + [ Z ] . Then all equilibria, for which all

users have finite cost, have the same utilization on links �����OV .
Proof. We can prove this in the same way as Theorem III.4.

Here again, individually optimal solution may not be unique. The
range of the individually optimal solutions (related to finite costs) is
given by the same set of relations as (13)-(15) but with possibly differ-
ent values of � � �@� � + �)�����������$� .

Next, we illustrate the uniqueness of the utilization is indeed re-
stricted to equilibria with finite cost. Consider the following net-
work. There are 4 nodes: � + ����� � � ]�� and 1 class. The set of links
is � 	 + ���$� 	 + � �$� 	 � ] �$� 	 � ] �$� 	 � � � � . There is an amount of flow of

1 �1 
 : � � + to ship between the source node 1 and the destination node
4. The cost per link is given by

� � 	 � � � � 	 + [ � � � - : � The strategy in
which all the flow goes along the path ( + T � T � T ]

) is individu-
ally optimal. Indeed, given that all users follow this path, no individual
can decrease his cost by choosing another path. This gives rise to in-
finite cost for all individuals. However, there exists another individual
optimal strategy: to route half of the flow along the path + To� T ]
and the other half through the path + T � T ]

. This is the unique
equilibrium that has finite cost for all users.

V. CLASS OPTIMAL SOLUTION

We present below equivalent characterizations of the class optimal
solution and obtain new uniqueness results. The question of uniqueness
for the class optimal solution has only been treated for some special
cases [1], [15]. A counter example in [15] shows that different class
optimal solutions may exist, with different utilizations. The following
assumption will be made throughout:
G: If not all classes have finite cost then at least one of the classes
which has infinite cost can change its own flow to make this cost finite.

A. Problem formulation

By the class optimal policy we mean that jobs are scheduled so that
the expected cost of each class may be minimum under the condition
that the scheduling decisions on jobs of the other classes are given and
fixed. By the class optimization problem we mean the problem of ob-
taining the routing decision x that achieves the objective of the class
optimal policy. We call the solution of the class optimization problem
the class optimal solution or the Nash equilibrium. In the Nash equilib-
rium, no class has any incentive to make a unilateral decision to change
the decision on the routes of the jobs of the class.

Assumption G above implies that in any Nash equilibrium, all classes
have finite costs.

We assume that there is a routing decision and that x is the path flow
rate matrix which results from the routing decision. The class optimal
policy requires that� 
���� 	 x 
"��� � x - � � � �����

x & �"!'# � 
���� 	 x . 
���� � x - � � (27)

for all � � + �)������������� (
� 
"��� 	 x . 
���� � x - � � is the overall mean cost of a

job of class � given that other classes use flow rate x - � , and class �
uses x . 
���� ). If x satisfies the above condition we say that it realizes the
class optimal policy. The problem of minimizing the mean cost for jobs
of class � is:

minimize:
� 
���� � +1 
���� 3� �HG � 
����� � � 	 � � � (28)

with respect to x

����

with x - � being fixed subject to
/ ! x

� & � x j 0 �
B. Variational inequalities and Kuhn-Tucker conditions

As in the previous sections we can get the variational inequalities
form by using the same reasoning as before. First we define�m 
"���( � n 	 1�� 	 ��� � 
���� � � n < 
����( , i.e., class � marginal class-cost of path-;� - � � 
���� �'� � + �������
����� � .�t =

� �m 
 : �: � �m 
 : �� ��������� �m 
 � �: � �m 
 � �� ������� � ! , i.e., the vector whose elements are�m 
"���( � - � � 
���� �'� � + �L������������� .�t 
���� =
� �m 
����: � �m 
����� ������� � ! .

The following characterization of an optimal solution can be ob-
tained by applying Kuhn-Tucker conditions (see [2] for details):

Lemma V.1: x is an optimal solution of problem (27) if and only if x
is feasible and it satisfies the following conditions� �t 	 x � [ / ' � B x � 0 � (29)�t 	 x � [ / ' j 0 � (30)/ ! x [ & � 0 � (31)

x j 0 � (32)
We can express the class optimal solution in the variational inequality

form by using the same way as that for the overall optimal solution as
follows.

Corollary V.2: Assume
Z +^[ Z^] . px is a class optimal solution if

and only if it is feasible and �t 	 px � B 	 x [ px � j 0 � for all x � s.t.
/ ! x

�&
and x j 0 �

Proof. Similar to the proof of Lemma III.1.

C. All positive flows

We make the following assumptions:
(i) � 
����� can be represented as 	 
���� � � , and

0�
 � 
����� is finite.
(ii) At each node, each class may re-route all the flow that it sends
through that node to any of the out-going links of that node. Thus the
set of paths for class � equals to the set of all possible sequences of
consecutive directed links which originate at a source � and end at the
destination 	 , � 	2� � 
"��� .
(iii) The rate of traffic of class � that enters the network at node � is
given by

1 
����
 ; if this quantity is negative this means that traffic of class� leaves node � at a rate of ? 1 
����
 ? . We assume that l 
 1 
"���
 � 0
.

For each node � and class � , denote by ��� 	 � �$��� the set of its in-
going links, and denote by ��� m 	 � ����� the set of its out-going links.
Due to the second assumption, we may work directly with the decision
variables

� 
����� instead of working with the path flows. For each node
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� we can then replace (4) by: l � ������� 
 
 N ��� � 
����� � l � ��� w 
 
 N ��� � 
����� <1 
����
 � Define the Lagrangian� 
���� 	 $ � * 
���� � � l � �HG � 
����� � � [l � + 
����� � l � ������� 
 � N ��� � 
����� [ l � ��� w 
 � N ��� � 
����� [ 1 
����� � �
Here,

* 
"��� �%� + 
����: � + 
����� �
������� + 
����� � ! is the vector of Lagrange multipli-
ers for class � . An assignment

$
	
is class-optimal if and only if the fol-

lowing Kuhn-Tucker conditions hold. There exists some
* 
���� � � + 
����� �

such that n � 
���� 	 $�	 � * 
���� �n � 
"���� j 0 � (33)n � 
���� 	 $�	 � * 
���� �n � 
"���� � 0
if � � 
����� z 0�
 (34)� 
����� j 0 � 3� ������� 
 
 N ��� � 
����� � 3� ��� w 
 
 N ���

� 
"���� < 1 
����
 �
Define � 
"���� 	 � 
����� � � � � ��� b �"!$#M K M 
 b M ���� �"!$#M � . Then

� 
����� 	 � 
����� � � � � � +� 
����� � � 
����� n � � 	 � � �n � � < � � 	 � � ���
Conditions (33)-(34) can be rewritten as� 
����� 	 � 
����� � � � � j + 
����� [ + 
����
 � (35)

with equality if
� 
����� z 0

and � � 	 � � ��� . Note that condition B3
implies that � 
����� 	 � 
����� � � � � is strictly monotonically increasing in both
arguments.

Lemma V.3: Assume
Z +U[ Z ] . Assume that

$
and �$ are two class-

optimal solutions with finite costs. If � � � �� � for all links � of type �YV
then

� 
"���� � �� 
����� , � � + ��� �6�"� � .
Proof: Assume that under the assumptions of the Lemma the conclu-
sions do not hold. Then

� �;� �YV and some � such that�� 
����� z � 
����� � (36)

We now construct another network with the same nodes and links as the
original one, with the flow on a link � between two points � and � given
by ? �� 
����� [ � 
����� ? , its direction is 	 � ��� if and only if

�� 
"���� 
 [ � 
����� 
 z 0
and is otherwise 	 ���{� . In this network there are no inputs and outputs.
It follows from (36) that the network contains a cycle � with strictly
positive flow.

We now consider any link 	 � ��� ��� . Then in the original network
either 	 � ��� is the direction of the flow of class � and

�� 
����
 � 
 � z � 
"���
 � 
 � , or

the direction is 	 ���D� and
�� 
"���
 
 � � 
 � 
����
 
 � � . In the first case we have by

Kuhn-Tucker conditions�+ 
����� [ �+ 
����
 � � 
"���
 � 
 � 	 �� 
����
 � 
 � � �� 
 � 
 � � j � 
����
 � 
 � 	 � 
����
 � 
 � � � 
 � 
 � � �S+ 
����� [ + 
����

(37)

In the second case, we have+ 
"���
 [ + 
����� � � 
����
 
 � � 	 � 
"���
 
 � � � � 
 
 � � �j � 
����
 
 � � 	 �� 
"���
 
 � � � �� 
 
 � � � � �+ 
����
 [ �+ 
����� (38)

Due to the strict monotonicity of � for � � � V , there is at least one
link in � for which a strict inequality holds in the corresponding in-
equality among (37) and (38). This implies that

0 ��� X �3 C 9;: 	 �+ 
����
C [ �+ 
����C - : � z � X �3 C 9;: 	 + 
����

C [ + 
����C - : � � 0
which is a contradiction. Thus the Lemma is established.

Theorem V.4: Assume
Z + [ Z^] . Denote by � : 	 $ � the sets of links� such that

� 
����� z 0 ��� � � + ��� �6�"� � for an assignment
$

. Assume that

$
and �$ are two class-optimal solutions with finite costs for all players.

Assume that
� 
����� � 0 ���;� � �{� �� � : 	 $ � , �� 
"���� � 0 ��� � ���{� �� � : 	 �$ � .

Then
� 
����� � �� 
����� for all � ���YV .

Proof. Denote
+ � � l 7��9 : 	 
���� + 
"���� , and

s � 	 � � � � 3 � � 
����� � 
����� 	 � 
����� � � � � � � � n � � 	 � � �n � � < � � � 	 � � �)�
Note that the assumption that costs are finite and Lemma III.2 imply
that s � 	 � � � are finite and Assumption B3 implies that s � 	 � � � is strictly
monotone. Let

�*
denote the vector of the Lagrange multipliers corre-

sponding to �$ . (35) implies that� - :� 
 s � 
 	 � � 
 � j + � [ + 
 � (39)

with equality for 	 �;� ��� � � : 	 $ � . A similar relation holds for �$ . We
obtain that0 � 3
 � N 
 � �HG 	 � � 
 [ �� � 
 � 	 s � 
 	 � � 
 � [ s � 
 	 �� � 
 �3� (40)

� 3
 � N 
 � �HG � � 
 	 � � 
 [ �� � 
 ��! 	 + � [ �+ � � [ 	 + 
 [ �+ 
 � " � 0
The first inequality follows from the strict monotonicity of s � 	 � � � for� � �WV ; for � � �OX this relation is trivial. The second inequality
holds in fact for each pair � , � (and not just for the sum). Indeed, for	 � � ��� � � : 	 $ �$# � : 	 �$ � this relation holds with equality due to (39).
This is also the case for 	 � � ��� �� � : 	 $ �&%�� : 	 �$ � , since in that case� � 
 � �� � 
 � 0

. Consider next the case 	 �;� ��� � � : 	 $ �$� 	 � � ��� ��� : 	 �$ � . Then we have	 � � 
 [ �� � 
 � 	 s � 
 	 � � 
 � [ s � 
 	 �� � 
 �3�� � � 
 	 s � 
 	 � � 
 � [ s � 
 	 �� � 
 �3�� � � 
 � � 
 ! 	 + � [ �+ � � [ 	 + 
 [ �+ 
 � "\�
A symmetric argument establishes the case 	 � � ��� � � : 	 �$ �$� 	 � � ��� ��� : 	 $ � . We finally establish the last equality in (40).

l 
 � N 
 � �HG � � 
 	 � � 
 [ �� � 
 ��! 	 + � [ �+ � � [ 	 + 
 [ �+ 
 � "� l(' 	 + ' [ �+ ' � l*) 	 � '+) [ �� ',) � � '+)[ l(' 	 + ' [ �+ ' � l-) 	 � )�' [ �� )�' � � )�'� l 7��9 : ! l.' 	 + ' [ �+ ' � l*) 	 � 
����',) [ �� 
����',) � � '+)[ l ' 	 + ' [ �+ ' � l ) 	 � 
"���)�' [ �� 
����)�' � � )�' "� l 7��9 : :/ �"!'# � l(' 	 + ' [ �+ ' ��! l � ������� 
 ' N ��� 	 � 
����� [ �� 
"���� �[ l � ��� w 
 ' N ��� 	 � 
����� [ �� 
����� � " � � 0
(we used the fact that the sum of

1 
����
 over all nodes � equals zero so
that the difference of ingoing and outgoing lambda’s is also zero). We
conclude from (40) that � � � �� � for all links in � V . The proof follows
from Lemma V.3.

Remark V.1: The Theorem and its proof are substantial extensions
of [15] who considered the special case where � C� do not depend on� and 8 , where there is a single source-destination pair which is the
same for all users (all paths and all classes), and where � : 	 $ � �� : 	 �$ � . Moreover, the costs of all links are assumed in [15] to be
strictly increasing.

Next, we present an example of load balancing [13] that occurs in
distributed computing, in which different classes have different sources
and where our uniqueness result may apply.

Example V.1: There are two processors and a single communication
means that connects them. Nodes are numbered 1 and 2. We associate
a class to each node (and thus have two players in the game). Node 8
has the external arrival of jobs to process with rate

1 C
and it has to de-

cide what fraction of the arriving jobs would be processed locally and
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what fraction should be forwarded to the other node. Delay is incurred
at each node (processing delay) as well as in the communication buss
(communication delay), and the goal of each class is to minimize the
average delay of jobs of that class. The delay at each network element
(nodes and communication buss) is an increasing function of the total
job rates that use that element (thus the decisions of one class also in-
fluence the cost for the other class). This load balancing problem can
be modelled as a network game that consists of three nodes and three
links:�

Nodes: � : � � � �
	 , where � C is the source of jobs of class 8 , and 	 is a
common destination.�

Links: � C 	 , 8 � + ��� represent the processor 8 , and � : � � represents
the communication bus.�

Paths: Class 8 has two paths, � C T 	 (corresponding to local pro-
cessing) and path � C T � ' T 	 , that corresponds to forwarding jobs to
the other processor.
This network model is depicted in Fig. 1. We conclude that for the

d

s s
1 2

Class 2 arrivalsClass 1 arrivals

Proc. 2Proc. 1

Comm.
bus

Fig. 1. A network representation of the load balancing problem

above problem, there is at most one equilibrium (under the appropriate
assumptions on the delay functions) at which each class splits its ar-
rival flows: a fraction is processed locally and a fraction is forwarded.
Numerical examples can be found in [13] (in which the problem of the
uniqueness of the equilibrium was not addressed).

VI. NUMERICAL EXAMPLES

Consider a simple example of a network composed of two parallel
links � � � 	 � � � and � identical classes: Each link can be identified
with a path. We consider for simplicity � 
����/ � + � � 
����� � ���'� �+ ��� � �"� � . Consider an M/M/1 type cost, i.e.

�� � � + � 	 � 
����� 	 +^[ � � �3�$�� � 	 � � � � � + ��� � ��� � (
� �

is infinite for � � j + ). Let
1 � � � � � . We

note that � / � l ' � 
 ' �/ � � [ l ' � 
 ' �� � � 	 + [ � � �)� Hence, � / 
 +
implies that � � z 0 � � . We have:

� � � 3� 9 / N � � � � � 	 � � � � 3� 9 / N � � �+,[ � � � � 	 + [ � � �� � � [ + < � �+ [ � � �
The overall optimal solution is obtained at � 	� ��� + � � , which gives� 	/ � � [�� � and

� 	 � � � 	 � � � < + � � � . In order to obtain the
individual optimization, we note that

� 
����� � + � 	 � � 	 + [ � � �3�$� � �+ ��� � �"� �
� This gives
� 
����/ � 	 � � � [ + � - : , � 
����� � 	 � 	 + [ � � �3� - : , � �+ ��� � �"� � . The individual optimum is obtained at p� / � + � ] , p� � � � � ] ,

which gives delays along the two links of
� 
����/ � � 
����� � � .

In both cases the solution in terms of the � � ’s is unique. Any choice
of rates < 
"���� that gives the corresponding � � is optimal, and it is clearly
not unique. For example, if � � � , < 
����� � � � � 	� � ���`� � 	 � � � � � + ���
is an overall optimal solution and < 
����� � � � p� � � ���,� � 	 � � � � � + ���
is an individually optimal solution. Another overall optimal solution
is < 
 : �/ � � 
 : �/ � � 	/ � < 
 � �� � + [ < 
 : �/ � < 
 � �/ � 0 � < 
 � �� � + � and
another individually optimal solution is < 
 : �/ � � 
 : �/ � p� / � < 
 � �� �+ [ < 
 : �/ � < 
 � �/ � 0 � < 
 � �� � + � Unlike the overall and individually
optimal solutions, the class optimal solution for this problem is indeed
unique, as has been shown in [15].

VII. CONCLUDING REMARKS AND PERSPECTIVES

We studied multiclass static routing problems with several types of
optimization concepts in networks: the overall optimization, individual
optimization and class optimization. The routing problem is of the type

studied in [11], where one has to determine the assignment of the flow
rates among different paths. Our flow allocation model is a simplifi-
cation of the most general ones expected to be encountered in actual
communication networks. In particular, we considered a single cost
per decision maker which is based on additive link costs. This model
covers costs such as expected delays, but may fall short of covering
other types of costs such as loss probabilities or call rejection rates. We
should mention that in practice network conditions may change fre-
quently; this means that one should update the routing decisions from
time to time. We believe that our static optimization could be a starting
point for the design of future distributed adaptive routing protocol (see
e.g. [7]).
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