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Introduction

A dynamical system which changes state at discrete points in time is called a
discrete event dynamic system. The theory of discrete event dynamic systems
is mainly used in the study of manufacturing systems, telecommunication
networks and transportation systems.

The development of this theory has undergone a dramatic change of per-
spective recently thanks to the introduction of general principles which are
useful to a wide range of application domains. Such principles include the
use of the (max,plus) algebra [23] and more generally topical functions [57]
to model the synchronizations present in the system as well as the network
calculus [39, 37]. Another example is the work of [52, 53] where rather ele-
mentary monotone structures are used to derive powerful results.

The approach adopted here goes in the same direction. This book will
introduce several general principles useful in the control of discrete event
systems.

The aim of this monograph is not to offer a complete theory of discrete
event control of stochastic networks, but to derive a theory and applications
based on multimodularity and regularity. The main objective is to show that
for a large class of stochastic discrete event systems and under rather natural
assumptions on the behavior of the system as well as on the stochastic pro-
cesses driving its evolution, the smoother the input process, the better the
performances of the system.

Of course, the notions smoothness and the performance criteria have to be
made precise. This requires several technicalities using several notions from
convex analysis, stochastic processes and word combinatorics. However, this
must not hide the general underlying goal of the whole work.

This book is focused on a wide class of control (or of optimization) prob-
lems over sequences of integer numbers. We know that the theory of convex
functions plays a key role in the theory of optimization over convex spaces.
An important objective is to construct a counterpart for our setting in which
the optimization is not done any more over a convex set. A natural candi-
date to replace a convex function over some set Z™ of n-dimensional vectors
of integers is an integer-convex function, i.e. a real valued function f that
satisfies the standard convexity condition

flaz + (1 —a)y) < af(z)+(1-a)f(y),
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for all z,y € Z™ and for all @ € (0,1) for which ax + (1 — @)y € Z™.
Unfortunately, this intuitive counterpart of convexity turns out to be too
restrictive for our purpose. In particular, it does not even guarantee that a
local minimum is a global minimum!

The natural counterpart of convex functions over integer sets turns out to
be the so called multimodular functions, introduced in [59], and for such func-
tions we have indeed the property that local minima are global minima. The
property of multimodularity turns out to be useful in a much more general
context: the control of discrete event systems. As we shall illustrate through-
out this monograph, the natural performance measures in many problems
in queuing, in telecommunications and in other areas of applications turn
out to be multimodular. This includes many admission control problems to
networks, routing control into networks, service assignment problems and
control of vacations. Typical performance measures that are multimodular in
these problems are expected waiting times, sojourn times and queue lengths.
For all these problems, it turns out that the multimodularity of the costs
induces, in many case, a particular form of optimal policies. They turn out
to be very "regular”, and can be described by the well known ”bracket” se-
quences. Thus the study of multimodular functions is strongly related to the
study of bracket policies.

The definition of multimodularity goes back to the seminal paper by Ha-
jek [59], who introduced this term in order to study a problem of optimal
admission control into a single queue under no queue information. The pre-
cise problem was to admit customers to a single queue, under the constraint
that the long run fraction of customers admitted be at least p. The optimality
of a policy based on a bracket sequence of admission actions was obtained
in [59] for the number of customers in a one-server queue with exponential
service and a renewal arrival process.

Another application of multimodular functions is in the control of queues
with full state information. Weber and Stidham [114] and Glasserman and
Yao [52, 53] obtained monotone properties of the optimal control policies as
a function of the state, in a variety of queueing control and related problems.
The methodology was strongly based on the multimodularity properties of
the immediate costs and the cost-to-go functions.

In this book, we develop mainly the tools for control problems with no
state information. This is done both in a deterministic setting as well as in
a very general stochastic framework. Two classes of problems are handled.
In the first one, the control sequence is one dimensional; it covers admission
control, service assignment and vacation control problems. Although the con-
trol is one dimensional, the systems to which it is applied to may be quite
general and complex. We focus on general discrete event models which can
be described as linear in the max-plus algebra. This type of problem is fully
solved, and an optimal policy is identified. A second type of problems we
handle is the one in which the control is multi-dimensional. It covers rout-
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ing as well as polling problems. Optimal policies are obtained only in special
cases: the case of symmetrical models, systems with dimension two and many
others. The restriction is due to the fact that the regularity properties that
characterize optimal policies in dimension one cannot be generalized to di-
mension greater than two, except for very special cases. The identification of
all cases in which regularity is possible in dimension larger than two has been
an open challenging problem since several decades since it was formulated
in the well known Fraenkel conjecture [46], and it prompted much research
[55, 91, 107, 115, 93, 46, 90]. From the cases of low-dimension (up to six)
which have been fully solved [108] we know that sequences that are “regu-
lar” in all components are very rare. We therefore need other tools to handle
higher dimensions. This motivates us to consider the question of regular or-
dering between policies, which basically aims at identifying orders between
policies such that if a policy is greater than another in that ordering then
it yields a better cost. We also derive bounds on the performance measures
by using a new combinatorial notion, called unbalance of a multidimensional
control sequence.

Although our main concern in the book is to handling control problems
with no information, we also investigate the problem of closed-loop control in
which the control has full or partial state information. We develop a general
framework for handling multimodular cost functions, and we establish the op-
timality of optimal monotone policies: these are of threshold type for the one
dimensional case, and of a switching-curve type for the two-dimensional case.

This book is structured in four parts.

Part I:. Theoretical foundations, presents the theoretical foundations
which consists of three notions: multimodularity, balanced words, bracket
sequences and stochastic Petri nets. The material in Part I is used through-
out the monograph. The other chapters can be studied independently.

In Chapter 1 we present the basic definition of multimodularity and inves-
tigate the properties of multimodular functions. Using these properties, we
obtain general optimization results which are in particular useful for average
cost criteria in open-loop control. We show in that context that the expected
average cost problem is optimized by using bracket sequences.

Chapter 2 introduces the balanced sequences, the Sturmian words and
bracket sequences and shows the close relations existing between them. It
also details several ways to construct such sequences as well as some of their
properties, useful in this context. More details on the combinatorial properties
of this sequences can be found in [84].

In order to apply the tools developed in Chapters 1 and 2 to networks, and
more generally to discrete event dynamic systems, we present in Chapter 3 the
formalism of Petri nets, and more precisely of the so called stochastic event
graphs; These are systems whose dynamics follows a linear vectorial evolu-
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tion equation in the so-called (max,+) algebra, and it covers many queuing
networks.

Part IT: Admission and routing control, covers the application of the op-
timisation theorems for optimal admission and routing control in discrete
event stochastic systems.

Using the above formalism we consider in Chapter 4 the first application
of the general theory to problems of admission control into networks, where
we show the main theorems. We show that open loop admission control in
a stochastic network with (max,plus) dynamics is optimal for the traveling
time of customers when the routing policy is Sturmian.

Chapter 5 discusses the relevance of the assumptions made so far for
networks of queues, and in particular, the issue of cross traffic.

The objective pursued in Chapter 6 is to generalize the admission control
problems to the case of routing control. The first part addresses the following
combinatorial problem: is it possible to construct an infinite sequence over K
letters where each letter is distributed as “evenly” as possible and appears
with a given rate? The second objective of the Chapter is to use this con-
struction in the framework of optimal routing in queuing networks. We show
under rather general assumptions that the optimal deterministic routing in
stochastic event graphs is such a sequence.

While Chapter 6 says that a bracket squence is optimal for routing into
two parallel systems, it does not give any hint on the actual optimal policy.
Chapter 7 gives the computation of the optimal policy in the simple case of
deterministic queues. It is rather surprising that this computation uses the
decomposition in continuous fraction of the parameters of the system. It may
also be surprising that greedy policies such as “join the shortest queue” are
not always optimal here.

Part III: Several extensions, shows how the previous results can be useful
in other cases.

In Chapter 8 we consider the problem of optimal routing of arriving pack-
ets into K servers having no waiting room. Packets that are routed to a busy
server are lost. We consider two problems where the objective is to maximize
the expected throughput (or equivalently, minimize the loss rate). We assume
that the controller has no information on the state of the server. We establish
the optimality of the bracket sequences, for exponential service times and gen-
eral stationary arrival processes, which include, in particular, the interrupted
Poisson process, Markov modulated Poisson Process (MMPP) and Markov
arrival process (MAP). Based on this solution, we solve the dual problem of
optimal assignment of a single server to several single server queues to which
packets arrive according to Poisson processes. A first step for the solution
of this problem is to establish the multimodularity properties of the costs,
which together with some other conditions that we establish, imply the reg-
ularity of optimal policies. We go however beyond this characterization of
optimal policies and show that (i) there exist optimal periodic policies; this
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is established using some tools from Markov decision processes; (ii) Policies
that are regular in a weaker sense (related to the majorization ordering) are
also optimal; this is done using the Schur convexity ordering. We finally apply
our framework to the problem of robot scheduling for web search engines.

In Chapter 9 we consider the optimal open-loop control of vacations in
queuing systems. The controller has to take actions without state informa-
tion. We first consider the case of a single queue, in which the question is
when should vacations be taken so as to minimize, in some general sense,
workloads and waiting times. We then consider the case of several queues,
in which service of one queue constitutes a vacation for others. This is the
optimal polling problem. We solve both problems using concepts from mul-
timodularity.

Chapter 10 shows how multimodularity can be used for closed loop con-
trol. Using this approach, we show that the optimal policy has monotonicity
properties for a rather general class of problems.

Part IV: Comparisons, derives the theory of routing to three queues or
more. Since the structure of the optimal policy is unknown in this case, the
analysis is focused on getting lower and upper bounds for the performance
measures, and on the comparison of the systems for different admisssion
sequences.

Chapter 11 shows how the traveling times in a FIFO-stochastic event
graph are compared in increasing convex ordering. Two comparison lemmas
are proved. As application of the first one, we derive that:

— Independent sources perform better than coupled sources.
— Fixed batch sizes are better than randon batch sizes.
— Fluid scaling improves the performance.

The second comparison lemma implies a lower bound on the traveling time.

In Chapter 12, the notion of multimodularity is generalized to sim-
plex convexity. Whereas multimodular functions are defined through the L-
triangulation, simplex convexity is defined on any triangulation. It turns out
that the theory of Chapter 1 can be generalized to simplex convexity and
the notion of cone ordering is introduced. It is related to the “distance” of a
given sequence to the sequence minimizing a given simplex convex function.
An application is made for periodic admission sequences in queues.

Chapter 13 introduces several other orders (graph order, unbalance) which
are compared with the cone ordering. These new ways to compare sequences
are used to derive bounds on the average waiting time in queues for several
arrival processes.

Finally, Chapter 14 shows the link existing between regularity (in the
multimodular sense) and majorization (in the Schur convex sense) and how
this can be used in queues. The link between the two notion is given by the
notion of regular perserving functions (which is stronger than multomodu-
larity). It can be used to compare the maximum waiting time in stationary
systems rather than the average waiting time, as for multimodularity.
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Finally, note that the notation is uniformized wherever possible. However,
the chapters in Parts ILIIT and IV are rather independent from each other
and notations may sometimes vary slightly between different chapter. Most
chapters are based on material which is published in journal papers ([6, 4, 5,
3]). We are gratefulto the publishers of these journals for their permission to
include adaptations of these texts in this monograph.
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Theoretical foundations
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The first part of the book is made of three chapters, dedicated respectively
to the notions of multimodularity, balanced sequences (also called Sturmian
words) and Petri nets.

In the following, we will mainly deal with discrete event systems modeled
as Petri net with an input process controlled by Sturmian words with a cost
function which is multimodular.

The three notions are used together in two general theorems: Theorem 7
which states that Cesaro limits of multimodular functions are minimized by
Sturmian sequences and 18 which shows that the average traveling time of
tokens in a Petri net is a multimodular function of the input process.






1 Multimodularity, Convexity and
Optimization

1.1 Introduction

This chapter presents the theoretical framework useful in the following chap-
ters dedicated to the control of the input in networks. It is mainly focused on
the study of multimodular functions which can be seen as a discrete analog
to convex functions.

We provide elementary proofs for properties already established by Hajek,
who showed that the lower convex envelope of a multimodular function f is
the piecewise linear interpolation on a specific triangulation of the space by
simplices called atoms. In this chapter, we show directly that this linear in-
terpolation is convex if and only if f is multimodular. A more general version
of this result will also be presented in Chapter 12. This allows us to restrict
the study of multimodular functions to convex subsets of Z™ which are con-
vex unions of atoms (or faces of atoms). Additional interesting properties of
multimodular functions are also presented.

In the second part of this chapter, we develop basic optimization tools for
average costs. We establish lower bounds for average costs using Abel-type
asymptotic techniques. We also show that the lower bounds are achieved by
bracket sequences. Such costs depend on a sequence of multimodular func-
tions, rather than on a single multimodular function. This is a nice feature of
our approach since the optimization results can be applied directly to average
costs as long as the assumptions used in Theorems 6 or 7 are satisfied. This
is not the case when a single cost function is used, as in [59], where for any
specific application, additional analysis has to be done before one may apply
the general minimization results to average costs problems.

We illustrate the usefulness of this theory in admission control into a very
simple queue and we provide a detailed analysis of the D/D/1 queue with
fixed batch arrivals, with no state information. We show that the policy which
is defined through a balanced sequence minimizes the average queue length for
the case of an infinite queue, but not for the case of a finite buffer. However,
when further restricting to those policies for which no losses occur, we obtain
again the optimality of balanced policies. To conclude that example, we study
also the case where it is possible to admit a part of an arriving batch.

The more general cases such as the G/G/1 queue and networks of queues
are treated in Chapter 4.
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1.1.1 Organization of the chapter

In the first part of the chapter, we develop basic optimization tools for average
costs. We establish lower bounds for average costs using Abel-type asymptotic
techniques.

In follow-up chapters, we shall make use of all the theoretical results of this
chapter in order to study more general admission and service control problems
in dynamic systems that can be described using the max-plus algebra, with
general stationary inter-arrival and service times.

1.2 Properties of multimodular functions

We present in this section a short overview of Hajek’s theory of multimodular
functions. Some additional results are also established. We begin by present-
ing the definition of multimodularity, and some general properties (Subsection
1.2.1) which are interesting by their own and that will be used in subsequent
work. We then present in Subsection 1.2.2 the relation between multimodu-
larity and convexity. The properties presented in Subsection 1.2.2 are those
needed in the following sections and subsequent chapters on optimization and
control.

In the following, Z will denote the set of integer numbers and N the set
of non-negative integer numbers, N = {0,1,---}.

Let e; e N* ¢ =1,---,m denote the vector having all entries zero except
for a 1 in its ¢th entry. Define s; = e;_1 —e;, i = 2,--- ,m (for an integer
1 taking values between 1 and m, we understand throughout ¢ — 1 = m for
1=1).

Let F = {—e1,52, " , Sm,€m }, Where

$Sm=(0 0 0 --1-1),
em =(0 0 0 ---01).

F will be called a multimodular base of Z™.

In a typical application, an element z € N™ will be used to denote a con-
trol sequence; in admission control problems x; would then have the meaning
of the number of customers accepted to a system at time slot k. The vector
z + e, then has the meaning of admitting one more customer at the last
epoch (as compared to the acceptance pattern of a vector x), whereas x + s;
has the meaning of ”shifting” a customer to the "left”, i.e. accepting one
customer less at the jth slot and one more at the (j — 1)st slot (with respect
to the acceptance pattern given by z).
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Define F = {e;, —€i, 85, =85, i =1,--- ,m}, and F = {—u: u € F}.
Let R be the set of all real numbers.

Definition 1 (Hajek). A real-valued function f : Z™ — R is multimod-
ular with respect to F if for allx € Z™ , v and w in F, v # w, the following
holds:

flx+v)+ flx +w) > f(x) + fle +v+w). (1.1)

Remark 1. A function f on Z™ is multimodular with respect to F if and
only if f is multimodular with respect to F. This can be checked easily using
Yy =z + v + w instead of x in Equation 1.1.

Unless otherwise stated, we shall say that f is multimodular if it is mul-
timodular with respect to 7. A more general definition of multimodularity
wll be given in Chapter 12, where the base may not be F or F.

1.2.1 General properties
For a function g defined on Z™, define

Aig(x) = Ae,g(x) = g(x + &) —g(x)  and Ay g=Ai1g—Aig.
We further define A_.,g = g(x —e;) — g(x). Note that A, g(x) = g(z +e; +

s;) — g(x + e;).
It is easy to check that

Lemma 1. A, is a linear operator for any v € F (i.e. Ay(pg + Af) =
uA,g + XA, f). For allv,w € F, AyAyg = Ay Ayg.

Lemma 2. (a) f is multimodular if and only if
2,4, <0 (1.2)

for allv,w € F, w # v.
(b) If f is multimodular then

— (b.i) For any w € F with w # e;.

A Awf 2 0. (1.3)

— (b.i1) For all i,j,
AiA;f > 0. (1.4)

— (b.4ii) For all 1,7,
N;05F > A f. (L5)

— (b.iv) A, As, f > 0.
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= (bv) A, As; f £0, 5 <iand A, Ag, f 20, 5> 10.
— (bwi) Ay Ay, f <0, 0 # 1.

— (b.vir) Ag, Ag, f > 0.

(c) Consider the 2-dimensional case: F = {—ey1, $2,€2}. Assume that (1.4)
and (1.5) hold. Then f is multimodular.

The proof of the lemma is technical and tedious. It is given in an appendix
(Section 1.7).

Note that Equations (b.ii) and (b.iii) can be seen as a discrete counterpart
of the characterization of convexity using second derivatives in the continuous
domain. Equations (b.iv), (b.v), (b.vi) and (b.vii) are useful when dealing
with functions of multimodular functions, like projections. Indeed, checking
multimodularity of projections or restrictions of multimodular functions is
easier using this approach.

For example, given a point X in Z™, a set I of indices i; < --- < g
with & < n and the function px,; : Z* — Z™ defined by px,/(Y) = Z, with
Z; = X; if i ¢ I and Z;; =Y; otherwise, we have the following property.

Lemma 3. If f : Z™ — R is multimodular then for all I and X, the function
g: 7% = R defined by g(Y) = f(px,1(Y)) is multimodular.

Proof. The proof holds by checking that relations (1.2) holds for g. We will
denote by F* = {—ek sk -- sk e} the multimodular base of Z*. The base
of Z™ is F. Using the previous notations, we have to check (1.2) for g with
respect to F*.

A—e’fAs’?g(Y) = A—eil A f(Z)

ij
Et:ij_1+1 St

ij

> A AL f(Z)
t=i;_1+1
<0,

by Equation (b.v).
The other cases, A, Agrg(Y) and A e A i g(Y) are checked similarly.

1.2.2 Multimodularity and convexity

In the first part of this section, we present some details on the construction
of a simplicial decomposition of R™ adapted to the base of multimodular-
ity. This construction was given by Hajek. Theorem 4.3 in [59] proves that
the lower convex envelope ]7 of a multimodular function f is the piecewise
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linear interpolation of f on this triangulation. In this monograph we define
f directly as the piecewise linear interpolation of f. The second part of the
section is then devoted to Theorem 1, that shows that f is multimodular if
and only if f is convex, and some of its consequences which are useful to
derive optimality results (see Section 5).

We first introduce the notion of atoms, which was used by Hajek . In the
space R™, the convex hull of m+1 linearly independent points in Z™ forms a

simplex . A simplex defined on the set of points {z°,--- , 2™} of Z™ is called
an atom (defined in [59] § 3) if and only if for some ordering of the set and
for some permutation (ig,- - ,im) of (0,1,---,m),

= 20+4g,

2?2 =  zl+g,

(1.6)

a™ = 2™ + gi,

¥ = 2™+ g
where ¢;,,--- ,g;, are all the elements of F.

Next we present a characterization of an atom (see [59]), which is essential
for the optimization result that we obtain in the following sections. Denote
by |z] the largest integer smaller than or equal to x. Then the following
trivially holds

1
/ |z +6]|df = x. (1.7)
0
Given z € R™, § € R, define the vector w*() in Z™:
ui(0) =10+ 21 — 6],
w@)=10+zu+--+zml—-0+xn+---+z2i1], i=2,---,m.
Then by (1.7),
1
/ W (0)d0 = ». (1.8)
0

u*(0) is periodic in § with period 1, and piecewise constant with at most
m + 1 jumps per period. Thus, the set {u*(#) : 0 <8 < 1} contains at most
m + 1 vectors, all integer valued. The next Lemma follows from [59]:

Lemma 4. A point z is contained in an atom, say S(z), if and only if the
extreme points of S(z) contain {u*(f) : 0 < 0 < 1}. A point z is in the
interior of atom S(z) if and only if the extreme points of S(z) equal {u*(0) :
0<6<1}.
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Note that z may be a point in the intersection of two or more atoms. But
each point z € R™ is contained in some atom, say S(z), and it can thus be
expressed as the convex combination given by (1.8) of the extreme points of
S(z).

For any function f on Z™, we define the corresponding function fon R™
as follows. It agrees with f on Z™, and its value on an arbitrary point in
z € R™ is obtained as the corresponding linear interpolation of the values of
f on the extreme points of the atom S(z). Note that f is uniquely defined,
if z belongs to atoms S; and S, then the points u*(#) belong to the extreme
points of 51 N Ss.

The following theorem establishes the equivalence between multimodular-
ity of the discrete function and convexity of its continuous extension. In [59],
the “only if” part was proved (this is the hard part), while the “if” part was
omitted. In [27], the equivalence is established in the more general context
of general multimodular triangulations. However, in both cases, the proofs
are rather involved and use separating hyperplane techniques. The proof pre-
sented here is elementary and only uses a discrete counterpart of the second
derivative argument. Furthermore, this proof technique enables us to prove
this equivalence on special convex subsets of Z™, as shown in Corollary 10.
A more general presentation is done in Chapter 12.

Theorem 1. f is multimodular if and only if f 18 conver.

Proof. “only if”: The function fis continuous by definition. Moreover, along
any direction d, it has only a discrete number of isolated points where it is
not differentiable. By using the characterization of convexity given in [96],
we will check convexity at a point z by showing that for point z, and any
direction d, the right derivative is greater than or equal to the left derivative.
It obviously suffices to check at points that are on the boundary of an atom,
since, by definition, f is linear in the interior of atoms. Hence, we first assume
that the point z is on the interior of a face (of dimension m — 1) which is
common between two adjacent atoms. Without loss of generality, assume that
the atoms (defined below by their extreme points) are

A= A(zo, 21, ,Tm) and A= A(xg,z],  ,Zm).
where z; satisfy (1.6) and
i =20+ gi, T2 =] + G-

Case 1: (see Fig. 1.1) g;;, = —e; = (-1,0,---,0), gi, = em = (0,0,--- ,1).
Decompose direction d in its projection Oz in the common face between
the two atoms and in the component 9; along the direction (z7 — z1). In
the direction 0, the left and right derivatives are equal. In the direction J,
the right derivative is a constant ¢, depending on the length of J;, times
f(x7) — f(2). The left derivative is ¢(f(z) — f(21)). Omitting the constant ¢,
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—e;
T2 ZT
e
€m m
o —
Projection of the common
z
_ - - face
- of dimension m — 1
T Zo

—eq

Fig. 1.1. Checking convexity at an interior point z of the common face, Case 1.

and using point z = 1 (zo + 22) hence 2f(2) = f(zo) + f(z2), we get for the
difference

(f(=}) = F(2) = (F(2) = f(@1)
= (f(a1) = f(@0)) = (f(22) = f(21)) (1.9)

The fact that (1.9) is nonnegative follows by applying (1.1) with z = zq, and

T =0 +em
To = Xg —€1 + €em
X1 =g —é€1.

Case 2: ¢;;, = e, and g;, = —ej. It is handled as Case 1.

Case 3: (see Fig. 1.2) ¢g;, = s = (1,—1,0,---,0), g;, = —e1. We set z = xo,
and 7 = zo—e1,x2 = To—e1+S2, T1 = To+S2. We decompose d along —e; on
its projection 93 in the common face, and in the projection 9; along (zF —x).
As in Case 1, it suffices to consider the direction 0;. The right derivative in
this direction is f(z}) — f(z0), and the left derivative is f(x2) — f(z1) (both
up to a multiplicative constant).

The difference between the right and left derivatives is indeed nonnegative:
f(@7) = f(zo) — (f(x2) — f(x1)) > 0. This is obtained again by applying (1.1).
Case 4: g;, = s2 = (1,-1,0,---,0), g;, = s3. In this case, we project d along
(z¥ — z1), and the analysis is as for Case 1.

All other cases, in which z is in the interior of a face (of dimension m—1),
common to two adjacent atoms, are similar to one of those considered above.
It now remains to consider the case where the direction d in point z crosses
from atom A to atom A, and AN A is of dimension at most m — 2. In that
case, we consider a cylinder C in direction d containing point z and with
an arbitrarily small diameter. This cylinder intersects atoms A and A and
is covered by atoms. We consider the projection Py of C along direction d.
This has dimension m — 1. The intersection (say of dimension k) of C' with an
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* —eé1

T Zo
ds
do
Projection of the common face .1:
1
. . z
of dimension m — 1 2 —e1

Fig. 1.2. Checking convexity at a point on the common face, Case 3

atom is projected on the intersection of the projections and has dimension at
most k. Therefore, Py is almost everywhere (in Lebesgue measure) covered
with projections of dimension m — 1. We can find a line L that belongs to C
and intersects A and A, with direction d, and which projection is a point in
P not belonging to intersections of dimension smaller than m — 1. Therefore,
we can claim that L only intersects faces of atoms of dimension m — 1. The
convexity in point z and direction d now follows from the convexity in points
z; corresponding to the intersections of line L with all the intermediate atoms
between A and A and a continuity argument.

_“if”: Consider an arbitrary point ¢ and any two distinct elements g;, g; in
F. We have to show that

f(@o) + f(22) = fa1) = f(a7) <0, (1.10)

where z; d:ef o + gi, T] = ZTo + g, T2 = 21+ g; = 27 + g;, where dgf is used
to define the new variable x; to be equal to z¢ + g;-

Define z 2 L(z1 4+ 2}) = 3(z0 + 22) and consider the line segment z; —
2z — 5. The left derivative (1.d.) and right derivative (r.d.) in z are given by

ld.= f(g(xl +z7) — f(z1) = %f(xo) + %f(@) — f(x1),

| L1 1
rd. = Jat) = Fg @+ 22) = f(@0) = 5.f(x0) = 5/ (2).
Since f is convex, r.d. — l.d. is non-negative, and hence (1.10) holds. 0

We can restrict the notion of multimodularity to some convex sets of Z™.
Let A be a convex set which is a union of a set of atoms (or of faces of
atoms). We restrict the definition of multimodularity to directions that only
lead to points in A. More precisely, we say that f is multimodular in A if the
following holds.

If zo,z0 + gi, %0 + g5, %0 + gi + g; are all elements of A then

f(xo) + fzo + gi + g95) — f(wo + 9:) — f(wo + g5) < 0.
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Corollary 1. The function f is multimodular in A if and only if fis convex
on A.

Proof. Tt should be clear from the proof of Theorem 1 that the equivalence
of the multimodularity of f and the convexity of f still holds if we restrict
the function f to A. 0

The restriction to A = N™ turns out to be essential for the application of
Theorem 1 presented in Chapter 4. Indeed, the function considered is only
defined on non-negative coordinates. Also, in Section 1.5.1, an even smaller
set A is used in order to consider a case of constrained optimization (see
Lemma 9).

A second corollary of Theorem 1 concerns the minimization of multimod-
ular functions. For a function defined on A, we call z a local minimum on A
if f(x) < f(z £ e;) for all 4 such that z £ e; is in A.

Corollary 2. Let the function f be multimodular in A. Then a local mini-
mum 1s a global minimum on A.

Proof. If f is multimodular in A, then fis _convex in A, and is linear on the
(faces of) atoms forming A. The graph of f (i.e. {z : Jy s.t. z > f(y)}) is a
convex polytope. Therefore, all the local minima are global minima and are
extreme points of atoms. O

Next we consider the integer convexity properties of a function f. A func-
tion f is said to be integer convex if the following holds. For vectors x and d
in Z™, we have

fle+d) = f(z) 2 f(z) - f(z —d).

Theorem 2. Let f be multimodular. Then it is integer conver.

Proof. Define 9 (z):= the right derivative of f at 2 in the direction h and

0, (z):= the left derivative of f at z in the direction h. Since f is convex
(Theorem 1) then
87 (2) > 05 (v). (1.11)

Since f(y) = f(y) at the integer points, and since f is convex, we have

O (@) < w o7 (x) > W

where |h| is the Ly norm of h. This, together with (1.11) imply the integer
convexity of f. 0

The converse of the above theorem is not true:
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Counter-example 3 Consider the convex function f : N® — R given by
f(z) = max;=1,... . z;. It is integer convex since it is the maximum of convex
(linear) functions. However, it is not multimodular. Indeed, consider m = 2,
x = (i + 1,1) for some integer i. Then

2i+2=f(zx—e1+e)+ f(z)>flx—e1)+ f(x+ex) =20+ 1.

Hence f is not multimodular.

For integer convex functions we need not have the useful property that a
local minimum is a global minimum. This is illustrated in the next counter-
example.

Counter-example 4 Consider the space ({0,1,2})%. Define the function g

such that
9(072):_17 9(132):27 9(232):

9(0,1)= 2, ¢(1,1)=1, g¢(2,1)
9(0,0)= 5, ¢(1,0)=4, ¢(2,0)=

One can easily check that g is an integer convex function, but not multimod-
ular since g((1,2)+bo) +9((1,2)+b2) =0 <4 =g((1,2)) +9((1,2)+bo +b2).
Starting the local search algorithm at coordinate (2,1) shows that all neigh-
bors have values, which are greater than 0. However, the global minimum is

g((072)) =-L

This shows that when dealing with discrete functions, the counterpart of
convexity is not integer convexity but rather multimodularity, which insures,
for example, that a local minimum is a global minimum point (see Corollary
2).

The following result will be very useful when cost functions involve arbi-
trary convex functions of the quantities of interest, especially to prove opti-
mality in the convex increasing order.

5,
0,
3.

Theorem 5. The following statements are equivalent,

(i) f is multimodular and for all v,w € F, max(f(z + v), f(z + w)) >
max(f(z), f(z + v+ w)).

(i) For all h: R — R convez increasing, h(f) is multimodular.

Proof. We will use the notation introduced in [88]. Condition (i) is equivalent
to the fact that the two-dimensional vector (f(z), f(z + v + w)) is weakly
submajorized by (f(z+v), f(z+w)), denoted (f(z), f(z+v+w)) <w (f(z+
v), f(z + w)). By using proposition 4.C.1.b in [88] then this implies that for
any convex increasing function h, h(f(z)) + h(f(z+v+w)) < h((f(x+v))+
h(f(z + w)). This is exactly the multimodularity of the function A(f).

As for the converse, note that (i7) implies in particular that h(f) is multi-
modular for all A continuous, convex and increasing. Using Proposition 4.B.2
in [88], this implies that (f(x), f(z + v + w)) < (f(z + v), f(z + w)). By
definition of weak majorization, that is the same as statement (i). 0
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1.3 The optimality of bracket policies for a single
criterion

In this section, we will present a rather general framework under which mul-
timodularity can be used in order to optimize a cost function based on a
sequence of functions which will represent a quantity of interest in a given
model. The problems that can be solved using this framework include the
minimization of the average workload in a queue under general stationary
assumptions, as well as many other similar problems (see for example Chap-
ter 4). § 1.5.1 that presents a precise instance of such a problem.

The sequence of functions considered can be interpreted as cost functions,
which are defined on a common sequence (a1, az,---) of integers which we
call a control sequence. For example, a; can be the number of admitted jobs
at the ith arriving epoch for an admission control problem in a queue. The
control sequences will all belong to a set A which is a convex union of atoms
in Z*. Our objective is to study optimization properties of Cesaro averages
of the cost functions over the class of control sequences.

Consider a sequence of functions fr : Ni — R} U {oo} that satisfy the
following assumptions:

— < 1> fj is multimodular on A.
- <2> filar, - ,ar) > fe-1(az, - ,ar), Vb > 1;

For a given sequence {a}, we define the cost g(a) as

N
g(a) = N@W%an(al,m ). (1.12)
n=1

Definition 2. Let p and 6 be two positive reals. We define the bracket se-
quence {a}(0)}ren with rate p and initial phase 6 as,

ap(0) = [kp+6] — [(k—1)p+6], (1.13)
where | x| denotes the largest integer no larger than x.

Note that when p and k are fixed, the set {af(6),0 < 6 < 1} are extreme
points of an atom containing the point (p,p,--- ,p).

The aim of this section is to prove that this sequence minimizes the func-
tion g, provided that some conditions (including < 1 > and < 2 >) above
hold. The sequence (1.13) was used by Hajek in [59], and we use several
properties of the bracket sequence established in [59]. To establish the main
optimization results, we need the following technical Lemma.

Lemma 5. If fi satisfies assumptions < 1 >,< 2 >, then the function fk
satisfies assumption < 2 > for positive real numbers.

The proof of this lemma is given in Appendix (section 1.8).
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Lemma 6. Under assumptions < 1 > and < 2 >, let © be a random vari-
able, uniformly distributed in [0,1), and denote the expectation w.r.t. © by
Ego. Then

Proof. We have for all N,
Eofn(a}(6),-- ,a§(0)) = fn(p,--- ,p). (1.15)

(This follows (1.8), from Lemma 4, and the fact that fy is affine on each atom,

and agrees with fy for the extreme points of the atom.) Since fN (p,p, -+ ,p)
is increasing in N by Lemma 5, the limit in N exists (it is possibly infinite).

O

Definition 3. We call the sequence {aP(©)} the randomized bracket policy
with rate p.

1.3.1 Upper Bounds

Lemma 7. Under assumptions < 1> and < 2 >, for every 8 € [0,1),
o ]- . rs

Proof. Define
F(8:9) = fn(a}(0), -+ a2, (8)).
fm is periodic (in €) with period 1. Define
A
f?ln(eap) = fm(agm+1(0)a T 7ag(0))
Then we have
fm(0',p) = fr(8,p) where 6" =06+mp, (1.17)
Indeed,
frln(alvp) = fm(aziqul(el)v T ag(al))
= fm(azim+1(0 + mp)v e 708(0 + mp)) = fm(aap)v

where the last equality follows from the fact that a” (6 + mp) = a3(8),
k=1,---,m. f! is again periodic w.r.t. §, with period 1, and is increasing
in m so that the following limit exists (possibly infinite):
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’ JANNE ’
foo(0,p) = lim f.(6,p).
m—0o0

Moreover, we have that Eg f.,(©,p) = fm(p,-- ,p), where © be a random
variable, uniformly distributed in [0, 1] (this follows from (1.8), from Lemma
4, and fact that fn is affine on each atom, and agrees with f,, for the extreme
points of the atom). Hence,

EofL,(0,p) = R v, D). (1.18)

Consider now the bracket sequence for fixed 8. Then

1 N
3 (@ (0), a2, (6))

IA
2
2
+
3
+
=
—
(e
N’
o
o3
~~
(e
\.\/
o
S'ﬁ
~
=

M

(—mp+6,p).

The last inequality follows from assumption < 2 > for the functions f, as
well as an argument similar to the one used in (1.17).

If p is irrational, applying the ergodic theorem of Weyl and Von Neumann
([102]), we have

N
lim iZf;o(—mpw p) = Eo (6, p)-

From Equation (1.18), we have Egf. (©,p) = limy_, fN(p,p,--- ,D)-
This implies that if p is irrational,

lim — Zf (—mp+6,p) = hm fN(]%I% D). (1.19)

m=1

If p is rational, then p = ¢/d where ¢ and d are relatively prime and
d > 1. This implies that the sequence (a’:(N_m)(G), oo, ab(0),--- ,ak, (8)) is
constant if §( mod 1) € [j/d,(j + 1)/d), {or all j. Therefore, f],(4,p) is also
constant on these intervals and by passage to the limit, f. (6, p) is constant
on these intervals. Now, note that Frac(6 —mp) € [j/d, (j +1)/d) for exactly
one value of m out of d consecutive values of m because g are d are relatively
prime. Now, we have

d—

N
1
NZ (=mp+0,p) =53 fi(m/d,p) = Eofi(O,p).

—_

Equation (1.18) concludes this case as well. 0
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1.3.2 Lower Bounds

In this subsection, we establish lower bounds for the discounted cost for all
control sequences {a}. This then serves for obtaining a lower bound on the
average cost. Here, we use the following assumption for the functions fy.

— < 3> For any sequence {ax} 3 a sequence {by} such that
Vk,m with k > m, fe(bi, -+ ,0k—m, a1, - ,0m) = fm(a1, -+, am).

We use the notions defined in the previous sections.
Let us fix the sequence {ax}, as well as some arbitrary integer, N. We

define p, 2 (1 —a) 20, oF~Lay.
Now, using assumptions < 1 > through < 3 >, we have

Z(l —a)a" M a(ar,az - an)

n=1

N
2 Z(l _a>an71fN(b17"' 7bN7n7a17a27"' 7an)

[ee]

+ Z (1 _Cl)anilfN(aan+laaan+27'" 7an)
n=N+1

N
= Z(l _a)an_lfN(blv"' 7bN—n7a17027"' 7an)

o0

+ Z (1 —a)a”_lfN(an_N+1,an—N+2,'" ,Gn)
n=N+1

N
2 fN(Z(]' _a)anil(blv'” 7bN7TL7a17a27‘.. 7an>

n=1

+ > (1=a)a™ Y(an-N41, 00 Ni2, 5 00)) (1.20)
N+1

n

N-2 N-3

=fn <b1 Z (1—a)a" + oV pa, by Z (1—a)a" +a¥ 1p,,-- -pa(>.21)
n=0 n=0

Equation (1.20) follows from Jensen’s inequality, since by Theorem 1, the

function fy is convex, and since the coefficients (1 — a)a™ ! are nonnegative
and sum to 1. Define

N-2 N-3
B(N,Ck,p) é fN(bl Z(l _a)an +aNp7b2 Z(l _a)an +aN_1p7"' 7p)

n=0 n=0

Note that B is defined for a fixed sequence {a;}. Also note that B(N,a,p)
is lower semi-continuous in « and in p.
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Using Lemma 10 given in Appendix (section 1.9), we derive the following
lower bounds

Lemma 8. Under assumptions <1 >, <2> and < 3 >,
T 1 - . rs
w}gnoo E T;fn(alf o 7an) Z qHEIEfN(q’ o 7q)7

where L is the set of all limit points of po as a T 1.

Proof.
1 m . [e%e]
li - n n) > li 1- nt n » T, Un
3 o) 2T a) D a0

Z @B(Nv Ot, pOé)

> infye s B(N,1,q), (1.22)
The Lemma follows since for any given p, by definition of B, B(N,1,p) =
fN(papv"'ap)' O
1.3.3 Optimality of the Bracket Sequences

Theorem 6. Under assumptions < 1 >,< 2> and < 3 >, and given some
p € [0,1], if the functions fr(ay,---,ar) are increasing in all a;, then the
bracket sequence aP (@) for any 6 € [0,1), minimizes the average cost g(a)
over all sequences that satisfy the constraint:

1N
lim — an > D.

\[E

Proof. We denote by

A 1 &
B: h_m Nz_:lan

N —co

By using Lemma 10 in the Appendix (section 1.9),

p < p<limp, =inf{q,q € L}.
- afl

If the functions {f} are increasing, then B is increasing in p, therefore,

g(a’) 2 inquL:B(N’laq) Z B(Na]-vp) = fN(pv" . 7p>7 (123)

by Lemma 8. If we let N go to infinity, we get
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. 1 - 7
g(a): lim _an(al7"' 7an)21\}gnmfN(p7 7p) (124)

Lemma 7 shows that imy_ e f (P, P, ..., p) > g(aP(8)). Thus g(a) > g(a?(6)).
O
When the functions fi are decreasing, we have the analogous result.

Theorem 7. Under assumptions < 1 >,< 2> and < 3 >, and given some
p € [0,1], and any 0 € [0,1], if the functions fr(ai,- - ,ax) are decreasing in
all a;, then the bracket sequence a?(0) minimizes the average cost g(a) over
all sequences that satisfy the constraint:

Proof. The proof is similar to the previous one, using the fact that if

p— lim —Zan,

N—ooco N

then L
p>D> li%pa =sup{q,q € L}.
[0

1.4 The optimality of bracket policies for multiple
criteria

In this section, we establish general conditions under which the bracket policy
is optimal when the cost function depends on multiple criteria. While the
single criterion framework has application in admission control, this multiple
criteria approach has applications for routing control to several queues. For
instance, for the routing to several identical -/GI/1 queues, it is known that
the round robin routing is optimal in separable-convex increasing order [82].
In order to obtain this type of results in our framework, we shall show the
existence of optimal asymptotic fractions in a very general case.

From now on, we study the following general optimization problem. Con-
sider K sequences of functions f,i = 1,---, K. Each sequence of functions
f% will only depend on the sequence of the ith coordinates a' in a, and will
satisfy assumptions < 1 >,< 2> and < 3 >, as in Section 1.3.

A policy is a sequence a = (a1, as, - - - ), where a,, is a vector taking values
in {0,1}%. We consider the additional constraint that for every integer j,
only one of the components of a; may be different from 0. A policy satisfying
this constraint is called feasible .
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Let h be a convex increasing function from R¥ to R. Define

IID

N
g 1 K( K
g(a) = Tim_ NZ )y 5 FE(a)). (1.25)
Following notations introduced in Section 1.3, we get a bounding function
called B;(N, a,p) for coordinate i. Here, we denote by

Bi(aap) é sup B’i(N7 aap)a
N

and .
Bi(p) = sup Bi(, p).
a<l
Note that by convexity of f and Lemma 5, B;(a,p) and B;(p) are
continuous from below in (a,p) and p, respectively.
Our objective is to minimize g(a), with no constraints on the asymptotic
fractions.

Theorem 8. Assume that for all i, the functions fi satisfy assumptions
<1>,<2> and < 3 >. The following lower bound holds for all policies:

p1t+-+pr=1

Proof. Due to Lemma 10 in the Appendix C (section 1.9), Jensen’s inequality
and Equation (1.21), we have

N—co N &
Zilrrﬁ(1—a)g =1 )
>iﬂh<(1—a)ia"_l 1 ,(1—a)i n lfK>
> lim h (By(a, pf n;)l) ,Bx(a,p‘k(a)))f:l (1.26)
where .
pa)=(1-a)> o lal. (1.27)

We note that Zfil p?(a) = 1. Hence, one may choose a sequence a, T 1 such
that the following limits exist:

lim pg(an) éph i = 1, 7K (128)

n—oo
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and Efil p; = 1. From the lower semi-continuity of B;(a,p;) in p; and a we
get from (1.26)

g(a) Zh(Bl(lapl)v ﬁBK(lapK)) (129)
> inf h(B1(1 .-+ ,Bg(1 .
_p1+..1.r_|l_pK:1 ( 1( 7p1)7 ) K( 7pK))
O
Note that there exists some p* that achieves the infimum
inf _ h(B1(17p1)7 7BK(17pK))7 (130)
p1it+---+px=1

for h(B1(1,p1),--- , Bk (1,pK)) is continuous from below in p = (p1,--- , px)-

Balanced policies
Consider the bracket policy a? (8) given by

a? [(8) = |kp} +6:] — [(k — 1)p} + 6;]. (1.31)

There are some p* for which the condition of feasibility of the policy a? (8)
is satisfied, that is, there exists some 8 = (6y,--- ,0k), such that the policy
a”" (0) given in (1.31) is feasible. These p* are called balanceable and we shall
come back to them in more details in Sections 4.6.1 and 2.2.

Theorem 9. Assume that for all i, the functions f° satisfy assumptions
<1><2>and <3 >. Assume that h is linear increasing and that p*
is balanceable. Then a?” (#) is optimal for the average cost, i.e. it minimizes
g(a) over all feasible policies.

Proof. The proof follows directly from Lemma 7 together with Theorem 8. 5

The balance condition on p* is still not completely characterized, however,
we can mention two simple cases for which p* is balanceable. i.e. for which
there exist some 6 = (01,--- ,0k), such that a? (0) is feasible.

- Cl: K =2.
— C2: K criteria with symmetric costs, i.e. h(z) = Y, z; and all f* (as
functions of a*) are equal.

Corollary 3. (i) Consider the case C1. For p* that achieves the minimum
in (1.80), the bracket policy for rate p* and some initial phase 0 is feasible
and optimal.

(i) Consider the case C2. By symmetry, the bracket policy with p=1/K for
some initial phase 0 is feasible and optimal.

Remark 2. Hajek gives an argument ([59] Remark (5) p. 554) that shows for
K = 2 the optimality of the bracket policy with rate vector (p,1 — p) in
the restricted class of policies a such that limy_, % Z]nvzl ai = p. Note

that Corollary 3 (ii) shows the optimality of a bracket policy for all control
sequences a.
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Next, we restrict again to the case of a single objective (K = 1), and show
that the results of the previous section can be extended. More precisely, we
show that a bracket policy is optimal in a stronger sense.

Corollary 4. Under the conditions of Theorem 6, given some p € [0, 1], and
any 6 € [0,1], the bracket policy a?(8) minimizes the average cost g(a) over
all policies that satisfy the constraint:

Dl}jnllpl(a) 2 Pi- (1.32)

where p§(a) is defined in (1.27).

Note that the constraint limy_, ., + Zgzl an, > p1 (in Theorem 6) im-
plies (1.32), due to Lemma 10 in the Appendix (section 1.9). Therefore the
minimization in Theorem 6 is over a subclass of the set of policies on which
minimization is performed in Corollary 4. Thus, Corollary 4 implies that a
policy a that satisfies (1.32) does not perform better than the bracket policy
(with p=py) even if limy _, . + ny:l an < pi.

Proof of Corollary 4:

Proof. Choose an arbitrary policy a that satisfies (1.32). Choose a subse-
quence o, 1 1 such that lim, o pf(an) > p1. The proof now follows by
combining Lemma 7 with (1.32). 0

1.5 Application of the optimization theorems

In this section, we will briefly present some optimization problems that fit
the framework presented in the previous sections. Other models that require
a more extensive analysis can be found in future chapters.

Remark 3. Tt seems difficult to give a consistent meaning to the workload
associated with a negative number of customers. One may even doubt that
there is a satisfying way to do so that will also preserve multimodularity. This
is why we have not considered the quantity E, 7Wx(a1,--- ,ax) on Z*, but
only on N*¥, which is a convex union of atoms. Therefore, all the optimization
framework constructed in section 1.3 can be used in this case.

1.5.1 Applications in high-speed telecommunication systems

We consider a simple model composed of a controlled D/D/1 queue with
service times o, = o and inter-arrival times 7,, = 7 all deterministic. As-
sume that the available actions are 0 (corresponding to rejecting an arriving
customer) and 1 (corresponding to acceptance of an arriving customer).
The type of problem we consider is typical in high speed telecommu-
nications networks, and in particular, to the ATM (Asynchronous Transfer



30 1 Multimodularity, Convexity and Optimization

Mode). The latter has been chosen by the standardization committee ITTU-T?!
[77] as the main standard for integration of services in broadband networks.
In order to handle efficiently a large variety of applications, such as voice,
data, video and file transfer, cells of fixed size are used, giving rise to our
model that uses fixed service times. Fixed inter-arrival times are typical for
isochronous applications (voice, video) and also for large file transfer.

Two important measures of quality of services in ATM networks are loss
probabilities (CLR - Cell Loss Ratios) and delays. According to the ATM
standard [77], when a CBR (Constant Bit Rate) session is established, the
network should provide a guarantee that these two measures are bounded by
given constants. Since the available sources are limited and, moreover, might
be shared with other applications, a typical objective of the network is to
minimize the delay of the CBR session while meeting the constraint on the
loss probabilities. Losses might be due either to overflow, or to deliberate
packet discarding by the network (e.g. to allow the resources to be available
for other applications). The problem can be formulated in our framework
as one of discarding cells so as to minimize the average queue size (i.e. the
workload in the system) which is known to be proportional to the average
sojourn time (due to Little’s law), subject to a lower bound p on the average
cell discarding rate.

We now describe the state evolution of the system. If z, denotes the
amount of workload in the system immediately after the nth arrival that
occurs after time 0, and the system is initially empty (at time 0), then

ZTn = max(x,_1 — 7,0) + a,0.

The solution of this recursion is given by the expansion of the Lindley’s
equation:

n—1
xn:fn(alf"aan):ma‘x O?Z(ak0_7)7j:17"'7n_1 + ano.
k=3

(1.33)

We show by a simple inductive argument that for all n, z,, satisfies:
Tn(a +v1) + zn(a+ v2) > zn(a) + zn(a + va + v1), (1.34)
Tn(a+v1) Van(a+ va) > zp(a) Vap(a+ve + v1). (1.35)

The function z1(a) = a0 clearly satisfies (1.34) and (1.35).
if v1,v9 are in F\{en, $n}, then by induction

! The ITU-T is a group of the standardization organization ITU (International
Telecommunications Union), and is accessible through their WEB address:
http://www.itu.int /TTU-T/.
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Tn(a+v1) + Tn(a + v2)
=(zp_1(a+v1) —7VO0)+a,0+ (zn_1(a+v3) —TVO0)+ayo
= (Zp_1(a+v1) + 2Tp_1(a+vs) — 27

Vp_1(a+v1) =7V a,_1(a+v2) —7VO0)+2a,0
> (xn—1(a) + Tn—1(a + vy +v1) — 27

Vin_1(a) =TV 1(a+va+v1) —7V0)+ 2a,0
=xn(a) + zn(a+v2 +v1).

Tpla+v)Vey(a+v) = (Zp_1(a+v1) —TVEp_1(a+v:) —7VO0)+ano
((xn-1(a+v1)VZn1(a+v2))—7V0)+ano

Zn(a) V zp(a + va +v1).

v

If v7 = s, and vq is in F\{en, sn}, then Equation (1.34) is obtained
similarly, by induction. As for Equation (1.35), the proof is slightly different.

Zn(a +v1)V zn(a+ v2)
=(xp1(aten,1)—T—0V -0V, 1(a+vs) —7V0)+ano
=(n_1(a) = TVan_1(a+v2) —7VO0)+ano
> xn(a) Van(a+ vy +v1).

Ifv; = en, Tn(a+en) +2n(a+v2) = zp(a)+zo(a+v2)+0 = zp(a)+20(a+
vy + €,), and

Zn(a+en)Va,(a+v) =1x,(a)+o

> zn(a) Vaop(a+ve)+o

=zp(a) Vzp(a+v2 +v1).

Our goal is now to obtain a policy a* that minimizes an expected average

cost related to the amount of work in the system at arrival epochs. The cost
to be minimized is thus

N
A RN
9( = _I)l’l Z a/la , @ )7
subject to the constraint:
lim — an, > p*.
lim Z n

Consider first the case of a queue with infinite capacity. Then, it follows from
Theorem 6 that a bracket policy with rate p* and arbitrary 6 is optimal. The
assumptions of the Theorem indeed hold:
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— fn (in (1.33)) is indeed monotone increasing in a;;
— Property < 3 > (in Subsection 1.3.2) holds by choosing by = 0, since

fe(ar, - ,ar) = fm(0,--- ,0,a1,-- ,ar), k <m; (1.36)
——

m—k
— By combining (1.36) with the first monotonicity property, we get

fk—l(a27"' 7ak) = fk(oaa/Qv"' 7ak) S fk(ala"' 70/19)7

which establishes Property < 2 > (in the beginning of Section 1.3).

Consider now a queue with a finite storage capacity for the workload, i.e.
the workload at the queue at each time instant is bounded by C. When the
queue is full, the overflow workload is lost. The bracket policy need not be
optimal anymore, as the following example shows.

Counter-example 10 (Non optimality of a bracket policy)

Let 7=1,0 =100, C = 100, p* = 0.01. Assume that the cost to be minimized
is the average queue length. The bracket policy with rate 0.01 achieves an
average queue length of 50.5 for any #. Consider now the periodic policy
of period 200 that accepts 2 consecutive customers and rejects all following
ones. After the second acceptance, the amount of work in the system is 100
due to the limit on the queue capacity, and there is loss of workload (of 99
units). The average queue length is 25.75. Thus the new policy achieves half
the queue length as the previous one.

Although the bracket policy in the above counter example results in a
larger queue, it has the advantage over the other policy of not creating losses.
As we now show, a bracket policy is optimal if we restrict to policies with
the additional constraint that no losses are allowed. Thus, consider the class
of policies that satisfy the constraint:

-Tn(ala"' 7an) S C

where z,, is given by (1.33).

Lemma 9. The set A 2 {(a1,--- ,an) EN* s zp(a1 -+ ,an) < C} defines a
convex union of atoms of Z™.

Proof. By definition of x,,, the set A can also be defined as

CH+(n—-j)r
a

).
(1.37)

A:{(ala"'van):vja (Z]‘EN, (ljZO, Zaks
k=j

Since A is only formed of integer points, we can also write
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n C s
A:{(ala"'aan):vja (ljeN, ajZOa ZakSLyJ}
k=3
(1.38)

Now, let us consider the constraints one by one.

— The constraints a; > 0 restrict A to N* which is made of a convex union
of atoms.
— The constraint a, < |£] also restricts A on a union of atoms.

— Now, let us look at a general constraint Y _, a < LWJ On the
projection over the last n — 5 coordinates, this constraint is a convex union
of faces of atoms. Therefore, on the whole set, this constraint is a union of
atoms.

To finish the proof, remark that the intersection of convex union of atoms
is a convex union of atoms. 0

Using now Corollary 1 and Theorem 6, we conclude that a bracket policy
is again optimal.

In the above admission control we considered only the possibility of ac-
cepting or rejecting the whole arriving batch (of 100). In practice, arriving
batches may correspond to cells originating from different sources, and it is
often possible to reject only a part of the batch.

Assume, thus, that the available actions are a € {0,1,---,N}, where
a = i means accepting i(100/N) units of workload. Assume that the batch
size of 100 is an integer multiple of N. We can thus split an arrival batch and
accept only a fraction of it; more precisely, we can either reject it, or accept
1/Nth of the batch, or 2/Nth, etc... The smallest unit of batch which we can

accept (i.e. Nﬁl) is called a mini batch.

Consider now the bracket policy a*[N] that is given in (1.13) correspond-
ing to p = p*N. In other words, instead of considering a target fraction p
of the whole batch to be accepted, which is smaller than (or equal to) 1,
the new target corresponds to the average number of mini batches to be ac-
cepted, and can be any real number between 0 and N (in particular, p = N
will correspond to accepting N mini-batches, i.e. the whole original batch).

We may repeat the above calculation and show that this policy is optimal
for the cases of (i) the infinite queue and (ii) the bounded queue, restricting
to policies that do not generate losses. Moreover, for both cases, this policy
is better than the one that consists of accepting or rejecting the whole batch
according to the policy a* defined above, since a* is a feasible policy in our
new problem, for which a*[N] is optimal (Theorem 6).

In order to illustrate the last point, consider N = 10. A bracket policy
corresponds to acceptance of a mini-batch of 10 units, once every 10 time
slots. The average queue length obtained by that policy is 5.5, i.e. about ten
times less than the one obtained when the whole batch was to be accepted
or rejected.
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1.6 Clustering versus Smoothing

We have already seen in the previous section an example where a bracket
policy is not optimal, and only when adding a further constraint we obtain
the optimality of a bracket policy. We present here yet another admission
control example in which a policy that tends to cluster acceptances performs
better than any bracket policy.

Consider discrete time; assume that every time unit there is a potential
arrival (it becomes an actual arrival if it is accepted). Its service time takes
2.5 units. The fraction of accepted customers is not allowed to be below 1/2.

We consider two types of regimes of the system:

(i) The preemptive regime: the packet in service is lost if another one
arrives while it is served.

(ii) The nonpreemptive policy: the arriving customer is lost if it finds a
packet in service.

The best bracket policy accepts every second arrival. If the preemptive
regime is used, then under this bracket policy, all accepted packets are lost. If
the system operates under the nonpreemptive regime, then under this bracket
policy, every second admitted packet is lost.

If we use the sequence (110100)* instead of (101010)> we get both in
the preemptive as well as in the nonpreemptive case an improvement: now
only 1/3 of the admitted packets are lost. Thus a non bracket policy performs
better than the bracket ones.

1.7 Appendix A: proof of Lemma 2

Proof. (a) We shall show that for any w,v € F, there is a one to one map
2 :Z™ — Z™ such that

Ay Ay f(2) = f(2(2)) = f2(2) + v +w) - f(z(2) +0) - f(2(2) + w). (1.39)

Hence the multimodularity implies A, A, f < 0. Since the map is one to one,

we get also the converse. In the next four equations we illustrate (1.39) which

establishes the proof.

Consider first w = s;,v = s; (v # w). Then
Ay Ay f(z) = (Air — Ai) (41 — 4;) f ()

= (Aic1 = A)(f(z + ej1) — fz +¢5))
=flz+ej_1+e_1)— flx+ej_1+e)
- flateter)+fzte+e)

=flz+sj+s)— flz+s;)— flz+s)+ f(z), (1.41)

A
where z =z + e; + e;.
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Let v = e, w = —eq. Then

A Ay f(z) = Ap(f(z —e1) — f(x))
=flz+tem—e1)— fz—e1)— flz+en)+ fz) (1.42)

Let v =ep,w = s;.
Ay Ay f(z) = Am(Ajfl - AJ)f(x)
= Ap(f(z +ej-1) — f(z +ej))
=f@t+ej1tem)—fletei1)—flzte +en)+ flzte)
=fz+sj+em)— fz+s;)— flz+em)+ f(2) (1.43)

where z =z + ¢;.
Let v = —e;,w = s;.

AvAwf(x) = Av(Aj—l - Aj)f(x)
=A_. (flz+ej_1)— flz+ey))
=flztej—1—e1) — flz+ei—1) — flz+e;—er) — flz+e)
=flz+s;—e)+ flz+s;)+ f(z —e1) + f(2) (1.44)

where z =z + e;.
(b.i) For any w € F,

Aoy Ay f(x) = Ay Ae, f(z) = —Aw A, f(2)

where z = z + e;. The result follows from Lemma 2 (a).
(b.ii) Without loss of generality, assume that ¢ < j. Then

AZAJf = <Ae1 - iA3k> ( i Asl + Aem) f
k=2

=541

The proof of (b.ii) is established by applying Lemma 2 (a) and Lemma 2
(b.i).
For ¢ < 5 we have

(4 —A)A;f = <— i Ask> (i A +Aem) f

k=i+1 I=j+1
and (b.iii) is established by applying Lemma 2 (a). For i > j we have
m—1 7
Aj=Ai— > Ay = Ap+ A, =) Ay
k=i+1 k=2

Hence
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J m j
Aj(Aj - Al)f = (Am - Z Au) <_ Z Ask - A, + Ael - Z Ak> f
k=2 k=1i+1 k=2
Again, (b.iii) is established by applying Lemma 2 (a) and 2 (b.i).
By taking i = j — 1 in Lemma 2 (b.iii), we obtain (b.iv).

(b.v) For j < 4,
AeiAs]-f = <Z ASk + Aem> ASJ- f
k=1
For 5 > i,

A Ay, f = (Ael - Z Ask> A, f.

k=2
For both cases, the proof is established by applying Lemma 2 (a), and in the
second case we use also Lemma 2 (b.i).
(b.vi)

A Asi f = (Ae,, — Ae))As; f
The proof is established by applying Lemma 2 (a) and 2 (b.i).
(b.vii)

€m

AjAuf=A [ =D A ) f (1.45)
J#i

For i # 1, the proof is established by applying Lemma 2 (a) and 2 (b.i),
where we replace in the summation A,, by A.,, — A.,.
For ¢ = 1 it follows from part (b.vi) of this Lemma and setting ¢ = 1 in (1.45).
(¢) A_e;Aey < 0 due to (1.4); A As, = A (A, — Ae,) < 0, and
A, Agy, = Ay (Aey — Aey) < 0 due to (1.5). Hence f is multimodular by
Lemma 2 (a). 0

1.8 Appendix B: Proof of Lemma 5

Proof. Let z = (21, - ,2r) € ]R’i. This point belongs to an atom, say
S(z), made by the extreme points z°,2',---,z*. The numbering of the
extreme points of the atom is chosen such that according to the base
Fr = (—ek sk ... sk eF) a! = 20 — ef. The other indices are arbitrary.
This implies that 20 = z} for all j > 2. If we call P the projection of Rf

onto Rﬁfl along the first coordinate,

P(s§)=P(sh ) if2<j<k
P(s3) = —ey !

P(ef) =0

P(ef) = ¢!

P(z*) = (a5, , x})
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These equalities imply that P(z°) = P(2') and P(a!),---,P(2*) form
an atom in ]Rﬁ__l, as follows from the definition of an atom, and P(z) belongs
to this atom. Let

k
(21,29, ,21) = (1 - Za,) 2% 4+ oot +~--+ozk:ck,
i=1
then
(2’2,"' 7zk) :P(Z1722,"' 7Zk:)
k
= (1 - Zm) P(3%) + a1 P(z') + - + ap P(z")
=1
k
= (1 - Zai> P(z') + -+ apP(z").
=2
Now,

Feler, 20, ) = (1 - Za,) fe(@®) + an fi(2') + - + o fi(z®)
k
Z (1 - Zo‘i) fr-1(P(2°)) + - + g fr-1(P(2"))

1- Ch‘) foo1(P(x") + -+ + ap fe—1 (P(2%))

= fk—l(z27"' ,Zk;)-

1.9 Appendix C: average and weighted costs

The following Lemma is often used in applications of optimal control (or
games) with an average cost criteria (see e.g. [105]), yet it is not easy to find
its proof in the literature in the format in which we want to apply it.

Lemma 10. Consider a sequence a, of real numbers all having the same
sign. Then,

N oo
= 1 [ k—1
JLH;ONZaHZil_’mI(l—a)Za ar (1.46)
n=1 k=1
[} 1 N A
>lim(1-a)) o"la > lim =3 an =p (1.47)
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Proof. Note that

k=1 =

! _ikak_l (1.49)
(1-a)?
k=1
Hence

[e%) oo 1 k
(1-a) ok 1a— =(1—-a)? — a; — ka1 1.50
)Y et o= >Z<k2p> (1.50)

For any € > 0, choose N, such that
LN
¥ ; an >p—e
for all N > N,. Then the right-hand side of (1.50) is bounded below by
Ne—1 oo
(l—a (Z ( Zal >kak1—62kak1>

k=1 k=N,
>(1—a)? l(Neléréegv Zal—kp> —e(1—a)?
S P

for « sufficiently close to 1. This establishes (1.47), and (1.46) is obtained
similarly. 0

> —2¢




2 Balanced Sequences

2.1 Introduction

In this chapter, we will introduce the notion of balanced sequences, which
is closely related to the notion of Sturmian sequences [85] as well as exactly
covering sequences.

Those sequences are binary sequences where the ones are distributed “as
evenly as possible” while satisfying a density constraint.

This presentation is not exhaustive and many other related articles and
books can be consulted for further investigation on this topic [113, 75, 16,
28, 107, 46, 84]. Although the chapter is self-contained and presents several
results which are of interest by their own, we mostly focus on the rate problem
(see Problem 2), which will be used in the application section (§ 6.2).

2.1.1 Organization of the chapter

This chapter is structured as follows. In Section 2.2, we introduce a formal
definition of balanced sequence and we present an overview on their properties.
Section 2.3 defines the constant gap sequences and addresses the problem of
finding the rates admissibles for constant gap sequences. Section 2.4 shows
how balanced sequences can be characterized using constant gap sequences.
Section 2.5 addresses the problem of finding balanceable rates for several
cases.

2.2 Balanced sequences and bracket sequences

Let A be a finite alphabet, A% is the set of bi-infinite sequences and AY is
the set of infinite sequences defined on .A.

If u € AZ or u € AN, then a word W of u is a finite subsequence of
consecutive letters in u: W = wy,uqy1 -+ - Ugtr—1- The integer k is the length
of W and will be denoted |W|.

If a € A, |W|, is the number of a’s in the word W.

Definition 4. The sequence u € AZ U AN is a-balanced if for any two words
W and W' in u of same length,
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—1<|Wl|,—|W'. < 1.
The sequence u is balanced if it is a-balanced for each a € A.

Ifa € A, and u € AN, we also define the indicator in a u of the letter a as
the function 1,(u) : AN — {0,1}N by, 1,(u); = 1 if u(i) = a and 0 otherwise.
The definition is similar in the bi-infinite case. The support in u of the letter
ais the set S, = {i € N: 1,(u); = 1}.

As usual, for any real number x, || will denote the largest integer smaller
or equal to z and [z] will denote that smallest integer larger or equal to z.

Lemma 11. If a sequence u € AN (resp. u € AZ) is balanced, then for any
a € A, there ezists a real number py, such that

n 0
1 1
Jim =3 Ly = lim 23 1u0)) = o

Pa 18 called the rate (or slope) of 1,(u).

Proof. Let us define ¢, = Y . 14(u); and remark that ¢, +cm—1 < ¢pgm <
Cn + ¢m + 1. The rest of the proof is classical by sub-additivity arguments.
The proof for {1,(%)s}n<o is similar. The fact that both limits coincide is
obvious. 0

Note that the sum of the rates for all letters in a sequence u is one.

Zpa:]--

acA

Now, we can present the main result which is the foundation of the theory of
balanced sequences. We follow the presentation given in [109] and [85].

We now extend the definition of bracket sequences, as given in Definition
2.

Definition 5. A sequence u € {0,1}% (or u € {0,1}N) is bracket (resp.
ultimately bracket) if there exist two real numbers 6 and p (and an integer
k, respectively) such that for alln € Z (orn € N) (resp. n > k), u, =
[(n+1)p+0] —|np+9].

Note that u,, = [(n+1)p+60]| —|np+6] is equivalent to S; = {[n%%—qﬂ Ynez
with ¢ =1 —60/p, where [2] denotes the smallest integer no smaller than z.

The following two theorems show the relation that exists between bal-
anced sequences and bracket sequences.

Theorem 11 (Morse and Hedlund). A sequence a € {0,1}% is balanced
with asymptotic rate 0 < p = 1/« for letter 1 if and only if the support S of
a satisfies one of the following cases.
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(afirrational case) p is irrational and there exists ¢ € R such that
St ={lia+ ¢ltiez or S ={[ia+ ¢]}icz.
(b)periodic case) p € Q and there exists ¢ € Q such that
81 = {lia + ¢] bicz.
(c)skew case) p € Q (p = k/n, k,n € N) and there exrists m € Z such that
S1 = {lin/k+m]}ick U{lin/k —1/k+m|}iso

or
Sy = {lin/k+m]}iso U {lin/k—1/k+m]}ick

Theorem 12 (Morse and Hedlund). A sequence a € {0,1}N is balanced
with asymptotic rate 0 < p =1/« for letter 1 if and only if the support Sy of
a satisfies one of the following cases.

(afirrational case) p is irrational and there exists 8 € R such that
S ={lia+0]}tien or S1 = {[ia+6]}ien.
(b)periodic case) p € Q and there exists 0 € Q such that
St = {lia + 0] }ien.

As for the case p = 0, it includes two balanced sequences, namely the
sequence where S; is the empty set and the sequence where &; is a singleton.

The case for bi-infinite and infinite binary balanced are subtly different.
Indeed, the skew case does not appear in the infinite case while cannot be
overlooked in the bi-infinite case.

The irrational case is the easiest case and can be characterized (see The-
orem 13). The rational cases are more difficult to study.

Note that the skew sequences are not periodic but are ultimately periodic.
In our applications (see sections 6.2 and 6.3), we will mainly be using infinite
sequences, so that the skew case will not be considered. However, even in the
bi-infinite case, we have the following property.

Proposition 1. Let u € AZ.
(i)- If 1,(u) is bracket for all a € A, then u is balanced.
(#)- If u is balanced, then 1,(u) is ultimately bracket for all a € A.

Proof. (i) is straightforward.

(ii) is a direct consequence of Theorem 11, since in all three cases, the se-
quence 1,(u) is ultimately bracket. An elementary proof of (ii) which does
not use Theorem 11 can be found in [106]. 0

Infinite balanced sequences with irrational rates are aperiodic and are
sometimes called Sturmian words [94, 84].
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2.3 Constant gap sequences

Constant gap sequences are strongly balanced sequences, in the following
sense.

Definition 6. A sequence G is constant gap if for any letter a, 1,(G) is
periodic, with a period of the form 0---010---0.

Note that this explains the fact that G is said to have constant gaps for
the letter a, since each a is separated from the next ¢ in G by a constant
number of letters.

Proposition 2. Constant gap sequences are balanced.

Proof. For each letter a, 1,(G) is of the form (0"10™)“. Therefore, 1,(G)
is bracket with p = 1/(m +n + 1) and 8§ = m/(m + n + 1). Using the
characterization of balanced sequences given in Theorem 1, this shows that
G is balanced. 0

Proposition 3. Constant gap sequences are periodic.

Proof. For each letter a, 1,(G) is periodic with period p,. The period of G
is lem(pa,a € A). O

In the next lemma, we give a characterization of constant gap sequences
that stresses the fact that constant gap is some kind of strong balance.

Proposition 4. G is constant gap if and only if, for any two finite words,
W and W' included in G with ||W]| — |W'|| < 1, then for each letter a,
Wla = [W'al <1.

Proof. Let a be a letter in the alphabet.

First, assume that G is constant gap. If |W|, — |W'|, > 2, then, necessarily,
|W| — |W'| > 2. Conversely, let W = aUa and W’ = aU’a be any two words
in G with no a in the subwords U and U’. If |U| > |U’| + 1, then we have
[|U] — [W'|| <1 and ||U|, — |[W'|o] = 2. This is a contradiction. Therefore
|U| = |U’'| and G is constant gap. O

Since a constant gap sequence is balanced, each letter appears with a
given rate in the sequence. note however that since a constant gap sequence
is necessarily periodic, the rate of each letter is rational.

As we will do in Section 2.5 for the case of balanced sequences, we now
address the following question:

Problem 1. Given a set (p1,--- ,pk), with p; +--- + px = 1 is it possible
to construct a constant gap sequence on K letters with rates (p1,--- ,pK)?-
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We will not solve this problem for a general K, since it is NP-complete
(see [26]).

Remark 4. One can use the following facts to show that the set of rates
solving 1 is finite. Let (p1,--- ,pr) be a set of rates solving problem 1. We
order the rates so that 1 > p; > --- > pg. Then necessarily,

— For all 1, p{l is an integer.

— For all i, p;_y > p; > *=(eptetpet),
Note that combining both items leaves only a finite number of possibilities

for (p1 -+ ,pK)-

We will now give some properties of the set (p1,- - ,px) which will be
useful in the following. A characterization of such (p1,---,px) is given in
[115], under the name ezact covering sequences, but it does not provide an
algorithm.

Definition 7. The set of couples {(6i,9:),0 = 1---K} is called an exact
covering sequence if for every nonnegative integer m, there exists one and
only one 1 < i < K such that n = 6; mod g;.

As a general remark, note that (p1,---,pk) are rational numbers of
the form p; = k;/d, with d the smallest period of G. Therefore, we have,
> ;ki/d =1 and for each i, k; divides d. By definition of the rates, we also
have p, = 1/q, for all letters.

We have the following result.

Proposition 5. The rates (p1,--+ ,px) are constant gap if there exists K
numbers called phases, 61, -0k such that the couples {(6;,¢:),i =1---K}
form an exact covering sequence.

Proof. This property is a simple rewriting of the fact that each letter a; in a
constant gap sequence appears every {6; + kq;, k € N}. 0

Now, suppose that {(0;,¢;),% = 1---K} is an exact covering sequence.
Then in the series
def
i) 33,

i=1 k>0

the coefficient of 2™ in this series is equal to 1, Vn > 0. Therefore, we have

x; 1
S(x)zzl—x‘h‘ T1-z

=1

Using this characterization we have the following interesting property
which was proved in [93].
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Lemma 12. Assume {(6;,4:),i =1--- K} is an exact covering sequence and
that P = max; q;. Then P appears at least twice in the set q1,--- ,qK.

Proof. The proof given here is similar to the discussion in [115] on exact
covering sequences. Let w def e2"/™ for some integer 7 > 1. By definition, w
is a primitive r-th root of one. We have:

X (w—2z)2! w-2
(w—a:)S(ac)ziZ_; e — 1 g
Let £ — w. This yields
—wl
T 0. (2.1)

Now, take r = P. The set {i : P|¢;} is exactly the set {i : P = ¢}.
Equation (2.1) specified for r = P can be written

Z wl =0.

:qi=P

This implies that the set {i : P = ¢;} cannot be reduced to a single point
since w is not zero. 0

To give some concrete examples, we consider the cases where K is small.
First, note that in the case where the k; are not all equal, (assume k; is the
largest of all), we have

> kifky =d/ky —1=1,

i£1

where [; is the gap between two letters a;. This implies,

L <K-2. (2.2)

Proposition 6. There exists a constant gap sequence G with rates (p,1—p)
if and only if p=1/2.

Proof. Let a be a letter in G with gap [. Since the alphabet contains only
two letters, [ = 1. This means p = 1/2. O

Proposition 7. There exists a constant gap sequence G with rates (p1, p2, p3)

if and only if (py,p2,ps) € {(1/3,1/3,1/3),(1/2,1/4,1/4)} (up to a permu-
tation).

Proof. Assume that (p1,p2,p3) # (1/3,1/3,1/3) (otherwise, G = (abc)¥ is
constant gap). Using Inequality (2.2), Iy = 1 and p; = 1/2. Therefore, the
sequence obtained from G when removing all the letters a4 is constant gap.
Applying Lemma 6 shows that p; = p3. The only solution is p; = 1/2,ps =
1/4 and p3 = 1/4. The associated constant gap sequence is (ai1aza1a3)”.
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Proposition 8. A constant gap sequence G with rates (p1,pa,ps,Pa) exists
if and only if (p1,p2,p3,pa) belongs to the set (up to a permutation),

1111 1111 1111 1111
{(4’ 4’4’ 4)’(2’ 4’8’ 8)’(2’ 66’ 6)’(3’ 3’6’ 6)}'
Proof. We give a sketch of an elementary proof of this fact. If the rates are
all equal, then (p1,p2,ps,ps) = (1/4,1/4,1/4,1/4). Now, note that Equation
2.2 implies that if the rates are not all equal l; < 2. We consider any letter
a;,i # 1, assume that the number of a;’s in between two a;’s is not con-
stant and takes values m and n, m > n. then we have I; > (n — 1)l1 + n
on one hand and l; < n(ly) — 3 on the other hand. This is impossible
since [y < 2. Therefore, the number of ay’s in between two a;’s is con-
stant. This is true for all 7. The sequence formed by removing all a;’s is
still constant gap. It has rates of the form (1/3,1/3,1/3) or (1/2,1/4,1/4).
From this point a case analysis shows that the original sequence has rates
(1/2,1/4,1/8,1/8),(1/2,1/6,1/6,1/6)or(1/3,1/3,1/6,1/6)} by inserting the
letter a1 in a constant gap sequence over the letters as, as, a4. 0

These few examples of constant gap sequences illustrate the fact that
there are very few rates that can be achieved by constant gap sequence.

2.4 Characterization of balanced sequences

Several studies have been recently done on balanced (or bracket) sequences
[83, 107, 106, 109, 90, 89]. In [55, 75], a characterization involving constant
gap sequences is given.

The proof of the following results, Proposition 9 and Theorem 13 was
given by Graham [55] for bracket sequences. An independent later proof can
be found in [75] for balanced sequences. The relation between balanced and
bracket sequences given in Theorem 1 makes both proofs more or less equiv-
alent.

Proposition 9. Let U be a balanced sequence on the alphabet {0,1}. Con-
struct o new sequence S by replacing in U, the subsequence of zeros by a
constant gap sequence G on an alphabet Ay, and the subsequence of ones by
a constant gap sequence H on a disjoint alphabet Ay. Then S is balanced on
the alphabet A; U As.

Proof. We give a proof similar to Hubert’s proof ([75]). Let a be a letter in
A; (the proof is similar for a letter in Ay). Let W and W’ be two words of
S of the same length. Then, the corresponding words X and X' in U verify
[[Wlo — |W'|o| <1 since U is balanced. If we keep only the 0’s in X and X',
then the corresponding Z and Z' words in G satisfy || Z]|—|Z’|| < 1. Since G is
constant gap, and using Lemma 4, || Z], —|Z'|s| < 1. We end the proof noting
that the construction of Z and Z' implies |Z|, = |W|, and |Z'|a = |[W'|a. O
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Conversely, we have the following theorem.

Theorem 13. Let u € A% be balanced and non ultimately periodic. Then
there exists a partition of A into two sets Ay and Ay such that the sequence
v defined by:

vy = 1ifu, € A, (2.3)
v =0 ifu, € A, (2.4)

18 balanced. Furthermore, the sequences z1 and zo constructed from u by keep-
ing only the letters from Ay and A respectively have constant gaps.

2.5 Balanceable rates

Let us formulate precisely the problem which we will study in this section.

Problem 2. Given a set (p1,--- ,Pk), is it possible to construct a balanced
sequence on K letters with rates (p1, -« ,pK)?

We will see in the following that this construction is not possible for all
values of the rates (p1,---,pk). If a K-tuple (p1,---,pk) makes the con-
struction possible, such a tuple is said to be balanceable. A similar problem
has been addressed in [55, 90, 107, 46], where relations between the rates of
balanced sequences are studied.

2.5.1 The case K = 2

This case is well known and balanced sequences with two letters have been
extensively studied (see for example [32, 85]). The following result is known
under many different forms.

Theorem 14. For all p, 0 < p < 1, the set of rates (p,1 — p) is balanceable.

Proof. The proof is similar to the proof of the first part of Theorem 1. We
construct a sequence .S as the support of the function s(n) = |pn|—|p(n—1)].
S is a balanced sequence because the interval ]k, k + m] contains exactly
e = |pk + pm| — |pk] elements of S. Now, |pm]| + |pk| — [pk] < e <
[pm] + |pk| — |pk]. This shows the value of e can differ by at most one when
k varies so S is a balanced sequence. If S’ is the complementary set of S,
then it should be clear that S’ has asymptotic rate 1 — p and S’ is balanced
because Sy, ;. contains m — e elements. 0

Note that the proof of Theorem 14 also gives a construction of a balanced
sequence with the given rates.
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2.5.2 The case K = 3

The case K = 3 is essentially different from the case K = 2. In the case
K =2, all possible rates are balanceable while when K = 3, there is only one
set of distinct rates which is balanceable. This result, when formulated under
this form, was partly proved and conjectured in [83] and proved in [107].
In earlier papers by Morikawa, [90], a similar result is proved for bracket
sequences. If Theorem 1 is used, then the result of Morikawa can be used
directly to prove the following theorem.

Theorem 15. A set of rates (p1,p2,p3) s balanceable if and only if,
(p17p27p3) = (4/772/77 1/7)
or two rates are equal.

Proof. The proof of Morikawa is very technical since it does not use the
balanced property for bracket sequences. If the balanced property is used,
then the proof becomes easier. We give a proof slightly simpler than the
proof in [107]. First, assume that p; = pa. Then, let S be a balanced sequence
with two letters {a,b} constructed with the rates (p1 + p1,p3). In S, replace
alternatively the “a“s by the letters a1, a2, we get a sequence S’ on alphabet
{a1,az2,b} with rates (p1,p1,ps). Let us show that S’ is balanced. Since S is
balanced, the number of “a”s in an interval of length m is k or k£ + 1, for
some k. Now, for S/, the number of “a;”s (resp. “a3”s) in such an interval is
either (k—1)/2 or (k+1)/2if k is odd and k/2 or k/2 + 1 if k is even. This
proves that S’ is balanced.

Now, assume that (p1, p2, p3) are three different numbers. We assume that
p1 > p2 > p3. We will try to construct a sequence W with these respective
rates on the alphabet {a,b,c}.

step 1: the sequence “aca” must appear in W.

There exists a pair of consecutive “a” with no “b” in between since p; > p .
This means that a sequence “aa” or “aca” appears. If “aa” appears, then a
“c” is necessarily surrounded by two “a”s.
step 2: the sequences “baab” and “abaaba” must appear in W .

There exist a pair of consecutive “b” with no “c” in between. This sequence
is of the form “ba™b”. Now, n < 1 is not possible because of the presence
of “aca” and b-balance. n > 3 implies the existence of “a™ lca™ 1" by a-
balance which is incompatible with “ba™b” because of b-balance. Therefore
n = 2. Note that this also implies the existence of “aa” and of “abaaba’.

step 3: the sequence “abacaba” appears in W.
the sequence W must contain a “c”. This “¢” is necessarily surrounded by
two “a”s since “aa” exists by step 2. This group is necessarily surrounded
by two “b”s since “baab” exists, and consequently, necessarily surrounded by

two “a”s because “abaaba” exists. We get the sequence “abacaba’.
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Last step: W = (abacaba)® .
No letter around this word can be a “c” because “baab” exists. None can
be a “b” since “aca” exists. Therefore, they have to be two “a”s. Then note
that the two surrounding letters cannot be “c” (because of the existence of
“abaaba”), nor “a” (because of the existence of “bac”) so they are “b”, then
followed necessarily by “a” (because “aa” exists). At this point, we have the
sequence “xabaabacabaabax”. Both xs are necessarily “c”s.

To end the proof, note that we have obtained the configuration around

every “c” and this determines the whole sequence. The sequence W is periodic
of the form (abacaba)®. 0

2.5.3 The case K = 4

For distinct rates, the case K = 4 is very similar to the case K = 3. However
when two rates are equal, this case is more complicated. Again, a similar result
for bracket sequences is contained in [90] under a weaker form since, the proof
is only done for rates of the form (ay/c,--- ,a4/c). The following theorem
gives the result in its full generality. Again, using the balanced property
helps to keep the proof rather elementary.

Theorem 16. A rate tuple (p1,p2, 3, pa) with four distinct rates is balance-
able if and only if (p1,p2,ps,pe) = (8/15,4/15,2/15,1/15).

Proof. We suppose that p; > pa > p3 > ps and we show that there is only one
balanced sequence with frequencies p; > ps > p3 > py and those frequencies
are (8/15,4/15,2/15,1/15).

As a preliminary remark, note that if p; > p;, then there exists at least
one word “a;---a;” that does not contain any a;. This fact will be used
several times in the following arguments.

The proof involves different steps.

Step 1: W contains the words “aca” or “ada” or “acda” or “adca’.

There exist two consecutive “a”s with no “b” in between because p; > ps.
Therefore, either “aa” or “aca” or “ada” or “acda” or “adca” exist. If “aa”
exists, then, a “¢” is surrounded by two “a’s.

Step 2: W contains the word “baab”

First, we show that if a word “ba™b” exists, then n = 2. Indeed, step 1
makes “bb” and “bab” impossible. On the other hand, if n > 3, the existence of
“a™lca™ 1 is necessary by a-balance and is incompatible with the existence
of “ba™b” because of b-balance.

Now, if no word of the form “ba™b” exists, then there exist two consecu-
tive “b”s with one “d” and no “c” in between. Such a word is of the form:
“ba’da*b” and is surrounded by some “a’s, so that we get a word called s;
and equal to “a’ba’da”ba'”. Note that the numbers i, j, k, ! may be equal to
zero but j + k > 1 by b-balance.

There also exist two consecutive “c”’s with no “d” in between. In between

those two “c” we must have some “a”s and some “b”s. In fact we have exactly
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one “b” since no word “ba™b” exists by assumption. We pick such a word
called so which is of the form: “ca™ba™c”. Note that i, j, k, [, m,n are integers
that can differ by at most one. As for the length of s;, we have |s;]| >
max(4,2(n+m)+1) > n +m+ 3 = |s|. This is impossible by ¢-balance.

step 3: the word “abacabaabacaba” exists in W . There exist two consecu-
tive “c”s with no “d” in between. From step 3 in the proof of Lemma 15, we
know that a “c” is necessarily surrounded by the word “aba”. Moreover, from
step 4 in the proof of Lemma 15, we have: “abacabaabalUcaba”, where U is a
word that contains no “d” and no “¢”. U cannot start with an “a” (because
of “bacab”) and cannot start with a “b” (because of “aca”). Therefore U has
to be empty.

Step 4: W is uniquely defined and is periodic of period “abacabadabacaba”.
Somewhere, W contains a “d”. From this point on, we can extend the word
uniquely around this “d” as the word: “abacabadabacaba”, and, on the other
hand, the word “abacabaabacaba” has to be surrounded by two “d”s. This
ends the proof. 0

To complete the picture, it is not difficult to see that,

Proposition 10. if the tuple (p1,p2,ps,ps) 18 made of no more than two
distinct numbers, then it is balanceable.

Proof. First, if the rates are all equal, they are obviously balanceable. If
three of them are equal, say p1 = p2 = p3, then, we can construct a balanced
sequence with rates (3pi,ps) and we construct a balanced sequence with
rates (p1,p1,p1,Pp4) by using Proposition 9 (where we take G the constant

gap sequence (ajazaz)” and H def (aq)¥). If two pairs of rates are equal,

say p1 = p2 and p3 = p4, then we construct a balanced sequence with rates
(2p1,2p3) and we apply Proposition 9.

O

If the tuple (p1, p2, p3, p4) is made of exactly three distinct numbers, then
this is a more complex case which is not studied here.

2.5.4 The general case

In this section, we are interested in the case of arbitrary K. First, note that
Proposition 10 easily generalizes to any dimension.

Proposition 11. If the tuple (p1,p2,p3, - ,Px) is made of less than two
distinct numbers, then it is balanceable.

Proof. The proof is similar to the proof of Proposition 10. 0

Proposition 12. If the tuple (p1,p2,--- ,px) is balanceable, then the tuple
(p1/k, - ,p1/k,p2, - ,DK) is balanceable.
ﬁ_/

k
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Proof. The proof is very similar to that of Proposition 9. If W is a bal-
anced sequence with letters {ay,---,ax}, consider the sequence W' con-
structed starting from W and replacing each “a;” by an element of (b7,
“by”, -+, “by) in a cyclic way. Note that W’ has the following set of rates,
(pi/k,-- - p1/k,p2,- -+, PK).

Next, we show that W' is balanced. Since W is balanced, for an arbitrary
integer m, the number of “a;”s in an interval of length m is n or n + 1,
for some n. Now, for W', the number of “b;”s in such an interval is either
[(n —1)/k] or |[(n +1)/k|. This proves that W’ is balanced. O

For the general case and distinct rates, it is natural to give the following
conjecture (due to Fraenkel for bracket sequences):

Conjecture 1. A set of distinct rates {p1,--- ,px} with K > 2 is balanceable
if and only if

{pla"‘ apK} = {ZK_I/(2K - 1>7"' v2K_i/(2K - 1)7"' 71/(2K - 1)}

We have not been able to prove this fact. Morikawa has also given some
insight in this conjecture. Very recently, in [108] the cases K =5 and K =6
are proven using techniques inspired by those introduced here. However, it
seems clear that a different approach is needed in order to complete the proof
in the general case. Here, we only have partial results given in the following
propositions.

Proposition 13. The rates (2K 1/(2K-1),--- [ 2K-1/(2K-1),... [1/(2K -
1)) are balanceable, for all K € N.

This proposition is the “if” direction of the conjecture.

Proof. We construct a balanced sequence wg in the following inductive way.
wy = a1, Wg = Wrg_10kVKk—1 and wx = (vk)“. First note that wyx has
rates (2K-1/(2K —1),... [ 2K-¢/(2K —1),... [1/(2K —1)). Then, we show
that wg is balanced by induction. In the sequence wg, any letter (say letter
§) appears 257 times in one period and is of the form of 257 — 1 intervals
of the same length (27) and one of length 27 — 1.

By construction of w1, these properties still hold and therefore, wg 41
is balanced. 0

Proposition 14. Let K > 2 and w be balanced with rates p1 > -+ > pxk,
then, w is ultimately periodic. In particular, this means that p; € Q, V1 <
1< K.

Proof. If w is not ultimately periodic, Theorem 13 says that w is composed
of two constant gap sequences. At least one of these sequences has at least
two letters, and therefore two letters have rates which are equal by Lemma
12. Therefore, the rates in w of these two letters are also equal. 0
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Proposition 15. Let w be balanced with rates pr > --- > pk, with the
following property: for any 1 < i < K, there exists two consecutive letters
“a;” with no a; in between, with j > i. Then, (p1,--- ,pK) = (2K-1/(2K —
1),---,2871/(25 —1),--- | 1/(2K — 1)) and w is uniquely defined, up to a
shift.

This proposition is a partial “only if” result for the conjecture.

Proof. The proof holds by induction. Let v, denote the period of the balanced
sequence with rates (26=1/(2% — 1) ... 2k=i/(2k 1) ... 1/(2F — 1)) given
in Proposition 13. We recall that according to the construction in the proof
of proposition 13, vy, = vg_1a,v5_1. We will prove by induction that w is
periodic with period vg.

We prove by induction on k that w contains “vi_1arve—1Vk—105v}_, and
that for j > k, each letter in w, “a;”, is surrounded by v;_1’s, for all possible
1 < k < K. For the first step of the induction (k = 1), note that according to
the property on w, w contains the factor “aya;” which is the same as “viv1”.
Therefore any other letter is surrounded by two “a;”s. This also implies the
existence of “ajasaiaiaza,” by using a similar argument as step 2 in the
proof of Theorem 16. This ends the case k = 1.

For the general case, by the induction assumption, ay is surrounded by
Vk_2, and w contains the word “vg_sarvr_2”. The existence of the factor
“Vp—20k—1Vk—2Vk—2aK_1Vk—2  proves that this word is surrounded by two
“ar_1"s. Therefore, two consecutive a form the word

Vk—20k—1Vk—20kVp—20k—1Vk—2U Vg 20k —1Vk—2QkVk—20k—1Vk—2,

where U does not contain any letter “a;”, j > k.

— If U does not contain “arp—_1” and contains a letter “a;” with ¢ < k—1 then
U is reduced to this letter, because of ar_;1-balance and the existence of the
word ag—1Vk—2Vk—2ak—1 (induction assumption). But now the construction
of vi_o implies the presence of “a;v;_1a;” and contradicts the existence of
“@;0i-1Vi—105" .

— If U contains “ar_1”, then by ai_1-balance, U must contain vg_sax_10k_2.
therefore U is of the form Xwvg_sar_1vr_2Y. The arguments used for
U can be applied to X and Y. If they are not empty, they must both
contain wvy_sar_1vr_o. Eventually, we have the existence of the word
Vp_9Uk_20k_1Vp_2Vkp_o which contradicts obvioulsy the existence of the
word vg_9Gp_1VE_2akVp_20k_1Vp_2 Dy aj-balance.

Therefore, U is empty. This implies the existence of vy _1arvr_1VE_10KVE_1.
Now, we finish the proof by noticing that the letter ax is surrounded by
vk _1 and by noting that vx_jvk_1 is necessarily surrounded by “ax”.

Proposition 16. The projection w' of a sequence w over the alphabet A—{a}
is w where all a’s have been removed. If p, > 0.5, then w is balanced implies
that w' is balanced.
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Proof. Choose two words vy, vy of length n in w’. Let v; and va be any
two words in w whose projections over the alphabet A — {a} are v] and v},
respectively. Assume, furthermore, that the first and last letters in v; and vy
are not a. Let k = |v;| —n and | = |vy| —n denote the number of appearances
of the letter a in v; and vy, resp.

Step 1: If | = k then the difference in the number of occurrences of any
letter b # a in v and in v} is at most 1, since w is balanced, and since the
number of b’s in v1 (resp. vs) is the same as its number in v{ (resp. v}).

Step 2: Assume that [ >k + 1.

- Let 95 be the word obtained from vy by truncating the first and last letter.
Then |2| = n + 1 — 2, and the number of a’s in ¥, is I.

- Let 91 be the word obtained from v; by concatenating to it the next m =
l—k—2 letters that appear after v; in the sequence w. Then |#1| =n+1-2 =
|02], and the number of a’s in ¥, is not larger than k +m =1 — 2. Thisis a
contradiction with the fact that w is balanced.

Step 3: It remains to check the case | = k + 1. Add to v; the next letter
that occurs in w to its right, to form the new word 7;. If it is not a then we
have two successive letters that are not a, which contradicts the fact that a
has an asymptotic frequency of at least 1/2. If it is a, then 7; and vs have
the same number of a’s. We can now apply the same argument as in step 1
and conclude that the number of occurrences of any letter b in v] and in V;
differs by at most 1.

Combining the above steps, we conclude that w’ is balanced. 0

2.5.5 Extensions of the original problem

So far we have only analyzed the case where all the rates add up to one. The
different results tend to prove that very few sets of rates are balanced.
Now let us look at a generalization when all the rates do not add up to

one. Assume that .S is a sequence on the alphabet {ay, az,- - - ,ax, *}. We only
require that S is balanced for the letters aq,--- ,ax, but not for the special
letter .

On a more practical point of view, the question can be viewed as whether
this allows more possibilities for rates to be balanced when “losses” are al-
lowed (represented by the letter ). Then again, in general, the rates are not
balanced, even if the total sum is very small as illustrated by the following
proposition.

Proposition 17. For an arbitrary ¢ > 0, there exists two real numbers p;
and py such that p1 + pa < € and such that there is no sequence S on the
alphabet {a, b, x} with asymptotic rate py for letter a and py for letter b which
1s balanced for a and b.

Proof. Choose two irrational numbers p; and ps with p; + ps < € such that
p1,p2 and 1 are not linearly dependent on Z. Now assume that there exists a
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sequence S on {a,b, *} with asymptotic rate p; for letter a and py for letter
b which is balanced for a and b. By Theorem 1, then there exists two real
numbers z,y such that 1,(S)(n) = 1if x + p;n mod 1 € [1 — py,1] and O
otherwise. 1,(S)(n) = 1if y + pon mod 1 € [1 — py,1] and 0 otherwise. In
the cube [0,1]?, the set of points (x,y) + n(p1,p2) mod (1,1) is dense (see
for example, Weyl’s ergodic theorem [102]) and therefore hits the rectangle
[(1 —p1,1 —p2),(1,1)]. This is not possible. 0

More on this kind of problems can be found in [106].

To end this short overview on balanced sequences, we must mention on
the positive side that “usual” rates, such as (1/k,1/k,---,1/k) are often
balanceable. In Appendix 2.6, some examples of balanced sequences and their
rates are given.

2.6 Appendix

In this appendix, we shall give a collection of balanceable set of rates which
can be put into two classes. Some of them are composite: they can be con-
structed using Proposition 12 (once or several times) starting from a smaller
balanceable set. The ones which cannot be constructed that way are called
primitive.

We shall first give a list that contains some primitive balanceable rates
with K = 4 (as well as other cases with different values of K).

—(1/11,2/11,4/11,4/11) is balanceable and S = (abcababcabd)®.

- (1/11,2/11,2/11,6/11) is balanceable and S = (abacaabacad)®.

—-(1/11,1/11,3/11,6/11) is balanceable and S = (acabaabadab)®.

— for all K, ((2K-1/(2K —1),... 2K-1/(2K — 1) ... 1/(2K —1))) is bal-
anceable. The associated balanced sequence is constructed recursively as
in Proposition 13.

Here are other balanceable sets of rates when K = 4 which are composite.

—(1/14,1/14,4/14,8/14) is balanceable and S = (abacabaabadaba)®. It is
composite since it comes from (1/7,2/7,4/7) where the smallest rate is
split into two.

— For each real number 0 < p < 1, the rates (1—p,p/4,p/4,p/2) are balance-
able, with a corresponding balanced sequence constructed from a bracket
sequence with rate p where all 1 are replaced in turn by the sequence
(abac)® and each 0 by the letter d. It is composite, originating from (1—p, p)
and split twice.

— (1/k,---,1/k)is balanceable. A balanced sequenceis: S = (aia20a3 - - - ax)“.
This is composite, coming from (1) split once into k rates.



54 2 Balanced Sequences

- (p,--+,p, B, -+ ,0) is balanceable. A balanced sequence with those rates is
constructed in the following way: Choose a balanced sequence S on letters,
(A, B) with rate (p1 = Ele D,p2 = E?Zl B3). In S replace all the A (resp.
B) by a1, as, - ,ax (resp. by, -+ ,by) in a round robin fashion to get a
balanced sequence with the required rates. This is also composite, coming
from (p1,p2), where p; is split into k rates and ps is split into h rates.



3 Stochastic Event Graphs

3.1 Introduction

This chapter introduces the timed Petri net models with a special focus on
timed event graphs with stochastic timings.

The first goal on the chapter is to give a precise definition of the semantics
of timed Petri nets with timings associated to the transitions. This is used to
show that the evolution of the firing epochs in an event graph can be written
under the form of a max,plus linear system, as proved in [23].

We give several examples from queuing theory, manufacturing systems
and communication networks of event graph models in order to illlustrate
their modelling power as well as their limitations.

The (max,plus) evolution equations are used to derive a vectorial form
of Lindley’s equation for waiting times and sojourn times in networks of
queues [25]. This equation will be used in Chapter 4 to show that the sojourn
time of a customer in a timed event graph is a multimodular function of the
admission actions. Thus, timed event graphs will constitute the most general
class of networks treated in this book for which the general theorems proved
in Chapter 1 will apply.

3.1.1 Organization of the chapter

This chapter is organized as follows. Section 3.2 introduces the definitions
and notations foir stochastic Petri nets. Section 3.3 deals with the dynamic
behavior of event graphs and shows that the evolution equations of event
graphs can be put under the form of a linear equation in the (max,+) for-
malism. Section 3.4 shows several examples of discrete event systems taken
from queuing theory, manufacturing and telecommunication with their even
graph modeling and the associated (max,+) evolution equation. Finally, Sec-
tion 3.5 derives a vectorial Lindley’s equation for (max,+) linear systems.

3.2 Stochastic Petri Nets

Petri nets constitute a model of discrete systems that combines concurrency
and competition at the node level. They were primarily used for analyzing
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logical properties of systems involving parallelism and synchronizations, see
for example [44]. More recently, the notion of time has been introduced in
Petri nets to make performance analysis possible as in [31, 23].

Definition 8. A Petri net is a bi-partite graph given by the tuple G =
(P,Q,E,My), where P = {p1,--- ,pp} is the set of places,

Q={q, - ,qq} is the set of transitions,

E is a subset of (Q X P)U (P x Q) and is the set of edges. We will denote
by p* (*p, ¢* , *q), the set of downstream (upstream) transitions (places) of
place (transition) p (q).

MY :P —{0,1,2,--- M} is the initial number of tokens in each place.

Since G is an oriented graph, then the following definitions are classical.

— Paths: a path is a set of transitions {gi,---,¢.} and a set of places
{p1, -+ yPn—1} such that for all s = 1---n — 1, (g;,p;) and (p;, giy+1) are
arcs in A.

— Circuits: a circuit is a path such that g1 = ¢,.

— Strongly connected component: a strongly connected component is a max-
imal sub-net C of G such that for each pair of transitions ¢;, g2 in C, there
exists a path in C from ¢; to go.

— inputs and outputs: an input transition g verifies *q is empty. An output
transition ¢ is such that ¢® is empty. Note that an input transition (resp.
an output transition ) is a strongly connected component by itself.

Fig. 3.1. A petri net

A Petri net is displayed in Figure 3.1. Places are drawn as circles and
transitions as thin rectangles. The initial marking is displayed with tokens in
the places.

Definition 9. A timed Petri net is a Petri net with in addition, firing times
associated with the transitions !
! Time is sometimes also attached to places. Tt is possible convert a Petri net

with time associated with places into a Petri net with time on transitions and
vice-versa.
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— 0 ={o4(n),q € Q,n € N} is the set of the firing times of the transitions,
where a4(n) is the nth firing of transition q.

In the following, we will assume that the stochastic processes {o;(n)}nen
are stationary with finite expectations. In addition, we assume that the se-
quences {o;(n)} and {o;(n)} are mutually independent for all ¢ and j in
Q.

The marking in place p is a right-continuous function M,(t) : Ry — N
and evolves according to the semantics of a timed Petri net which follows.

Enabling - A transition ¢ is enabled at time ¢ if each input place p of ¢ (p € *q)
contains a token at time t.

Firing - If a transition ¢ starts its n-th firing at time ¢, then one token is
“frozen” in each input places at time ¢. The transition ends the firing at time
t + o4(n) while the frozen tokens are removed and one token is added in all
output places of ¢ at time ¢t + o4(n).

The marking M (t) dlef (M4 (t),--- Mp(t)) of a Petri net changes according

to this firing rule: 2 if transition ¢ fires for the n-th time at time ¢,

Mp(t +0q(n)-)) —1 if p € °g,
My(t+o4(n)) =< Mp(t+o4(n)_)+1 ifpeqg®, (3.1)
My(t+ o4(n)-) otherwise.

Initial conditions - The initial marking is the marking at time 0, and no
tokens are frozen yet.

VpeP, My(0_)=M). (3.2)
Input transitions - Note that the firings of input transitions cannot obey
the firing rule defined above. Input transition would fire at any time since
they are always enabled. To overcome this difficulty, firing times of the input
transitions are given as extra data.

The sequence of firing epochs of input transition k is given beforehand
and denoted {Uk(n)}nen. The sequence {Ug(n)}nen is non-negative and in-
creasing, 0 < Up(1) < Up(1) < -+ < Ug(n) < ---, and Ug(n) is the epoch of
the n-th firing of input transition k. At the same time, one token is released
in each output place of k.

These input transitions are very useful for modeling purposes. They model
exogenous arrivals of tokens into an open system (see section 3.4 for some
examples).

Several pictures of the firing of a transition are displayed in Figure 3.2.
At time O_, the initial marking is displayed in Figure 3.2(a). At time 0,

2 the notation f(z_), for a right continuous functions f is the limit of f(y) when
ygoestozr,y<cz
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N

Fig. 3.2. Three snapshots of a Petri net taken at time (a) 0—, (b) 0 and o1(1).
Frozen tokens are grey, available tokens are black.

transition 1 becomes enabled and freezes one token in each input place as
it starts its first firing. The situation remains unchanged up to time o7 (1)_
(Figure 3.2(b)). At time oy (1), the frozen tokens are removed. Tokens are put
in the output places of transition 1. At the same time, transitions 3 becomes
enabled and starts firing by freezing the new token (Figure 3.2(c)).
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3.2.1 Properties

The behavior of a (timed) Petri net may be classified according to the fact
that all transitions fire infinitely often, or some starve after some time or even
everything stops in a situation where no transition can fire.

More precisely, a Petri net is live if any transition ¢ may eventually be
fired starting from any marking M reachable from M?: there exists a sequence
of transitions q1, - - - ¢, such that firing this sequence, starting in M yields a
marking M’ enabling q.

A petri net is in a deadlock M if after reaching the marking M from M?,
no transition is enabled anymore.

A petri net with input transitions is in an input deadlock M if after reach-
ing the marking M, no transitions is enabled except the input transitions
(which are always enabled by definition).

In [22], it has been shown that liveness (or presence of deadlocks) does not
depend on the timings of the Petri net. This is a structural property which
only depends on the topology, the routing of tokens in places with several
output (see [48]) and the initial marking of the net.

Checking if a Petri net is live is difficult in general. It has been proven
co-NP-Complete for the class of Free choice nets (see [44]).

However, testing if a Petri net is live is polynomial for some other sub-
classes, such as state machines or event graphs (see § 3.2.2).

3.2.2 Event graphs

Definition 10. An event graph is a Petri net where each place has one in-
coming transition and one out-coming transition:

VpeP,|*p =p*|=1. (3.3)

The net displayed in Figure 3.1 is an event graph: all places have one
incoming and one outgoing transition.

The modeling power of an event graph is limited but its dynamic is simple
and can be put in a linear from in the (max,plus) semi-ring (see § 3.3.3).

This subclass of Petri net can be used to model several systems on com-
munication, manufacturing or queuing which are highly synchronized and
where the routes are all pre-defined. Some examples will be given in Section
3.4.

Liveness - As mentioned above, testing if an event graph is live is easy.

Lemma 13. An event graph is live if and only if all circuits are marked
under the initial marking.

For a proof of this lemma, see for example [44]. This provides a polynomial
test for liveness of event graphs.
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Input connectedness - We consider an event graph with input transitions. We
say that the graph is input-connected (i.e. for each transition ¢ in the net,
there exists a path from one input transition to q).

For each transition (or node) ¢ in G, we consider all paths  from input

transitions to q. This set is denoted by P(q). We also denote by M°(x) dlef
Y sex M°(s), the sum of the initial tokens on the path 7. Now, we define

L(g) = min M(n). (3.4)

Lemma 14. For an event graph which is input connected, the n + L(q)-th
firing of transition q of G involves a token produced by the n-th firing of an
input transition to which q is connected.

Proof. Let hqg be a shortest path from one input transition go to ¢ with L(q)
tokens. The length of A, is called the “distance” from go to g. The proof holds
by induction on the length of hy. If hy = 0, then ¢ = go and the result is true.
Suppose that the result is true for all transitions at “distance” k — 1 from ¢q.
Choose ¢ at distance k, then the transition ¢’ preceding ¢ on the path h, is
at distance k — 1 from ¢ and induction applies to ¢’. Now the place (¢',q)
contains m tokens. By definition of ¢’, L(¢') = L(q) — m, and by induction,
the n + L(q')-th firing of transition ¢’ uses the token number n and since the
buffer place between ¢’ and ¢ is only fed by ¢’ and emptied by ¢ by the event
graph assumption, the n + L(q)-th firing of ¢ will use the same token (n-th
token produced by gqo). O

3.3 Dynamics of Event Graphs

In the following, we will consider a timed event graph G = (P, Q,&, M°, o).
We further assume that there is at most one place between two transitions
in an event graph. This assumption does not restrict the modeling power of
event graphs. Now, if there is a place p between transitions ¢ and j, this place

is unique and can be denoted (ij), with initial marking M}, dlef M}). The

maximal initial marking of all the places is denoted by m d:ef maXpep MS.

3.3.1 State variables: the firing epochs

In the Markovian case (all o4(n) have an exponential distribution), the mark-
ing M (t) is a Markov process. The main problems with this approach are that
the exponential distribution assumption may not be appropriate in many
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cases® also the state space is potentially infinite (or very large) and the tra-
jectory of the system is not easy to retrieve.

In the following, it is merely assumed that the firing times are stationary
processes. Here, the marking M (t) is no longer the appropriate state variable.
Instead, let the functions {X;(n),i € Q,n = 1,---} be the epoch of the
beginning of the n-th firing of transition 3.

Note that the marking can be retrieved from the X;(n) by the following
formula:

My(t) = Mp(0)+i H{Xe,(n)+0ep(n) <t} —1{X,e(n)+ope(n) <t} (3.5)
n=1

Transformation of the graph Any event graph can be transformed into an-
other event graph with at most one token per place in its initial marking and
with the same behavior. This is done by expanding places with more than
one initial token into several places with one initial token as illustrated by

Figure 3.3.
' p /
| : [T

’io:i 'i1 iz i3=j

O O O i

Fig. 3.3. Expansion of a place with 3 initial tokens into three places with one
initial token

~
.

If G = (P,Q,6,M° o) is an event graph with more than one token in
place 7, then G’ = (P',Q',&', MY ¢') is a event graph where place 7 is
replaced by M%(r) — 1 dummy transitions and M°(7) dummy places with

one token initially. More precisely, let k& d:ef MPO(7) be the marking in place

7 and 7 and j be the input and output transition of = respectively.

3 The Markovian approach can be extended to the case where the firing times
are either exponential or deterministic [41]. This makes the marking M (t) semi-
Markovian but the state space problem and the difficulty to study the trajectories
are even more acute.
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= P\{W}U{pla"'pk}a
Q' =9U{q, -1},
k—1
=& \ {(ij)7 (iv'fr)} U (qnapn+1)a (pn+1a Qn+1)7
n=0
MY =M, ifpeP\{r}

o _ :
MY =1, ifpeP'\P
!

oy(n) = oy(n), ifqgeQ,
op(n) =0, ifqgeQ'\Q,

with the convention that go = ¢ and g = j.

By repeating the expansion for all places with more than one token ini-
tially, one gets an event graph G = (P, Q,&, M°,§) with a maximal marking

=1 and such that the behavior of the initial graph is preserved. For each
0r1g1na1 transitions ¢ € Q and for all n, the firing epochs are the same under
G and under G: X;(n) = X;(n).

In the following, we will assume that the initial marking in each place is
at most one.

3.3.2 The (max,plus) Semi-ring

Definition 11. The (maxz,+) semi-ring is the set RU {—o00} equipped with
def

d
the two internal operations & =ef max and @ = +.

The neutral element for operation @ is —oo, which plays the role of 0.
The unit element for operation ® is 0 which plays the role of 1. Operation ®
distributes with respect to &.

The main difference with the conventional ring (R, +, X) is the fact that
the first operation @ is idempotent: a & a = a and does not have an inverse
(hence the denomination semi-ring).

The operations can be extended to matrices with the classical construc-
tion.

If A and B are both matrices of size n x m, then A ® B is a matrix of
size n X m with

As for the product, if A and B are matrices of size n x £ and £ xm respectively,
then A ® B is a matrix of size n x m where

def

(A®B”_€BA,C®B;W, i=1--n,j=1---m. (3.7)
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Linear equations - Solving linear systems in (max,+) is rather different from
the classical linear case. However, there exists one important class of linear
systems where the solution exists and is unique.

Lemma 15. A wvectorial linear equation of the form X = A® X ® b has a
def

e ,
minimal solution of the form X = A* @b where A* = ®2,A*. This solution
is unique if all the entries of A are finite.

For a proof of this result, see for example [23]. An important special case
is presented in the following corollary.

Corollary 5. If matriz A is acyclic, then A* has all its entries finite and the
vectorial linear equation X = A® X @ b has a unique solution X = A* ® b.

3.3.3 Evolution Equation in the (max,+) semi-ring

The autonomous case - Let us consider the case of a timed event graph
G=(P,Q,E, M, o) with no input transitions.

We assume that this net is live and that the initial marking has at most
one token per place.

We also assume that the net satisfies a local FIFO assumption in each
transition. Namely, the n-th firing to start is the n-th firing to finish.

This local FIFO assumption can be enforced by constraining the firing
times. For example if the firing time o4(n) of a transition ¢ are non-decreasing
in n, then q satisfies the FIFO assumption. However, this kind of assumptions
on the firing time process are often too restrictive, since we want to deal with
firing times forming stationary sequences. The local FIFO assumption can
also be enforced by topological constraints. The easiest one is by recycling
the transitions, as illustrated in Figure 3.4.

T~

—

<

©

Fig. 3.4. A recycled transition

In a recycled transition only one firing can take place at any given time,
since the token in the recycled place is frozen and will only be available once
the current firing is over. This enforces the FIFO assumption.

Now, under these assumptions, and according to the firing rule, a transi-
tion ¢ in Q, starts its n-th firing at time
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Xi(n) = —04(1), ¥n <0, (3.8)
X;(n) = ];relggng(n—Mfi)+0j(n—Mfi), Vn > 0. (3.9)

Using the (max,+) notation, one gets

Xi(n) = @ X;(n - MY) @ 0(n — MY;). (3.10)
je"’i
This equation can be seen as a linear equation between the variables
Xi(n), with coefficients oj(n — M;).
When written in vectorial form, it becomes

X(n)=A0,n)@X(n)® A(l,n)® X(n—1), Vn>D0. (3.11)

where X (n) is the vector (Xi(n), - Xg(n))" and for k € {0,1}, A(k,n)
is a @ x @ matrix defined by

def [oj(n—k) if M; =k,
Ak, n)ij = { —00 otherwise. (3.12)

Equation 3.11 is implicit but can be made explicit. Since G is live, then
all circuits are marked initially. This implies that matrix A(0,n) does not
contain any circuit. Therefore, A(0,n)* is finite and the solution of Equation
3.11 is unique, by applying corollary 5.

X(n)=A0,n)*® A(1,n) ® X(n —1),Yn > 0. (3.13)
If one define A(n) dlef A(0,n)* ® A(1,n), then the standard form of the
evolution equation of an autonomous event graph becomes:

—o(1) Vn <0,

X(n) = {A(n) ®X(n—1)VYn>0. (3.14)

The non-autonomous case - Now, we consider an event graph which is live
with at most one initial token per place and which contains transitions with
no incoming places ( input transition). This case will also be referred to as
the “open case”. Then the set of all the transitions Q is split into two parts:
input transitions (set Q; of size Q) and all other transitions, (set Qn of size
Qn)-

Recall that firing of input transitions does not obey the standard firing
rule since they have no input places. The sequence of firing epochs of input
transition k is given beforehand and denoted Uy (n).

For the dynamics of the other transitions (transitions in Qy), we define
the matrix B of size Qn X @ x which gives the connections of the inputs with
the other transitions. More precisely, the entry 4, j in B is 0 if there is a place
(initially empty) between the input transition j and transition ¢, and is —oo
otherwise.
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The evolution equation of a non-autonomous event graph is then of the
form

X(n)=A0,n)@X(n)® A(l,n) X(n—1)®&B®U(n), ¥Yn>0. (3.15)

Where X (n) is a vector of size Qn and A(0,n) as well as A(1,n) are
matrices of size Qn X @n and are defined as in the autonomous case (see
Equation 3.12).

Since the graph is live, it does not contain any empty circuit and matrix
A(0,n)* exists and is finite. By using Lemma 15 once again, the unique
solution of Equation 3.15 is for all n > 0,

X(n)=A0,n)*® A(1,n) ® X(n—1)® A(0,n)*B @ U(n). (3.16)
Let A(n) dlef A(0,n)* ® A(1,n) and B(n) = A(0,n)*B.
Then, the standard evolution equation in the open case becomes

X(n)=An)®@ X(n—1)® B(n) @ U(n). (3.17)

In this framework, whenever we refer to an open (max,plus) linear system,
we refer to a discrete event system for which the evolution equation can be
written under the form of Equation 3.17. Most of the time, these systems can
be modeled by (stochastic) event graphs as we just did. The following section
presents several examples of such systems.

3.4 Queuing networks

The aim of this section is to give some practical examples of systems
from queuing, manufacturing and communication that fall in the class of
(max,plus) linear systems. For each case we will exhibit the stochastic event
graphs model as well as the corresponding (max,plus) standard evolution
equation.

3.4.1 The G/G/1 queue

This first example that is going to be detailled is the G/G/1 queue.

Figure 3.5 shows the event graph model of a G/G/1 queue. This event
graph has two transitions, (one input transition modeling the arrivals, and
one transition modeling the service) and two places (one for the infinite buffer
and one to impose the mono-server semantics which also imposes the FIFO
assumption). Note that tokens have different meanings according to the place
where they are in. A token in place p; represents a customer (a frozen token
in place p; is a customer being served, an available token in place p; is a
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0 Pt 1

P2

Fig. 3.5. Event graph model of a G/G/1 queue

customer waiting for service). However the token in place p2 represents the
server (if frozen, the server is busy, if not, the server is idle).

Should the initial marking in the recycling place ps be k, this becomes
a G/G/k queue. If the recycling place is removed, this becomes a G/G /oo
queue. Note that only the G/G/1 queue is (max,+) linear for general firing
times, since it is the only one complying with the FIFO assumption.

For the G/G/1 queue, the evolution equation is given in Equation 3.18:

Xi(n) = A(n) ® X1(n — 1) & B(n) @ U(n), (3.18)
where

— Xi(n) is the epoch of the n-firing time of transition 1 (beginning of the
n-th service),

— U(n) is the the epoch of the n-firing time of transition 0 (arrival time of
the n-th customer),

— A(n) = A(1,n) is a 1 x 1 matrix equal to the n-th firing time of transition
1 (duration of the n — 1-th service), A(n) = a1(n — 1),

— B(n) is a 1 x 1 matrix which gives the traveling time of a token from its
entry in the system till reaching transition 1: B(n) = 0.

Since the equation is scalar in this case, it can be written using classical
notation:

Xi(n) =max(o1(n —1) + X1(n —1),U(n)),

which is classical in queuing theory.
The advantage of the (max,+) notation will better appear in the following
example where a network of queues is considered.

3.4.2 Queues in tandem

Consider a network of @ G/G/1 queues in tandem, with all queues initially
empty.

The event graph model of the network of queues has one input transition
and @ ordinary transitions modeling respectively the arrival of the customers
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KOS e

Fig. 3.6. Event graph model of queues in tandem

and the @ servers. An example of the event graph model of queues in tandem
is given in Figure 3.6.
In this case, we get

—00 —00 - —00 @ —00 —00
o1(n) —o00 -+ —00 —00 —00
—0 oa(n) -+ —00 —00 —00
A(O,n) = )
—00 —00 - og-1(n) —00 —00
-0 —0 -+ —o0 og(n) —o0
oiln—1) —o0 .- —00 —00
—00  oa(n—1)--- —00 —00
A(].,TL) = )
—00 -0 - o0g-1(n—1) -0
—00 —00 - —00 oo(n—1)
0
—00
—00
B = .
—00
—00

The matrix A(0,n) is clearly acyclic and applying Corollary 5, the matrix
A(0,n)* exists. Therefore, the matrix A(n) = A(0,n)* ® A(1,n) is given by :

-0 ifi < g,
(A(m) = { S op(n) +oy(n—1) Q> ).
and the vector B(n) = A(0,n)* ® B is given by

(3.19)
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0
a1(n)
B(TL) _ 0'1(TL +02(n)

S0 g, (m)

The firing instants of the transitions 1 to @ , X(n) = (X1(n),--- Xg(n))
corresponds to the start of the service times in the queues. The exogenous
arrival instants are denoted U(n) and the evolution equation is X(n) =
A(n) @ X(n—1)® B(n) @ U(n) for all n > 1.

3.4.3 Kanban systems

Consider a system of single server queues in tandem as depicted in Figure
3.7.

Fig. 3.7. Kanban system with blocking before service

The first queue is fed by the external arrivals and has an infinite capacity
buffer. All the other queues have a finite capacity buffer. The mechanism for
service is blocking before service: A customer can start its service at queue
1 if the buffer as queue i 4+ 1 is not full. Otherwise, it stays in buffer ¢ until
some customer leaves queue ¢ + 1 so that it can start its service.

In Figure 3.7, the places of type p; impose the mono-server semantics as
previously, places of type ps represent the buffers in front of each server and
places of type ps enforce the finite capacity of the buffers. The initial number
of tokens in a place ps is the buffer size for that queue (which is one in the
figure). The fact that the total number of tokens remains constant in the
circuit made of places po and ps imposes the finite buffer and the blocking.
When the buffer is full, place p3 is empty and no service can start in the
previous queue. As soon as a customer leaves the queue, one token is released
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in place p3 and the previous queue can start one service, should a customer
be waiting for service there.

The (max,+) equation of that system is again of dimension @, of the usual
form

X(n)=An)®@ X(n—1)® B(n) ® U(n).

In that case, we get the same matrix A(0,n) as for tandem queues with
infinite buffers (see Section 3.4.2).

—00 —00 '+ —00 @ —00 —00
o1(n) —00 -+ —00 —00 —00
—00 o2(n) -+ —00 @ —00 —00

A(O,n) = )
—00 —00 - 0g-1(n) —00 —00
—00 —00 -+ —00 og(n) —oo

However, the matrix A(1,n) is different:

oi(n—1)o2(n—-1) -0 —00  —00
—o0  o3(n—=1)o3(n—1) -0 —00
A(l,n) = )
—00 —00 og-1(n—1) og(n — 1)
—00 —00 —00 og(n—1
0
—00
—00
B = .
—00
—00

Therefore, the matrix A(n) = A(0,n)* ® A(1,n) is given by :

—00 ifi<j—1,
(A(n))y = { oi(n —1) ifi=j-1, (3.20)
iy ok(n) +o5(n —1) ifi > j.
and the matrix B(n) = A(0,n)* ® B is given by
0
0'1(TL
B(n) — 0’1(72 +02(n)

S 5, (n)
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One can also analyze tandem queue with manufacturing blocking (block-
ing after service), which can be modeled by event graphs as well. The main
characteristic needed to keep the (max,+) linearity is that no customer is
ever lost and the preservation of the FIFO property.

3.4.4 Window flow control

This example is taken from communication networks. If a node Sender sends
information to Receiver through a packet switched network made of () nodes
(counting Receiver but not Sender ), a flow control is a mechanism which
slows Sender in order to avoid overloads. A simple mechanism which is used
by many protocols (such as TCP) is the window flow control. This is used
to limit the total number of packets in the network. At reception of the n-th
packet, Receiver sends an acknowledgment to Sender. As for Sender, it sends
its n-th packet only if the acknowledgment for packet number n — W has
already been received. The parameter W is called the window size.

Sender P1 1 2

Regeiver

Fig. 3.8. Window flow control model

The event graph model of a simple window flow control mechanism is
displayed in Figure 3.8. Transition Sender is an input transition and models
the sender. Transition Receiver models the receiver. The transitions from
Sender to Receiver are the nodes (with a mono-server semantic) forming the
route in the network for the packets from Sender to Receiver. The transitions
from Receiver to Sender model the nodes crossed by the acknowledgments.
Tokens in place p; represent the packets that a has produced which are
waiting for a new acknowledgment to come to be sent. Tokens in place po
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represent the number of acknowledgments that have been received and which
allow sending new packets in the network. When the place ps is empty, W
packets have been sent without any reception of acknowledgments and the
next packet to be sent has to wait before heading to the network. The initial
number of tokens in the whole circuit is W and remains constant. To ease the
matrix representation, the initial marking is such that each place (starting
with place p» and going backward) contains at most one token. If the total
number of nodes in the circuit is smaller than W, this is done by adding
“dummy” nodes, with no service time, just as described in 3.3.

Since W > 0, the matrix A(0,n) is acyclic (lower diagonal).

_w —w .- .. —m —m ... —w
o1(n) —00 -+ —00 —00 -+ —00
_m 02(“) DTS —w —w .. —w
A(O,n) = -0 -0 --- gg-w(n) —co - —o0 |’
_w —Cx) PR —w —w .. —m
_w _w PR _m _m ... _CXD

The matrix A(1,n) captures the recycling places with one initial token
and all those W places containing one initial token. We have

o1(n) —oo --- —0 —0 <o og(n)
—00 o9(n) - —o00 o r o
—00 —00
—w —w EEEY O'Q_W+1(n) —w .. —w
A(].,’I’L + 1) = -0 = O'Q,W4_1(n) 0'wa+2(77,) —00 ’
00 —00 .- oo-1(n) oo(n)

and the vector B is

The matrix A(n) = A(0,n)* ® A(1,n) is given by :
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2;}ak(n)+aj(n—1) f1<j<i<Q-—W+1,
(A(n))i; = Y1 0k(n) +og(n—1) f1<i<Q-W+1andj=Q,

oi(n—1) ifi>Q-W+landj<i<j+1,
—00 otherwise.
(3.21)
and the vector B(n) = A(0,n)* ® B is given by
B(n): = { L ow(n) if 1< i<Q-W+1, (3.22)
-0 otherwise.

Finally, the standard evolution equation of the system is again X (n) =
An)® X(n — 1) & B(n) @ U(n), with A(n) and B(n) as above and U(n)
being the time when the n-th packet is emitted by Sender.

3.4.5 Leaky buckets

This example is also taken from communication networks. In large networks,
leaky buckets are a commun device often used to cut off bursts in the entry
traffic. They have been extensively studied, on a stochastic [111] as well as
deterministic point of view [39, 110].

paquet
infinite buffer entering

Input paquets j@ the network
.

network
token
buffer

token
generation

Fig. 3.9. A Leaky bucket

A leaky bucket is represented in Figure 3.9. The input stream is buffered
in an infinite buffer and each paquet has to get a token in order to enter the
network. Tokens are generated according to a process with intensity p and
are kept in a buffer with capacity o. Therefore arrival bursts of size larger
than o cannot enter the network and are filtered by the leaky bucket.
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paquet
entering
}_» the network

token
buffer,
capacity (4)
1
token
generation

intensity (2/second)

Fig. 3.10. Event graph model of a leaky bucket

If we assume that the token generation is done according to a deterministic
process which lets p tokens enter the token buffer every unit of time, then a
leaky bucket can be modeled by an event graph, represented in Figure 3.10.

Again, one can construct matrices A(n) and B(n) such that the standard
evolution equation of the system is X(n) = A(n) ® X(n—1) ® B(n) @ U(n),
with U(n) being the time when the n-th packet arrives in the leaky bucket
and X, (n) being the time when it enters the network.

3.5 Lindley’s equation for (max,+) systems

In this section, we will show how the evolution equation on the firing epochs
can help to establish an equation for the response time of a (max,plus) system.
By analogy with the G/G/1 case, this equation will be called the Lindley’s
equation.

First, let us state the assumptions that are made on the system under
study. We consider an open stochastic event graph G, which satisfies all the
assumption which as necessary to have a linear evolution equation of the
form 3.17, i.e. it is live and locally FIFO. Here, we further assume that G
have only one input transition (denoted gp) and is input-connected. We also
assume that the event graph is initially in an input deadlock: no transition
can fire (except the input transition). These last assumptions imply that for
every transition ¢ in G, there exists a path from g9 to ¢ that contains no
tokens initially. More formally, this can be written using 3.4 as,

L(q)=0,Vq € S.

Note however, that the system being in an initial input deadlock does not
mean that the initial marking is zero in all the places. For instance, the
network depicted in Figure 3.7 is in an initial deadlock, since L(1) = L(2) =

- = L(Q) = 0. However, some places as for example the recycling places or
the places of type ps have a positive initial marking.
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We recall that X (n) is the epoch when transition ¢ starts to fire for the
n-th time. Note that because of Lemma 14 and using the fact that L(g) =0,
X,(n) is also the epoch when the n-th token generated by the input is fired
by transition g.

Now, let W, be a vector , with its ¢-th component equal to: W} d:ef

X4(n) — U(n). Using Lemma 14 again, W7 can be seen as the traveling time
for customer n between its entrance in the system and its passage in transition

q.
Using the standard evolution equation for X (n), namely

X(n+1)=An)®@ X(n)® B(n)U(n+1),

and if we consider only the component X;(n) and the row ¢ in matrix A(n)
(denoted A;(n)), we can subtract U(n + 1) (a scalar since we have a single
input) on each side of this equation and we get:

i =An)®X(n)®Bn);@Un+1) = U(n+1).
We can rewrite this as

i1 =Ai(n) ® (X(n) = U(n +1)) ® B(n);
= (4i(n) = 7) © (X (n) = U(n)) © B(n)s,

with 7 € U +1) - U)
If we write this last equality for W41 in vectorial form, we get

Woi1 = A(n) @ D(—7,,) @ W,, & B(n),

where D(h) is the diagonal matrix with h on the diagonal and —oo ev-
erywhere else.

This recursion is a generalization of the Lindley’s equation in the case of
a network. This equation was also derived in [25].

By using elementary matrix operations in the (max,+) algebra, the equa-
tion can also be developed into:

W1 = B(n) & @ Ci, (3.23)
1=1

with

n

Ci =) (A(j) © D(-7;)) ® B(n—i - 1),

j=i

where we define for convenience B(0) de (—o0,---,—00)".



Part 11

Admission and routing control
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This part shows how the general theorems presented in Part I can be
applied in networks of queues or Petri nets which form timed event graphs.

The first two chapters focus on the problem of admission control where
the controller is positioned at the entrance of the network and decides
-either to accept (packets are allowed in the network and continue their routes
to the destination)

- or to reject the packet ( in which case, the packet is lost forever).

Chapter 4 gives the form of the optimal admission control in open loop
for a stochastic event graph.

Chapter 5 discusses the applicability of this technique in realistic telecom-
munication networks.

The next chapter (6) considers the routing control problem where the
controller decides the route that the packet must follow rather than it should
accept or reject the incoming packet. The results in the general case are
much weaker than for the admission problem. The optimal policy is shown to
have rates for each system when a balanced policy is admissible. However the
computation of the optimal rates is not done in the general case. Even when
the optimal rates are known, the optimal policy remains difficult to find.

Only special cases are solved in the following. The case where the parallel
systems have the same service distributions is solved completely in Chapter
6. The case of two deterministic systems in parallel is solved in Chapter 7.

These examples illustrate the intrinsic difficulty of the computation of
the optimal rates as well as the determination of the optimal policy in the
general case. It seems doubtful that a general construction, merely based on
the parameters of the system can always be given in closed form.
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4.1 Introduction

The work on admission control in queuing systems can be split into two main
domains, depending on the the information available for control decisions.
When some knowledge on the state is available (closed loop systems), then the
optimal control policy is usually based on dynamic programming techniques
[52, 95] and more recently in [100]. When no state information is available
(open loop control), then the control is often transformed into a problem of
assigning an optimal constant input rate, see Section II in [104]. Instead of a
dynamic control problem we are then faced with an optimization of a single
parameter. This presentation falls in between since it belongs to the open
loop framework but remains dynamic in some sense since control decisions
will be taken for each arriving customer.

The general result which is proved in this chapter is that when the admis-
sion rate is fixed, then the individual arrivals have to be distributed evenly
over time in order to minimize the average waiting time (or the workload).
The property of the cost function used here in order to prove the optimization
result is multimodularity.

We focus on systems with the following properties which can be consider
as rather realistic for classiacl networks models (more on this in Chapter 5).

1. We consider a queuing network with one input node. This network is
assumed to be a stochastic event graph (queues in tandem for example,
fit in this framework, see Section 3.3).

2. The service times of the customers admitted in the network may be any
stationary process.

3. We look at performance measures such as the average workload or the
average traveling time. More generally, any performance measure which
is a weighted average of expectations of convex functions of the workload
(or traveling time) to any of the queues can be considered. (see Lemmas
22 and 5 for a precise formulation).

In this framework,

we show that the following result holds: under all admission policies, with
an asymptotic fraction p of acceptance, the balanced policy with rate p is
optimal. This policy can be given by:
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an = |np] = [(n —1)p],

where | X | denotes the largest integer smaller or equal to X, and a,, =
1 (0) if the n-th arrival is accepted (rejected). The intuitive idea behind it
is that for stationary arrivals, balanced admissions spread out the entrance
times of the admitted jobs “most equally”.

The main objective of the chapter is to verify the conditions of Lemma
22 (or Lemma 5). The main point is the verification of the multimodularity
property, its proof for the single server case relies on Lindley’s equation. For
the stochastic event graph, we use the vectorial Lindley’s equation established
in Chapter 3. Although technically and notationally more involved, it turns
out that the verification of multimodularity in this general setting has the
same structure as for the one-server queue with a general service distribution
and “first in first out” service discipline. Via a counter example, we point out
in Section 4.2.1 that the multimodularity property does not hold sample path
wise (when we consider a deterministic sequence of service times which are
not equal). Therefore, we consider the expected workloads (expected traveling
times) and we apply a coupling of the service times (inter-arrival times). See
Section 4.3 for details.

4.1.1 Organization of the chapter

The chapter is structured as follows. Section 4.2 introduces the definitions and
Section 4.3 studies the particular case of a FIFO (First In First Out) queue,
to give an idea of the proof in the general case. The main goal of Section
4.4 is to show that the workload in a (max,+) linear system is multimodular
with respect to the arrival sequence. In Section 4.5, we give the proof of
multimodularity for the traveling time of a customer in the system. Finally,
in Section 4.6, we show that a balanced admission policy is optimal among all
open-loop policies with a given admission rate by applying our results from
Chapter 1.

4.2 Multimodularity and admission control

4.2.1 Admission policy: the time slot approach

In the rest of the chapter, we will use the following notations:

let {T;}icn be the instants of arrival opportunities, with the convention
that 73 = 0. Since all the rest of the notations are based on the original
sequence, this can be considered as a time driven approach.

We denote by ¢, the ith intervallength, that is: §; = T; 1 —T;. We assume
that 8o = 0. From now, the sequence T is fixed (and hence the sequence §).
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As for the customers, they arrive by batches. Their arrival is defined
through an arrival sequence which is a sequence of integer numbers, a =
(a1,a2, -+ ,an,---), where a; gives the number of customers entering to the
queue at time T;. For convenience, we introduce the value ag = 0. In Sec-
tion 4.6 the sequence a will be seen as a control sequence over the arrivals
but will be used in the same way.

Furthermore, each individual customer carries a load. The load of the
j—th customer is denoted o; .

The counting function k(i) is the number of individual arrivals by time
Ti:

k(1) dzefZaj. (4.1)
Jj=1

The function v(i) is the number of time-intervals elapsed when the ith
individual customer enters the system. We assume that v(0) = 0 and

v(i) % mingm - iaj > i, (4.2)

The function 7;(a) is the time elapsed between the i-th and (i + 1)-th
individual arrivals, defined by:

def v(i+1)—1
Ti(a) = Z (5]', =1uGi+1) — Ty(i) 1 < K(N), and (4.3)

=)
def
Te(n) (@) F' Ty = Ty n)-

Figure 4.1 illustrates all these preliminary definitions.

4.3 The FIFO queue

In this section, we assume that the arrival stream enters a single FIFO queue.
This is a simple case and the proofs presented here are typical of what hap-
pens in the general framework. The system considered is a G/G/1 queue with
batch arrivals. Note that according to Section 3.4.1, this system is (max,+)
linear.

Here, if a; = k, then this means that k customers enter the queue at
time Ty. We denote by W;(a) , the workload in the system at the arrival
time of the j-th individual arrival, T, (.(;)), and caused by arrivals up to and
including the (j — 1)-th individual arrival, for j < k(). Also, W(ny41(a)
is the workload just after time T under the arrival sequence (a,- - ,an)-
The function W;(a) satisfies the following recurrence equation.



82 4 Admission control in stochastic event graphs

number of arrivals 7
’ o
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5 75 =0
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—

—ds

Fig. 4.1. an example

Wipi(a) = (Wj(a) + 05 =) VO j < K(N). (4.4)

The solution of this equation is given by the expanded Lindley’s equation.
For W, (ny41(a), we get

(V) w(N)
W (ny+1(a) = max O,malx (oo —m) | - (4.5)
i= ‘
i=j
. def
For convenience, we denote Wy (a) = W, (n)41(a) and
&(N)
def
w; Y (o0 =)
h=j
Using this definition, we have:
WN(a) = max (vaH(N)v o 7w1) .

4.3.1 Coupling of the service times with the customers

The rest of the section is devoted to proving multimodularity of the workload.
Unfortunately, this does not hold on sample paths (as illustrated by the
following example). We have to use a coupling of the service times with the
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customers entering the queue, and then, by assuming that the service times

are stationary, we will prove multimodularity of the expected workload.
First, we will illustrate the difficulty of attaching the service times to

customers while insuring that multimodularity holds, through an example.

An example We consider a single queue with a sequence of service times
o(n) =(4,1,1,1,1,1,---) and with the integer points as arrival epochs.

We focus on the workload immediately after time Ty = 7 under the arrival
streams:

a=(0,0,1,0,0,1,1,0) (4.6)

a+e =(1,0,1,0,0,1,1,0) (4.7)

a— s =(0,0,1,0,0,0,2,0) (4.8)
a—sr+e =(1,0,1,0,0,0,2,0) (4.9)

The workload satisfies: Wg(a) = 1,Ws(a +e1) = 0,Ws(a +e1 — s7) =
1,Wsg(a — s7) = 1, as shown in Figure 4.2.

W(a)=1 Wia —76) =1
W(a—do) =0 W(a _70_116) =1

Fig. 4.2. The workload is not multimodular.

This shows that the function Wy is not multimodular, since Wg(a) +
Ws(a + e — s7) > Wg(a+e1) + Ws(a — s7).

However, under a proper coupling of the service times with the customers,
then W can be made multimodular.

We couple the service times with the customers entering the queue in the
following way.
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a =001001 1 0
g = a1 g2 03
a+ e =101001 1 0
o =09 01 g2 03
a—s; =001000 2 0

g = 01 02,03

a+e —sy=101000 2 0
o =09 01 02,03

Under this coupling ¢, the workloads become as in Figure 4.3. We see that
Ws(a) =0,Ws(a+e1) =0,W§(a+e —s7) =1, Ws(a—s7) =1, and W§
satisfies the multimodular inequality (which is an equality here),

ANEEANAN AN
W(a)=0 W(a—dg)=1
W(a —do) =0 W(a—f—dﬁ)zl

Fig. 4.3. Multimodularity of the workload under proper coupling.

General coupling In general, the coupling of the service times with the arrival
stream is done in the following way.

— Let a be an arbitrary arrival sequence in NV: a = (a;,az,--- ,an). The
service times are coupled with the customers entering the queue in the
following fashion: With arriving batch a;, we attach the service times:

Ok(i—1)+1>0k(i—1)4+2> """ »Ok(i)-
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— With arrival sequence, a + €1, the service time sequence for batch a;,i # 1,
is not modified and the batch attached with a; becomes:

00,01,02," " ,0k(1)»

where o is a new service time.

—Ifa—s;41 € NV, 1< j <N, the service time sequence for batch a;,i #
J,% # j + 1, is not modified and the batch attached with a; (which is not
empty) becomes:

Ok(j—1)4+12O0k(5—1)+25 """ 1 Ok(j)—1

and the batch attached with a;;1 becomes:

Ok(5)) Or(4)+1s """ s Ow(j+1)-

In other words, the service time o,;) is moved from the j-th batch to the
j + 1-th batch.

—If a — ey € NV, the service time sequence for batch a;,i # N, is not
modified and the batch attached with an (which was not empty) becomes:

Ok(N—-1)4+10k(N-1)+2>""" ,Or(N)—1-

The last service time o, () has been removed.

~Hfa+u+veNV, u,veF, u#wv, then the coupling of the service times
is obtained by composing the modification of the coupling associated with
a induced by w and v. This construction is commutative.

Note that this coupling strongly depends on the initial choice of a. If one
changes the starting point a, then other service times will be chosen. Also,
the coupling is not defined on a’s which do not lay in the positive orthant,
NV,

4.3.2 Multimodularity

We choose a point @ in NV and we construct the associated coupling c. We
will denote by W (.) the workload immediately after time T under this
coupling.

Now, using the notations given in the preliminaries, we have the following
results.

Property 1. Let 0 < i < N. If a; > 0, Tos)—1(a — 8i31) = Teiy—1(a) + bz,
Te(i)(@ — 8iy1) = Te(s)(a) — 6;. All other 7; are unchanged.

Proof. The addition of —s;41 corresponds to delaying the last acceptance at
time T; to time T;41. Te(i) 18 the time interval between T; and the arrival
instant of the next customer that arrives after time T;. Hence, delaying the
arrival from 7; to time T} results in increasing Te(i)—1 by Tiy1 — T; = 6.
Te(s) decreases by that value. See Figure 4.1 for an illustration of this proof.

O
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Property 2. Let 0 <4 < N.If a; > 0, wy(i)(@ — 8iy1) = W) + 6;. All others
w; are left unchanged.

Proof. Follows from Property 1 and the definition of w;. 0

Under the previous coupling, we have the following results.

Lemma 16. Let h: R — R be a nondecreasing convex function. Then

hoWg(a)+hoWg(a+u+v) <hoWg(a+u)+ hoWg(a+wv),

for all u,v € F and all a such that a +u+v, a +u and a +v are in NV,

Proof.

Let us first consider the case 0 < 4,j < N and a; > 0,a; > 0. In this case,
using the previous Property 2, we have:

Wi (a — siy1) = max(Wy(a), wee) + 6:) (4.10)
Wi (a = sj41) = max(Wg(a), weg) + 6;) (4.11)
Wi (a—sip1 — sj41) = max(Wy(a), we() + 65, wej) + 65). (4.12)

Therefore, we have

max(Wy(a), Wy (a — sit1 — 8541)) = max(Wy(a — siv1), Wi (a — sj41)),
Wy (a) + Wy (a — sit1 — sj415) < Wi(a — siy1) + Wi(a — s;11)4.13)

This means that the two dimensional vector (W§,(a), Wx (a— Siy1 — Sj+1))
is weakly majorized by (W§ (a — si+1), Wx (a — s;41)). By using Theorem
B.2, p.109 in [88], for any non-decreasing convex function h, (W5 (a)) +
AW (a = sit1 = 8j4+1)) < h(Wg(a — si1)) + A(WR(a — sj11))-

Let us now assume that ¢ = 0. This case corresponds to the arrival of an
extra customer at time 77 = 0. This customer brings a load that we denote
oo. In this case, we have:

W5 (a+ e1) = max(Wy(a),ws + (09 — 70))- (4.14)
This case is treated similarly to the case above since W§(a + e1) is of the
form max(W§(a),X), where X = w1 + (09 — 70)).
If i = N and ay > 0, then we have:
Wi(a—en) = (Wx(a) — oxm)*- (4.15)
Here, for some X (see the first two cases)

Wx(a —v) = max(Wx (a), X), (4.16)
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and
Wi(a—v—en) = (max(Wg(a), X) — ooy (4.17)

By a case analysis, we see that if W§ (a—v—ey) = 0 then, W5 (a—en) =0
and by monotonicity of h,

hoWx(a—en)+hoWgi(a—v)>hoWg(a)+hoWg(a—v—en).
If W5(a—v—en) >0, then,
Wi(a—v) - Wx(a—v—en)=on)-
This yields,
Wi(a)+ Wx(a—v—en) <Wg(a—en) + Wx(a —v).
On the other hand, it is direct to see that
max(Wx (a), W (a—v —en)) <max(Wg(a —en) + Wx(a—v)).

Again, by using the same Schur convexity property, for h convex and in-
creasing,

hoWx(a)+hoWg(a—v—ey) <hoWg(a—en)+hoWx(a—v).
This concludes the proof. 0

Theorem 17. Suppose {o,}22, is a stationary sequence, then the function
E, (h o Wy) is multimodular, where B, denotes the erpectation w.r.t. the
sequence {on} .

Proof. Let a be an arbitrary point in NV, Construct the associated coupling
c of the services times. Under this coupling and for all i, j, Lemma 16 shows
that

hoWg(a+u)+hoWx(a+v)—hoWg(a) —hoWx(a+u+0v) >0,

u # v, u,v € F. Therefore,
E, (h oWg(a+w+hoWx(a+v)—hoWg(a)—ho Wg(a +u+v)) >0.

By the stationary assumption on the service times and using the fact that
under coupling ¢, the service times involved in W5 (.) are always consecutive,

E,ho W&(.) =E,hoWy(.),

for the points a +u, a + v, a + u + v and a since the expectation is invariant
with respect to the shift operator. Finally we get

E, (h(WN(a + ) +h(W(a +0))—h(Wy(a) —h(Wy(a + u + v))) > 0.

O
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4.4 (max,+) systems with one input: multimodularity

This section will generalize the multimodularity properties to the case of an
arbitrary network which is (max,+) linear, has one input, is connected to its
input and initially input-deadlocked.

The main result established in this section is that the expectation of W¢
is multimodular for all transition ¢. The proof is very similar to the case of
the single queue and is made, surprisingly, even easier by using the vectorial
form of the Lindley equation in the (max,+) algebra.

In the following, we will also often use the following transformation for
notational convenience. If X is a vector of size @, then [X] is a diagonal
matrix of size @ x @, with the vector X on the diagonal and —oo elsewhere.

The multidimensional coupling of the service times in each transition with
the arriving customers is done similarly as in the one queue case.

We construct a coupling for transition ¢ which is independent of the cou-
pling for any other transition.

Let a be an arbitrary arrival sequence in NV: ¢ = (ay,a2,--- ,ay). The
service times are coupled with the customers entering the system in the fol-
lowing fashion:

— With arriving batch a; (if size x(4)), we attach the respective service times:
Uz(¢—1)+1v”;{(i—1)+27 T ’Ui(i)‘

— With arrival sequence, a + e1, the service time sequence for batch a;,i # 0
is not modified and the service times attached to a; now becomes under
this coupling: of,of,0d,--- ’02(1) where o is a new service time.

— Ifa—s;41 € NV then with arrival sequence, a—s;41,1 < j < N the service
time sequence for batch a;,i # j,j — 1 is not modified, the service times
attached to a;_1 become: Uz(j72)+1,02(j72)+2, . ’UZ(J'71)71 and the ser-
vice times attached to batch a; also become: o, 1\, 0% ) 1,08 )
In other words, the service time ai(j_l) is moved from the (j — 1)-th batch
to the j-th batch.

— Ifa—ey € NV, then with arrival sequence, a—ey, the service time sequence
for batch a;,i # N is not modified and the service times attached to an
(which is not empty) become: UZ(N71)+1, crg(Nlez, .- ,UZ(N)A‘ The last
service time O'Z( N has been removed.

—Ifa+u+veN, uv€ calF, then with arrival sequence, a + u + v, the
coupling of the service times is obtained by composing the modification of
the coupling associated with a induced by u and v. We note again that the
construction is commutative.

Now, using this coupling, we consider the traveling time vector of a poten-
tial customer entering the system just after time Ty under arriving stream a
and its associated coupling. We denote this vector by Wy (a) . This vector
is defined by the following equation:



4.4 (max,+) systems with one input: multimodularity 89

Kk(N)
W(@) = Bs(N) & €D Cila), (1.18)
with
w(N)
Ci(a) = ® (A(j) ® D(=Tj(a))) ® B(k(N) —i — 1), (4.19)

where 7;(a) is defined in Equation 4.3.
We have similar lemmas as in the one queue case, (see Properties 1 - 2).

Lemma 17. Let 0 < i < N. If a;_1 > 0, then Cyy(a — si41) = D(6;) ®
Cy(iy(a). All other C; are left unchanged.

Proof. Using property 1, we have:
D(=7x(iy-1(a = 8i11)) = D(=6;) @ D(=Tx(y—1(a))

and
D(—7u(iy(a — siy1)) = D(6;) @ D(—Ty(5)(a))

with all others 7; left unchanged.

— Now, for every j > (i), Cj(a — 8,41) does not involve D(—7(;)(a— sit1))
or D(—T7.(i)—1(a — 8i11)), and therefore is left unchanged.

— If j < (i) then Cj(a—s;y41) involves D(—T,(;)(a—8:41)) and D(—T(;)—1(a—
$;41))- Since the matrices D(z) commute with everything, and since
D(6;) @ D(—6;) = E, the identity matrix, then, C;(a — s;41) is left un-
changed.

— Finally, if j = (i), then Cj(a — s;11) involves D(—Ty(;)(a — $i41)) but not
D(—7x(iy-1(a — si41)). Using the fact that D(6;) commutes with all the
other matrices, we have Cy(;)(a — si11) = D(6:) @ C(sy(a).

O

In the following we will use, to simplify the equations, the matrices: Z; d:e
D(6;) @ Cyiy(a)-

Lemma 18. Let h = (h1,--- ,hg) be such that for all g, hy : R — R is an
increasing convex function. Component-wise, we have for u,v € calF,u # v,

hq o W4 (a+u)®@hg 0o W (a+v) > hg o W (a)®@hg o W (a+v+u). (4.20)

Proof. First note as a general remark that for any matrix M and any positive
number z, D(z) ® M & M = D(x) ® M. Now, as in the case of a single queue,
we have to distinguish three cases.
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— The case where 0 < 4,5 < N and a;,a; > 0. By commutativity of the @
operator, we have

WN(CL — Si+1) = WN(G) (&) Zi_|_1 (421)
Wy(a—sjt1) = Wn(a) ® Zj (4.22)
WN(a — Sj41 — Si+1) = WN(G) (&) Zj+1 (&) Zi+1. (423)

Now using the distributivity of ® w.r.t. @, we have [Wx(a — $i41)] ®
Wn(a—sj41)] = [Wa(a)] @ [Wn(a—sj+1 — Sit1)] @ [Z]; ® [Z];. This last
equation interpreted in the classical algebra says that for each server ¢, the
traveling time at time Ty satisfies:

Wh(a—sip1) + Wi(a—sjp1) > Wi(a) + Wii(a—sj41 —si1). (4.24)

The fact that h is increasing and convex component-wise, and using a case
analysis with Equation (4.24) shows that

MW3(a = siy1)) + h(Wi(a = sj41))
> (WY (a) + h(Wh(a— sjt1 — Sit1))
— Now we examine the case where u = e;. As in the single queue case, this

corresponds under our coupling to the arrival of an extra customer at time

Ty = 0 that has a service time that we denote o in queue g. In this case,

we have with n = k(N):
Wy(a+e) =Wy(a)® é (A; @ D(—7;)) @ Bi(n). (4.25)
=0

This case is treated as the general case, since Wy (a + u) is of the form
Wy (a) ® Z, for some vector

7% ® (4; ® D(=7;)) @ Bi(n).

— If u = —ey and ay > 0. This case corresponds to the removal of the last
customer in the arrival batch, which happens to have arrived at time Ty .
In this case, we have:

WN(a — €N) =5 ®WN(CL) @ 0,

where O is a vector composed of zeros and S is a diagonal matrix with
Slg,q] = _O'Z(N). Since we also have

Wnr(a+v)=Wpn(a)® Z

and
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Wy(a+v—en)=SQ@(Wn(a)2Z) o0 =5SQWy(a)dS®Za O,

with Z def Z;, we get using distributivity of ® with respect to @,
Wn(a—en)] @ [Wn(a+v)]
= (5S¢ [Wn(a)]®[0]) ® (Wn(a)] & [Z]
=S@[Wn(a)] ® [Wn(a)]
®[0] ® [Wn(a)]
®©S @ [Wn(a)] @ [Z]
el0] (2],

and on the other hand,

Wn(a)] @ [Wn(a+v—en)]
=[Wn()]®S®[Wn(a)]® [Wy(a)] @ S®[Z] ®[Wn(a)] ®|O].

Since all the matrices involved in these equations are diagonal, they com-
mute and we have:

Wy(a—en)] @ [Wyla+v)] =[Wn(a)] @ [Wrn(a+v—en)] ®[0] ®[Z].

Since [O] ® [Z] is a non-negative diagonal matrix, the result is established
by rewriting this equation in the conventional algebra.

As with the function h, the proof is similar to the case of a single queue.
Let on,n > 1 be the stochastic vectors with components og,q € Q.

Theorem 18. Suppose {o,} is a stationary sequence of stochastic vectors.
Then, the function E, h(W%(a)) is multimodular, where E; denote the ez-
pectation w.r.t. the service times in all the nodes of the system.

Proof. The proofis similar to the one queue case. The coupling ¢ is compatible
with the shift of stochastic vectors of the service times in all nodes. Therefore,
the inequality given in Equation (4.20) implies the multimodularity of the
expected traveling time w.r.t. all service times. 0

Note that this theorem proves that the traveling time for a customer
arriving at time Ty, that is, the time between its entrance in the system and
its service in queue ¢, is multimodular, for all ¢ and N.

Also note that the case of event graphs with multiple or no entries as well
as the case where the marked graph is not empty initially are intractable by
this means. Indeed, the coupling of the service times to the customers is not
feasible a priori in those cases. It will depend on the sequence of arrivals in
the case of multiple entries, and on all the service times in the case of a closed
system.
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4.5 A dual policy: counting variable and waiting time

In the previous section, we were interested in the study of the workload which
is a criterion related to the server. Here we will focus on performances related
to the customers, namely, the waiting time of the customers entering the
network. This approach will be dual (in some particular sense) to the previous
one and may be a more important issue for practical applications, where the
customer satisfaction is more important than resource optimization.

Previously, all quantities were indexed by n, the number of time slots.
In this section, all quantities will rather be indexed by k(n), the number of
arrivals.

The counting sequence b, will be given in the following way: b,, = v(n) —
v(n —1), n > 1. For example if ¢ = (0,0,1,0,0,2,0,1,1,0,0,1), then b =
(3,0,2,1,3). Note that a and b represent the same information (up to the
initial arrival); a,, gives the number of arrivals at time slot n (this is a time
driven concept), and the dual variable by gives the number of time slots
elapsed between the (k — 1)-th arrival and the k-th arrival (this is a event
driven concept).

4.5.1 Waiting time

Let G be a (max,+) linear system with a single input satisfying the assump-
tions given in Chapter 3.

Then, the traveling time of the k-th admitted customer to node ¢ is de-
noted by Wi (b). The vector Wi (b) satisfies the vectorial Lindley equation,
using the function 7 defined in equation (4.3):

Wi1(b) = A(k) @ D(—71) @ Wi (b) @ B(k),

This can be written:

n k
Wirn =Bk)e @PC, with ¢ = () (A(j) ® D(-7;)) @ Bk —i—1).

j=i

This equation has essentially the same form as the equation (4.18).

4.5.2 Coupling

The coupling adapted in this case is essentially the dual of the coupling on the
service times used previously. Here we rather couple the inter-arrival times,
6;. This coupling uses the function v instead of the function k.

We build the coupling d in the following way.
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— Let b be an arbitrary arrival sequence in NV: b = (by,bs,---,bx). The
intervals are coupled with the customers entering the queue in the following
fashion: With interval length b;, we attach the intervals:

Ou(i—1)+1>Ou(i—1)+25 """ > Ou(4)-

— With b—ey, the interval sequence for length b;,7 # 1 is not modified and the
length attached with b; (which was not empty) becomes: 61,82, -+, d,(1),
where 6y has been removed.

— Ifb+s;41 € NV, then with arrival sequence, b+ s;, 1 < j < N the interval
sequence for length b;,i # j,j — 1 is not modified and the length attached
with b;_; becomes:

bu(j—2)+1> Ou(i—1)+2, *  Ou(j—1), Ou(j—1)+1

and the length attached with b; (which is not empty) becomes:

u(i—1)+2>"" > du(y)-

In other words, the interval 6,(;_1)41 is moved from the j-th length to the
(j — 1)-th length.

— If b+sn € NV, then with arrival sequence, b+ sy, the interval sequence for
length b;,7 # N is not modified and the length attached with by becomes

61/(]\7—1)—1—17 61/(N—1)-|—27 R 6V(N)—17 6V(N)+1‘

The last interval ¢,(y)41, is @ new interval.

— If b+u+v € NV, then with arrival sequence, b+u+v, the coupling of the §’s
is obtained by composing the modification of the coupling associated with
b induced by w and v, u # i, u,v € F. This construction is commutative.

4.5.3 Multimodularity

In this case, we will use the direct base F = {—ey, 2, - ,en} rather than
F ={e1,—s2,--- ,—en} used in the previous sections.

Property 3. Let 0 < i < N.If b; > 0, then 7;(b+ 5441) = 7;(b) + 6,(i)41 and
Tiv1(b+ 8i41) = Tiy1(b) — 6,(5)41- All others 7; are unchanged.

Proof. By definition. See Figure 4.1 0
Lemma 19. Let 0 <i < N. If b; > 0, then

Ciy1(b+ siy1) = D(bu(i)+1) ® Cita (b).
All other C; are left unchanged.

Proof. The proof is similar to the proof of Lemma 17 and follows from the
Property 3 and the definition of C; O
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In the following we will simplify the equations using the variables:

def
Z; L D(6y(iy41) © Cip1 (b).

Under the previous coupling, we have the following results:
Lemma 20. Let h: R? — R? be a increasing convex function. Then,
hoW(b) +hoW({b+u+wv) <hoW(b+u)+ hoW(bv),
for all u,v € F and all b such that b+u+v, b+u and b+ v are in NV,

Proof. The proof is essentially similar to the proof of Lemma, 18. The proof
follows from the following equalities by using the same technique as in the
previous case.

CIf1<4,5 <N,
W(b + Si) = W(b) (&) Zi—l (426)
WD+ s;) =W(0) & 2,1 (4.27)
W(b+5j +Si) = W(b) SZi 1D Z. (4.28)
Ifu= —€1,
W(b - 61) = W(b) & Z(]. (429)
Ifu=e,,
Wb +en) =S @W(b) @ O, (4.30)

where O is a vector composed of zeros and & is a diagonal matrix with

Slg,q = _6Z(N)+1‘
O

Theorem 19. If the intervals {6;}3°, form a stationary sequence, then the
function Es(h o W) is multimodular.

The proof is essentially similar to the proof of Theorem 18.

4.6 Optimal admission sequence

In this section, we study the admission control in a (max,+) linear system,
as presented in Chapter 3. We use the multimodularity property to derive
the optimality of the bracket admission sequence.

We want to admit customers in a (max,+) linear system G, under the
constraint that in the long run, the fraction of customers lost be at most
1—p.

Now the problem is to find which admission policy minimizes the trav-
eling time to node 7 of a customer admitted in the system, as illustrated
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lost (max,+) linear system

Fig. 4.4. Illustration of the control problem

in the figure 4.4. The admission is governed by a binary control sequence
a = (a1,as, ). If a,, =1 then the n-th customer is admitted to the queue.
If a,, = 0 then the n-th customer is lost.

Note that this control sequence can be seen as an arriwval sequence as used
in the previous sections.

In this model, the vectors o,,n = 1,2,--- are service times of the cus-
tomers which are admitted to the system, they correspond precisely to the
definition of the firing times introduced in Section 3.3. There are no service
times attached to the customers who are not admitted to the queue. This
framework is natural in the stochastic Petri net context (see for example
[20]). Note also that if the service times (or firing times) are independent,
then this assumption is not needed and service times can as well be attached
to all customers.

4.6.1 Dual bracket sequences

In this part, we claim that the arrival sequence a is bracket if and only the
counting sequence b is also bracket up to an adequate choice of the phase.
The following lemma uses results about bracket sequences which are detailed
in Chapter 2.

Lemma 21. If sequence a is a bracket sequence with rate p and phase 0,
with 6 and p linearly independent over the rationals:

an = [p(n+1)+0] — |pn + 6],
then b is also bracket with rate 1/p and phase ¢ = —6/p:

be = [(k+1)/p+ o] — |k/p+ ¢

This lemma is a direct consequence of the form of the support of the
bracket sequence a, given in Chapter 2, § 2.2 Note that 6 and p are linearly
independent over the rationals for almost all 6 in [0, 1).
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4.6.2 The time slot approach

Now, we are ready to consider the problem to find the optimal admission
policy with a given rate. We denote by E,s(.) the expectation w.r.t. the
inter-arrival times and the service times in all nodes in the system. Following
the technical conditions given in Chapter 1, we have to make sure that the
expected traveling times to node i under the admission sequence a, satisfy
the properties given in Lemma 22. Let h; : R — R, 1 <17 < @ be arbitrary
non-decreasing convex functions. For simplicity we denote in the following
W: (a1, ,a,) instead of h; o Wi (ay, - ,a,).

In the next two lemmas, we use increasing and decreasing in the non-strict
sense.

Lemma 22. Assume that the inter-arrival times and the service times are
stationary sequences, independent of each other. The following properties are
true:

i- By s Wi (a1, - ,a,) is increasing.

- ]Ea,éwjz'(am—n-l-la Tt 7am) S ]Ec.r,ﬁwin(a/lv Tt 7a/m)} n<m.
13- IEU,(gW;(al, s Lan) =By s W (0,---,0,a1, -+ ,an), n < m.
w- By sWh(a1, - ,an) is multimodular.

Proof. We prove the four properties in a convenient order.

+ Using the extended Lindley formula, the expected traveling time
]Ea,(stl(al, -+ ,Gy) is increasing in ag, k=1,---n.

1~ Let us fix n and m with n < m. Since the inter-arrival times are
stationary, we can couple the ¢’s such that V1 < j < m, 6§") = 6§T7)n_n =
0j+m—n. Under this coupling and because the system is initially empty, we
have:

Wi(alv"' 7a/n) :W:n(ov 7070/17"' 7an)7

and, . 4
IEUW:L(G/17”' 7a/n) = ]EJW»Zm_(Oa ,0,&1,"' 7an)-

Therefore, if n < m,
Ea,ﬁwi,(alv e 7an) = ]Ecr,ﬁ.w:ln(o7 e 7070/17 e 7a/n)~

#- This is a direct consequence of ¢ and .
72~ Theorem 18 shows that E, W% (ay,--- ,an) is multimodular, thus in-
tegrating over 6, E, s W% (a1, - - ,a,) is multimodular as well. 0

Now, we choose the cost function g¢‘(a) of the control sequence a =
(a1,as,---) to be the Cezaro sum of the expectation of an increasing convex
function of traveling time to a given node ¢, of a potential customer admitted
to the queue at time 7,,. We have:

N
def — 1 i
= lim N E Eo s Wh(a1,...,an).

N—oo

g'(a)

n=1
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Note that g*(a) could be called the average traveling time at epochs {7, }.
In the case the sequence {T},} is a Poisson process, g°(a) is the time-average
of the traveling times.

To find which admission policy minimizes the cost g'(.), we recall the
notation for the bracket sequence with phase 6 and rate p,

ab(0) = lkp+6] — [(k—1)p+0]. (4.31)

We can restate the general theorems given in Chapter 1, in the particular
case studied here.

Theorem 20. For each sequence a such that

1 N
li_m N;anzpv

N—o0

1t holds that, ' '
9'(a) 2 g*(a”(6)),
for any 6 € [0,1].

Proof. First note that the bracket sequence a}(6) has an asymptotic rate
equal to p. Then, the results from 1.3 can be applied, since all necessary
assumptions on W are satisfied. 0

4.6.3 The counting approach, the bounded case

In this section, we use the counting sequence b rather than the admission
sequence a. Therefore, we rather focus on the function h; o W(i)n (b1, - ,bn),
which is denoted WY (b1, - - , by,) for the sake of notation simplicity.

Lemma 23. Assume that the service time vectors and the inter-arrival times
are stationary sequences, independent of each other. Assume that the o}
(resp. 6x), for each k € N and q € Q is bounded from above (resp. from
below) by R (resp. by D).

i- B o Wi (b1, -+ ,by) is decreasing.

it- Bs o Wi (b1, -+ ,bn) > Es o WE (bnmt1, -, bp), n > m.

194~ Eg,(,Wi(bl,--- ,bn) = Eg,,,an(ﬁ,--- 2By bnma1, ,bn), n < m, where
8=[QR/D.

iv- Es o Wi (b1, -+ ,bn) is multimodular.

Proof. The proof holds by using stationarity of the inter-arrival times and of
the service time vectors.

i Using the extended Lindley’s Formula, it is clear that Es , W (b, - , by)
is decreasing.
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i~ Let us fix n and m with n > m. Since the service time vectors are
stationary, we can couple the service times such that V1 < j < m, aﬁ)nfm =

ag-m) = g;. We also couple the §’s in the following way:

V1< j<v(m), & =6 = ;.

jtv(n—m)
Under this coupling and because the system is initially empty, we have:
Wi (biy--+ 5 ba) 2 Wi (bnemt1s -+ 5bn)-
Therefore, the inequality holds for the expected values as well,
Eso Wi (b, -+ ,bn) > Es o Wi (bnmt1, 5 bn).

Note that properties 7 and 7 do not use the fact that the service time
vectors and the inter-arrival times are bounded. This assumption is used for
property 4.

iit- First, we show that under the sequence (53, be, - - - , b, ), the net is empty
at the time of the second arrival.

Let us assume for a moment that the second arrival is infinitely delayed.
Since the system is originally empty, then after the first arrival, each transi-
tion in the system will fire exactly once (this is a well known result for Event
Graphs, see for example [38]). At this time, the system is again empty and
no transition can fire. An upper bound of this time is given by QR. If the
next customer arrives in the system more than QR units of time later, then
it will find the system in the original empty state.

Now, note that 71 > SD by definition of D and taking 8 > QR/D makes
71 larger than QR.

Finally, using the same coupling as for i1, we get

EE,UW»,Z'L(bla"' 7bn) = E5,0W2+1(57b27"' 7bn)

An easy induction on n gives the result.
iv- Theorem 19 shows that Es W}, (b1, - - ,b,) is multimodular. Therefore,
Es,» Wi (b1, -+, by) is multimodular as well. 0

Similarly to the previous case, we choose the cost function of any control
sequence b = (by,bs,---) to be the Cezaro sum of the expected traveling
times of all customers admitted to the queue, to a given node i:

N —oco

A4(b) = Tim NZEM % (byy ey bn).

We recall that the bracket policy with phase 6 and rate p is

b7 (0) € \kr 4 0] — (k= 1)r +0). (4.32)

We can restate the general theorems given in Chapter 1 in the particular
case studied here.
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Theorem 21. Under the foregoing assumptions, for all sequence b such that

then vi(b) > v4(b7(0)), for any 6 € [0,1].

Proof. Lemma 21 shows that the counting sequence associated with b} () is
a bracket sequence with rate r.

Then, the optimization theory developed in Section 1.3 can be applied
since all necessary assumptions on [E, s}V are satisfied. 0

Note that Lemma 21 says that the average workload and the average
waiting time are both optimized by the same admission control sequence
aP ().

In the next section, we will prove that the same optimization result holds
in the unbounded case. The proof uses strongly the result stated in Theo-
rem 21.

4.6.4 The unbounded case

If the service times and the inter-arrival times are not bounded in the original
stochastic event graph G, then, we use a fixed quantity Z and we introduce
a new system GZ

where all services times, o are replaced by 2+ def min(Z, o). The inter-

arrival times §j, are also replaced by 67 def max(1/Z,é). In the new system

G4, the service times are bounded from above by Z and the inter-arrival
times are bounded from below by 1/Z.

In GZ, W% is the compose of the traveling time of the n-th customer to
the i-th node by a convex increasing function.

If © is a random variable with uniform distribution on [0, 1),

(0 % e+ 0] - (k= 1)r+ 6]

is called the randomized bracket policy with rate r.

Following the results in Chapter 1, the time average of Es , W, is mini-
mized by the randomized bracket policy, (as well by the one with 6 fixed at
an arbitrary value). We have for all policy b with rate less than p,

Z7i( ’1 bla 7b )

ZIH

v

15\

0 OWZZ bp(@)a () bﬁ(@))

i

15\
ZIH

2»—-
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To prove the optimality of the randomized bracket sequence for the orig-
inal system G where the service times and the inter-arrival times are un-
bounded, we need to let Z go to infinity in the previous inequality. For that,
we need several technical lemmas.

Lemma 24. The random sequence b"(0) with © uniform on [0,1) is sta-
tionary and P(b3.(©) =1) =r, Vk.

Proof. By definition, b7,(©) = |kr + @] — |[(k — 1)r + ©]. The fact that
fol |z + 60]|df = z for any x implies that

1
vk, / b7(6)d6 = r.
0

O

Lemma 25. If {0,} is a stationary sequence of vectors, then {min(o,,Z)}
and {max(o,, Z)} are also stationary.

Proof. The proof follows by definition of stationary sequences 0
We define the variable Gy d:ef Zle b;. The inter-admission times satisfy
Br+1—1
=Y b (4.33)
=P

One sees that 75, is a sum of a random number of random variables.

Lemma 26. Assume that the process {by.} is stationary, and the process {6;}
is stationary and independent of {b}. Then, the process {11} is stationary.

Proof. We compute the distribution of the joint process 7o,--- , 7. It is de-
termined by the probabilities:

def 2 2
P(6,b) = P(ba =m2,--- bk =Ny 6p141 < 015 5 Oy gmatodng < Onydoodng)

= Y Pbr =i, bk =0k, i1 <1, Bigmy gty < Onygotny)-
7

Now,

P(5,b)
= ZP(b1 =1, by = nk)]P)(éH-l < 517 * 6i+n1+-+nk < 8n1+-+nk)

=D P(by =1, bk = nk)P(61 < 81, Sny gty < Bnyttmy)
= ZP(bO = 7:7b1 = na, '7bk)—1 = nk))]P(él S 517 .767L1+-+7‘Lk S 8n1++nk)

=P(by =n2,-,bk—1 = 1k, 01 < 61, Onytotnr < Ongteotnn)s
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where the first equality follows from the independence of b and §, the second

follows from the stationarity of § and the third from the stationarity of b.
This last expression gives the distribution of the joint process 71, - Tk_1.

Since all of this holds for all k, the process {7y} is stationary. O

Lemma 27. Under the randomized bracket policy, if {or} and {61} are sta-
tionary sequences, then {oZ} and {T#} are also stationary.

Proof. The proof comes from a direct combination of the three previous lem-
mas. |

Lemma 28. If {0t} and {6x} are stationary sequences and if the system GZ
is empty originally, then for all n,

WEP(0)) <. WL (7(9)),
where <, denotes the stochastic order.

Proof. If the service time and the inter-arrival sequences are stationary (as
it is the case here), this result is well known (see for example [24]). We can

set W2 (b?(©)) = 0 and we have
Wy (17(0)) <o W (17(9)).
Now, the Lindley formula for (max,+) systems can be used in this case.

W (b7(0)) = A(k = 1) ® D(=7—1) @ Wi, (07(0)) & B,

and
WE 1 (07(0)) = A'(k) @ D(—11) @ W' (b(8)) @ B,

where the primes denote another sample path of the service and inter-
admission times. By induction, we can assume that component-wise,

WE(bP(0)) >, Wil (07(6)).

Now, stationarity of the service times in all queues and of inter-arrival times
comes from Lemma 27. We can couple the service times and the inter-arrival
times such that for all 4, i = oi_, and 7, = 74_;. Under this coupling,
A(k —1) = A'(k) and D(—7},) = D(—7%—1). Hence

Wi (t7(6)) > Wi (7(6))
component-wise, under this coupling. 0

The optimality of the randomized bracket policy is established by the
following theorem.
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Theorem 22. Consider the system G where the service time vectors and the
inter-arrival times are stationary sequences, independent of each other. For
each control sequence b such that

it holds that

N
i 7 1 i
7'(b) > Tim_ N;Ea,a,ew,% (5(6), ... b2(0)-

Proof. Remark that the quantity sz ’i(b) is increasing in Z and

lim WkZ’i(b) = supZWkZ’i(b) = Wi (b).

Z—o0

The proof follows from the series of inequalities,

N
i(p) = lim 1 Zyi
~H(b) = 1\}1_r'noo sup <N Z]Eg,aWn (bl,...,bn)>

n=1

\Y

N

— 1 Z,

Supyz J\Ih—rynoo N T;I]E(?,O' Wn (b17 seey bn)
N

\Y

— 1 .
supz Nh—r»noo AT Z E&,o,@Wf’Z(bf(@)v sey bi(@))

n=1

By Lemma 28, we know that Es , 0 W2 (b}(0), ..., b2 (0)) is increasing in

-y Oy

n. Therefore, the Cezaro limit equals the supremum on all n. We continue
the previous inequalities:

’Yi(b) 2 suszuang’g,@Wf’i(bf(@), ey bﬁ(@))
= sup,,sup;Es,..0 W (b7 (0), ..., b (O))

N—oo

N
— 1 ;
= Iim NZ]Eg,a,@wn(bf(@),...,bfb(@)).

n=1
[l

Our last theorem shows that the (non-randomized) bracket policy is op-
timal for any initial phase 6.

Theorem 23. Under the assumptions of Theorem 22, for each control se-
quence b such that
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1 N
lim — b, <
2 <

it holds that ' ,
7' (b) = 7*(b,(9)),
forall0 <6< 1.

Proof. Define
def i
Fr(6,9) ' Eo o Wi (B1(6), .. b5, (6))-
Note that f,, is periodic (in ) with period 1. Define

£.0.0) & f(an 1 (0), a2 (8)).

Then we have
[ (0',p) = fm(6,p) where 6 =6—mp,

Again f! is periodic w.r.t. 6, with period 1, and is increasing in m because
of property i in Lemma 22, so that the following limit exists,

f(6.0) %" 1im£7,(6,9).

Hence,
Eo f2o(0,p) = lim Eo f;,(0,p) = lim Ko fn(O,p). (4.34)
Now, it follows from our results in Chapter 1 that under properties 4 and

v of Lemma 22, the following holds:

N—oo

N
1 .
lim n§:1 Es,o W, (b7(0), ..., b(0)) = Eo f5, (O, ).

Combining this with Theorem 22 and Equation 4.34 finishes the proof.






5 Applications in queuing networks

5.1 Introduction

This chapter discusses the relevance of the assumptions made in the systems
studied so far for the application of the theory for queuing networks.

Let us first consider a circuit switched network. We focus on a single
connection in the network with nodes dedicated to a single class of packets,

as illustrated in Figure 5.1.

@m@ V.

Network ﬁ
ekl

\

Admission
control

Fig. 5.1. A network with a focus on single connection

If we consider networks where nodes are not dedicated to a single connec-
tion (this is the case in most networks), then we have to take into account
cross traffic, that is other connections using the same nodes inside the net-
work.

In Figure 5.2, cross traffic has been added to the connection under study.

The goal of the rest of the chapter is to check when the general theory is
applicable to these cases
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I.t ~

~
Cross traffic 2 ﬁ X Exif cross traffic 1
N

Fig. 5.2. A network with a connection and two cross traffic

5.2 Topological assumptions

As we have seen in Chapter 3, any network (or part of a network) which
can be modeled by an event graph fits in the framework. This is the case for
G/G/1 queues in tandem as shown in Chapter 3. More generally, this is the
case for networks of FIFO mono-server queues with finite or infinite buffer
and general blocking which do not contain any routing.

In particular this means that all customers must follow the same route and
that no losses are allowed. We shall investigate in a later chapter (Chapter
8), admission control and routing into some particular networks with losses.

_ 1O

a1 queue 2

2/3
1O

queue 1

1/3

_ 1O

queue 3

a2z

Fig. 5.3. A network with routing of the customers
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Imagine a network as in Figure 5.2. The input sequence is periodic with
one arrival every time unit. The admission control filters the input with a
Sturmian sequence with rate 2/3. The first queue has a deterministic service
rate of one customer per second (therefore the waiting time in this queue is
always 0). The stream of customers out of queue one is split into two with 2/3
of the customers sent to queue two (the rest is sent to queue three). It is rather
easy to check that no matter how the splitting is done, the stream in queue
2 is not regular. In particular, this stream will contain customers with inter-
arrival time equal to one. However, if the admission control a is not Sturmian
but for example ¢ = (1,0,1,1,1,0,1,0,1)°, then it is possible to split the
output of queue one with ratio (2/3,1/3) and shape the stream of customers
in queue two (resp. queue three) such that a¢; = (1,0,1,0,1,0,1,0,0) (resp.
as = (0,0,0,1,0,0,0,0,1) ) which are Sturmian, and therefore optimal, for
the waiting times in queues two and three.

This means that in general, when the network contains several routes for
the customers, the Sturmian admission may not be optimal.

Cross traffic as perturbations. When the network is (max,plus) linear,
the expected (virtual) traveling time of a customer from the entrance in the
network to its destination, or more generally to any node in the network, is
multimodular and the general theorems can be used to show that Sturmian
admission is optimal.

The example displayed in Figure 5.1 fits in this framework. However the
example in Figure 5.2 does not since it contains several classes of customers
with different routes. However this case can be approximated by replacing
the cross traffic by perturbation of the service in all stations shared between
the main connection and the cross traffic.

The idea is to replace the cross traffic by perturbed service times for
the connection under study: just replace the cross traffic in node i between
costumers n — 1 and n by a modified service time for costumer n by adding
the service time of all the cross traffic to the service time of n. This new
service time is called “visible” service time in the rest of this section. If the
cross traffic at every node is stationary, then the perturbation at each node
will also be stationary. However, the service times now become a functional
of the arrival times for the connection under study. It also induces tricky
dependences between the services times in the different nodes of the network.

5.3 Stochastic assumptions

The stochastic assumptions used in Theorem 21 are the following ones. The
arrival process is stationary as well as the service times in all queues and the
arrival process is independent of all the service processes.

First note that the stationary assumptions are rather minimal. In particu-
lar, the arrival process does not even need to be ergodic. Without stationarity,
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the theorem is not true. Just imagine a D/D/1 queue with a non-stationary
fluctuating input sequence with inter-arrival times

O6n = 1,
O6ny1 = 1,
O6nt2 =1,
O6n+3 = 2,
O6nta = 2,
S6n+5 = 2,

and with deterministic service times equal to 2. If one wants to admit
optimally a proportion @ = 2/3 of the packets, the optimal policy is
a = (100111)* with null waiting time and all Sturmian sequence with density
2/3 have a positive average waiting time.

Another interesting property of Theorem 21 is that the different queues in
the network are not required to have independent service times. For example,
a “large” packet may have large service times all through the network. This
could be used as a simplified model for different classes of customers, all
following the same path and distributed randomly in the global input process.
It can also be used in order to model the influence of cross traffic for the visible
service times in several nodes of the network.

As for the independence assumption between the arrival sequence and
the service times, this may seem as a rather strong condition imposed on the
system. It reduces the set of queuing networks where the general theory can
be applied. For example, the case with cross traffic does induce dependences
(as shown in the previous section).

5.3.1 Independence between service times and inter-arrival times.

If we do not have independence between the service times and the inter-
arrival time, then Theorem 18 cannot be used because the multimodularity
in expectation may not hold anymore. Furthermore, one can easily construct
an example where the optimal admission sequence is not Sturmian. Here is an
example. Consider a G/G/1 queue. We want to admit half of the customers
in the queue (this means a = 1/2). We consider a Poisson arrival process of
intensity A. As for the service times, we fix N arbitrarily and we construct the
service process as follows. The first N customers have service times coupled
with their inter-arrival times such that o, = 6 for all 1 < k < N. As for the
next N customers, their service times, oy is exponentially distributed with
parameter ) independent of the inter-arrival times as well as the other service
times. The next N customers have arrivals coupled with their service times
again and so forth. Thus,

Okzékifk<NmOd2N,

or L {6:}ien, and oy i.i.d. exponential, otherwise.
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In this case, the inter-arrivals are i.i.d. (hence stationary), the service
times are i.i.d. (hence stationary) but the two processes are not independent
of each other.

We consider the following admission policy with admission rate o = 1/2.

ar =1if k < N mod 2N,

ar = 0 otherwise.

If the queue is initially empty, then for all 7 € N, the virtual waiting time
at the ith slot is null: W;(ay, - - - a;) = 0. Therefore,

g(a) = lim — Z]E o,sWilar,--- ,a;) = 0.
i=1

On the other hand, if one considers the Sturmian admission sequence with
rate 1/2, m, such that mo, = 1 and mo;y1 = 0, then E , sW;(mq,--- ,m;) =0
if i < N but for N < i < 2N, E ,sW;(m4,---,m;) > 0 since in this case
the queue can be seen as a transient E/M /1 queue and the expectation of
the waiting time is positive. Therefore, the cost for the Sturmian sequence is
strictly larger than the cost of the optimal sequence a.

Note that as IV increases, the optimal sequence a get further and further
away from the Sturmian sequence m.

This shows that the independence assumption is essential for Sturmian
sequences to be optimal admission sequences.

5.3.2 Cross traffic

As mentioned before, the presence of cross traffic in the network can be
modeled by perturbation of the service times in each queue. Unfortunately,
this trick usually introduces dependences between the arrival times and the
visible service times in the connection under study and the general optimiza-
tion theorems do not apply in general. However, there are cases when these
dependences disappear.

1. This is the case if cross traffic has a lower priority than the connection
under study (and is preemtable). In this case the visible service time is
the same as the service time and independence is preserved.

2. Another case where the independence remains is when all connections
(cross traffic as well as the main connection) are all deterministic pro-
cesses, which is rather sensible at the packet level. In this case, the visible
service can be rather difficult to describe (but remains stationary). The
arrival process of the main connection being deterministic, it is indepen-
dent of its visible service times.






6 Optimal routing

6.1 Introduction

It is a rather general problem to consider a system with multiple resources and
tasks. Tasks can be performed by any resource and arrive in the system se-
quentially. The problem is to construct a routing of the tasks to the resources
to minimize a given cost function. Such models are common in multiprocessor
systems and communication networks, where the cost function may be the
combined load in the resources.

In this chapter, we show that under rather general assumptions, the opti-
mal routing policy in terms of expected average workload in each resource is
given by a balanced sequence, that is, a sequence in which the option to route
towards a given resource, is taken in an evenly distributed fashion. To show
the relevance of this type of problem, let us briefly review the recent literature
on load balancing. Load balancing in a distributed multiprocessor computer
system has become an important issue to improve their performance. Many
papers have been devoted to the load balancing problem, and for an overview,
we refer to [33, 60]. Let us assume there is a centralized controller , and the
information available to the controller determines the type of control which
can be used. In dynamic feedback control (or close loop control), the infor-
mation on the system (e.g. queue sizes) increases as time runs. In static or
open loop control, the central controller only knows his past actions. Clearly,
the closed loop models have a better performance than the open loop ones.

In the dynamic control setting, it is well known that under various as-
sumptions and cost structures, the “join the shortest queue” policy is optimal
for homogeneous processors (i.e. all processors are stochastically identical).
For non-homogeneous processors, an optimal load balancing policy has not
been found. Only partial optimality results are available (see [62] for results
on shortest queue policies and [14] for results on the monotonicity structure
of optimal policies).

For open loop control, probabilistic routing and pattern allocation have
been studied. Again, in the case of homogeneous processors, the optimality
of equal probabilities for probabilistic routing is established in [40, 79]. The
round robin routing was proved optimal in the case of pattern allocation
in [82]. For the non-homogeneous case, the problem of finding the optimal
pattern allocation is generally considered difficult. Approximations of optimal



112 6 Optimal routing

allocations are found in [26, 43]. For markovian models, an algorithm has been
developed for computing nearly-optimal policies in [65, 64].

6.1.1 Organization of the chapter

Here we will show an application of balanced sequences introduced in 2 for
routing problems. This uses again results from convex analysis, established
in Chapter 1. The main results that are used here are of two different kinds.
First, we use the fact that the workload as well as the waiting time of cus-
tomers entering a (max,+) linear system are multimodular functions, under
fairly general assumption (stationarity of the arrival process and of the service
times, as we showed in Chapter 4). We pose the problem of routing in terms
of time average of multimodular sequences. Then, we develop the required
theory for the case where the performance for each subsystem is stochastic
but its expectation is multimodular. This extends the deterministic analysis
that we did in Chapter 1, that proves that multimodular functions are min-
imized by bracket sequences. The superposition of several bracket sequences
being a balanced sequence, this is the basis of the main result of this chapter.

It is interesting to exhibit this link between balanced sequences and
scheduling problems, such as routing among several systems.

Section 6.2 shows the link between the notion of balanced sequences and
the optimal scheduling in networks. It is also used to establish the optimality
of balanced sequences for routing customers is a multiple queue system. Sec-
tion 6.3 presents special cases for which the optimal rates can be computed.

6.2 Routing of customers in multiple queues

Here, we present an application of balanced sequences in arbitrary dimensions
to scheduling optimization.

We consider a system where a sequence of tasks have to be executed by
several processing units. The tasks arrive sequentially and each task can be
processed by any server. The routing control consists in assigning to each task
a server on which it will be processed. The routing is optimal if it minimizes
some cost function that measures the performance of the system.

These kinds of models have been used to study load balancing within sev-
eral processors in parallel processing problems as well as for efficient network
utilization in telecommunication systems, as presented in the introduction.

6.2.1 Presentation of the model

In this section we consider a more precise queuing model of the system that
we described. Customers enter a multiple queue system composed of K sub-
systems. Each sub-system is made of several queues, initially empty which
form an event graph (see Chapter 3).
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The routing of customers to the different sub-systems is controlled by a
sequence of vectors {a,}, with a,, is in {0,1}¥ and a!, = 1 means that the
n-th customer is routed to sub-system 4. Note that a is a feasible admission
sequence as long as for all n, )", al, = 1.

The link between a feasible routing policy and an infinite sequence on a
finite alphabet as used in the first part, comes from choosing the alphabet A
composed by the letters

{(1707"' 70)7(071707"')7"' 3(07"' 7071)}‘

Using this alphabet on K letters, a feasible routing policy can be viewed as
an infinite sequence on A.

node 1

node 2

node K

Fig. 6.1. Tllustration of the routing of customers in a K node system

Figure 6.1 shows an illustration of the system we are considering.
We denote by T;, the epoch when the n-th customer enters the system. We

assume that T = 0. The inter-arrival time sequence is {6} def {Tx+1— Tk}
Finally, 0%/ will denote the service time of the n-th customer entering the
J-th queue in node ¢. N

The sequences {6} and {0’} will be considered as random processes.
We also make stochastic assumption on these sequences. The inter-arrival
time of the customers and the service times form stationary processes, and
we assume that the inter-arrival times are independent of the service times.

6.2.2 Optimal routing sequence

In each sub-system i we pick an arbitrary server s; (which may be the last
server in the sub-system for example). The immediate performance crite-
rion for sub-system ¢ will be the traveling time to server s; of a virtual
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customer that would enter sub-system ¢ at time 7,. Under a given rout-
ing policy, this quantity only depends on the values of the n first routing
choices. From the routing sequence a, we can isolate the routing decision for
node i: if a® = 1 then the customer is admitted in node i and if af, = 0
then the customer is rejected (for node 7). We denote the traveling time at
time T, by Wi(a},---,a%). We will be more particularly interested in the
expected value of the traveling time with respect to the service times in all

the servers contained in node ¢ and with respect to the inter-arrival times:

W;(ai, coeLal) def E, ,h(Wi(ai, - ,a%)), where h : R — R is any convex
increasing function.
A direct application of the results of Chapter 4 to any single node i shows

that the function W, (a%,--- ,a’) is multimodular:

Theorem 24. Under the foregoing assumptions, the function Wi(ai, coeyal)
satisfies the following properties.
(1)- W;(ai, -, al) is multimodular,

7 n
(2)- W;(ai, -+ ab) is increasing in ab, 1 <k <mn,

7 n
(3)_ W:n(oa 7070’17"' 70‘2) = W;(ab 7a'in)7 zfm >mn.

Using these properties, we will derive as in Chapter 1 a lower bound
denoted B;(a,p) for any routing a*, for the following discounted cost. This
function B;(«,p) is increasing in a and in p and lower-continuous. .

Let us fix some arbitrary integer, N. We define p, = (1—a) > 1o, aFlat.
Now, using assumptions (1), (2), (3) of Theorem 24, we have,

3 (1 - a)a" W (ad,af - -al)

n=1
N
> Z(l — ) Wy (0---,a,---al)
n=1
+ > (1—a)a™ ' Wy(ah_y41---ah)
n=N+1
N i
= 2(1 - a)anile(O » a1, a;)
n=1
+ Z (1 - a)an_IWN(aiLfN-{-lv ) 7an)
n=N+1
oy N-1 co
2 WN( (I-a)a™0---,a-- -a;+1)+z (I—a)a™an_ny2 a;+1))
n=0 n=N
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where the last inequality follows from Jensen’s inequality, since the func-
~ 1

tion Wy is convex, and since the coefficients (1 — a)a™"! are nonnegative
and sum to 1. Define

Bi(aap) = SUPWZV (ava aN71p7 e 7p) . (61)
N

Note that B; is defined for a fixed sequence {a}. Also note that B;(a,p) is
lower semi-continuous in « and in p.
The previous analysis shows that

31— @)™ W (ad,ay -+ ,al) > Bila, g (6.2)
n=1

Also, for a given p, we consider the bracket sequence with rate p and
arbitrary phase 6,

a2(8) % |np+ 6] — [(n - 1)p+ 6],

(see the definition 5). One can show as in Chapter 1 that a?(6) satisfies
A
lim — SO W (a?(0),-- ,a2(6)) = B;(1,p). 6.3
Jim S WLa0), ak(0) = Bi(Lp) (6.3)

Here, however, we are interested in the performance of all nodes together.
Therefore, we choose as a cost function, the undiscounted average on n of
some linear combination of the expected traveling time in all nodes.

Let h be any increasing linear function, h : RX — R. We consider the
undiscounted average cost of a feasible routing sequence a,

def 1L —K

Our objective is to minimize g(a).

Theorem 25. The following lower bound holds for all policies:

gla)> inf  h(Bi(p1), -, Br(pK))-

T pitetpr=1

Proof. We adapt the method developed in Chapter 1 for our case. We intro-
duce the following notation.

def
Bi(pi) & SliIiBz‘(Oé,pi)-

Due to Littlewood’s and Jensen’s inequalities as well as Equation 6.2, we
have
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lim —Zh K)

N—oo N
>01L1_'mll—a ooa“ Yh(W an)
n=1
> ¢}41_—I{11 h ((1 —a) i W, (1-a) i a”_le>
n=1 n=1
> lim h (By(ev,pg), -, Bic (0 p3)) (6.5)

By definition, we note that Efil p’, = 1. Hence, one may choose a sequence
a, T 1 such that the following limits exist:

lim p} = p;, i=1,--- K (6.6)

and Zfil p; = 1. From the continuity of B;(a,p;) in p and o we get from
(6.5)

g(a) = h(Bi(p1),- - ,, Bk (pk)) (6.7)
> inf h(B ---,B .
2 p1+..1.IipK:1 (Bi(p1), -+ Bx(pk))
([l
Note that there exists some p* that achieves the infimum
inf  h(Bi(p1),---,B ,
o nf  h(Bi(pr) K (Px))
since h(B1(p1), -+ , Bk (pk)) is continuous in p = (p1,- - , Pk )-
Consider # = (61, - ,0x) and the routing policy a?" (6) given for each i
by
ag? (0:) = kp] +6:] — [(k — 1)p} + 0] (6.8)
There are some p*’s for which the condition of feasibility of the policy
a?" (0) is satisfied, that is, there exists some 6 = (6, ,0x), such that the

bracket policy a?” (8) is feasible.
Using the correspondence between a routing policy and a sequence on the
alphabet A, these p*’s correspond precisely to balanceable rates.

Theorem 26. Assume that p* is balanceable. Then a? (8) is optimal for the
average cost, i.e. it minimizes g(a) over all feasible policies.

Proof. The proof follows directly from Theorem 25 and Equation (6.3).

Remark 5. The previous theorem says that bracket sequences are optimal
routing policies. As for balanced sequences (which are ultimately bracket, see
Theorem 1), they are also optimal if the buffer in each node empties infinitely
often. This situation occurs when the system is stable as shown in [22]. In
such cases, a finite prefix of the routing sequence does not alter its cost.
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6.3 Study of some special cases

The problem which remains to be addressed is to find in which cases, the rate
vector p* is balanceable. We will present several simple examples for which
we can make sure that the optimal rate p* is balanceable.

6.3.1 The case K = 2

If K = 2, then, the optimal rate vector is of the form p* = (pj,1 — p}).
Theorem 14 says that p* is always balanceable and therefore, the optimal
routing sequence is given by an associated balanced sequence. Note that this
approach does not give any direct way to compute the value of p*, however,
it gives the structure of the optimal policy. The computation of p* in the
deterministic case will be done in the next chapter 7 and uses continuous
fraction decomposition of the service times of both queues.

6.3.2 The homogeneous case

Now let K be arbitrary and each node is made of a single server, all servers
being identical. This model is displayed in Figure 6.2.

~]O
~]O

_]O

Fig. 6.2. Routing in homogeneous queues.

Also assume that the function h is symmetrical in all coordinates (for
example, just the sum of all waiting times) By symmetry and convexity in
(pla T 7pK) of h(‘/—ll(pl)7 T 7V11((pK))7 we get pr= (1/K7 T I/K)7 which
is balanceable. The associated balanced sequence is the round robin routing
scheme. Applying Theorem 26 yields the following result which is new (to
the best of the author’s knowledge).

Theorem 27. The round robin routing to K identical ./G/1 queues, mini-
mizes the total average expected workload of all the queues over all admission
sequences with no information on the state of the system.
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In [82], the round robin routing is proved to be optimal in separable-
convex increasing order for K identical ./GI/1 queues. Their method uses an
intricate coupling argument, whereas our proof is a simple corollary of the
general theory on multimodular functions.

To illustrate the advantage of our approach, we further generalize the
result to a system composed of K identical (max,+) linear systems with a
single entry. In this case, the symmetry argument used in the case of simple
queues still holds. Then again, the round robin routing policy minimizes the
traveling time in each system. This case includes models such as routing
among several identical systems composed of queues in tandem as shown
Figure 6.3).

Fig. 6.3. Routing in queues in tandem

6.3.3 Two sets of identical servers

As a consequence of the two previous cases, we can consider a system com-
posed of K3 identical queues of type 1 and K» queues of type 2. Again, assume
that h is symmetrical in the K7 nodes of type 1 and symmetrical in the Ky
nodes of type 2. Then, by symmetry arguments, the optimal rate vector is of

the form .

pt 1-p° 1-p
(Kl’... 7K1’ % R e )7
for an appropriate p*. This rate vector is balanceable indeed. This implies
that for the weighted total average expected workload, the optimal routing
is of balanced type, if nodes of the same type have the same weight.

Many other examples of this kind can be derived from these examples
through similar constructions.
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7.1 Introduction

The general case of two queues with no state information was studied in
Chapter 6 where it was shown that the optimal policy in terms of average
waiting time must be a bracket sequence. However no explicit computation
of the rate p* of the optimal policy was provided in the heterogeneous case.

In the deterministic case considered here (both the arrivals and the service
times are constant deterministic variables), the optimal policy was computed
in [112] when the system is fully loaded.

In this chapter, we consider two deterministic FIFO queues with infinite
buffers and arbitrary constant arrival and service times (hence the load is
arbitrary). As proved in Chapter 6, the optimal policy is a bracket sequence,
and we show how to compute explicitly the slope of this optimal sequence,
which is a rational number as long as the system is not fully loaded, as in
[50]. Hence, the optimal policy is always periodic even when the parameters
(service times and arrival times) are irrational numbers.

In order to obtain this result, we start in Section 7.3 by defining a new
continued fraction decomposition which helps us for identifying special factors
of upper bracket sequences. In Section 7.4, we give an explicit formula for the
average waiting time in one deterministic queue when the arrival process is
an upper bracket sequence. This function is continuous but not differentiable
at certain rational points called jumps in the following. It is increasing and
concave between jumps. Finally, in Section 7.5, we consider the case of two
queues. Using the properties of the average waiting time in one queue, we
can show that the optimal routing policy is given by a jump in one of the
two queues, and hence is periodic, as long as the system is not fully loaded.
An algorithm is provided that computes the optimal jump in finite time (and
hence the optimal policy). In the last section, several examples are studied in
detail in order to illustrate the strange behavior of the optimal policy in such
a simple system (or so it seems). More on this kind of problems (in particular
the extension to networks on deterministic queues can be found in [51]. In
[68], an algorithm is derived to compute a lower and upper bound for the
average waiting time for the optimal routing for K > 2 deterministic queues.
A key property is the convexity of the optimal average waiting time as a
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function of the rate. This is shown in [70] for the general stochastic setting
od Chapter 4.

7.2 Bracket words

We recall the definition of bracket sequences.
We consider binary sequences over N. In this chapter, to avoid confusion,
we will adopt the following notations.

Definition 12 (Bracket sequence). The upper bracket sequence with slope
a is the infinite sequence o where the n** letter, with n > 0, is :

Ma(n) =[(n+1) xa] —[n %X al. (7.1)

The bracket sequence with slope a is as usual the infinite sequence m, where
the n'h letter, with n >0, is :

m,(n)=|(n+1)xa] —|nxal. (7.2)

The characteristic sequence of slope a is the infinite sequence ¢, where the
nth letter , withn >0, is :

ca(n)=|(n+2)xal—|(n+1)xal.

In the following, by a slight abuse of notation when an infinite word w is
periodic we also denote by w its shortest period.

Ezample 1 (Graphical interpretation). The terminology comes from the fol-
lowing graphical interpretation. For example let a = 3/7, the bracket word
is 0010101, the upper bracket word is 1010100 and the characteristic word is
0101010.

Consider the straight line with equation y = ax, and consider the points
with integer coordinates just below the line : P, = (n, |na]), the ones just
above the line : P, = (n,[na]) and the points P}/ = (n, |(n + 1)a]). The
points P, form a representation of the bracket word in the following sense
: two consecutive points are joined by either an horizontal straight line seg-
ment, if |[n+1la|—|na] =0, or a diagonal, if |(n+1)a|— |na| = 1. Similarly
the points P! are a representation of the upper bracket word and the points
P! are a representation of the characteristic word. In Figure 7.1, the straight
line b is the line which equation is y = 3% while the upper bracket word is
represented by a, the bracket word is represented by ¢ and the characteristic
word is represented by the dashed curve d.

Remark 6. Since [na] = |na] + 1 except when na is an integer number, one
has m4(n) = m,(n) when na and (n + 1)a are not integer numbers. When
a is an irrational number, since M(0) = 1 and m,(0) = 0 then m, = Oc,
and My = ley. When « is a rational number 7, is a shift of m,, (i.e. there
exists an integer number k such that m,(n + k) = M4 (n) for all n).
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JO U UUPRR e oo representation of upper mechanical word
: | straight line: y=3x/7

representation of lower mechanical word

VA< O O S characteristic word

Fig. 7.1. Mechanical words associated with the line y = %J;

Lemma 29. Let a be a real number, then the mazimum number of consecu-
tive 0 in My is [a~1] — 1 and the minimum number of consecutive 0 in Mg
is la~t] = 1.

Proof. The proof can be found in [84]. O

7.3 Expansion in continued fractions

Let p, 0 < p < 1 be a real number. The computation of its expansion in a
continued fraction is :

p=0+

m1+ 1

mo+... —
mn+...

In [84] and [86] one can find an iterative method to compute special factors
of the characteristic word of slope p and thus build c,, using the coefficients of
the expansion in continued fraction of p. However, this tight relation between
the continued fraction of p and the characteristic word ¢, does not extend
to the bracket words. For this reason we will introduce a new expansion
in continued fraction (called upper continued fraction expansion). This new
continued fraction allows us to find the decomposition in special factors of
upper bracket words, decomposition which is necessary for the computations
of the average waiting time.

The construction of the upper continued fraction expansion of a number
a with 0 < a < 1 is given by :

{1 o=t . h=la) } (7.3)

—on = ey o =(1—an)7 V0 21
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When « is a rational number the construction finishes after a finite num-
ber of steps when 1 —a,, = i When « is an irrational number the construc-
tion is infinite and we obtain the infinite upper continued fraction expansion
of a.

An infinite upper continued fraction expansion is written under the form
{li,l2y .. ylp—1,ln,...). A finite upper continued fraction is written under the
form (l1,la,...,ln—1,1,). A partial upper continued fraction of a number «
is written under the form (l1,la,..., 0, + an).

Let us denote by M the set of all upper bracket words and denote by M},
the set of upper bracket words with slope a such that (k+1)"! <a < kL.
According to Lemma 29, all words in M have k or k — 1 consecutive zeros
between two ones. Let us now introduce the morphism ¢y, from M}, to A*UAN,
which replaces maximal sub-words starting with one and containing only
zeros according to the following rules

k—1

10...0—1
P - k .

—~
10...0-=0

For example m3/; = 1010100 € M, therefore 2(Mg)7) = 110. If o = k!
then the word ¢ (7, ) is reduced to the letter one.
In order to generalize ¢y let us introduce the morphism
M — A*uAN

é:. -
Mo — @La—1j(ma)

We now show that & has its values in M.

Lemma 30. Let T, be the upper bracket word of slope a, then ®(Thy) is the
upper bracket word of slope 1 — (a™! — [a™t]).

Proof. Tf a~! is an integer number &(m,,) is reduced to the word “1”, then
we have the result since 1 — (o' — |[a7!]) = 1.

Recall that m,(n) is defined by Formula (7.1). An integer ay is the index
of the k** occurrence of the letter one in m, if M4 (0)...M4(ax) contains k
letters one and T4 (0)...M4(ar — 1) contains k — 1 letters one. This means

[a(ar +1)] =k +1, [aar] = k.

These equalities imply a = [ka™"].
Define now the function v, from M, to A* U AN which replaces maximal
sub-words.
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Let I = [a™!| and let w = (T, ). The sequence (w(k))r>o of letters of w
can be computed by w(k) = axy1 —ar —I. Then w(k) = |[(k+1)a™t —I(k +
1)] — |ka~! — kl], hence w is the bracket word of slope a1 — .

Define now the function v such that

1= 0
T 01,

The function « transforms a bracket word of slope « into an upper bracket
word of slope 1 — « and conversely. Let w' = v(w), w’ is the upper bracket
word of slope 1 — (a1 —1).

It can be checked that & = -y o, hence $(T,) is the upper bracket word
of slope 1 — (™! — [a71]). 0

The following corollary shows the relation between &(7,) and the upper
continued fraction of M.

Corollary 6. Let a, 0 < a < 1 be any given real number such that
a = {l1, - ylno1, ln + an), withn > 1. Let w = &(M,). Then a(w) =
<127l37'-‘7ln—lyln+an>~

Proof. By Equations 7.3, we have a = (I; + a;)7! and also 1 — a; =
{la, 13, ... ln—1,ln + a,). By Lemma 30, we obtain

aw)y=1-(at=lat)=1-(at=-l)=1-a1.
Hence a(w) = (la, I3, ..., ln_1,1n + an). O

This will allow us to use induction on the number of terms in the upper
continued fraction in the following.

Theorem 28 ((x,y)-factor decomposition). Let o, 0 < a < 1 be any

given real number with a = (ly,la, ..., ln,...). Let us define two sequences
{zi(a)}iso and {yi(a)}iso, by :

zo(a) =1,  mi(@) = mic1(@) (i1 (), fori>1,

Yo(a) =0, yi(@) = zi_1(a)(yi—1 ()b, fori> 1.

Then the upper bracket word T, can be factorized only using the two factors
zi(a) and yi(a).

These two sequences are called (z-y)-factor decomposition sequences as-
sociated with the upper expansion of a.

Proof. We will study finite sequences {z;(a)}o<i<n, {¥i(a)}o<i<n associated
with the partial upper continued fraction expansion of o and prove the result
by induction.

Step 1. We have a = (l1 + a1). By Lemma 29, it is immediate to check
that m, can be factorized only using z; and y;.
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Step n. We have a = (l1,l2,...,l, + a,). Let w = &(m,), by Corol-
lary 6 a(w) = (la,l3,...,ln—1,ln + an). Let the two (x-y)-factor decom-
position sequences associated with the partial upper expansion of a(w) be
{zi(a(w)) }o<i<n—1 and {yi(a(w))}o<i<n—1. By induction on the number of
terms in the partial expansion w can be factorized only using z;(a(w)) and
yi(a(w)). Introduce now the sequences z; and y; such that

o =1, y5=0, ¢, (2}) = zi 1 (a(w)), o1, (y;) = vi-1(a(w)), Vi > 1.

Then w = &(M,) can be factorized only using ¢y, (z}) and ¢z, (y}), Vi > 0.
Therefore T, can be factorized only using z; and y., since (M) = i, (Ma)-
Note now that the sequences z%, y! are the (x-y)-factor decomposition se-

quences associated with {l1,la,...,l, + an). 0

Lemma 31. Let a, 0 < a < 1 be any given rational number with a =
(li, -y ln—1,ln). Then zn(a) = Mq.

Proof. We also use here an induction on the number of terms in the partial
upper expansion.
Step 1. Considering that o = (I;) then « is a rational number with o~
l1. Hence m, = 10...0, where the number of consecutive Ois o' —1 = I; —1.
Step n. We have a = {l1,l2,...,ln—1,l5), therefore w = ®(m,) has a
slope a(w) = {la,...,l,). Using the induction hypothesis we obtain w =
Zn_1(a(w)). Since z,_1(a(w)) = ¢, (z,(a)), then My = z, ().

1

|
Remark 7. Since ™) (y) = ¢y, 0...0¢1, 0 ¢y, (Ma), then z,(a) and y,(a)
are the only factors of fii,, such that (™ (z,(a)) =1 and ™ (y,(a)) = 0.

Remark 8. Since Yn > 0, ™) (m,) is an upper bracket word and since all
upper bracket words begin with one, then the sequence z;() is a sequence
of prefixes of m, verifying
lim z;(@) = Mg
Ezrample 2. Let o = %. The upper expansion of a using Equations 7.3 is :
(2,1,2,2), and
Mg/19 = 1010100101010010100.

Thus #(Mg/19) = 11011010, ) (g /19) = 10100 and &) (Mmg;19) = 10.
Using the (x-y)-factor decomposition we obtain 1 = 10 and y; = 100, 2o =
71 and Yo = 2191, 23 = T2y2 and y3 = x2(y2)? with finally z4 = z3y3.

We can check Theorem 28 and Lemma 31 in this case:
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Theorem 28 and Lemma 31 show the connection between the construc-
tion of factors of an upper bracket word and the upper continued fraction
expansion of its slope. This connection could be seen as the analog for up-
per bracket words of the relation between continued fraction expansion and
characteristic words presented in [86, 84].

In the following, the i** factors of the word T, will be denoted z; and ¥;
when no confusion is possible.

7.4 Average waiting time in a single queue

The aim of this section is to compute and to study the average waiting time of
customers, Ws(w) in a ./D/1/00/FIFO queue with a constant service time,
S, and constant inter-arrival times before the control. Using an appropriate
time scale, the inter-arrival times can be chosen to be equal to one. The input
sequence w is such that w(n) is 0 if no customer enter the queue at slot n
and w(n) is 1 if one customer enters the queue at slot n. In the following,
we will only consider an input sequence which is the upper bracket word of
slope a, M.

Let a, 0 < @ < 1 be the ratio of customers sent in the ./D/1/00/FIFO
queue. The stability condition of the queue is

a< <. (7.4)

W~

7.4.1 Jumps

We now show that the computation of the average waiting time Wg(m,)
tightly depends on the factorization of m, in (x-y)-factors of S~!. For that
we will exhibit special rational numbers.

Lemma 32. Let p = (l1,la,...,ln—1,ln,lny1) be a rational number.
-i) For all real number o which partial upper expansion is {l1,la, ..., lh—1,
In + an), such that I,y 4s the smallest integer satisfying

=1

Qn =

b

ln-{—l

then wp41(a) = 2 (p)(Ya(p))'"*+* 2 and yni1(@) = Tnta ().
-11) For all real number 3 which partial upper expansion is {l1,la, ..., lo_1,
ln + Brn) with
hin =1 5
ln+1

;fhen Tnt1(B) = 2a(®)Ya(p))* and yn11(B) = 2. (p)(yn(p))*+" with k >
n+1 — 1.
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-iii) For any number v which partial upper expansion is (l1,...,ln—1,ln +
Yn), then 1—7, is the proportion of x,(B) = xn(a) = z,(p) in M., (i.e. the
number of x,(3) divided by the number of x,(3) added with the number of
Yn(B) in Ma).

Proof. Note that 1 —1/l,,11 = (ln41 —1)/ln+1- Hence the Equations 7.3 lead
tof<p<oa

-i) For all 4, 0 < ¢ < n, we have z;(p) = z;(a) and y;(p) = v:(«), since
the upper expansions are equal until the n*" coefficient. Let us compute 7,11
the smallest integer such that

lnt1 —1
a, <~

?

ln-l—l
that implies

1
= 1 —1=
—an + Ll—an

.

Hence the upper expansion of a is {I1, 12, ..., ln, (lng1 —1) + @pt1). Therefore

Tnt1(a) = 2, (P)(Yn(p))"+ 7% and yny1(a) = 20 (D) (Yn ()" 7" = 2ny1 (p).

i\ lpg1—1 Ny
-ii) s < B, implies

ln+1 2 1

1
l_ﬁn

therefore the number of consecutive y,(3) in Z,41(3) is larger than [,,4; — 1.
Since T, (p) = 2,(8) and y,(p) = yn(B) then we proved the result.

-iii) By Remark 7, z,(y) and y,(7v) are the only factors of the word m,,
such that &™) (z,(7)) = 1 and (") (y,(7)) = 0. Hence the composition in
2 (7), yn(7y) of T, is the composition in 1 and 0 of $(™ (7, ). By Lemma 30
and Corollary 6, #(™) (7, ) is an upper bracket word of slope 1—1y,,. Therefore
using the definition of the slope, 1 — 7, is the proportion of z,, in m,. 0

|

J Z ln+17

The previous Lemma says that in all bracket words with slope a < p =
(Ii, 1oy oy ln_1y lnylng1), the sequence z,(p)y,(p)+1~2 never appears. But
as soon as the slope is larger than p then the sequence 2, (p)yn.(p)~+*—2
appears. Intuitively, when you increase the slope the number of ones increases
and the number of zero decreases, hence the minimum number of consecutive
yn decreases until x,,(p)y,(p)i=+1~2 appears.

Definition 13 (jumps). Let us denote the upper continued fraction expan-

sion of S™L by (l1,..., ln,...) and let us define the rational number r;(S™1)
by ri(S™Y) =(l1,...,li_1, l; + 1). The number r;(S1) is called the i*" jump
of Ws. When S is a rational number, then S~! = (ly,ls,...,In) and we

define the last jump rn(S™1) by r(S7Y) = (Iy,l2,. .., IN).

Note that the jumps form a sequence of rational numbers increasing to-
wards S—!'. When S~! is rational, the number of jumps is finite and the last
jump equals S~1.
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Let us define n; and ¢; to be the two relatively prime integers such that
7:(S™") = ni/q;. Therefore by the definition of the slope, n; = [M,,(s-1)1
and ¢; = |[m,,(5-1)|- For example, if ro = (I1,l> + 1), then it can be checked
that ng = I+ 1 and gz = l; (I +1) + 2. From now on r;(S~!) will be denoted
by r; when no confusion is possible.

Lemma 33. The number riy1 is the rational number with the smallest de-
nominator in r;, S™1].

Proof. Let a = {ly,l2,...,l; + a;) be any given rational number in ]r;, S71].
By Equations 7.3 we have | (1 —a;)™!| > l;11. Hence by Lemma 32, 2;(y;)!+!
is a factor of m,. That means |[m,| > |z;(y;)l+'|. Since z;(y;)"+! is the
bracket word 77, then |xi(yi)li+1| = ¢;+1. Considering that |m,| is the
denominator of a ends the proof. 0

Remark 9 (Connection with classical continued fractions). The rational num-
ber ci, obtained by keeping only k terms in a classical expansion in continued
fractions is called the k" convergent. The even convergents cs, of a simple
continued fraction form an increasing sequence. Hence if [mg,mq, ma,.. ]
denote the classical continued fraction of S~ then the even convergents sat-

isfy con, = [mo,m1,...,m2,] < S7L If ca,, = [mo,m1,...,ma2,] is an even
convergent of S~! then the rational numbers [mg, m1, ..., Man_1, p2n] With
pan € {1,2,...,ma,} are called intermediate convergents.

Note now that the sequence of intermediate convergents and even conver-
gents is the sequence of jumps r;(S~1), since this sequence increases towards
571 and each term of this sequence is the rational with the smallest denom-
inator in the interval formed by the preceding intermediate convergent and
S~! and since [c; + 1] = 71.

However it seems hard to use the intermediate convergents to compute
the average waiting time as it is shown further.

7.4.2 Formula of the average waiting time

Recall the classical Linley formula for GI/GI/1 queues. Let T" denote the
epoch of the admission of the nt* customer and S™ the duration of its service
time. The workload w® which denotes the amount of service (in time units)
remaining to be done by the server at the epoch t is given by

n— +
wt = (wT— Yyl (- T”—l)) for TVl <t < T,

where . = limyp, ¥ and (-)* = max(-,0). The waiting time of the n'*
customer is given by
W =w'=.

The decomposition of m,, in (x-y) factors of S~! allows us to compute
recursively the average waiting time of the input sequence m,, : Wgs (7, ).
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We will see that the factors x; tend to increase the load in the queue whereas
the factors y; tend to decrease the load. From that, we can compute Wg (T, )
for any rational number as well for any irrational number o, 7; < & < r41.

Let d} denote the increase of the workload after an input sequence equal
to ;. Let d? denote the maximal possible decrease of the workload after an
input sequence equal to y;.

Lemma 34. If the initial workload is equal to zero then using x; as input
sequence, the workload during x; is never null and remains non negative at
the end of the sequence. If the initial workload is equal to zero then wusing
Y; as input sequence the workload is never null during y; until its last letter
(which is always a 0) and is null at the end of the sequence.

Proof. The proof holds by induction on <.

Step 1. Assume S~! is not an integer, we have I < S < l; + 1. Therefore
S—1I1—1 <0< S—I; and the result is proved for step one since the workload
after z1 is equal to S — [y and the workload after y; is max(S—1; —1,0) =0.
Moreover Equations 7.3 yield d} = a; and d? = a; — 1. When S~ is an
integer, we have S —[; = 0.

Step 2. By Theorem 28, z» is composed by z; followed by (I — 1) con-
secutive y; and y, is composed by z; followed by I, consecutive y;. Hence to
prove the result we have to show that V5, 1 < j < max(ly —1,1) :

a1+ (I = j)(en —1) 20,
051+12(051—1)+1 >0,
ay +1lx(n —1) <0,
this last inequality implying the nullity of the workload. By Lemma 32, I5

is the smallest integer satisfying a; < l3/(ls + 1), then for all j such that
1< j <max(ly —1,1) we have

lo lp—3
>o > — .
b+l =" T lh+1—j

Since (I —1)/(l2) > (Il — 1)/(I2 + 1), the three inequalities are satisfied.
It can be checked that oy +(lo—1)(a1 —1) = (1 — a1 )z and a3 + (I2) (a1 —
1) = (1 — a1)(az — 1). Therefore d} = (1 — a1 )az and d3 = (1 — a1)(ag —1).
Step i+1. Suppose that d? = (1 —a1)...(1 — a;_1)(e; — 1) and d} =
(1—a1)...(1—aj—1)a;. We have to show that V5, 1 < j < max(l;4; —1,1):

(1 — al) .. (1 — 011;1) [O[,‘ + (li+1 —j)(ai — 1)] >0, (75)
(1—a1)...(1 = a4-1) [as + (lig1(a; = 1)] < 0. (7.6)
These inequalities are satisfied indeed, since /;;1 is the smallest integer such

that a; < liy1/(li41 +1). Moreover, by the induction hypothesis, during the
sequence y; the workload is positive until the last O, when the initial workload
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is null. Consider now the last factor y; in y,41, its initial workload is positive
by Inequality 7.5. If the workload is never null during an input sequence with
an initial workload equal to zero, then the same result holds with a positive
initial workload. Hence the workload is never null during the last y; and also
during y;41, up to its last letter.

We have

o; + (li-{—l - 1)(&1' - 1) = (1 - O{i>ai+1, (77)
ai+ (liy1)(ei — 1) = (1 — a;)(aipr — 1), (7.8)

then we obtain

d? =(1—a1)(1—a,_1)(a,—1) (79)
di = (]. —al)...(l —ai_l)ai, (710)
This finishes the proof. 0
Remark 10. When S = (ly, 12, ...,ly) is a rational number, 1 —ay_; = 1/Iy

which is equivalent to ay_1 = (In—1)/ly. Then ay_1+(In—1)(an-1—1) =
0, this yields d};, = 0 . Hence the workload during z y is positive until the last
epoch of the admission sequence zy(S)~! = zx(rx), and null at the end.

We give now a direct consequence of Lemma 34. The workload increase

d! and the maximal workload decrease d? can be recursively computed for
alli > 2 by :

di = di_y + (i = V)d?y , &F = di_y + (L)di_, (7.11)

K

withd; =S -1, ,di=5—1 —1. (7.12)

Ezample 8 (Workload with S = 51/20 with T5,13). Let S = 51/20 = 2.55.
The partial upper expansion of order three of 20/51 is (2,2,1 + 2/7). The
(x,y)-factor decomposition gives z; = 10, y; = 100, zo = 10100, y» =
10100100, z3 = x2 and y3 = 1010010100100. Note that r3(20/51) = 5/13
and that ms/13 = y3.

The Equation 7.11 leads to

d} =055, d? = —0.45,
d} =0.55—-0.45=0.1,d3 = 0.55 - 0.90 = —0.35,
dy=dy=01,d5=01-035=-0.25.

The figure 7.2 represents the workload during a sequence y3. The quantity
d} is represented by a, d? by b, d} by c, d5 by d and d2 by e.

We have |, |1 = |zic1 |1 + Lilyi—1|1, (Trg 1 = 2811 + (v —1)|yn-1]1
when S—! = (ll,lg, l3,...,lN)) and |xi_1|1 = |yi_1|1 - |yi_2|1. Let S—1 =
{lh,...,l; + a;, then the recursive computation of n; = |my,|1 is given by
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Fig. 7.2. Representation of the workload

ng = 0, ny = ]., (713)
Vi>2 n; = (li + 1)7&1'71 —ni_o if oy ;é 0, (7.14)
n; = li(ni_l) —Ni_o if a; =0. (7.15)

This allows us to compute the average waiting time of the input sequences
My, recursively.

The sum of the waiting times of customers admitted during the sequence
w when the first customer of the sequence waits for a time t is denoted by
Kt(w). We also denote the sum of the waiting times of m,, over one period
by K! and K? by K;. Note first, that we can focus on one period since the

workload after m,, is null.

Lemma 35 (Formula of Ws(m,,)). Let S™! = (l1, ..., li+a;). The average
waiting time of M, 1S :

_ K;
Ws(m’f‘i) - n_i7
with Ko =0, K1 =0 and Vi > 1
Zf (673 75 0
- 1 li+1 2
Ki+1 =(li_|_1 + I)Ki —K;_1+ (nil,-+1 — ni_l) di + ni(li+1 - 1) 5 di R
otherwise

Kip1 =i Ki — Kioy + (ni(ligr — 1) — ni—y) d} + ni(lipr — Q)LHT_ldf
(7.16)

Proof. The minimum number of consecutive zeros in m,, is equal to ;. This
means that the inter-arrival time in the queue is equal to I; + 1 and since
S < 1y + 1 none of the customer has to wait, therefore Ky = 0.
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Recall that we have by Definition 13 7,, = z1(y1)!2. The waiting time of
a customer is the workload at the epoch of its arrival. By Lemma 34 the first
customer admitted does not wait, on the other hand the next l5 customers
will have to wait. Moreover the workload during m.., is positive until the last
0 hence the waiting time of the second customer is di, the one of the third
customer is d} + d? , the one of the j** is d} + (j — 2)d? and the one of the
last customer, which is the (Iz + 1)**, is d} + (I — 1)d?. Summing we obtain
Ky = lzd{ + (lz — 1)([2/2)(1%

Let w be an admission sequence during which the workload is never null if
the initial workload is equal to zero. When the first customer of w waits for a
time ¢, the waiting time of a customer admitted during w is its waiting time
when the first customer does not wait increased by t. Therefore K*(w) =
(lw]y x ) + K°(w).

We have m,, = z;_1(y;_1)". Let us compute the waiting times of the first
customers of the I; consecutive y; ;. The waiting time of the first customer
of the first y; ; is d}_;. The waiting time of the first customer of the second
Yi_1 is di_, + d?_,. The waiting time of the first customer of the jt* y,_; is
dl ;+(j—1)d?_,. The waiting time of the first customer of the last y;_1 (the
Ithyis dl, + (I, — 1)d?_,.

We decompose K;.

di_y +2d7_, di_ +(li—1)di_,

K =K(e, )+ Ko Koo ki kS :
=K%wio1) +ni_qd  + Kooy +nio(di_, +d )+ Koy + ...
+ i (diy + (L= 1)) + Kioa,
ki
2

= KO(.’IIifl) + LK1+ nifl(lidzl_l + (l,‘ - 1) d?_l) R

since y;—1 = T;—1Yi—2,

li
2
=K;_1— (ni—2d11—1 + Ki_Q) + LK1+ ni—l(lidzl—l + (ll - 1)

1
K, =K;,_; — szial + LK1+ ni_l(lid}_l + (lz - ].) d?_l) y

li
§df—1)-
When S™' = (l,ls,...,Ix), the N** jump is a special case since
My (5-1) = Mg-1 is v and the number of consecutive yy_; following xny_1
is lN —1. O

We define the average waiting time of a finite word w by

KO%w
Ws(w) = ﬁ
[wly
We extend this definition by defining the average waiting time of an infinite
word w. Let w,, be the prefix of length n of w, then
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Ws(w) = lim M

n—00 |wn|1
if the limit exists.

Theorem 29 (Formula of Ws(m,)). Let r; be the it" jump of Ws(my),
and riyq the i+ 1" jump of Ws(My). Let a = (ly, ..., l; + ;) be any number
such that a € (14,7i+1). Then the average waiting time of My is

1—-a)Kij1+ o —liy1 (1 — )] K;

Ws(my) = . 7.17
s(me) (1 —ag)nipr + [ — lig1 (1 — )] ny (7.17)

When a is smaller than 71, then Ws(Th,) = 0.
Proof. The proof is given in Appendix 7.7. 0

7.4.3 Properties

Here, we will give some properties of the function Wg(y). Most of them
are required to compute the optimal ratio in the case of two queues.

Lemma 36 (Continuity). The function o — Wg(T,) s continuous.

Proof. Let a = {ly,...,ln +a,) and B8 = (l1,...,l, + B,) be two points in
the interval [ry,,rn41]. If |& — G| goes to zero, then |a, — 3,| also goes to zero.
By Equation 7.17, |Ws () — Ws(Tg)| goes to zero. 0

Using similar arguments, one can show that the function o — Wg (T, ) is
infinitely differentiable on each interval |r,,, 7n41[, but it is not differentiable
at the jumps.

Lemma 37. The function i — [ni is strictly increasing.
Proof. The proof is given in Appendix 7.8. m

Remark 11. As proved in [112] if S is an irrational number then the average
waiting time Wg-1(Mg-1) = 1/2. Hence the sequence ff goes to 1/2 when ¢
goes to infinity.

Theorem 30. If o €]r;, rip1], then

— 1) the function Ws(T) is strictly increasing in a,
— 4i) the function a — Wg(My) is strictly concave,
— 1i1) the function o — aWs(a) is linear in a.

Proof. The proof is given in Appendix 7.9. 0

To illustrate the results obtained in this section let us take an example.
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Ezample 4 (Curve of Ws/4(a)). The upper expansion of 4/5is (1,1, 1, 2) and
My is equal to 11110. The factor decomposition is : 71 = 1 and y; = 10, then
zo =21 = 1 and y2 = 2191 = 110, then x3 = 22 = 1 and y3 = x2y2 = 1110,
then x4 = z3y3 = 11110 = My 5.

We have r1(4/5) = (2) =1/2,r2(4/5) = (1,2) = 2/3,73(4/5) = (1,1,2) =
3/4 and 74(4/5) = (1,1,1,2) = 4/5, therefore ny = 1, no = 2, n3 = 3 and
ng = 4.

Let us now compute K;, we obtain K; = 0, Ky = 1/4, K3 = 3/4 and
K4 = 3/2. Hence we have :

Kl _ _K’Q _

7

ny Yo

K; 1 K4
7TL3_477L4 8

co| =

Recall that @ = {l1 + a1) = {l1,lo + as) = {l1, 12,13 + a3). Formula 7.17 leads
to

1
Ws(My) = 0, fora < 3
1-— 1 2 1
Ws(Ma) = 4a1,for§<a§§¢>§§a1§1
2 — ay 2 3 1
Ma)= —— 2 for=<a<->&=<ay <1
Ws(Me) ot D) org Sa<y 5 < a2
3 3 4 1
Ws(Mo) = ———— for> <a<- & -<a3<1
s(Me) = g7y P S@s 5935

The function Wg(m,) for all 0 < a < 4/5, is shown in Figure 7.3.

L
0.45 05 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Fig. 7.3. Curve of Ws,4(Ma) When « varies from 0.45 to 0.8.
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7.5 Average waiting time for two queues

7.5.1 Presentation of the Model

From now on as presented in Figure 7.4, we will study a system made of two
./D/1/00/FIFO queues, with constant service times Sy in queue 1 and S5 in
queue 2. It is assumed for convenience in the following that Sy is the smallest
service time. The time unit is chosen such that inter-arrival time slots are
constant and equal to one. When they arrive, the customers are routed to a
queue where they wait for treatment in a FIFO order. The ratio of customers
sent in queue 1 is a and therefore, the ratio of customers sent in queue 2 is
1 — « (i.e. no customer is lost). Our aim is to find a policy which minimizes
the average waiting time of all the customers. The problem consists in finding
an optimal allocation pattern and to find the optimal ratio (a,1 — a). The
optimal allocation pattern was found in Chapter 6 but no way to compute
the optimal ratio is provided there.

./D/1 Queue

Arrivals

./D/1 Queue

(=)

Fig. 7.4. Admission Control in two ./D/1 queues

The input sequence w is given under the form of a binary sequence w such
that when w(n) = 1 the n** customer is sent in the first queue and when
w(n) = 0 the n'* customer is sent in the second queue. The average waiting
time of all the customers for an input sequence w is denoted by Wg, g, (w).

7.5.2 Optimal Policies

To find an optimal allocation pattern we will use results shown in the previous
chapters.

Theorem 31. The average waiting time Ws, s, (w) is minimized for a bracket
input sequence mg, with some slope Qopt.
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Proof. This is a mere application of the multi-criteria optimization found in
Chapter 1 in the deterministic case. 0

Note that the approach proposed in Chapter 6 does not provide any means
to compute a,p, which is what we are going to do here for deterministic
queues. Moreover, the routing policy described here is optimal among all
routing policies, including J.S.Q. (Join the Shortest Queue) and J.S.L (Join
the Shortest Load), since the distinction between closed loop and open loop
policies is irrelevant for deterministic systems. Note however that it may not
be the unique optimal policy.

Remark 12. Tt can be shown that the average waiting time in a deterministic
queue under an arrival process of the form m, is the same as the average
waiting time when the arrival process is of the form m,. Therefore, Theorem
31 applies with bracket as well as upper bracket sequences. This remark is
essential here since when the input sequence in the first queue is an upper
bracket word of slope a (7, ), then the input sequence in the second queue
is a bracket word of slope 1 — a (m;_,)-

Using the considerations of Remark 12, and conditioning on the queue
chosen for each customer the relation between Wg, g, (M), Ws, (o) and
Wsz(ml_a) is :

WSl,Sz(ma) =a- WSI (ma) + (1 - CM) ) WSQ (ml—a) . (718)

7.5.3 Optimal Ratio

We will now compute the optimal ratio a,p: associated with a bracket input
sequence over all possible stable ratios.

Stability Condition Consider the system of the two ./D/1 queues above,
the stability condition of such systems is p < 1, that is

1 1

—+—2>1. 7.19

Sy + Sy ( )
But the stability of the two queues individually is also necessary. Therefore

by Equation 7.4 a < Sfl and 0< l—agSgl. Hence for any given number «

in the interval I, = [I—SLZ, SLI] N [0,1] the input sequence M, is stable. In

the following the interval I, is called the interval of stability.

Special Cases This part considers special degenerated cases where the the-
ory developed in the previous section is not necessary.

Lemma 38. In the case 2 < So < 51, no real optimal policy exists.
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Proof. The system is never stable since S;* < S;' < 1/2, implying
1 1
—+ =) <1
(51 52)
([l

Lemma 39. In the case So < 1, an optimal policy consists in sending all
the customers in the second queue. In this case Ws, s,(Tg) = 0.

Proof. When S, < 1, the service time is smaller than the inter-arrival time.
Therefore each time a customer arrives the second queue is empty and we
have Wg, (1) = 0. Since Wg, (0) = 0 then by Equation 7.18, Wg, s,(T7) = 0.

O

Lemma 40. If 1 < Sy < §1 < 2 then the round robin policy is an optimal
policy.

Proof. Lemma (35) implies Ws, (M1/2) = 0 and Ws, (M1 /2) = 0. Therefore a
possible optimal ratio is & = 1/2 and 7/, = 10 is an optimal policy. 0

Case 1 < §2 < 2 < 87 This can be considered as the general case.

Characterization of optimal ratios when p < 1 We are interested to find the
optimal ratio a,p; defined by :

aopt = arg Orérg}l WSl,S2 (ma)

Let 7} and 77 denote the jumps of Wg, and W, respectively.

Theorem 32. For any real service time S1 and Sy the optimal ratio oop; s
a jump of Wg, or Ws,. Hence, it is a rational number and an optimal routing
policy is periodic.

Proof. By Theorem 30, the function aWs, (M) is linear for a in Jry,rl 4|
and the function (1 — a)Ws, (1) is also linear for o in J1 — 73,1 —77_,|.
Therefore by Equation 7.18 the function Ws, s, is linear for a in Jry, 7,4 [.
Where {ry} = ({ri} U{r3}) NI is the set of jumps of W, s,.

Hence Ws, 5, reaches its minima in the set of all the jumps r} or in S; !
or in S, ' when they are irrational. Theorem 42 says that the growing rates

of the function i — f— converges to infinity. This allows us to exclude the

points Sy and S .

Therefore Ws, s, is minimized by a jump and since all the jumps are
rational the optimal ratio a,p: is rational. This means that the routing policy
Ma,,, i8 periodic. 0

Lemma 41. Let p be the rational number with the smallest denominator in
the interval Is. Then p is the smallest jump of Ws, in I and the largest jump
of Ws, in I.
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Since p is the unique common jump of Wg, and Ws,, we call p the double
jump.

Proof. Let r! be the largest jump of Wg, (T, ) such that r} < 1 —1/9,.
This implies 1 — S;* < rl,; < 1/8;. By Lemma 33 7}, is the rational
number with the smallest denominator in ]rj,1/51], then ri , is the rational
number with the smallest denominator in Is. Let r]z be the largest jump of
Ws, (1 —a) such that 1 —r3 > 1/5). This implies 1 —r7,, is the largest jump
of Ws,(1 — @) in I, and the rational number with the smallest denominator
in I,. Then r}:l—rﬁ_l. O

The double jump is not always the optimal ratio, as we will see in the example
below.

Ezample 5 (Double jump is not optimal). Let S; = 21/5 and Sy = 6/5. The
upper expansion of 5/21 is (4,1,1,1,2) and the one of 5/6 is (1,1,1,1,2).
We have 7{ = 1/5, 13 = 2/9, r =3/13, 7] = 4/17,r} = 1/S; = 5/21 and
1-r?=1/2,1-73=1/3,1-r23=1/4,1—-72=1/5,1—-r2 =1-1/S, = 1/6.
The double jump is 1/5.

The following numerical values have been obtained using exact computa-

tions provided by the program presented later (Section 7.5.4 and 7.6).

Ws, (1/5) = 0, Ws,(M4)5) = %» Ws,,5,(M1y5) = % X % = 35-

9

Ws, (May9) = 15, Ws, (Miz9) = 55, Wy, 5, (Miajg) = 15 X 2 + 55 X

o~
©

ot

Since % < %, the optimal ratio is not the double jump. It can also be

shown that the optimal ratio in this case is aop: = %.

L % L L L L L L
0.16 0.18 0.2 0.22 0.24 0.26 0.28 03 0.32 0.34

Fig. 7.5. Curves of Ws,, Ws, and Ws, s, when «a varies from 1/6 to 1/3.
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Figure 7.5 displays the functions Wg, (M) (curve b), Ws, (1) (curve
c) and Wg, s,(a) (curve a), as well as some jumps of those three curves
(the double jump 1/5 is marked by the dotted line d, and the optimal jump
2/9 by the dotted line e). The vertical lines f show the interval of stability of
the system, W, s, () is infinite outside this interval.

Characterization of optimal ratios when p = 1 In this part, we will assume
that the system is fully loaded. When p = 1 then the stability interval is
reduced to a single point. There is just one ratio « satisfying the stability
condition, a = S ! Therefore the upper bracket word with slope « is opti-
mal. This is the only case where the optimal policy associated with bracket
input sequence may be aperiodic.

7.5.4 Algorithm and computational issues

We present in Figure 7.6 an algorithm to compute the optimal ratio aep,
when p<1.

Find double jump p

current-jump = p

Compute the next-jump-right of p

while Ws, s, (mcurrent—jump) > Wsi.s, (mnext-jump—right) do
current-jump:= next-jump-right
Compute the next-jump-right of current-jump

endwhile

Compute the next-jump-left of p

while Ws, s, (mcurrent—jump) > Wsi.s2 (mnext-jump—left) do
current-jump:= next-jump-left
compute the next-jump-left of current-jump

endwhile

return current-jump

Fig. 7.6. Algorithm computing aopt

Correctness of the algorithm We will now show that the algorithm is
correct and converges to the result in a finite number of steps. For that we

have to prove two preliminary lemmas.
Lemma 42. The growth rate of the function % — % conwverges to infinity
when 1 goes to infinity.

Proof. Let S~! = (I1,...,l; + a;), the recursive computations of ¢; = |my,|
are given as for n;, by
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do = ]-7
=h+1, ifa 0, =1, ifa; =0,
- a=1h 1 # . q=1h 1 (7.20)
Vi>2 ¢i=li+1)gi1—¢qi—2, fa; #0
q; = (l;)gi—1 — gi—2 otherwise .
We now show by induction that Ve > 1
Nit1¢; — Nigi+1 = 1. (7.21)

At step one : n2g1 —niga = (la+1)(lh +1) — (L(la + 1) + 12) = 1.
At step i +1 1m0 — niGiv1 = (liv1 + Dgini — ging1 — ((liya + 1)gin; —
nigi-1) = NiGi—1 — Ni1¢i-

Hence the growing rate

(Ki+1 _ &) (nz’+1 ni)_l _ (niKiy1 — nip1 Ki)(¢iv14:)
Nir1 Ny N 1M
(niKiy1 —nip1K;)

(ni 1K; —nK; 1) +ni(n; —n;_1)d;

qi+1 qi

2
>

> Si<n<i (n(ne — n—1)dy) -

Let us prove now that X<y (nk(nk — ng—1)d}) = +0o0. We use Equations
7.10 that yields

ng(ng — nk_l)di =ng(ng —ng—1) [(1—a1)(l —a2)... (1 —ak—1)] -
By Equation 7.14 we obtain
ni(ni —ni1) = [(li+ni1 + (i1 —ni2)] [lini 1 + (ni1 — n4i2)]
>L+1+L+ L+ 1)]n1(ni1 —ni2).
Hence

((lk + 1)2 + lk) ((lk,1 + 1)2 + lk—l) .. ((12 + 1)2 + 12)0%
l2l3 ce lk—l
(I +3)) (k1 +3)) .. (12 +3)) o > 45 2.

ng(ng —ng_1)dy >

Y

Two cases may occur, either the sequence {ay }x>0 does not converge to zero
or it converges to zero. In the first case the sequence ny(ny — nx—_1)ds does
not converges to zero and the series Xy>oni(n, —ng—1)ds goes to infinity. In
the other case there exists a number N such that Yk > N,y < 1/2. Since
o < 1/2 implies ly41 =1 and (1 — ag)agt1 = o then

gt (P — )i gy g (Ragr — ) o1
nk(ng — ng—1)dy ng(ng — NEk—1) ’

which implies that the sequence is strictly increasing and that the series
diverges to infinity. 0
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Lemma 43. The function i — Iq(— 18 convex.
k3

Proof. We have by Equations 7.16 and 7.21

G- G -3 (5
qi+1 qi qi+1 qi qi di—1 qi qdi—1

( il &> (¢i+14:) — (Ki - Ki_l) (¢:¢i—1) =

qi+1 q; E gi—1
¢GKiv1 — @i K — o1 K + ¢ K .

Using Equation 7.16 leads to

0iKiy1— i1 Ki=qi ((lig1 + 1)K — Ki 1) — g1 K
s (malhier — 1@+ 02 + (ni —mi1)i)
:(Ii((li+1 + 1K, - Ki—1) = (liy16i — gi—1) K;
sl = (! + )+ (s = )
l;

=¢i-1Ki—q¢K;_q +Qi<ni(li+1 —1)(d; +

L)+ (s — mic1)d} ).
Hence
¢iKiv1—qin1 Ki— (¢i-1Ki — ¢ Ki—)

l;
= gs(millisn =1+ 73+ (ni = mi-a)d ).

As shown in proof of Lemma 37,

ni(li+1 — 1)(d} + ll%ldf) + (ni — ni_l)d} >0. (7.22)

This proves the convexity of the function. 0

Lemma 44. The algorithm is correct and converges in a finite number of
steps

Proof. Correctness. Since by Lemma 43 the function ¢ — I;T is convex, then
by Equation 7.18 the function k¥ — Ws, s, (72,: ) is also convex. Considering
that a,p; € {r}} shows the correctness of the algorithm.

Finiteness. Let k,i,j be the integers such that p = ry = r; = 1 —73.
Let us note that 1 — 7% < S8y < 1—7r5_;. Since Vn > 1, r},, =r},,, and
since by Lemma 42 the growing rate of the function i — Wg, (T,1) goes
to infinity then by Equation 7.18, Vn > 1 the growing rate of the function
k+n — Ws, s, (Mr; ) converges to infinity. Therefore the integer ko = k+no

such that Vn > ng
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WSl,Sz (mT,’;+n) - W51,5'2 (mTZ+n_1) >0,

is finite. Using similar arguments for the jumps smaller than p shows that
the algorithm converges in a finite number of steps. 0

Concerning this algorithm, which was run hundreds of time with irrational
or rational parameters, the maximal number of steps never went over twenty.
Nevertheless one can get a large number of steps with well chosen parameters
for which the optimal jump is arbitrarily far (in number of jumps) from the
double jump.

7.6 Numerical experiments

The algorithm presented above has been implemented in Maple in order to
keep exact values for all the rational numbers involved in the computations.
This section is dedicated to the presentation of several runs of the program
in order to shown how the optimal policy (or equivalently the ratio of the
optimal policy) behaves with respect to the parameters of the system, namely
S1 the service time in queue 1, Sy the service time in queue 2 as well as the
inter-arrival time (fixed to one previously, but which can be modified by
scaling the time units).

In the first series of computations, we fix S; = 22/5 and S2 = 6/5.
Therefore, the fastest server, Ss is ¢ times faster than S, with ¢ = 11/3. One
could expect that the optimal routing policy sends ¢ times more customers
in the second queue than in the first queue. This policy has a ratio a =
H%l, namely o = 3/14. However, as the experiments in Figure 7.7 show,
the optimal ratio is a,p: = 1/5 when the inter-arrival time is one (when
p=66/70 ~ 0.942).

In Figure 7.7, with S; = 22/5 and S = 6/5, we let the inter-arrival
time vary so that the total load p goes from 0 to 1. All the results presented
in the figure are exact computations and do not suffer from any numerical
errors. When p is smaller than 11/14 (dotted line on the left), many ratios
are optimal. For instance, for all @ < 1/4, Ws, s,(Ta) = 0. This part is
not shown in the figure. The main interest lies within the bounds 11/14 <
p < 1 where the optimal ratio is unique. The optimal ratio a,p: takes several
rational values, ranging from 1/4 to 1/5 and ending with the intuitive ratio
of the service times, 3/14. When p = 1, then a = 3/14 is the only point
in the stability region. However, for lower values of the load, it is somewhat
surprising that the optimal ratio changes with the load and deviates from
the ratio of the service times, 3/14. The changes of the optimal ratio occur
according to several reasons. For example, a,,x moves away from 1/4 only
when 1/4 gets out of the stability region (this occurs at p = 6/7). The same
phenomenon occurs when a,p; jumps away from 1/5, which occurs when
p = 55/56. On the other hand, the change from 2/9 to 1/5 occurs while 2/9
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Fig. 7.7. Optimal ratio when the total load varies from 11/14 to 1

is still a jump in the stability region. In general, the sudden changes of the
optimal ratio when the load increases remain mysterious and deserve further
studies.

The second set of computations is presented in Figure 7.8. The inter-
arrival is fixed to one and we let the inverses of the service times 1/5; and
1/S5 vary. We restrict our investigations to the domain of stability that is
3; +3; > 1. The figure displays the points where the value of vy changes.
Therefore, each cell corresponds to couples (1/57,1/52) with the same opti-
mal ratio. The larger cell (a,p: = 1/2) corresponds to the region where the
round robin policy is optimal. Using time homogeneity, the optimal ratios
along the line S% = %S% (bold line in Figure 7.8) are those given in Figure
7.7. We can note that along the line 5% + s% =1, the changes of a,p: exhibit
a fractal behavior which also deserves further investigation.

Figure 7.9 is the same as Figure 7.8 where the cost to be optimized is not
the average waiting time of the customers but the average sojourn time of
the customers, Sg, . s,(Ma) = Ws,,s,(Ma) + aS1 + (1 — ) S2. The optimal
fraction of customers sent to queue 1 changes. Roughly speaking, the fastest
queue receives more customers when the sojourn time is used as the cost to
be minimized instead of the waiting time.

7.7 Appendix: proof of Theorem 29

We will first assume that the number « is a rational number. Thus we work
with only finite words.
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Fig. 7.8. Optimal ratio when 1/S5 and 1/S; vary

By Theorem 28, m,, can be decomposed only using z;1(a) and y;41(a).
Since by Equations 7.3

l,
o <a;<1,
lit1+1

then we obtain the composition of z;41 () and y;4+1(a) with Lemma 32:

Tip1(a) = zi(rip1)(i(rien))* and yip1(o) = i(rig) (yi(ripa)

with & > (l;31 + 1) — 1. Let us rewrite these two equalities into :
Zip1(@) = i(rapn) (ga(rip) "+ (ga(rip))*
Yir1(@) = @i (rig1) Ws(rig1) "+ (gi(rign))* 1,
with k' > 0. We have z;41 (@) = ., (7,,)* and yiy1(@) = @, (7, )F 1.
Since by Lemma 34 and Remark 10 the workload after m,, is always null,
then the workload after an admission sequence x;1(a) or y;41(«) is also null.
Therefore the workload after one period of m,, is null and we simply have to
focus on one period of M. Computing K%(z;11(a)) and K°(y;41(a)) gives
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Fig. 7.9. Diagram of optimal ratios for the sojourn time

Ko(xi“(a)) = K'i-l—l + lez and Ko(yi“(a)) = I{i+1 + (kl + ].)Kl .

We write a; = n/q, a; being rational. The number of T, , in Mg is
the number of z;(S™!) = x;(r;;1) in M,. By Lemma 32 the total number of
2;(S1) in T, is equal to the total number of ones in &9 (7, ). Since 1 —n/q
is the slope of ¢()(7,) and since m, and &) (7,) are finite words. Then
the total number of z;(S~1) in m, is (1 — %)g. Using a similar argument the
total number of m,, in M, is (%)q. The number of 7, which do not belong
to My, is equal to ¢(2) — liy1(1 — 7)g. Therefore

n n n
K(mq) =q(1 - E)Ki+1 + Q[E —lip1(1 - E)]Ki-

Compute now n, the total number of ones in m,. This number is the
number of M., , multiplied by the number of ones in m,, , added with the
number of m,, which do not belong to m,,,, multiplied by the number of
ones in My, :

n n n
Nea; = q(1 — E)"Hl + Q[g —liy1(1— E)]”i-

We obtain
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(1= Kip1 + [2 = (i (1 = )] K
(1= Dnigr + [§ = (i (T = F))In

Suppose now that « is an irrational number, the bracket word is now an
infinite word. However we work with finite prefixes which properties are kept
when we compute the limit.

Let n be an integer. Let (M), be the prefix of length n of m,. Let
(Ma)s, be the greatest prefix of m, uniquely composed by factors x;41(«)
and y;41(c) which length is smaller than n, and let (M4 ),, be the smallest
prefix uniquely composed by factors z;11(a) and y;41() which length is
larger than n. We obtain

KO((a).,) _ KE((a)n) _ K°((a)s)
et~ (el = [aderls

The prefix (Mo )y, is composed by (M«)s, followed by either z;i1(c)
or y;41(a). As shown above, the workload after any sequence z;41(c) and
¥i+1(c) is null. Hence the workload after (7, ),, and after (M, )s, is also null.
Since the factor y;41(a) is longer than the factor z;41(a), then |z, 41 (a))1 <
lyit1 (@) and K°(zi41(a)) < K°(yit1(a)). That yields K°((Ma)g,) <
KO(a)..) + Kl (@) and also [Tl lo < (Tl + e

us

Wa(S) =

KO((Ma)su)|(Ma)s, |1 < K((Ma)n ) K ((Ma)s,)  K°(ir1(@))
[(Ma)sn |1 (|(Ta)s, [t + yir1(a)l1) = [(Ma)nly [(Ma)salt  [(Ma)s, |1
(7.23)

Let us focus on K°((My)s, ). For all n > m;41, this sum is strictly positive
and only depends on the number of y;11(ri31) and “remaining” yi(riy1)-
The number of y;11(ri+1) and “remaining” y;(riy1) is given by the slope of
() ((My)s, ). Hence

K*(ma)s,) = (120((7).,)] - a(69(7a)s, ) ) Kigr+
(1292, ) [(1 = (@) (a)s,)) ) = ligs - (B0 ((7a),,))] K-

and
|a)en |1 = (129 (ma) )] - (8 ()..,)) ) miat
(129 (@) )N) (1 = (@O (@o)s) ) = lisr - a(#0((o)s, ) | s

Finally we have

KO((a)sy) _
|(Ma)s, 1
O‘(gp(i)((ma)sn ))K’i+1+ [(1_a(¢(i)((ma)sn ))) - li+1 ’ O‘(gp(i)((ma)sn ))]Kz
(PO ((Ma)s, ))niv1 + (1= (8D ((Ma)s, ) — liv1 - A PO ((Ma)s, )] i
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Note that the number |(T24)s, | depending on n, when n — oo, [(Ta)s, | —
oo and also (g )s, |1 — 00. Lemma 32 give
lim (P9 ((Ma)s,)) = lim (D (Ma)n)) =1 — a;.
This implies

_ K%(Ma)s,) (1 —i)Kip1 + o —lipa (1 — )] K
lim — = .
n—oo  |(Ma)s, 1 (1 —ag)nipr + [a; — liy1 (1 — aq)] ng

(7.24)

Since |yi41(riy1)| is finite then |y;41(ri41)|1 and K (y;41(ri41)) are bounded.
It comes

g K)o K.
n—oo |(ma)sn|1 |(ma)sn|1+|yi+1(a)|1 n—oo |(mq)s"|1 )

lim KO((ma)sn) +K0(yi+1(a)) — lim %.

n—oe |(Ma)s, 1 (Ma)s, [t n=oe [(Ma)s, 1

Using Equation 7.23 and Equation 7.24 we obtain

(A= a)Kips + o =l (L= ea)] Ki _ (. EK°((a)n)
(1 —ai)niy1 + (o — lig1 (1 — i) ni — n—oo |[(Ma)nl1
(1 — Oéz')Ki+1 + [oz,- — li+1 (1 - ai)] K,

(1 —ai)nipr + o — lLigr (1 — ;)] ng

<
This finishes the proof of the formulas.
When a < ri, by Lemma 29 the minimum number of consecutive 0 in
T, is larger than [;. Therefore the inter-arrival times of m, are larger than
1 + 1, hence none of the customers have to wait and Wg(m,) = 0.

7.8 Appendix: proof of Lemma 37

We have
K1 K; nyxKipp—ni1 X K;

Nit1 n; Ng X Nyl
Since Vi > 1, n; X n;41 > 0 we have to focus on the sign of n; K;11 — n;41 K;.
Using Equations 7.14 and 7.16 yields
niKip1—nip1 K;

. l;
=n; |:(li+1 + l)Ki—f-(mliH—m,l) di + m(li+1 - 1)%@24_1 — Ki1:| —nit1K;

l;
=n; |:(li+1 + DEK; — Ki 1 + (nilipr —ni_1) d} +ni(lipr — 1) ; df]

= +(ni,1)K¢ - ni(li+1 + I)Ki

(ni—1 Ki —niKi1) + nq |(nalips — na—1) df +ni(lipr — 1)li—2|—1 df] )
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reordering we obtain

niKit1—ni41 K;
l;

= (ni 1 K; —niKi 1) +n2(ligy — 1)(d} + 2a2)
2

—}—ni(ni — ni_l)d}.niKiH —ni+1K; (7.25)
(7.26)

On the first hand, by Lemma 34, we know that d} is strictly positive and d},
is non negative and that d7 and d?,; are non positive. On the other hand
Equation 7.11 gives us d} + (liy1 —1)d? =d},, and d} + liy1d? = d7, ;. This
implies V111 > 2,

l;
dt + ;df >0.
That means VI;1q > 1,

li

(lir = 1)(d} + "FdEyy) 2 0.

Since Ky — noK; = K, since Ko = Iy (d% + @di) and since d} +
@di > d} > 0, then K5 > 0, and by induction we have Vi > 0 :

niKH_l — ni+1Ki >0. (727)
Therefore Vi > 0,
K; i
—+1 — 5 > 0
YZEN] n;

When ¢+ 1 is the last step of the expansion the proof holds replacing ;11 by
li+1 — 1.

7.9 Appendix 7.9 : proof of Theorem 30

i) Monotonicity. First we will show by induction on 4 that the derivative

function %‘;j is non positive.

Step 1. By Equations 7.3 we get : oy = a~! — [y, hence
8a1
— < 0.
oa

Step 7. By Equations (7.3) we get a; = (1 — a;_1)~! — [;, therefore

(9(11'
Oai_q

>0, (7.28)

and using the induction hypothesis
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6051' c‘i?ai Bai,l

da  day_1 Oa

<0. (7.29)

Second, using Equations 7.17 and 7.27, we have

OWs(Ma) _ — (nifip1 — ni1 Ky 5 <0. (7.30)
da; (1 =) i + (i — liy1 (1 — ;) ni]
Since
OWs(My) _ OWs(y) . oo
Oa - Oa; oa’
then o
aWS(mOé) > 0‘
oa

ii) Concavity. Using formulas 7.17 and 7.30 it comes

BQWS(ma) . 2 (niKH_l — ni+1Ki) (—ni+1 + ni(l — li+1))

daj [(1— ) migr + (i — Ligr (1 — o)) )

Hence we get

82Ws(ma) _ 820[1‘ ) BWg(ma) i 82W5(ma) ) oa; 2
da? T a2 A da? da )’

is equivalent to

BQWS(ma) _ _aWS(ma) 2ni—l (%03)2 82ai
da? Oy (1-a

- ] . (7.31)

Y(n; —ni—1) +a;n;  Oa?

Introducing da;—1 and using Formulas 7.3 and 7.14 yield after straightforward
computations

2’1%_1 8041' 2_ 82(11' .
(1 — al)(nz — ni,l) + a;n; oa da?

1 2n;_9 (ni—1 —ni—2) [Oai_1 2 _ ;1 (7.32)
(1 - Ozi_l)z (]. - Ck,'_l) + Q—1Mi—1 oa 8a2 ) )

At step one we have

2ng % 2 oy _ 2 <0
(1-ai)(n1 —ng) +a1ny \ da )

da2  (1—-a)
Since for all i > 0, (1 — «;) > 0, it follows from 7.30 and 7.31

82 WS (ma )

5oz <0
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iii) Linearity. The function aWg(7,) can be computed by replacing n; by
¢; in Formula 7.17. Since the recursive computations of the ¢;’s are identical
for all 4 > 2 to the recursive computations of the n;’s, then the Formula 7.32
still holds

2¢;—1 (30@)2_ i
(1— i) — gi—1) + 0ugi \ O da?
2 X 80‘@'—1 2
1 qi—2 da (92&1'71

7.33
(1—i1)? | (1 —aim1) (gim1 — @i2) + i—1Gi—1 oa? ( )

From
2q9 (%) 2 82(11 -0
(1=o01)(q1 —qo) +ouqr \ O da?2
it comes
82aW5(ma) -0
da2 o

Finally, note that the linearity of the function aWs(m,) can also be
proved directly using Little’s law and Farey’s intervals as done in [73].
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This part is dedicated to several extensions of the theory developped in
the previous parts.

The first extension concerns a system which is not (max,plus) linear but
for which the waiting time is still multimodular. This shows that multimodu-
larity is not limited to the class of systems with a (max,plus) linear dynamic
and can also be used in systems with losses or dynamic routing.

The second extension shows a model where the control is on the service
process and not on the arrival process. This is often called a polling system.
By using the duality between the polling system and the routing system, we
show that a polling policy based on sturmian sequences is optimal.

The last extension shows that multimodularity is also useful to derive
qualitative properties of closed-loop control and not only for open-loop con-
trol. In particular, we show monotonicity of the optimal decisions with respect
to the state of the system.






8 Networks with no buffers

8.1 Introduction

We begin by considering in this Chapter two types of problems: an admission
into a single server with no buffer, and then the extension of this setting to a
routing problem. We consider exponential service times and general station-
ary arrival processes, which include, in particular, the interrupted Poisson
process, Markov modulated Poisson Process (MMPP) and Markov arrival
process (MAP) . In spite of the generality of the input process, we are able to
obtain explicit expressions for the expected cost as a function of the policy.
This allows us to derive the multimodularity of two types of cost functions
and to conclude that “bracket” policies are optimal as in [1, 2].

Using ideas from [103] we then solve the dual problem [76] which is con-
cerned with the sharing of a single communication link between multiple
sources. This is modeled as an optimal assignment problem of a single server
to several single buffer queues to which packets arrive according to Poisson
processes. The relation to the previous problem is obtained if we take as
states in the new problem the vector of free spaces in the buffers (instead of
the occupancy of the buffers). The distribution of the process of free spaces
in the new model is the same as the distribution of the process of buffer
occupancy in the previous problem. This yields the solution of the service
assignment problem.

Our original routing problem was also studied recently in [81] (assuming
however a much simple i.i.d. arrival process). Using the theory of MDPs
with partial information, he established the periodicity of optimal policies
and showed for the special case of symmetrical servers and arrival processes
that the round-robin policy is optimal. For the case of 2 servers, he showed
that a periodic policy whose period has the form (1,2,2,2,...,2) is optimal,
where 2 means sending a packet to the faster server. Similar results have been
obtained in the dual model of server assignment in [42]. The approach in [42,
81] heavily depend on the Markovian structure of the arrivals. Surprisingly,
the Markovian approach turns out to be useful also in the non Markovian
setting (which is due to the general non i.i.d. arrival process that we consider).
Indeed, we show here that one can use a simple formulation of the problem as
a Markov decision process (MDP) that allows us to conclude in the general
setting too, that optimal periodic policies exist. We further relax here the
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assumption on the distribution of the service times, and allow these to be
general independent.

We show in this chapter that policies that are regular in a weaker sense
are also optimal. More precisely, we establish that the cost function related to
periodic policies are Schur convex. This allows us to conclude that not only
regular policies are optimal, but more generally, policies that are regular in
the majorization sense. We further show that a policy that majorizes a second
policy has a smaller cost.

We conclude this chapter with an application of our framework to the
problem of robot scheduling for web search engines.

8.1.1 Organization of the chapter

The Chapter is structured as follows. In the next section we study the ad-
mission into a single server, and obtain the optimal policy. We then establish
in the following Section properties of the cost and an ordering between the
performance of different policies. Section 8.5 deals with the optimal routing
problem. The service assignment problem is solved in section 8.6 The tech-
nical arguments that establish the multimodularity properties are delayed to
Section 8.7. In Section 8.8 we present the MDP formulation of the problem
and obtain the optimality of periodic policies . We then study in Section
8.9 the multimodularity of the global cost when considering routing into two
servers. We conclude with an application to a robot scheduling problem in
the Web is discussed in Section 8.11.

8.2 The admission into a single server

Consider a single server with no waiting room. Let 7}, be the point process
representing the arrival epochs, and assume that service times are i.i.d., inde-
pendent of the arrival process, and exponentially distributed with parameter
. We assume that 6, := T,41 — T}, is a stationary process (in n). An ar-
rival can be rejected or accepted by an admission controller. An admission
policy is a sequence a = (a1, a2, ...) where a; = 1 means acceptance of the
ith arrival, and a; = 0 means its rejection. The actions are taken without
any knowledge of the state of the buffer, and if it is already full when the
packet is admitted, then the packet is lost. Let X,, = X,,(a) be the number
of packets in the system just after the nth action is taken.
We consider first the following problem:
(P1) Maximize

g(@) % im 25 X,
J=1

where E? is the conditional expectation given a. The policy a is subject to
the constraint that a fraction of no more than a fraction p of the packets is



8.2 The admission into a single server 157

accepted:

— 1<
lim — an < p. 8.1
Jim ; (8.1)

The reason we consider this reward function for maximization is that
maximizing the average number of packets in steady state is related to
- maximizing the throughput (the departure rate), and to
- minimizing the losses (due to both rejection by the controller and to the
blocking).

Indeed, every customer has a sojourn time which is exponentially distributed
with average !, and therefore the average actual throughput is equal to
the product of the long-run average number of packets in the system and pu.
The second equivalence follows since the loss rate is the initial given input
rate (before the admission control and losses) minus the actual throughput.

Note that the queue size that we maximize in this section is that ob-
tained by averaging over the times 7T7,. In some cases this will indeed coincide
with the time average queue length (for example, if the interarrival times 6,
exponentially distributed). In the case it does not coincide, we propose an
alternative approach in Section 8.4.

Another motivation to study this problem follows from an interesting
comparison with the infinite queue system. Below we show that for the current
system the queue length is mazimized by assignment sequences as regular
as possible; for the infinite buffer system queue lengths are minimized by
bracket sequences (Chapter 6). Some intuitive understanding can help to
explain this at first sight contradictory phenomenon: in an infinite queue
system minimizing queue lengths means minimizing waiting by spreading
out arrivals; minimizing queue lengths in a system without buffers means
maximizing losses by making arrivals bursty.

Before stating the main result, we present a simple coupling property:

Lemma 45. Fix an arbitrary policy a. Then one can construct a probability
space (2, F,P) such that

(i) the state trajectories starting from different initial states of the server
couple in a time which is finite w.p. 1,

(i) The following holds:

lim_[E[X,,(a)| Xo = 1] ~ E[X,,(a)| X = 0| = 0.

Proof. We let the interarrival times be the same in both systems. If the policy
a never accepts packets or if arrivals never occur, then coupling occurs once
the system empties starting at state 1. Otherwise, let T, be the time at which
the first packet is admitted. Note that the admission occurs in both systems.
If both systems are empty at time T, then coupling occurs at that instant
(we take service times to be the same in both systems from time T}, onwards).
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Otherwise, system 1 (in which the initial state is of a single packet) has 1
packet at time T, and system 0 (which is initially empty) has no packets.
Coupling is obtained again at time 7}, by assuming that
(a) service times of all packets admitted after time T;, are the same in both
systems;
(b) at time T3, the remaining service time of the packet in service in system
1 equals to the service time of the packet admitted in system 0 at time 7,.
Due to the memoryless property of the exponential distribution and the
independence assumption on service times, the above coupling is consistent
with the probability distribution of the original state processes. This estab-
lishes (i). (ii) follows from the bounded convergence theorem. 0

Theorem 33. Assume that the system is controlled starting from time Tj.
Assume that the inter-arrival times are stationary, and independent of the
service times. Assume that the service times are i.i.d. exponentially dis-
tributed. Then for any 6 € [0,1], the bracket policy with rate p and initial
phase 0 is optimal.

Proof. Due to Lemma 45, we may assume without loss of generality that the
system contains initially one packet at time Ty. —Er o X, (a) is multimodular
(we delay the proof of this property to Section 8.7). Here o denotes the
random process governing the service completions. fn(a) := —Er X, (a) is
clearly monotone decreasing in a. It remains to check conditions < 2 > and
< 3 > from Section 1.3.

Recall that Condition < 3 > can be formulated as: the functions f,(a)
must satisfy the following property.
For any sequence {a} 3 a sequence {8} such that
Vk,m, k>m, fk(ﬁlv o Brms 01, - am) = fm(ala ) am)-
This clearly holds in our case where f,(a) = —Er , X, (a) by setting §; = 1.
(The precise justification of the above is from property (i) which appears in
Section 8.7.).

Condition < 2 > states:
fk(ala "'7ak) Z fk—l(a27 "'aa/k)a vk > 17
this holds in our case for —Er ,X, due to our assumptions on the initial
state. O

8.3 Properties of the cost and of policies

Lemma 46. g(a) = g(¥a) for any policy a, where ¥ is the one step shift
operator.

Proof. This follows from Lemma 45. Indeed, with a = (a1, as, -..), we have

g(i) = lim EZE“XTF lim ! iEaan lim liE"’Xﬂ
Jj=2 j=1
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where a' = da = (az, as, ....). 0

Define for any policy a

rn(a) def min{m > 0 such that a,_,, = 1}.
Lemma 47. For any policy, EX,,(a) is given by

Tn(a)

EX,(a) =E exp | —p Z Ok
k=1

Proof. X,(a) = 1 if and only if since time T),_, () there has been no de-
parture. Thus X,(a) = 1 if and only if during a time period of duration
Zzznfrn(a) 0k there are no end of services. Since 6, is a stationary sequence,
we obtain the result. 0

Assume that a is periodic with period P. Let a’ be some shift of a such
that aly = 1. Thus X,,p(a) =1,n=0,1,2,....

P
g9(a) = =7 ; (Xk(a
Let n = Ekpzl a(k). Define
n(0) = 0; n(G+1) =min{l >n(j):a,=1},j=0,..,n—1

Note that n(n) = P. Define

di=n(), di=n(+1)-n(), j=2,...,n—1

Lemma 48. a (and thus o') is fully determined by the sequence d up to a
shift, and the cost g can be expressed as a function of d(a):

1 [ 4 : def
ga)= 53 [B Y e Bt | Ly (32)
7=1 7=0
Proof. By Lemma 47,
n di—1 1 n di— Ty(i)— ](a)
Z Z EXT,(,) J ﬁ Z Z exXp | —u Z (5k
i=1 7=0 i=1 7=0
1 n d;i—1 7 1 n d; ]
:ﬁz, ]EeXp<—u 6k>:F. ZEGXP( 161)’
i=1 57=0 k=0 =1 j=1
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We conclude that if a is a periodic policy, then any policy obtained
from a by changing the order of the d sequence that characterizes a,
achieves the same cost. Thus a non-bracket periodic policy of a period
(1,0,1,0,1,0,0,1,0,0) has the same cost as a bracket policy of the form
(1,0,1,0,0,1,0,1,0,0).

This property can be seen to be a special corollary of a more general result
that will be presented in Theorem 34 below.

Consider two n-dimensional vectors of integers d(1),d(2).

Definition 14. (Majorization [88])
We say that d(2) magjorizes d(1), which we denote by d(1) < d(2), if

k k
1=1 =1
> di(1) = diy(2)
1=1 =1

where dm( ) is a permutation of d;(j) satisfying dpy(j) > di(j) > ... >
A function f: R™® — R is Schur convex if d(1) < d(2) implies f(d(1)) <

f(d(2)). f is Schur concave is d(1) < d(2) implies f(d(1)) > f(d(2)).
Lemma 49. ¢'(d), defined in (8.2) is Schur concave.

Proof. ¢’ can be written as the sum

1 n
= p 2 i)

where 1) is the term in brackets in eq. (8.2). Since
i(m+ 1) = Yi(m) = Be# 2izo

is monotone decreasing in m, it follows that 1; are concave in d;. The proof
is then established by using proposition C.1 on p. 64 in [88]. 0

Theorem 34. Assume that a and a' are two periodic policies with the same
period P and the same sum

P P
n = E a; = E as.
=1 1=1

Ifd(a’) < d(a) then g(a") > g(a).
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Proof. Follows from the Schur concavity of g, see [88] p. 54. 0

The above theorem allows us to “improve” any given periodic policy by
replacing it by a more “regular” one, where by more regular we mean a policy
whose distance sequences are majorized by the less regular one.

A similar result was obtained in [42] in a related model (which we discuss
in Section 8.11 under the assumption that the sequence 6, is i.i.d.).

8.4 Time averages

In the previous sections we took averages of the costs as seen at times T,,
i.e. at arrival times. The problem with this is, however, that T}, are in fact
the times of potential rather than actual arrivals. In practice, arrivals occur
only at a subsequence of T,, which depend on the policy. In this section we
obtain similar results for the actual arrival process.

We consider the same model of the system as well as the statistical as-
sumptions as in Section 8.2.

Instead of describing a policy using a sequence a, it will be more helpful to
consider an equivalent description using the distance sequence d = (dy,da, ...).
Define D(n) = .7 _, di. The actual arrivals occur at times Tp(,),n € N. We
define the process &, to be the number of packets in the buffer just prior to
time T'p(p). (If we took, as in the previous sections the time after a decision,
then the number of packets would always be 1.

The motivation for considering the system at arrival instants is the fol-
lowing. Whenever an actual arrival finds a packet in the system there is a
loss. Thus minimizing the average number of packets at actual arrival times
will also minimize the fraction of losses and maximize the throughput.

We consider first the following problem:

(Q1) Minimize
d f o

subject to the constraint that a fraction of no more than a fraction p of the
packets is accepted, or in other words,

lim —Zd >1/p. (8.3)

n—oo n

Recall that a policy d is bracket with rate 1/p if and only if its related
policy a is bracket with rate p, see Lemma 21.

Theorem 35. Assume that the system is controlled starting from time T;.
Assume that the inter-arrival times 6, are stationary and independent of
the service times. Assume that the service times are i.i.d. exponentially dis-
tributed. Then for any 6 € [0,1], the bracket policy with rate 1/p and initial
phase 0 is optimal.
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The proof of the Theorem is similar to that of Theorem 33. The multi-
modularity of E&,, (d) is established in Section 8.7.

We now present properties of the cost for periodic policies, which are
the analogous of Section 8.3. We first define the expected average cost for a
periodic sequence d = (dy, ...,dp) given by

1 P
G(d) = 5 D_E(-pd:) (8.4)

when the interarrival times are i.i.d. Since this is a sum of functions that are
convex in the d;’s, it is Schur convex in d (proposition C.1 on p. 64 in [88]).
We thus conclude the following (see [88] p. 54):

Theorem 36. Assume that d and d' are two periodic policies with period P

and the same sum:
P P
=Ya=ya
1=1 =1

If d' < d then G(d') < G(d).

8.5 Routing to several servers

We now consider K servers (all with a single buffer), fed by a stationary
input process as in Section 8.2. We make the same probabilistic assumptions
as before on the service times in each server. Let X! be the number of packets
(0 or 1) being served by server ¢ at the nth time epoch. A routing policy is
a sequence a = (ay,as,...) where a, = j means routing of the ith arrival to
queue j. We consider the following routing problem:

(P2) Maximize

ef .. ;
o0 i 1330,
7j=11=1
where h; are some given positive constants.
The following theorems are the result of the properties we established in
the previous section, the multimodularity properties (which is established in

the next section) as well as the results in Chapters 1 and 4.

Theorem 37. Consider the symmetric system, i.e., p1 = --- = pg. Then
the round robin policy mazimizes g(a) (and hence, the expected average
throughput).

Theorem 38. Consider the case of two servers. Then there is some p* such
that for any 6, the policy that routes packets to server 1 according to the
bracket policy with rate p* and initial phase 6, and otherwise routes packets
to server 2, is optimal.
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Theorem 39. Consider the case of two types of servers: a set K1 C {1, ..., K}
of servers with u = py1, and the remaining set Ko of servers with u = ps.
Assume that h; = h' are the same for all i € Ky and that h; = h? for all
i € Ky. Then there exists some p* such that that for any 68, the following
policy is optimal:

it routes packets to the 1st group server according to the bracket policy with
rate p* and initial phase 0, and otherwise routes packets to the second group
of servers. Within each group of servers, the order of service is round-robin.

The proof of all three theorems is based on Proposition 11, which states
that if a tuple (p1, po, ..., pr) is made of less than (or of exactly) two distinct
numbers, then it is balanceable. In other words, there exist a policy a such
that for each ¢ = 1, ..., K, the sequence of indices in a that correspond to
routing arrivals to queue ¢ are is a bracket with rate p;. The optimality of
balanceable sequences was established in Chapter 1.

Remark 13. For any a, let a* = {a%,n € N} be the binary sequence such that
al, = 1if and only if a,, = i. Using the result of Section 8.3, and in particular
the Schur convexity of g as a function of the d’s (see Lemma 49), one can
show that if there are two periodic policies a and b with the same period P,
such that for any i =1, ..., K,

- Zf‘:l ai}, = '2521 b:’ﬂ
— d(b*) < d(a"),

then g(b) > g(a).

8.6 The service assignment problem

Consider K Poisson processes with parameters pq, ..., i respectively, of
packet arrivals into K respective single buffer queues. One buffer can obtain
transmission opportunity at a time. Let 7, be time at which the nth trans-
mission opportunity occurs. If an arrival occurs to a buffer that is full then
it is lost; if the buffer is empty then the arriving packet is stored till a trans-
mission opportunity to that buffer arrives. If a buffer receives a transmission
opportunity at time 7, and it has a packet then this packet is transmitted,
and immediately after time T3,, a new arriving packet can be stored in this
buffer. If there is no packet in the buffer then this transmission opportunity
is lost. We assume that 6, := T, +1 — T, is a stationary process (in n) and
independent on the arrival process.

The role of the controller is to decide to which buffer will the next trans-
mission opportunity be assigned. A service assignment policy is a sequence
a = (a1,as,...) where a; = j means that the ith transmission opportunity
will be to queue j. We assume that the controller has no information about
the buffers’ contents.
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Let Z¢ be the number of packets (0 or 1) at buffer i just after the nth
action is taken. Denote Y;! = 1 — Z. It thus corresponds to the ‘vacancies’
process, as Y,! equals one if the ith buffer is empty just after the nth action
is taken (i.e. after time T,,). We consider the following problem:

(P3) Minimize

def — 1
g(a lim — h E*Z
where h; are some given positive constants.

The above objective corresponds to the minimization of blocking proba-
bilities, since blocking occurs at queue ¢ between 7, and T},4+1 if and only if
zZ: =1.

Note that by minimizing blocking probabilities, we maximize the through-
put.

We now make the following key observation. Fix an arbitrary sequence a.
Then the distribution of the vacancies process {Y, }, ; in the service assign-
ment problem is the same as the distribution of the buffer contents process
{X:i},,: in the routing problem. Hence, using the results of the previous
section, we get the following main results.

Theorem 40. Consider the symmetric system, i.e., p1 = --- = pr. Then
the round robin policy minimizes g(a) (and hence, mazimizes the expected
average throughput).

Theorem 41. Consider the case of two servers. Then there is some p* such
that for any 0, the policy that assigns transmission opportunities to buffer 1
according to the bracket policy with rate p* and initial phase 8, and otherwise
assigns transmission opportunities to server 2, is optimal.

Similarly, one obtains the dual of Theorem 39.

8.7 The multimodularity

Lemma 50. The two following statements are true. (i) B, (—X,(a)) is mul-
timodular,
(i) B, £n(d) is multimodular.
Proof. (i) The proof is based on the following useful properties. Let ¢(a) def
max{m < n such that a,, = 1} . Consider two policies a, a’. Then,

Property (A): if g(a) = ¢(a’) then X,,(a) =5 X, (a') (this is equivalent to
Eo (Xn(a)) =E, (Xn(a")) and to P(X,(a) =1) = P(X,(a’) = 1)).

This is due to the memoryless property of the exponential service times.
Thus we can replace our original system by one where at each acceptance,
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the new packet replaces the one in service, instead of being rejected; the
distribution of the process X,, will not change.

Property (B): if ¢(a) < ¢(a') then X, (a) <s X, (a') (which is equivalent
to B (Xn(a)) < Eq (Xn(a'))).
This is obtained by a similar argument.

We shall now check relation (1.1) in the definition of multimodularity
(Chapter 1) for any a such that a,a + w,a + v,a + w + v are feasible.

Let v = e,,. We have for any w € F, w # v,

Xola+w+v)=Xp(a+v)=X,(v) =1,
and
Xn(a+w) <4 Xp(a).

The first relation follows from property (A) above, and the second from prop-
erty (B), since

gla+s;) <gqgla),i=2,...n and ¢g(a—e;) <q(a)

(recall that s; corresponds to shifting an arrival to the past). This implies
that

E,(—Xn(a+w+0)) =E, (—X,(a +v)),
]EG(_Xn(a + w)) > Eo(_Xn(a))'

Hence relation (1.1) is satisfied.

Next, assume v = —e;. We consider w # v (and thus restrict to n > 2).
For a + v to be feasible, we must have a; = 1. For a + w to be feasible, we
have w # s5, and ¢(a) > 1. It then follows from property (A) that

Xn(a) =5 Xn(a+v), Xn(a+w) =5 Xn(a+v+w).

Hence relation (1.1) holds with equality.
It remains to check v = s;,5; = w, with 5 > ¢. Since a + s; is feasible, it
follows that g(a) > j. Hence, by property (A),

Xn(a + 8;) =st Xn(a).

Similarly, g(a+s;) > j—1; since it is feasible then a;_; = 0, so that i < j—1
(in order for a+s; to be feasible, we have to exclude i = j—1, since a;_1 = 0).
Hence

Xn(a+ s+ s5) =s Xnla+s;).

Hence relation (1.1) holds with equality, which concludes the proof of (i).
(ii) Let v be any one of the vectors in the set {—eq, s2, ..., $n—1}. Then
due to Property (A), for any w # v,

n(a) =st bn(a+v), &nla+w) = Enla+v+w).
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Hence relation (1.1) is satisfied. By symmetry it holds for any w in the set
{—e1,82, ..., Sn—1}. It thus remains to check the case v = e,, w = sp.
From Lemma 47 we have:

dn
¢, (d) = E exp (—uz 6k> :
k=1

Let z, = m, and let denote

y= exp <—u26k> :
k=2
Then

Eé(x +v +w) = Ef(x) = ]Eye_“&"“r1 = ]Eye_/“Sl
]&.(x + 'U) = ]Eye_'“[ém-i-l + 6m+2] = ]Eye_u[él + 6m+1]
Eé(z + w) = Ey.

Since the function f(x) := ye # is convex in z, it follows that f(61+2)— f(z)
is increasing in z, so that

(614 0mi1) = f(Omi1) 2 f(61) — £(0).

By taking expectations, this implies relation (1.1) for E¢,, (a), which concludes
the proof. 0

8.8 MDP formulation and new structural results

We reconsider our routing problem into K parallel servers with no waiting
room in the framework of Markov Decision Processes. Recall that packets
arrive at times (T}, )nen. We use the convention that 77 = 0. and we assume
that the process (6,)nen Of interarrival times is stationary. Upon arrival of
a packet a controller must route this packet to one of the K servers in the

system.
We allow in this section for more general service times: the service time
has a general service distribution G,, when routed to server m € {1, ..., K}.

If there is still a packet present at the server, where the packet is routed
to, then the packet in service is lost (we call this the preemptive discipline).
In the special case of an exponential distribution, one can consider instead
the non-preemptive discipline in which the arriving packet is lost; the results
below will still hold.

We assume that the controller, who wishes to minimize some cost func-
tion, has no information on the state of the servers (busy or idle). The only
information which the controller possesses is its own previous actions, i.e. to
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which server previous packets were routed. We assume that this informa-
tion does not include the actual time that has elapsed since a packet was
last routed to that server. This assumption enables us to study the embed-
ded Markov chain of the continuous-time process; i.e. we can consider the
discrete-time process embedded at the epochs when packets arrive. Now the
mathematical formulation of this problem is given by the following T-horizon
Markov decision process.

Let X = (NU{c0}) X be the state space. The mi® component z,, of z € X
denotes the number of arrivals since a packet was last routed to server m.
Let A= {1,...,K} be the action space, where action a € A means that a
packet is routed to server a. Since actions are taken before state transitions,
we have the following transition probabilities:

1, ifzl, =1land 2/, =2, +1forallm#a

p(z'|2,a) = {

0, otherwise.

Define the immediate costs by c¢;(z,a) = fo(z,), which reflects that the costs
only depend on the chosen server and the state of that server for ¢ < T'. The
terminal costs are given by

cr(z) = Z fa(za) (8.5)

acA

(note that the terminal costs use the same functions f,). Defining these ter-
minal costs will be essential for the mathematical results, as will be illustrated
later in Example 9. It has also a natural physical interpretation, as will be
illustrated in Remark 16.

The set of histories at epoch ¢ of this Markov decision process is defined as
the set H; = (X x A)!~! x X. A policy 7 is a set of decision rules (1,72, ...)
with m; : H; — A. For each fixed policy 7 and each realization h; of a
history, the variable A; is given by A; = m(h:). The variable X;y; takes
values 741 € X with probability! p(z:41 |2+, a:). With these definitions the
expected average cost criterion function C'(7) is defined by

T
. a1
C(w) = lim sup Ef T ;ct(Xt,At),

T— o0

where © = (1, ..., Zx) is the initial state. Let IT denote the set of all policies.
The Markov decision problem is to find a policy #*, if it exists, such that
C(7*) = min{C(n) | 7 € IT}. This Markov decision model is characterized by
the tuple (X, A, p,c).

! In the general MDPs, the variables A; and X; are random; here they are deter-
ministic since the transition probabilities take only values of 0’s or 1’s
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Ezxample 6. Suppose that the controller wishes to minimize the number of
lost packets (i.e. the number of preempted packets) per unit time. The cost
function f,,(n) will typically be a decreasing function in n, because a longer
time interval between an assignment to server m results in a smaller proba-
bility that a packet, that was previously assigned there, is still in service.
Assume that the arrival process is a Poisson process with rate A and that
services at server i are exponentially distributed with rate u; independent
of the other servers. Let S; be a random variable which is exponentially
distributed with rate p;. Then fn(n) = P(Sm > 81 + -+ +6,) = [N (A +

)]

In the setting described in Example 6 we obtained a decreasing cost func-
tion f,(z). In Section 8.10 we discuss this application in more detail. In Sec-
tion 8.11 we describe another application of our model, where the obtained
cost function is increasing. In this section, we make some general assumptions
on the cost function in order to cover all these different structures. Moreover
we investigate structural properties of the optimal policy.

Assume that all the f,, are convex and that one of Conditions (8.6)—(8.8)
defined below holds:

lim (fm(z+1) = fm(z)) =00 m=1,...,K. (8.6)
fm are strictly convex and lim (fm(x) — amx) =C, m=1,...,K

(by strictly convex we mean that for all z, f,.(x +2) — fr(z + 1) > fi(z +
1) — f(z)).
fm(z) = amx + C, m=1,... K, (8.8)

where a,, > 0 and C are constants (and C' does not depend on m). Note
that Condition (8.8) is not included in (8.7): it violates its first part. Con-
dition (8.6) covers the case where f,, grows more than linearly, whereas
(8.7)—(8.8) cover the case where f,, grows asymptotically linearly. These
conditions are complementary to (8.6) since any one of them implies that
limg oo (fm(z + 1) — fm(z)) < oo. In Conditions (8.6) and (8.7), fn, is
strictly convex.

Theorem 42. Assume that one of Conditions (8.6)—(8.8) holds. Then

(i) There exists an optimal policy that uses every server infinitely many
times, thus sup{j|m; = m} =00 form e {1,...,K}.
(i) There exists an periodic optimal policy.

Before proving the theorem we note that there are certain ways in which the
conditions (8.7)-(8.8) cannot be relaxed. We illustrate this below with cost
functions for which the above theorem does not hold.
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Example 7. Consider the case of two servers with the costs
filz) =a;x + b; exp(—l;x) +¢i, i=1,2,

where ¢; < ¢o, and where IA)Z- > 0 and ¢; > 0 are some constants (as follows
from the next remark, the sign of a; is not important). Then for a sufficiently
small value of 131, the policy that always routes to server 1 is the only optimal
policy for any finite horizon N.

Indeed, assume first b; = 0 for all i and let u be any policy that routes at
its n'? step to server 2. By changing the action at this step into an assignment
to server 1 we gain ¢y — ¢;.

By continuity of the cost in the by’ s, we also gain a positive amount using
this modified policy if bi # 0 provided the bi’s are sufficiently small. Hence
for b; sufficiently small, a policy cannot be optimal if it does not always route
to server 1.

When using the average cost, the cost is not affected anymore by any
changes in the actions provided that the frequency of such changes converges
to zero. Hence for the average cost, there may be other policies that are
optimal, but still, any policy for which the fraction of customers routed to
server 2 does not converge to 0 cannot be optimal.

We conclude that we cannot relax (8.7) or (8.8) and replace C by Cp,.

Remark 14. Note that when the cost f;(x) contains a linear term a;z then
the total accumulated cost that corresponds to the term a;z over any horizon
of length N is a;(N + z;), where x = (x1,22) is the initial state. This part
does not depend on the policy. If we use a policy 7 and then modify it by
changing an assignment at time ¢ < N from server ¢ to server j # i then
the linear part of the cost at time ¢ under the modified policy decreases by
a; £;(t) — a; x;(t), but it then increases by the same amount at time ¢ + 1.
Thus the accumulated linear cost is independent of the policy. (Note that
this argument is valid due to the definition of the cost at time N in (8.5).

Ezample 8. Consider the case of two servers with the costs fi(x) = a1z and
f2(z) = exp(—£az). For any finite horizon N and for ¢5 > 0, the only optimal
policy is the one that always routes to server 1. Note that the average cost
until time N of the policy that always routes to server 1 is

N f2(1) + f1(N)

— =L
=€ ai.
N + a1

The average cost of the policy that always routes to server 2 is

NAD) + () _ et
— N Cuat—Qy—
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Again, for the average cost there are other optimal policies but they have to
satisfy the following: the fraction of customers routed to queue 2 by time N
should converge to zero as N — o0.

This illustrates the necessity of the first part of Condition (8.7). For ¢y <
0, the only optimal policy is the one that always routes to server 2.

Next we present an example to illustrate the importance of the terminal cost.

Example 9. Assume that there are two servers, and that the costs are given
by fi(z) = 2% and fo(x) = 222. Assume that the terminal costs cy () were
zero, then the policy that always routes to server 1 is optimal.

Proof (Proof of Theorem 42). First suppose the cost function satisfies
Condition (8.8). Interchanging assignments between any two servers for any
finite horizon does not result in changes in cost for that horizon, due to the
linearity of the cost function and the terminal cost. Hence any periodic policy
that routes packets to all servers is optimal.

We consider next Conditions (8.6) and (8.7). Instead of describing a policy
using a sequence 7, we use an equivalent description using time distances
between packets routed to each server. More precisely, given an initial state
x, define the j*" instant at which a packet is routed to server m by

n™(0) = —zm
and 7™ (j) = min{i| max (y™(j —1),0) < i < N and m; = m},

for j € N (the minimum of an empty set is taken to be infinity.) Define
the distance sequence d(m) by d(m) = (di(m),d2(m), ...), with d;(m) =
n™(5) —n™(j — 1), for 7 € N. (For simplicity we do not include the N in the
notation.)

Let 7 be an arbitrary policy and m be an arbitrary server (fixed from now

on). Assume that the distance sequence d def d(m) for this server has the
property that limsupy_,..{d;|j € N} = co. We shall construct a policy 7’
with distance sequence d™ such that lim sup N_,OO{d;-" |j € N} is finite and
C(n") < C(m).

Assume first that f satisfies Condition (8.6). Choose ng such that for all
n>ng

min(fn(n k) = () = fn(n)

1<k<2K+1

> _max (fi2K +1) = filk) - H2K +1-F)),

1<k<2K+1

for all [. Since the supremum of the distance sequence is infinity, there is
a j (and N) such that d; > n + 2K + 1. Consider the 2K + 1 consecutive
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assignments starting at ™ (j — 1). Since there are K servers, it follows that
there is at least one server, to which a packet is assigned three times during
that period, say m'. Denote the distance (or interarrival) times of those three
assignments to m’ by d;(m') and dy(m'). Replace the second assignment to
m' in this sequence by an assignment to server m. Denote the new distance
(or interarrival) times to m by d; and dj (if n(j) = N then the distance d is
not a real interarrival time). Consider the cost for a horizon of length | where
l is an arbitrary integer larger than n(j — 1) + ng + 2K + 1.

[fm(d;) + frmr (di(m)) + fe (da(m))] —

[fm d' )+ fn(d}) + frur(di(m') + da(m”))]

= [fm(d)) = fm(d}) = fm(d)] —

[frm (di(m) + da(m')) = frr (di(m")) = frmr (d2(m"))] > 0,

where the last inequality follows from the choice of ng.

Consider now Condition (8.7). Since by assumption the supremum of the
distance sequence d; = d;(m), [ = 1,2, ...is infinity, there is a j (and N) such
that d; > 2n+ 2K +1, for some n. Let p := min{f,,(k)+ @m — fr(k+1) |m =

LK, k=1, ...,K}. Note that pis positive, since Condition (8.7) implies
that (fi(z)—a;z—C) is positive and strictly decreasing (for all ). Now choose
n such that 2¢ = 2(fm(n) — amn — C) < p. Note that this is possible, since
fm(n) — amn — C goes to zero as n goes to infinity. Consider the 2K + 1
consecutive assignments starting n units after n(j — 1). There is at least one
server, to which a packet is assigned three times, say m’. Replace the second
assignment to m’ in this sequence by an assignment to server m.

Define the function ¢;(k) = fi(k) — a;k — C for all i and consider the
cost for a horizon of length [ where [ is an arbitrary integer larger than
n(j — 1) 4+ 2n + 2K + 1. The decrease in cost due to the interchange is

) + fr (d2(m))] —

+fm’ dl( )
+ fow (dr(m') + dz(m))]

dl + fm dll

~—

[fm
[fm

= [gm(d;) + gm (di(m")) + gme (da(m"))] —
(9 () + gm(d]) + gone (dr (M) + da(m"))]
> [gm(d;) + gme (di (M) + gomr (do(m”))] = [2gm (1) + gomr (dr (M) + 1)]
= g (d;) + gme(d2(m")) + [gms (di (M) = grr (di1 (M) + 1)] = [2gm(n)]
> gm(d;) + gm: (d2(m)) +p — 2¢ > 0,

where di(m'), dao(m'), d; and d are defined as before. The first inequality
follows from the fact that n < dj, n < dj, di(m') +1 < di(m') + d2(m')
and f,(z) — amz — C is decreasing. The second inequality follows from the
definition of p. Since f,, — a,, — C is positive it follows by construction of n
that the last inequality holds.
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Repeating the interchange procedure for every j for which d; > 2n+2K+1
(when dealing with Condition (8.7)) or for which d; > n + 2K + 1 (when
dealing with Condition (8.6)) provides us a policy n’ such that C(r') < C(w)
and sup{d}’l |j € N} < 2n+ 2K + 1. By repeating this procedure for every
server, we get an optimal policy that visits a finite number of states. By
Chapter 8 of Puterman [95] we know that the optimal policy can be chosen
stationary. It follows that 7, (h,) = mo(zn). Since the state transitions are
deterministic it follows that the optimal policy is periodic. 0

8.9 Multimodularity of the global cost: two servers

We consider in this Section the special case of two servers.

In previous Sections we have already established the multimodularity of
the cost related to a single server. This was sufficient to get optimality results
for the multidimensional case (the routing problem) since the optimality of
bracket policies has been established under the conditions that the cost of
each component separately be multimodular (Section 1.4).

In this Section we consider directly the multimodularity of the combined
cost of the two queues. Although this is not necessary for obtaining the
regularity structure of optimal policies, this is an important property for
optimization purposes, as it allows us to use local search procedures (that
are based on the fact that local minimum is also a global one, see Corollary
2).

The notation of the distance sequence can be beneficially used to approach
the decision problem. After the first assignment to server m, the distance
sequence d(m) for server m is periodic, say with period P(m). Therefore in
future discussions we will write 7 = (71, ..., 7,) for the periodic assignment
sequence with period n and with a slight abuse of notation we denote the
periodic distance sequence for server m by d(m) = (d(m)1, ...,d(m)p(m)).

The periodicity reduces the cost function in complexity. Since we use
the expected average cost function, we only have to consider the costs in-
curred during one period. It would be interesting to establish multimodular
properties for any K. Unfortunately it is not clear how even to define multi-
modularity for K > 2. We thus consider below K = 2. The expected average
cost is given by

P(

> fm (m);)- (8.9)

m=1 j

3

3|'—‘

K
=3 gl
m=1

It is tempting to formulate that g,,(w) is multimodular in 7 for m = 1,2.
Note that this is not necessarily true, since an operation v € F applied to m
leads to different changes in the distance sequences for the different servers.

We shall thus use an alternative description for the average cost through
the period of server 1. Define ¢/, as follows:

X
-
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d(1)

Fulm) = 3 Y Fnlds (1) (5.10)

We note that the function g/, (m) only looks at the distance sequence assigned
to the first server with respect to 7 using cost function f,,. By the symmetry
between the assignments to the two servers g(7) can now be expressed as
g(m) = g1 (m) + g5(3 — 7). (3 is the vector whose components are all 3.) Note
that d;(1) = d;(1)(m) is a function of 7, and we have

d;(1)(3 — m) = d;(2)(m).

We first prove that g),(7) is multimodular in 7. Then multimodularity of
g(m) follows as the sum of two multimodular functions.

Lemma 51. Assume that fn, are convex. Let m be a fixed periodic policy with
period n. Let g () be defined as in (8.10). Then ¢! (7) is a multimodular
Sfunction in .

Proof. Since 7 is a periodic sequence, the distance sequence d = d(1) is
also a periodic function, say with period P. Now, define the function h; for
j=1,...,P by hj(m) = fm(d;). The function h; represents the cost of the
(j+1)* assignment to server m by looking at the j " interarrival time. We will
first check the conditions for multimodularity for V = {b1, ...,bn_1}, where
bis are the elements of F (i.e. bg = —e1,b1 = 82, ..., bn_1 = Sn, by, = €p).

Let v, w € V with v # w. If none of these elements changes the length of
the j *® interarrival time then h;(7) = h;(7 +v) = hj(r+w) = hj(T+v+w).
Suppose that only one of the elements changes the length of the interarrival
time, say v, then h;(7 + v) = h;j(7 +v +w) and h;(7) = h;(7 + w). In both
cases the function hj(w) satisfies the conditions for multimodularity.

Now suppose that v adds and w decreases the length of the j*! interarrival
time by one. Then d;(m +v) —d;(7) = d;(7 + v +w) —d;(7 +w). Since h; is
a convex function, it follows that h;(7 +w) — hj(7+v+w) > hj(7) — hj(m+
v). Now the multimodularity condition in Equation (1.1) directly follows by
rearranging the terms. Since g/, (7) is a sum of h;(x) it follows that g/ () is
multimodular for V.

Now consider the elements by and b,, and note that the application of by
and b, to 7 splits an interarrival period and merges two interarrival periods
respectively. Therefore

1 G (T +b0) = 1 g3, (1) — frm(d1) = fm(dp) + frm(dy + dp),
N G (T + bn) =1 g (1) = fra(dp) + fm(dp — 1) + fm(1),
T+ bO + bn) = ng;n(ﬂ') - fm(dl) - fm(dP) + fm(dl + 1) + fm(dP - 1)‘

(
Now n[gy, (7 + bo) + (T + ba) = g () = g (m + bo + bn)] = [fr(di +
dp) + fm(1)] = [fm(dy + 1) + fm(dp)]. Let k = di + dp + 1. Since the

'
ngm
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function f,(z) + fm(y) with z + y = k is a symmetric and convex function,
it follows from Proposition C2 of Chapter 3 of Marshall and Olkin [88], that
fm(z) + fm(y) is also Schur-convex. Since (dy + 1,dp) < (d1 + dp,1), the
quantity above is non-negative.

In the case that we use w = by and v € V such that v does not alter d;,
then it follows that ¢/ (7 +v +w) = ¢/ (7 +v) + ¢/, (7 + w) — ¢/, (7). The
same holds for w = b, and v € V such that v does not alter dp. Suppose that
v does alter di, then we have n[g’, (7 + by) + g, (7 +v) — g, (7) — gl (7 +
bo + v)] = [fm(d1 +dp) + fm(di — 1)]— [fm(d1 +dp—1)+ fm(dl)]~ When
v alters dp we have n[gh, (7 + b,) + go (7 +v) — g (7) — gl (T + by, +0)] =
[fm(dp+1)+ fr(D)] = [fm(dp)+ fm(1+1)] for some I < dp. Now by applying
the same argument as in the case of by and b, we derive multimodularity of
9o, () for the base F. O

Now we will prove that g(m), which is given by g(m) = gj(7) + ¢5(3 — 7) is
multimodular. The proof is based on the fact that if a function is multimodu-
lar with respect to F, then it is also multimodular with respect to G (defined
above Definition 1).

Theorem 43. Let g7 and g5 be multimodular functions. Then the function
g(m) given by g(m) = c1 g1(7) + ¢c2 g4(3 — ) for positive constants ¢ and co
is multimodular in 7.

Proof. Let v, w € F, such that v # w. Then
g(m+v) + g(m + w)
=cag(m+v)+e295(8 -7 —v) +erg(m+w) +e295(3 -7 —w)
algi(m+v)+ g1 (m+w)] +c2[gh(B—7—v) + g4(3 — 7 — w)]
algi(m)+ g (m+v+w) +e2gh(3—7) + 953 — 7 —v —w)]

\Y

=c1g1(m)+c2gs(B—7)+c1gi(m+v+w) +caga(d—m—v—w)
= g(m) + g(m + v+ w).

The inequality in the fourth line holds, since g7 is multimodular with respect
to F and g} is multimodular with respect to G. O

8.10 Examples of arrival processes

In today’s information and communication systems the traffic pattern may
be quite complex, as they may represent a variety of data, such as customer
phone calls, compressed video frames and other electronic information. Mod-
ern communication systems are designed to accommodate such a heteroge-
neous input and therefore the arrival process used in mathematical models
is of crucial importance to the engineering and performance analysis of these
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systems. In this section we elaborate on the setting of Example 6 with dif-
ferent arrival processes and derive explicit formulae for the cost function for
the corresponding arrival process.

Assume that the controller wishes to minimize the number of lost pack-
ets (i.e. the number of preempted packets) per unit time; note that this is
equivalent to maximizing the throughput of the system. Furthermore let the
services at server i be exponentially distributed with rate p; independent of
the other servers. Since we know that there exists a periodic optimal policy,
we can write the cost induced by using policy 7 by

in case the arrival process is a Poisson process with parameter A. In Koole [81]
it was shown that the optimal policy has a period of the form (1,2, ...,2),
where 2 is the faster server. In Chapter 6 this result was generalized for
general stationary arrival processes. Hence suppose that A =1 and pu; = 1,
then the cost function can be parameterized by the period n and the server
speed po > py given by

(o) = L (2 AR 2+n—2 1
gumsH2) =0\ 3 n \ 1+ py n \1+4+py /)’

By solving the equations g(n, us) = g(n + 1, ) for n > 2 we can compute
the server rates po for which the optimal policy changes period. For example:
the optimal policy changes from (1,2) to (1,2,2) when ps > 1+ v/2. The
results of the computation are depicted in Figure 8.1.

Markov Modulated Poisson Process

An important class of models for arrival processes is given by Markov mod-
ulated models. The key idea behind this concept is to use an explicit notion
of states of an auxiliary Markov process into the description of the arrival
process. The Markov process evolves as time passes and its current state mod-
ulates the probability law of the arrival process. The utility of such arrival
processes is that they can capture bursty inputs.

The Markov Modulated Poisson Process (MMPP) is the most commonly
used Markov modulated model and is constructed by varying the arrival rate
of a Poisson process according to an underlying continuous time Markov
process, which is independent of the arrival process. Therefore let {X,, |n >
0} be a continuous time irreducible Markov process with k states. When the
Markov process is in state ¢, arrivals occur according to a Poisson process
with rate A;. Let p;; denote the transition probability to go from state i to
state j and let @) be the infinitesimal generator of the Markov process. Let
A = diag(A, ..., A¢) be the matrix with the arrival rates on the diagonal
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Fig. 8.1. Relationship between n and ps

and A = (A, ..., Ag) the vector of arrival rates. With this notation, we can
use the matrix analytic approach to derive a formula for f,,(n).

Theorem 44. (Section 5.3, [92]) The sequence {(Xn,6,)|n > 0} is a
Markov renewal sequence with transition probability matriz F(t) given by

F(t) = /Ot (@M gy A = - e(QfA)t] (A= Q)'A.

The interpretation of the matrix F(t) is as follows. The elements Fj;(t) are
given by the conditional probabilities P(X, 11 = J,6n41 < t| X, = i) for
n > 1. Since F(¢) is a transition probability matrix, it follows that F'(oco)
given by (A — Q)~!A is a stochastic matrix.

The MMPP is fully parameterized by specifying the initial probability
vector ¢, the infinitesimal generator @ of the Markov process and the vector
A of arrival rates. Let the row vector s be the steady state vector of the
Markov process. Then s satisfies the equations s¢) = 0 and se = 1, where
e = (1, ...,1). Define the row vector ¢ = sA/sA. Then q is the stationary
vector of F(co) and makes the MMPP interval stationary (see [45]). This is
intuitively clear since the stationary vector of F(0co) means that we obtain
the MMPP started at an arbitrary arrival epoch.

In order to find an explicit expression for the cost function, we com-
pute the Laplace-Stieltjes transform f*(u) of the matrix F. Since F is
a matrix, we use matrix operations in order to derive f*(u), which will
also be a matrix. The interpretation of the elements f(u) are given by
E[e™#+1 11x, . =} | Xn = @] for n > 1, where 1 is the indicator function.
Let I denote the identity matrix, then f*(u) is given by
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£ = [ eHtpan = [erne@ (4 - - @) adr

0
= / e~ WI=QFMNE gt A = (ul — Q + A) LA
0

Now we can compute fm,(n) = P(Sp > 61 + -+ +6,) = E[—u ). r_; 0kl
The next lemma shows that this is simply given by the product of f*(u)
with itself. Note that we do not need the assumption of independence of the
interarrival times to derive this result.

Lemma 52. Let f*(u) be the Laplace-Stieltjes transform of F, where F is a
transition probability matriz of a stationary arrival process. Then

E 6wp<—uzék) =q [f*(u)] e
k=1
Proof. Define a matrix @Q,, with entries Q,(4,7) given by

Qn(i,J) = E[ eXp(—MZ(Sk> Lix,=5

k=1

Xo=il.

Note that Q; is given by f*(u). By using the stationarity of the arrival process
it follows that Q, (4, 7) is recursively defined by

Qn(i,j) = ZQn—l(ivl) ]E[ exp(—puby,) l{Xn:j} |Xn—1 = l]
=1

Il
M

Qn—1(i,1) E[ exp(—pé1) 1ix, =53 | Xo =1]

N
Il
-

I
NE

anl(hl) ) Ql(lvj)

N
Il
-

Note that the last line exactly denotes the matrix product, thus @, = Q,_1 -
Q1. By induction it follows that @, = (Q1)™. Then it follows that

= i=1 j=1

Bexp(- 3 0e) = 33P0 =) Quti) =4 [0

The last equation holds since the row vector ¢ is the initial state of the Markov
process and summing over all j is the same as right multiplying by e. 0

Hence g(7) is given by
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K P(m)
Z q[(pmI — Q + A) 7' A] dilm) o

1
g(m) = n
m=1 j=

[y

Note that although in case of two servers we know the structure of the op-
timal policy, it is not intuitively clear that it is optimal in the case of the
MMPP. The following argument will clarify this statement. Suppose that one
has an MMPP with two states. Choose the rates A\; and Ay of the Poisson
processes such that the policies would have period 2 and 3 respectively if the
MMPP is not allowed to change state. One could expect that if the transition
probabilities to go to another state are very small, the optimal policy should
be a mixture of both policies. But this is not the case.

Markovian Arrival Process

The Markovian arrival process model (MAP) is a broad subclass of models for
arrival processes. It has the special property that every marked point process
is the weak limit of a sequence of Markovian arrival processes (see Asmussen
and Koole [18]). In practice this means that very general point processes can
be approximated by appropriate MAP’s. The utility of the MAP follows from
the fact that it is a versatile, yet tractable, family of models, which captures
both bursty inputs and regular inputs.

The MAP can be described as follows. Let {X,, |n > 0} be a continuous
time irreducible Markov process with k states. Assume that the Markov pro-
cess is in state ¢. The sojourn time in this state is exponentially distributed
with parameter v;. After this time has elapsed, there are two transition possi-
bilities. Either the Markov process moves to state j with probability p;; with
generating an arrival or the process moves to state j # ¢ with probability g;;
without generating an arrival.

This definition also gives rise to a natural description of the model in
terms of matrix algebra. Define the matrix C' with elements C;; = ; g;; for
1 # j. Set the elements C;; equal to —v;. Define the matrix B with elements
B;; = ~;p;;. The interpretation of these matrices is given as follows. The
elementary probability that there is no arrival in an infinitesimal interval of
length d¢t when the Markov process moves from state ¢ to state j is given
by C;; dt. A similar interpretation holds for B, but in this case it represents
the elementary probability that an arrival occurs. The infinitesimal generator
of the Markov process is then given by C' + B. Note that a MMPP can be
derived by choosing C' =@ — A and B = A.

In order to derive an explicit expression for the cost function, we use the
same approach as in the case of the MMPP. The transition probability matrix
F(t) of the Markov renewal process {(X,, 6,)|n > 0} is of the form (see [87])

F(t) = /Ot e’ duB = [I -] (- C7'B).
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Again the elements of the matrix F(t) have the interpretation that F;;(¢)
is given by P(X,41 = J,0n41 < t|X,, = 9) for n > 1. It also follows that
F(c0) defined by —C !B is a stochastic matrix. Let the row vector s be
the steady state vector of the Markov process. Then s satisfies the equations
$(C + B) = 0 and se = 1. Define the vector row vector ¢ = sB/sBe. Then
q is the stationary vector of F'(c0). This fact can be easily seen upon noting
that sB = s(C + B — C) = s(C + B) — sC = —sC. With this observation
it follows that q F((c0) = (sBe)™' s CC~1B = ¢q. The MAP defined by ¢, C
and B has stationary interarrival times.
The Laplace-Stieltjes transform f*(u) of the matrix F is given by

fHp) = / ooe‘“”F(dt) = / ooe—H“eCt(—c)(— C™')Bdt
0

0

= / e~ W=t B = (ul — C)™'B.
0
The interpretation of f* is given by the elements f7; (1), which represent
the value of the expectation E[e#*"+! 1 x, . =1 | Xn = i]. By Lemma 52 we
know that f,,(n) is given by the product of f*. Therefore the cost function,
when using the MAP as arrival process, is given by

1 —1 p1di(m)
g(m) = - Z . q[(pmI —C)7'B]"" " e.

8.11 Robot scheduling for web search engines
In [10] we specified a routing problem where the expected average weighted
loss rate was to be minimized (or equivalently, the average weighted through-
put or average weighted number of packets at service was to be maximized).
This gave rise (Lemma 47) to an immediate cost of the form:

o(z,a) =E expl—uaz&].
=1

Due to stationarity of the interarrival times, this cost function satisfies Con-
dition (8.7) (with a,, = C = 0). We assume of course that §; are not all zero,
which then implies the strict convexity of f,,. Indeed, denote

y= eXpl—uazék].
k=2

Let z be a state such that x, = m > 0 for a particular action a. Since the
interarrival times are a stationary sequence,



180 8 Networks with no buffers

C($, a) — ]Eye—.ua Smy1 — ]Eye—#a 51’
C(.’E + eq, a) — ]Eyei'u”‘ [6m+14+8m42] — ]Eyeiﬁ”‘ [61+6'rn.+1]7

c(x —eq,a) = Ey.

Since the function r(z) := ye #+® is convex in x, it follows that r(8; +2)—7(z)
is increasing in z, so that

(61 + Omy1) = r(0my1) 2 r(61) — r(0).

By taking expectations, this implies the convexity. Thus the results of the
previous sections apply. In this section we present another application studied
in Coffman, Liu and Weber [42] under assumptions that are more restrictive
than ours.

The World Wide Web offers search engines, such as Altavista, Lycos,
Infoseek and Yahoo, that serve as a database that allow to search information
on the web. These search engines often use robots that periodically traverse
a part of the web structure in order to keep the database up-to-date.

We consider a problem where we assume that there is a fixed number of
K web-pages. The contents of page ¢ is modified at time epochs that follow a
Poisson process with parameter p;. The time a page is considered up-to-date
by the search engine is the time since the last visit by the robot until the next
time instant of modification; at this point the web-page is considered out-of-
date until the next time it is visited by the robot. The times between updates
by the robot are given by a sequence §,,. In Coffman, Liu and Weber [42] these
times are assumed to be i.i.d., but in our framework we may allow them to
form a general stationary sequence.

Let o; denote the obsolescence rate of page i, i.e. the fraction of time
that page 7 is out-of-date. Then the problem is to find an optimal visiting
schedule such that the sum of the obsolescence rates o; weighted by specified
constants ¢; is minimized. A reasonable choice for the weights ¢; would be
the customer page-access frequency, because the total cost then represents
the customer total error rate. The case where the customer access frequency
¢; = k u; is proportional to the page-change rate u; is reasonable under this
interpretation, since the greater the interest for a particular page is, the more
likely the frequency of page modification is.

We now show that this problem is equivalent to the problem studied in
Section 8.8. Indeed, the robot can be considered as the controller in the
previous problem. An assignment of the n'® packet to server 4 in the original
problem corresponds with sending the robot to page ¢ and requires é,, time
in order to complete the update. The lengths of the periods that page i is
up-to-date corresponds to the service times of packets before server ¢ in the
original problem. Page i is considered to be out-of-date when server i is idle.

Let S; be an exponential random variable with parameter u;. The cost
which one incurs when sending a packet to server a should reflect the expected
obsolescence time. Some straightforward computations yield
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Za +
c(z,a) = k,u,aIEl Zéi — Sa]
=1

=ku,E

Tq +
+ k,uaIE[Sa - Zai]
1=1

1=1

=k o zaEb1 + Kk lE exp(—uaz(%) _1‘|‘
1=1

This cost function clearly satisfies Condition (8.7). Hence the theorems from
the previous sections can indeed be applied to this scheduling problem.

Remark 15. The assumption that the weights ¢; are proportional to the page-
change rates p; is essential in this problem. The cost function for general ¢;
is given by

c
c(z,a) = co B + =
It

]Eexp(—uazza&) —1].
=1

When the ¢; are not proportional to the page-change rates, then the cost

function is of the type mentioned in Example 7. Therefore if for some i, ;—’
is sufficiently large (in comparison to others) then it becomes optimal never
to update page ¢. This is an undesirable situation and it shows that the
problem is not always well posed when the costs are not proportional to the

page-change rates ;.

Remark 16. This problem of robot scheduling for web search engines illus-
trates the importance of including the terminal cost ¢r in terms of modeling.
Indeed, for any finite horizon T, if we wish that the cost represents indeed
the obsolescence time of a page, we have to make sure that if this page is
never updated (or at least it stops to be updated after some time), this will
be reflected in the cost. It is easy to see that the terminal cost defined in
Section 8.8 indeed takes care of that.






9 Vacancies, service allocation and polling

9.1 Introduction

We consider in this chapter the control of vacations in several queuing set-
tings. This chapter is mainly based on [7]. Vacations are time periods during
which the server does not serve customers, even when there are some in the
system.

We consider three types of vacation models:

(i) vacations driven by service completions,

(ii) vacations driven (triggered) by arrivals, in which both the beginning as
well as the end of a vacation are related to arrivals instants, and

(iii) the potential vacation times form a renewal process and the arrival epochs
are stationary subsequence of this renewal process.

We shall consider two types of problems. In both cases, we consider open-
loop control where the controller has no information on the state of the
system.

In the first problem, there is a single infinite FIFO queue. Some vacation
opportunities are presented (depending on the type of vacations, these op-
portunities are triggered by service, or arrivals or by some other mechanism).
The server should go on vacation during a fraction of at least

p of these opportunities. The goal of the control is to minimize the average
workload or waiting time (or any nondecreasing convex functions of these).

The second problem concerns a polling model. There are several infinite
queues; when serving one queue, the server is unavailable for other queues.
We wish to minimize some linear combination of the average workloads in the
different queues (or of waiting times, or of nondecreasing convex functions of
these).

9.1.1 Organization of the chapter

The structure of the Chapter is as follows. In Section 9.2 we formulate the
two types of control problems: the one of the single queue (P1), and the
one of optimal polling of several queues (P2). We then formulate the four
generic type of results obtained for these problems. In the following sections
we then present and analyze the different models for the vacations and derive
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the appropriate results for the control. In Section 9.3 we analyze the case
where vacations are triggered by service completion. In Sections 9.4 and 9.5
we consider an arrival driven vacations. Finally, in 9.6 and 9.7 we consider
models where the vacations are a renewal process.

9.2 The generic control models and main results

We consider two generic control problems in this paper. We shall formulate
these problems in an abstract setting, and then focus in the following sections
on specific assumptions.

Constrained model:

— Customers (or some demand for service) arrive to a single G/G/1 queue
(or to a network) according to some given stationary process.

— There is a single server at some output of the service facility (queue or net-
work) that may be either active in providing service, or may be absent for
vacation periods. Some “vacation opportunities” are presented, in which
that server can decide whether to take a vacation or not. These opportu-
nities would depend on the model we consider: they could be related to
arrivals, to end of services, or to be a renewal process.

— At the nth vacation opportunity, the controller chooses a control a,, that
determines the number num(a,) of vacations to be taken at the nth vaca-
tion opportunity. Let a be the control sequence (a1, as,...).

— Performance measures and objectives:

— Let h: R — R be a convex nondecreasing function.
— Given some fraction p, consider the class IT(p) of all policies that satisfy
the constraint: .

o1

lim inf ; Z num(an) > p. (9.1)

s— 00
n=1

Consider the following problems.

(P1) The Vacation control for one queue
(P1a): Let W, be the waiting time of the nth arriving customer.
Define the average expectation of the function A of the waiting time:

g(a) = lim sup % > ER(Wa(ax, ..., an)), (9.2)

8§— 00 ’I'L:]_
The objective is to minimize g(a) over a € II(p).

(P1b): Let V;, be the workload in the system at some special time instants
T,.

Define the average expectation of the function h of the workload:
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g'(a) =lim supl i]Eh(Vn (a1, -y 02))- (9.3)

s—oo S o1

The objective is to minimize ¢'(a) over a € II(p).

Next we present our first generic result that will be established in the follow-
ing sections for different models. To that end we introduce some definitions.
Let p and 6 be two positive reals. We will use the bracket sequence {a}(6)}
with rate p and initial phase 6:

ap(0) = kp+6] — [(k—1)p+6], (9.4)

where |z is the largest integer smaller than or equal to z.
In the different models that we study in the next sections, we shall show
the following for both problems (Pla) and (P1b):

Result 45 There exists some rate p* such that for any @, the sequence ai* (0)
18 optimal.

In Section 9.3, we shall establish Result 45 and show that p* = p, where
p is given in constraint (9.1). In all other sections where (P1) is considered,
we shall have p* = 1 — p. The difference is simply due to different definitions
of the control in different models that we study.

Next we describe the nonconstrained problem (P2):

(P2) Polling of several queues

— There are K queues to which a server is allocated. When serving one queue,
the server is unavailable for other queues.

— Again, some “vacation opportunities” (or “switching opportunities”) are
presented, in which the server can decide to stop serving one queue and
start serving another one.

— At the nth vacation opportunity, the controller chooses a control a, =

(@}, ...,aX); for each n, all components of a, are 0 except one component

that may be 1 or 0, a!, = 1 will mean that the server is assigned to queue
1 at the nth opportunity instant. Performance measures and objectives:
Let h; : R — R be a convex nondecreasing function, i =1, ..., K.

(P2a): Let W! be the waiting time of the nth arrival to queue 4. Define

g(a) def lim sup % z (Z f,’;(ai)> ,

N—oo i=1 \n=1

where fi(a?) def Eh; (W (a)) and W? depends on a only through a’.

The objective is to minimize g(a).
(P2b): Let V! be the workload in the ith queue at some special time
instants T;,. Define
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where f?(a?) def Eh; (Vi(a)).

The objective is to minimize ¢'(a).

Next we present generic results for problem (P2). To that end we introduce
some further definitions. For any vector # € RX (which is called a phase
vector) and a rate vector p € [0,1]%, we define the vector valued sequence
a(p,0) by ,

a,,(p,0) = npi + 6] — [(n —1)pi + 6. (9.5)

Note that a(p,d) need not correspond to a policy since it may have more
than one component that equals to 1 for the same n. In that case we say that
it is not feasible, if it defines a policy, we say that it is feasible.

The following results for problems (P2a) and (P2b) follow from the results
in Chapter 6.

Result 46 Assume that K = 2. There exist some p* and 6 such that a(p*, )
18 a feasible policy and is optimal.

Result 47 Consider an arbitrary K. Suppose costs and service disciplines
are symmetric for all queues. Then the round robin policy is optimal for (P2a)

(resp. for (P2b)).
And more generally, for K > 2 we have:

Result 48 The sequence of functions f, allows one to construct some convex
function f : RX — R as in Chapter 1 with the following property. Let p*
be the vector that minimizes this function. Assume that there is a sequence
of numbers {in}», where i, € {1, ..., K} such that for every k € 1, ..., K the
sequence a¥ = 1{i,, = k} is bracket with rate p} (for some # that may depend
on k). Then {a¥} are optimal for (P2a) and (P2b).

The main tool for obtaining the above results is again by establishing the
multimodularity of some sequence of functions f, : Z — R, where Z is
some convex subset of Z™, the set of n-dimensional vectors of integers.

9.3 A single queue with service driven vacations

Consider a single G/G/1 queue (Problem (P1)). The nth customer arrives
at time T,, bringing a workload of ¢, to the system. Customers are served
according to the FIFO order. The arrival process will be assumed to be a
point process throughout the paper, unless otherwise stated, and we assume
that TO <0 < Tl < T2 <...
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Let 7, = Th41 — T}, denote the inter-arrival times. When a service of a
customer is completed, the server is allowed to go on vacation. We consider the
so-called repeated vacation model, where on each completion of a vacation,
another vacation can be initiated.

In this model, “vacation opportunities” are thus triggered by the end of
a service or of a vacation.

Let a = (a1,a2...) be the server’s policy, where a; € N has the inter-
pretation of the number of vacations to be taken after the ith service time
completion. (In terms of the notation of Section 9.2, we have num(a,) = an.)

Let vy,n = 1,2, ... be the duration of the nth vacation period. Let m(n)
denote the number of vacations that occur till the n + 1st service starts. We
set m(0) = 0. Denote by

Sn d:ef on + Z v; (9.6)

j=m(n—1)+1

the total delay related to the nth customer. It is the sum of its service time,
plus the vacations that will take place after its service. The waiting time W,
of the nth customer is given recursively by

Wat1 = W — 70 + Sn) T (9.7)

In particular, assume that the system is initially empty. If no vacations are
taken before the service of the second customer then m(1) = 0, and the
waiting time of the second customer is

Wy = (W1 -7 +S1)+ = (—7'1 +0’1)+.

If, instead, the 1st vacation is taken just after the service of the 1st customer,
then m(1) =1 and

Wo=Wr—n1+851)" =(-n+0 +u)t.

Let V,, = V(@) be the virtual workload in the system immediately after
the nth arrival; it is defined to be the total time required by the server to
serve all the customers actually in the system (including the one that arrives
at time T3, ) plus all the vacation times that will elapse from the arrival instant
T, until customer n + 1 is served. V,, is given by

Vo = Wy + Shp. (9.8)

Fix some integer N. W(a) def Whn+1(a) can be written as

W(a) = max(0,w; + z, w2, ...,wn), where w; = w;(a) = Z(Sj —75). (9.9)
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Here, x = 0 is the initial workload in the system. Define V' (a) dlef Vn(a).

Denote E, the expectation over the v’s (for given random realization of 7
and o). Below we shall establish the multimodularity of E,h(WW (a)), where
h is any nondecreasing convex function. The dynamics of the vacation model
resemble those of the admission control model in Chapter 4.

Property 4. The following holds for 0 < i < N. If a; > 1 then
wi(a — i) = wi(a) + vm(i-1),  wila—s;) =w;(a) for j # 1.

Note that (—s;) corresponds to adding a vacation after the end of service of
the ith customer, and delete the last vacation from the 7 — 1st one.

Property 5. Consider a vacation sequence v = (v, ...), and the shifted se-
quence: v' = (vg,v],...) = (v1,v2,...). Let w} be defined as w; in (9.9) with
the sequence v’ replacing v. The following holds for 0 < ¢ < N.

w(a + e;) = wi(a) j >,
wi(a+ e;) =wi(a) + vp_1y  J <.

Lemma 53. Assume that v is a stationary sequence. Let h : R — R be a
nondecreasing convez function. Then E,h(W(a)) and E,h(V (a)) are multi-
modular in a.

Proof. We consider the basis F = (e, —s2, ..., —Sny_1, —€m) and check the
condition h(W(a —v)) + h(W(a —w)) > h(W(a)) + h(W(a — v —w)), v # w.
Case 1: we check for s;,5;,¢ # .

W(a — si) = max(W(a), w; + vm(i-1)),

W(a‘ - S]) = max(W(a), w; + vm(j—l))a
W(a — s; — 8;) = max(W(a), w; + Vm(i-1), Wj + Um(j—1))-

If W(a) is maximizing in the above equation, then
h(W(a — s;)) + h(W(a — s;)) = 2h(W(a)) = (W (a)) + h(W(a — s; — s;))

and the condition is satisfied. It is then also satisfied for V' (a) since V(a) =
Why—1(a)+ Sn(a), and Sn(a) is the same for a,a — s;,a —s; and a — s; — s;.
If the maximizer is w; + Vp,(i—1), then W(a — s; — s;) = W(a — s;), and the
condition follows from the monotonicity of h. By symmetry we obtain the
argument for j instead of . The same argument holds for V(a). Since this
inequality holds samplewise, it also holds in expectation.

Case 2: we check for the first term of the basis. It corresponds to adding an
additional vacation vy after the service of the first customer. In order to check
the inequality for the expectation, we consider the following coupling. We
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consider a second system defined on the same probability space. Quantities
in the new system will be denoted with an over-line. We let 7,41 = vy, for all
n.

We compute W (a) and W(a — s;) in our original system, and compare
them to W(a + e1) and W(a — s; + e1) in our new system.

W(a + e;) = max(W(a),w; + v),

W(a+ e1 — s;) = max(W(a), w1 +vo, w1 + v0 + Vm(i—1)),

and W(a — s;) = max(W(a), w1 + Vm(i—1)). The condition for the multimod-
ularity holds for both h(W) and h(V') by arguments as in Case 1. Since this
inequality holds for any sample, it holds in expectation.

Case 3: we check for the last term of the basis. It corresponds to removing
the last vacation vp,(y)-

W(a - ex) = (W(@) = vmny)* (9.10)
W(a—ey — si) = max(W(a) — V(N> Wi + V(i — 1) — vpm(n)) T(9.11)

If the argmax of the last maximization is 0, then W(a—en) = W(a—en —s;)
and the multimodularity condition is seen to hold (since h is nondecreasing).
If it is not 0, then W(a — s;) — W(a — enx — 8;) = vp(n)- Hence

W(a)—W(a—en) <W(a—s;)—W(a—en—5)=vpn)

Since h is convex nondecreasing and W(a —en — s;) > W(a — en),

h(W(a —s;)) — (W (a —en — s:))

=h(W(a—en — 8i) + Vm(n)) — h(W(a —enx — s;))
> h(W(a—en) +vm)) — (W(a—en))

> h(W(a) — (W (a — en)).

Next, we check this case for the workload. We have
V(e —en) = V(a) — vm(n) (9.12)
Via—en —8:) = V(a—8i) — Umn) (9.13)

Since h is convex nondecreasing, and since V(a — s;) > V(a), this implies
that

h(V(a)) = h(V(a - en))
= WV (@) + V() — h(V(@)) < B(V(a ~ ) + D)) — h(V(a = 5.)
=h(V(a—s;)—h(V(a—en —s;)).

Thus the multimodularity condition holds for h(V) as well.

Again, the condition for the multimodularity holds samplepathwise, and
thus in expectation. g



190 9 Vacancies, service allocation and polling

Theorem 49. Consider problem (P1), where the expectation E in (9.2) is
with respect to the random sequences o,7,v, and where num(a,) = an. As-
sume that

— the inter-arrival and service time sequence (T, 0y) is stationary, and is
independent of the sequence v (T and o may depend on each other),

— the v sequence is stationary,

— the following stability condition holds: the queue is in a stationary regime
at time 0, corresponding to the policy that does not take vacations (see
more details in Remark 17 below).

Then Result 45 holds for (P1a) and (P1b), where p* = p is the fraction given
in the constraint (9.1).

Proof. The proof is based on Theorem 6. For any integer n, the function

fn(a) def E: o vh(Wn(a1,...,an)) is nondecreasing in each a;, i = 1,...,n.
Moreover,
fre(at, .y ar) = fm(0,...,0,a1,...;ar), kK <m, (9.14)
~———
m—k

(this implies conditions < 2 > and < 3 > in Section 1.3) and it is multimod-
ular (condition < 1 > in 1.3).

The monotonicity condition follows from Property 5, the stationarity of
the vacation times, and the fact that the vacations are independent of the
interarrival and service times.

The second condition is satisfied due to the stationarity assumptions.
Indeed, since the system is assumed to be in a stationary regime at time 0,
corresponding to the policy that does not take vacations, the Palm probability
PR, (of the process seen at the times T,) is invariant under the shift ¥™
(see, e.g. [21] p. 19). In particular, if we do not take vacations till time n,
then Wy (a) = Wi(a), k < n in distribution. Hence, the distribution of W,
under the policy a is the same as the distribution of W, ; under the policy

!

a =(0,..,0,a1, ..., ax, ...), for any j > 0. This implies (9.14).
N———r

J
The multimodularity condition was established in Lemma 53. g

Remark 17. A sufficient condition for the stability condition in Theorem 49
is that

— (7n,05) is a stationary ergodic sequence, and
— Eo; < Eny

(see [34, 35]). (This sufficient condition also implies coupling to the stationary
regime from any initial state, provided that we do not take vacations.)

Remark 18. Throughout, when we say that a sequence is stationary ergodic,
then we mean with respect to the 1-step shift, unless otherwise stated. Note



9.4 An arrival-driven vacation model 191

that this implies the stationarity under any k-shift but not the ergodicity
under that shift. Indeed, define a,, = (—=1)", v, = —an, n € N. Let a be a
random sequence with P(a = a) = P(a = 7) = 1/2. Then a is ergodic with
respect to the 1-step shift (see [35]). It is a stationary sequence (with respect
to the k-shift for any integer k, but it is not ergodic for a shift operator 9 of

two steps, (Ya)n dlef an+2. In particular, the expectation of ag does not equal
to the sample average of the sequence azy,.

Extension to an arbitrary network

Let queue 7 be one of several possible output queues of an arbitrary net-
work. Assume that every customer that is served in that queue leaves the
system. Then the waiting time of the nth customer equals to its sojourn time
till it arrives to that queue, plus its waiting time in queue i. Since customers
served at queue ¢ are not rerouted, the first component of the waiting time
does not depend on the polling strategy. The total waiting time of a cus-
tomer is thus the sum of a part that does not depend on the control, plus
the waiting time in a G/G/1 queue which is influenced by the controller of
the vacation. It is thus multimodular, due to the results of the first part.
Hence the optimality of a bracket policy for the total average waiting time is
directly obtained.

9.4 An arrival-driven vacation model

Consider a single G/G/1 queue (problem (P1)). The nth customer arrives
at times T, bringing a workload of o, to the system. Let 7,, = Tp41 —
T, denote the inter-arrival times. Immediately after an arrival occurs, the
server may go on vacation, that lasts till the next arrival occurs. Then it
may go back serving, or take another vacation, etc. A vacation policy a =
(a1, as, ...) indicates, for each n, whether the server goes on vacation (a, = 0)
or continues serving (a, = 1) immediately after the nth arrival. (In terms of
the notation of Section 9.2, we have num(a,) =1 — a,.)

We call this system an arrival driven vacation model since the beginning
and end of vacations are initiated by arrivals.

In this section, and in all following sections that deal with problem (P1),
the constraint (9.1) translates to the following one, directly on the rates of
an: L

lim sup — Z an, <1—p. (9.15)

s—oo S el

The waiting time W, (a) of the nth arriving customer is given recursively
by
Whi1(a) = Wh(a) + on — anta) ™, (9.16)

or explicitly by
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What1(a) = max(0, wq, wa, ..., w,), where w; = Z(Uj —a;Tj). (9.17)

i=i

The workload in the system immediately after the nth arrival is given by
Vo =W, + 0,. Note that it satisfies the recursion

Vir1(a) = (0, V(@) — antn)* + 0nsr. (9.18)

The equation (9.16) seems dual to the dynamics of the admission control
in Chapter 4. Therefore, it seems natural to expect to obtain the same type of
multimodularity results, and therefore also the optimization results. In order
to obtain multimodularity in Chapter 4, it is necessary to let o,, the nth
service time, be the service of the nth customer actually accepted. Thus, the
service time of a customer that is rejected is not defined. Then stationarity
conditions are assumed on this ¢, sequence, rather than on the sequence of
service times of all customers (both the ones accepted as well as the ones
rejected).

We thus proceed similarly, and define 7}, to be the duration of the nth slot
during which a vacation was not taken. These are the effective interarrival
times, since, as we see in (9.16), only these have influence on the dynamics
of W,, and V,.

def —n
Let k(n) = ) ., a;. Then
Whtr = max(0, Wn + 0n — anTy(,)- (9.19)

To see why (9.19) holds, we first note that it agrees with (9.16) for those
n’s for which a,, = 0. On the other hand, if a,, = 1 then T]lc(n) = Ty, 0 (9.19)
again agrees with (9.16).

If we now assume that 7/, (and not 7,) is a stationary sequence, we could
expect to obtain results dual to those of the admission control.

However, this does not seem natural: it would mean that the vacation
control decisions influence the actual interarrival times. In the case of i.i.d.
interarrival times, however, both 7], and 7,, are stationary. We shall hereafter
use the i.i.d. assumption.

Let

Sp =0p — anT,'c(n).

The waiting time of the n + 1st customer is given by Wy 11 = W, + S»)7T.
The workload just after this arrival is V,, = W,, + 0.

Remark 19. Since o, does not depend on a, V,, is multimodular if and only
if W, is.
def L .
W(a) = Wny1(a) is given explicitly by

N
W(a) = max(0, wy,wa, ...,wy), where w; = Z S;. (9.20)
j=i
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We can now obtain the multimodularity of the expected waiting time as
we did in the first section. The corresponding properties are:

Property 6. The following holds for 0 < ¢ < N. If a; > 1 then
wi(a + i) = wi(a) + 7. wj(a + s;) = w;(a) for j #i.

Note that s; corresponds to removing a vacation at time 7;_; and adding
the vacation at T;.

Property 7. Consider the sequence of effective interarrival times 7' = (7, ...),
and the shifted sequence: 97" = (7{, 74, ...). Let w} be defined as w; in (9.20)
with the sequence ¥7' replacing 7. The following holds for 0 < i < N.

w)(a — e;) = wi(a) Jj >,
wi(a —e;) = wi(a) + Ty g <i.

Denote E, the expectation over the effective interarrival times (for a fixed
realization o).

Lemma 54. Assume that 7, are i.i.d. Let h : R — R be a nondecreasing
conver function. Then B h(W(a)) and E.h(V(a)) are multimodular in a.

Proof. The proof for the expected waiting time is the same as the one of
Lemma 53, with 7, B replacing v,,(;). The proof for the expected workload
follows from Remark 19. =

Theorem 50. Assume that

(1) the service time sequence o is stationary,

(i) the interarrival times (1) are i.i.d. and independent of o,

(13) the queue is initially (at time 0) in a unique stationary regime cor-
responding to the policy that never takes vacations.

Then Result 45 holds where p* =1 — p, and where p is the fraction given
in the constraint (9.1) (or (9.15)).

Proof. The proof is based on Theorem 7. We need only check that
For any integer n, the function

fn(a) def E. ,h(Wn(a1,...,an)) is non-increasing in a;, i = 1,...,n, (9.21)

and it satisfies the following conditions:

— condition < 2 > in Section 1.3:

fk(al, ..‘,ak) > fkfl(az, ...,ak),Vk >1 (9.22)
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— a sufficient condition for < 3 > in 1.3:

felar, .y ar) = fm(l, .., 1,01, . ak), k< m, (9.23)
~——

m—k

and
— fr(a) is multimodular (condition < 1 > there).

The monotonicity follows directly from the explicit solution to the Lindley
equations (9.17). (9.22) and (9.23) follow from Property 7, the assumption
that the initial state is initially in the stationary regime corresponding to no
vacations, the fact that 7,, are i.i.d. (and thus stationary), and the fact that
they do not depend on ¢,,. For (9.22) we also make use of the monotonicity
property. n

In Theorem 50, we assume that the queue is initially (at time 0) in a
unique stationary regime corresponding to the policy that never takes vaca-
tions. Let By be the corresponding distribution of the initial waiting time W;.
We next show that the results hold for other distributions 3 as well.

Lemma 55. (Relaxing the assumption on the initial condition)
Consider any initial distribution 3 of Wy . Assume that conditions (i) and (i)
of Theorem 50 hold and instead of condition (i), the following is satisfied:

— B is stochastically larger than the (B,
— (0,7) is a stationary ergodic under the k-shift for any integer k,
— the stability condition Eo < (1 — p)Er holds.

Then the results of Theorem 50 still hold.

Proof. For any policy a, both the waiting time as well as the workload at
any time n are strictly nondecreasing in W, as can be seen from (9.19). By
the definition of stochastic ordering, the expectation of any nondecreasing
function of W is larger for the initial distribution g, than for §y. This im-
plies that the average expected costs g(a) and ¢'(a) are larger for the initial
distribution 3. In order to establish the theorem it suffices thus to show that
for the optimal policy, the average expected costs do not depend on the initial
state.

If p (in the constraint (9.1)) is rational, then the (candidate for the)
optimal policy ai* () (with p* =1 — p) is periodic. In that case, the process
corresponding to the optimal policy starting from any two different initial
states couple in a time that is finite with probability one. We may couple
now the initial states, i.e. construct a common probability space where the
initial state corresponding to 3 is larger than the one corresponding to 3y. It
follows that the convergence of the difference between W,, corresponding to
B and to By is monotone decreasing. This implies that the difference between
fnla) = E: s h(Whn(a1,...,an)), starting at the different initial distributions



9.5 Arrival-driven polling model 195

of Wi, converges to 0. Hence the expected average cost under the two initial
distributions is the same under the optimal policy.

The same convergence (and hence the same conclusion) is obtained for
p irrational. Indeed, if p is irrational, then the (candidate for the) optimal
policy a?’(8) is aperiodic. This cost obtained by that policy is unchanged
if we replace 8 by a random variable @, uniformly distributed in [0, 1] (this
follows from the discussion in the end of Section 1.3.1). The policy a? (©)
is stationary ergodic with respect to the 1-step shift. Then we can use the
theory of (non-controlled) stochastically recursive sequences by Borovkov [34]
pp. 260-272 and [35] to obtain the same convergence results as above. g

Remark 20. The assumption that 3 is stochastically larger than the §y is not
really restrictive. Indeed, if 5} is the distribution of the state at time ¢, then
one can show that for any policy u, liminf; .. B8} is stochastically larger
than the (3. Hence the assumption is suitable for the case where the system
has operated for a sufficiently long time under an arbitrary policy.

9.5 Arrival-driven polling model

We now analyze problem (P2). Consider K queues, each of which behaves like
the one in the previous section. The service period for one queue constitutes
a vacation for the others.

The nth customer arrives at time T,, and brings K jobs to the K queues:
a workload of o? arrives to queue i, i = 1,..., K. These components are
processed according to the FIFO order in each queue.

Service beginnings and vacations are synchronized with arrivals. More
precisely, T), is also the time at which the nth potential service begins; it may
be in any one of the queues. The service time duration 7, is the difference
between consecutive interarrival times: Ty,+1 = T, + 7. If queue ¢ is the nth
to be served and is empty then we assume that the server still remains 7,
time at that queue.

Let W! be the waiting time of the nth job arriving to queue 4, and V!
denote the workload at queue ¢ just after the arrival of the n customer. The
evolution of the waiting time W (a) in queue i is given by:

Z'L+1(a) = ma.x(O, W;,(a) + O-ZL - aiLTn)7

where a!, = 1 if queue i is served at the nth period, and is, otherwise, zero.
A policy is a sequence a = (ay,as, ..., ), where a, = {a*, k= 1,..,K}, as
defined in Section 9.2. We adopt the further constraint that for every integer
7, only one of the components a§,i =1, ..., K may be different than 0. Denote
a' = (at,al,...) the actions corresponding to queue i.
The following is a consequence of Section 1.4 and the properties estab-
lished for a single queue in the previous section.
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Theorem 51. Consider problems (P2a) and (P2b). Assume that

— the inter-arrival times are i.1.d., and independent of the service times,

— the service time sequence in each queue is stationary,

— foreach i =1,..., K, queue i is initially ot a unique stationary regime that
corresponds to the policy that never takes vacations at that queue.

Then Results 46, 47 and 48 hold.

Again, we may relax the assumption on the initial distribution, as we did
in Lemma 55.

9.6 The potential vacation times are a renewal process

9.6.1 A single queue

Let u,, be an increasing random sequence of potential switching times. Imme-
diately after u,,, the server may decide to go on vacation till the next instant
Unt1- As in the previous section, a vacation policy a = (a1, az, ...) indicates,
for each n, whether the server goes on vacation (a, = 0) of continues serving
(an = 1) at time uy.

Let s, be the sequence of differences between consecutive potential switch-
ing times. Thus up41 = Un + Snt1-

The kth customer arrives at time T} = w,,, where n; is some increasing
sequence of positive integers. Thus, u,, can be viewed as basic time epochs to
which both arrivals and vacations are related. However, unlike the model in
the previous section, where arrivals occurred at beginning of each vacation
slots, arrivals are only synchronized with u,,, and need not occur at every pe-
riod. This will allow us to handle dependent arrival times, and more precisely
the case of stationary interarrival arrivals.

Customer k brings a workload (request for service time) of 0. Hence, the
amount o, of workload that arrives at time u,, is given by

on = { or if for some k,n = ny,. (9.24)

The waiting time W, of the (possibly virtual) customer that arrives at
time u,, in the system can now be computed using the following recursion:

Wht1(a) = max(0, Wph(a) + 0, — ansy).

The workload V;, at the nth time epoch (i.e. immediately after u,) is W, (a)+
on- It can also be given recursively as

Vas1(a) = max(0,V,(a) — ansy) + ony1- (9.25)
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We are now back to the model described by (9.16) of section 9.4, and there-
fore, the multimodularity results in Lemma 54, and the optimality results in
Theorem 50 hold.

Tt is useful to present conditions directly on the original service sequence
o* (instead of the sequence o which are used in Theorem 50) for the opti-
mality results.

In order to make general and yet useful probabilistic assumptions on o,
(i.e. on the marks of the arrival process), we use the stochastic point process
formalism. The sequence ny, which we used in (9.24), defines a discrete time
point process (N, 9, P) (where 9 is the 6; of [21] p. 43):

N(@,C) = b, ()(C).
keZ

Thus,
for w € £2, an arrival occurs at time u,(w) if N(w,{n}) = 1. (9.26)

We associate to the process A/ the marks o}. We assume that A is com-
patible with the ¥ flow, i.e.

nk(w) = no(Fpw).
Assume that the interarrival times are a strictly stationary sequence, i.e.
PY(9n, €) =PX(:), kE€L, (9.27)

where ]P’?\/ is the Palm probability related to A. Then there exists a probabil-

ity measure P for which N is stationary (w.r.t. (¢,P)). This follows from the
inverse construction of Slivnyak (see p. 27 in [21]) in a discrete-time version
(which follows from p. 44 in [21]). Define

c)=o0f for np<Il<mnpyi-

Then (N,7) are jointly stationary (with respect to (9,P)) as follows from
the argument in [21] p. 13-14. Since

on =0(n) x N({n}),
it then follows that o, are stationary w.r.t. (¢,P). Indeed,

on(w) =7(n,w) X N(w, {n}) =a(n — 1,9w) x N(dw,{n — 1}) = 0,—1 (Yw).

(9.28)
We conclude that if we assume that the original process ¢, is stationary, then
there exists a probability measure under which N is stationary (w.r.t. (¢9,P))
(thus in particular, the process o, will be stationary). Note that, in general,
there may exist other non-stationary processes A/ that have a stationary Palm
distribution.
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If we assume that the service times are independent of the vacation op-
portunities times s,, and of the sequence ny, then a simple argument shows
that the stationarity of ¢ implies that o, are stationary too. Indeed, assume
as above, that ¢ are the marks of the process A/, and assume that (9.27)
holds. Fix some integer j and let S, S5, ...,.S; be some Borel sets in R. Then

P(o; € S1,..05 € S;) = > P(0} € S1,...05 € Sjlny = k)P(ny = k)

k=—o0

> P(o} € S1,..0% € Sjlny = 0)P(ny = k)
k=—oc0

= P(O’I S Sl,...J;f S S’j|n1 = 0)
= P‘(,)\/(O'ik € Sl,...O'; S S])

Hence, the stationarity of ¢}, under P, implies that it is stationary under P,
and if u,, are i.i.d. then the process N is stationary (w.r.t. (9,P)). Thus, as
in (9.28), we conclude that o, are stationary.

We summarize this in the following Theorem.

Theorem 52. Assume that

— the inter-potential vacation times s, are i.i.d. and hence u, is a renewal
process,

— arrivals occur at un, , where ny defines a point process N,

— the service times o are marks of the point process N,

— o 18 a stationary sequence,

— the durations of the potential vacations s, do not depend on the service
durations and on the sequence ny,

— the queue is initially (at time 0) in o unique stationary regime correspond-
ing to the policy that never took vacations.

Then Result 45 holds where p* =1 — p, and where p is the fraction given in
the constraint (9.1) (or (9.15)).

Proof. We show that Theorem 50 can be applied. As we showed above, we
can consider an equivalent model where arrivals occur at each time u,, instead
of the original ones. The service time for this new model are o, which are
stationary. Due to the independence between s,,, ny, and the service duration,
the interarrival times in the new model are independent of the service times.
The conditions of Theorem 50 are thus satisfied. (Note that the fact that in
the new model, arrivals occur at times w, which are independent of other
quantities, allows to have dependence between the nj sequence.) g

Note that we may relax the assumption on the initial distribution, as we
did in Lemma 55.
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9.6.2 The polling control problem

Having seen that the setting described in the previous subsection for a single
queue can be embedded into the one in Section 9.5, we can obtain the cor-
responding results for the optimal control problem (P2) of polling to several
queues.

Theorem 53. Consider problems (P2a) and (P2b). Assume that

— the potential switching times u, are a renewal process,

— the service times ot of the nth customer at queue i,i = 1,..., K are sta-

tionary,

arrivals to queue i occur at times Up,(iy,i = 1,..., K, where ng(i) is a

stationary point process,

— the duration of the slots Spt1 = Unt1 — Un do not depend on the service
durations and on the sequences n(i),

— for each i =1,..., K, queue i is initially ot o unique stationary regime that
corresponds to the policy that never takes vacations at that queue.

Then Results 46, 47 and 48 hold.

Note that the fact that service times in different queues were allowed
to be dependent in Theorem 51 allows us to have dependence between the
nk(1),1 =1, ..., K sequences in different queues.

We may relax the assumption on the initial distribution, as we did in
Lemma 55 and Remark 20.

Remark 21. The assumptions of Theorem 53 contain as a special case the
following exponential model. Suppose the arrival process are independent
Poisson process with rates A; for queue j =1, ..., K. The service time in queue
J is exponential with parameter p1;,¢ = 1, ..., K. The potential switching times
form a Poisson process with parameter v > (A1 + ... + Ak), this is a natural
assumé)tion on v as in case we want to uniformize all processes, v is taken
as > ;1 (A + pi). Also as approximation of continuous-time polling control
we may take v large. Theorem 53 now shows that the optimal polling control
is bracket for the exponential model with KX = 2 and for the symmetrical
model with K > 2. This shows Property 1 in paper [66], where an algorithm
for computing optimal policies is given.

9.7 1-gated service

We describe in this section models that have stationary arrival processes
which may be more general than point processes. The vacations opportunities
in the following models will be a periodic process, independent of inter-arrival
times or service times.
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9.7.1 A single queue

We now consider a vacation as in the previous section, but with a “contin-
uous” arrival into a single queue. We assume that the total workload that
arrives during the interval (wn,%n 1] is 0y This workload might arrive in a
single batch, or continuously, or at several distinct instants in that interval.
If the server does not go on vacation on time u,,, then the amount of service
given to the queue till up41 = Uy + Spy1 is the minimum between s,4; and
Vi (the workload present just before the nth potential switching-interval).
Thus, only workload present in the gating epoch u,, is candidate to be served
during the interval (un,, u,+1]. We assume that if the server is not on vacation
at the beginning of the nth slot, then it remains in that queue till time 4,41,
even if there is no workload to be served during a part (or all) the interval.

We shall require that the process o, be stationary in n (i.e. w.r.t. the shift
¥1). The recursion (9.18) for the workload in the system at gating instants
holds in our case, so we could obtain again optimality of the bracket policy
(as in Theorem 50).

In order for the conditions of Theorem 50 to hold we need, however,
that o, be independent of s,. This is impossible in general, unless s,, are
identical, which we shall thus assume below. (For example, assume Poisson
arrivals with rate A, where each customer requires a unit of workload. Then
the expected amount of workload arriving during a period v,, conditioned
on 8y, is A\s,. Hence it is not independent of s,,). Note that this problem did
not occur in previous sections, since the service time was not related to the
arrival instants, but to the order of arrival.

Consider an underlying probability space (§2, F). Define {
vartheta.},t € R to be a measurable flow on (12, F) (see [21] p. 8 and Remark
22 below). We define {d,},n € Z to be another measurable flow on (2, F)
(see [21] p. 44); ¥, will be related to shifts in discrete time.

Consider a general random measure Z describing the arriving workload;
in particular, if C' is an interval in R, then Z(w, C) has the interpretation of
the amount of workload arriving during that interval for a realization w. This
includes in particular the case where the arrival process is a point process.
Assume that Z is stationary with respect to (¢;, P) (9, is the continuous time
shift). Then the amount of workload ¢, that arrives during the deterministic
(constant) periods s,(= sg) is stationary in n (i.e. w.r.t to (¢¥1,P)) due to
the stationarity of Z w.r.t. (¢;,P). Hence the conditions of Theorem 50 hold
for any stationary arrival process (not necessarily a point process).

Remark 22. Consider a more general model for the potential vacation pro-
cess. Let (N,9;,P) be a stationary point process corresponding to the po-
tential vacations: associated with N there is given the random sequence u,,,
n=1,2,.... We have

N(wa C) = Z 6un(w)(c)7 (929)

neZ
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where we assume —o00 < ... <u_1 <y <0< u; < us... < o0 and §, is the
Dirac measure at x. o, can then be considered as marks of the point process
N:

Let Z be stationary with respect to (¢;,P). Then

on(w) d:ef Z(w, [Un, Unt1))

satisfies
on(W) = 09(Vu, w) = go(Fnw).

Hence, ((N,0),9:,P) is a stationary marked point process (see [21] p. 10)
and o, is stationary in n (see Section 1.3.2 in [21]), i.e. w.r.t. .

To summarize, we have:

Theorem 54. Assume that

— the potential vacation durations (s,) are constant,

— the sequence of workloads o, arriving arriving during the nth slot is sta-
tionary,

— the queue is initially (at time 0) in a unique stationary regime correspond-
ing to the policy that never took vacations.

Then Result 45 holds where p* =1 — p, and where p is the fraction given in
the constraint (9.1) (or (9.15)).

We may relax the assumption on the initial distribution, as we did in
Lemma 55 and Remark 20.

9.7.2 The case of several queues

Consider K queues, each of which behaves like the one in the queue in Sub-
section 9.7.1. The service period for one queue constitutes a vacation for the
others.

More precisely, let un,, n = 1,2, ... be the time at which the nth potential
service ends; it may be in either one of the queues. The service time duration
sn, is the difference between consecutive inter-switching times: un41 = U, +
Sn+1- If queue ¢ is the nth to be served and is empty then we assume that
the server still remains s,, time at that queue.

Let o be the amount of workload that arrives to queue 4 during the in-
terval (4, un41]. As in Subsection 9.7.1, we assume a 1-gated regime, where,
only workload that is present at time u,, is candidate to being served during
the interval (wn,un+1], and not workload that arrives during that interval.

The evolution of the waiting time W? (a) in queue i is given by:

ni1(a) = max(0, W, (a) + o}, — apsn),
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where a, = 1 if queue i is served at the nth period, and is, otherwise, zero.
Here, W: has the interpretation of the waiting time of a customer that would
arrive at time wu,,, and V! is the workload in the system just after time u,,.

From the discussion in Subsection 9.7.1, we obtain the following results
(with notation similar to those in Theorem 51):

Theorem 55. Assume that

— the arriving workloads o', is a stationary sequence for each i,

— 8, are constant,

— foreachi=1,..., K, queue 1 is initially ot o unique stationary regime that
corresponds to the policy that never takes vacations at that queue.

Then Results 46, 47 and 48 hold.

We may relax the assumption on the initial distribution, as we did in
Lemma 55 and Remark 20.

Remark 23. Note that we allow in this model for different (dependent or
independent) arrival streams (and thus interarrival times) to different queues,
unlike the model in Section 9.5. The restriction in Section 9.5 to a single
sequence T, that defines the time of arrivals, that occur simultaneously to
all queues, was due to the fact that it was the arrival times that triggered
the polling (the vacation opportunities). In this section, arrival can be more
general. (Note that, even if the arrival is a point process, the interarrival times
{T?} in queue i do not appear explicitly anymore in the evolution equations,
due to the gating.)

We illustrate the usefulness of the previous result in the following optimal
scheduling control problem in an telecommunication (ATM) switch.

9.7.3 Application to an ATM switch

We consider an M x N switch with M inputs and N outputs, as depicted in
Fig. 9.1. We assume that there are separate input queues for each output, so
we do not have HOL (head-of-line) blocking. Each input is associated with
N queues, one for each output. We denote by queue 7j the queue for cells
arriving to input ¢ and destined for output j. We consider a slotted queuing
model where in each time slot at most one cell can be transmitted from
each of the M inputs, and at most one cell can be received by each of the V
outputs. In ATM (Asynchronous Transfer Mode), indeed packet size are fixed
and constant, so it is natural to consider time-slotted models. A scheduling
mechanism decides at each time slot, from which inputs and to which output
do we send a packet.

The scheduler may send simultaneously packets from different inputs to
different outputs, as long as the following constraints are met:
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Fig. 9.1. Application to an ATM switch: a feasible schedule

C1: The scheduler cannot send more than one packet from the same input
simultaneously, and
C2: it cannot send more than one packet to the same output, simultaneously.

We are interested here in open-loop scheduling policies, i.e. in scheduling
that do not rely on queue length information, but only on the input rates
(that will be detailed below).

A class of policies have been presented in [13], that achieve 100% through-
put of the switch. A natural problem is whether one can obtain a policy that
not only achieves the above goal, but also minimizes nondecreasing convex
functions of the workload in the system.

Note that a policy that minimizes the workload, maximizes the amount
of workload that departs, and therefore, the throughput. Therefore, if any
policy achieves maximum throughput (and stability), then so does the policy
which minimizes the workload.

Forall1 <3< M,1<j<N,let A;;(n) be the number of cells that
arrive at queue 45 in time slot n. We assume that the arrival process {4;;}n
is stationary with rate A;; (i.e. the average number of cells arrived in each
time slot). The arrival processes may be mutually dependent.

We consider the symmetric case below, i.e. we assume that the A;; do not
depend on ¢ (they may depend on j), and that N = M. For any i =1, ...,m,
define j(i,t) = (i+t)mod(N)+ 1. Consider the round-robin scheduling policy
u that sends at time ¢ a packet (if there is any) from queue 7 to queue j(i,t)
for each i. This policy clearly meats the constraints C1 and C2 above. For
each j, all queues ij,7 = 1,..., N (having j as destination) receive a round-
robin service, which, under the conditions of Theorem 55, is optimal among
all (open-loop) scheduling policies (in fact, even among those that do not
satisfy C1).

A scheduling policy is a sequence a = (ay,az, ..., ), where a, = {a¥,i,j =
1,...,N}. If the ijth component of a, is 1, this means that the server polls
queue ¢7 at the nth time slot.

Let h;; = h be a convex nondecreasing function. Define for each j,

137 (@) = BhOWY (@), i, =1,..., N,
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(@) % tim s z(sz )

s—00
n=1

and further define

o) Simsnn L33 (3 200 ).

s i=1 j=1 \n=1
The following Theorem is then a consequence of Theorem 55:

Theorem 56. Consider the above N x N switch. Assume that

— the arriving workloads ¥ dzef A;j(n) is a stationary sequence for each 1.
For each j, the distribution of the processes of arrivals of workload to the
queues ij does not depend on i (in other words, f¥(a¥) = fki(a®) if
a = a*7),

— the time slots s,, are constant,

— the workload initially in each queue corresponds to a unique stationary
regime that would be obtained if this queue had always been served before.

Then the round-robin policy u minimizes both g(a) as well as ¢’(a), for j =
1,2,...N.

Again, we may relax the assumption on the initial distribution, as we did
in Lemma 55 and Remark 20.



10 Monotonicity of feedback control

10.1 Introduction

This chapter deals with the problem of closed loop control (unlike the pre-
vious ones, which focused on open loop control) for stochastic discrete event
systems which are not necessarily Markovian. We present a new approach,
based on multimodularity, to show monotonicity properties of the optimal
policy which works under various types of the information patterns: total
information, sampled information, delayed information.

The concept of multimodularity can be found in applications in feedback
control [52, 80, 114, 27] where multimodularity properties of the value func-
tions were formulated in terms of the number of customers in two parallel
queues, or in tandem queues. We call this notion multimodularity in “space”.
It must be distinguished from multimodularity in time, that we are using and
that will allow us to obtain monotone properties of the optimal policies which
are state dependent.

Moreover, the types of networks for which the multimodularity in space
is known (basically Markovian systems) is much more restricted than those
for which multimodularity in time holds, as illustrated in this chapter, by
some examples. It is thus quite desirable to have a theory that would re-
late multimodularity in time with the structure of state-dependent optimal
policies. As far as the proof techniques are concerned, most of the works
on space monotonicity uses a dynamic programming approach and expected
costs (see for example [52, 27]). Here, we will primarily use a sample path ap-
proach. Some steps in this direction have already been taken in [15], in which
some sample-path properties that are related to multimodularity are used to
establish the monotonicity of optimal policies in the state (or some partial
information that we may have on the state). In this chapter we pursue this
goal and construct a general theory for the state-dependent optimal control
of discrete event systems with time-multimodular cost.

We consider several types of questions related to different information
structures: (i) monotonicity in the initial state, (ii) monotonicity in the cur-
rent state in the case of full state information, (iii) delayed and sampled
information, and others. We show for all these problems that some simple
multimodularity properties of the costs imply the monotonicity of optimal
policies.
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Other general frameworks have been studied in the past for establishing
monotonicity of optimal policies, such as [12, 52, 80]. The conditions are re-
lated to submodularity, and were typically formulated for Markovian models.
In particular, [52] consider only exponential distributions. Our methodology
allows for non-Markovian analysis, as multimodularity of workload and wait-
ing times was established for general stationary ergodic sequences of service
and interarrival times (see Chapter 4).

10.1.1 Organization of the chapter

The rest of the chapter is organized as follows. In Section 10.2, we define the
multimodular ordering on action sequences. In Section 10.3, we introduce the
different information patterns that we will consider. In Section 10.4, we inves-
tigate the special case of full information whereas the general case is treated
in Section 10.5. Finally Section 10.6 shows that the traditional state repre-
sentation also fits in this framework. The relations between Multimodularity,
superconvexity and submodularity is shown in Section 10.7.

10.2 Monotonicity in initial actions

— Problem P: Consider a function f, : A” — R, and assume that f, is

multimodular (A™ is the action space and will be considered as a bounded
convex subspace of R™). Assume that ay,...,a,_1 are fixed, and we wish
to minimize f, with respect to a,.
We wish to establish properties of optimal a,, as a function of a1, ..., apn—_1.
In other words, we wish to characterize the impact of some initial choice of
actions, which need not be a result of optimization consideration, on the
future choice of actions.

In order to establish monotonicity properties, we introduce some ordering
on the set of action vectors.

Definition 15 (m-order). Let a',a? € A™. We say that a' <,, a? if there
exists a sequence Y1, ..., where v; € {+e1, —8a, —83, ..., —Sn}, such that a® =
al+y 2+

Theorem 57 Consider problem P. Then there exists optimal control an(a)
which is monotone nonincreasing in the initial controls a = (a1, ...,an_1).

Proof. Let a' <,, a® where a* € A™ 1. For any b* € A, i = 1,2 with b* > b?
we have

fa@?,bY) = fu(a®,0%) > fa(a',0') = fa(a,b%). (10.1)

Indeed, if we write z = (a',b?) then the inequality can be rewritten as

ol +w—men) — fu(z +w) > folz —me,) — fn(z) (10.2)
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where m is some positive integer, and where w is the sum of some elements
in F. This inequality then follows from the definition of multimodularity.
Now, assume that b! is optimal at a® but not at a'. We shall show that
this implies that b? is not optimal either at a'. This will then imply that
there exists an optimal policy which is monotone nonincreasing.
Indeed, due to the optimality of b' at a? we have

fa(@®,b1) < fula®,0?).
(10.1) then implies that
faa',0') < fr(a',0?).

Since b! is not optimal at a', then b2, which does not perform better, is not
optimal either. We conclude that an optimal control at a' has to be larger
than b'.

Thus if we define the policy that chooses for a given sequence a' the
maximal element b that is optimal at a?, then this policy is monotone nonin-
creasing. This ends the proof. 0

We say that a set B C A is decreasing if b € B implies that b’ € B for
any b’ < b. To illustrate the above Theorem, assume that A = {0,1,..., M}.
Then the theorem implies that there exists an optimal control a,(+) such that
for each 0 < m < M, there exists some decreasing set B,, C A"~! and such
that a € B,, if and only if a,(a) > m. B,, is thus the set of initial sequences
of length n — 1 for which the corresponding optimal action at instant n is
greater than or equal to m.

Definition 16. The mazimal elements of B,, defined in the previous para-
graph are said to be the mth switching curve that characterizes the optimal
action an(+).

We may extend Theorem 57 to the two dimensional case (this extension
will be useful in Model 60 in the next section).

Corollary 58 Consider an action space A = {0,1}. Consider two functions
fi:A™ = R, i = 1,2, and assume that f are multimodular. For any given
sequence a™ = (ay,...,a,) € A", define b = (1 —ay,...,1 —a,). Assume that
a1, ---,0n—1 are fized, and we wish to minimize the function

gn(a™) = fala™) + f2(07)

with respect to an,.
Then there exist optimal control a,(a) which is monotone nonicreasing in the
initial controls a = (ag,...,an_1)-

Proof. The proof follows directly from Theorem 57 by noting that f2, and
thus g,, are multimodular with respect to a™. 0
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10.3 Exogenous random variables and information
patterns

We consider in this section the cost functions that depend not only on the
control but also on some random exogenous variables {Z, }. More precisely,
let {Z,} be a sequence of random variables taking values in some space Z,
and let there be a sequence of cost functions: f, : A x Z™ — R.

We assume that f, are multimodular in the control actions a for each
realization of 2 2 {#1,...,2n}.

A history of length n has the form (a1,...,an—1;21,...,%n), and H,, is
defined to be the set of possible histories of length n. We define the observa-
tion function y, : H, — Y,, where Y,, is the observation space available at
time n.

A policy u = (u1,us,...) is a sequence of maps where u,, is a function
from Y,, to A. In other words, at time n an action is chosen as a function of
the available observation of the history.

We shall consider several information patterns:

1. Full information: y,, (hy,) = hn, so that the whole history is available. This
can be seen as the general full information case. (For the standard MDP
case, the whole past history can be considered as a state of the system,
see Section 10.6.)

2. Sampled information: let k& be some fixed integer; we assume that the
information on the past actions is always available, but the new informa-
tion about the values of the variables Z,, becomes known only at sampled
times k, 2k, 3k, ... In other words, let

Z(n)ékL%J.

Then

A
Yn(@1, o Q1521505 20) = (@1, 00 Gno15 215+ 5 Z(n))-

Since no new observation on the z sequence arrives during the period
l(n) +1,...,l(n) + k, the control under this information structure is
equivalent to one that takes decisions only at times rk,r = 1,2, ..., where
at each time rk the actions a,ry1,...,0(r41)r are determined. We shall
adopt this view below.

3. Delayed information: fix some integer . Then the information at time n
over the z-variables is delayed by 6 units, so that

A
Yn(@1y ey Q15215 3 2n) = (Q1ye oy Qne15 21y« s Zn—p)-

Our goal under the different information structures is to minimize
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N
TN (u) = Z E* fr(Hn, An) + E gy 1 (AN 1) (10.3)

n=1

where N is some given integer and gy41 iS some terminal cost. This cor-
responds to a finite horizon problem where N sequential actions are to be
chosen.

In order to illustrate our framework we present three models which will
be considered all along the paper.

Model 59 Consider a single queue operating at discrete time. An arrival of
an packets is generated at the beginning of the nth time unit, where a,, is a
control variable. At the end of the time unit, a departure occurs if and only
if zp41 = 1 (otherwise, 2,41 = 0). The number z,, of packets in the queue at
the end of the nth slot (just after a potential departure), which we call the
state of the queue, is given recursively by

Tny1 = (Tn + an — 2ny1) " (10.4)

We assume that at n = 0 the queue is empty. Using the explicit solution of
this Lindley’s equation, x,, can be expressed as a function of the history:

n—1
2 = max (O,Z(ak—zk+1),l= 1,...,n—1). (10.5)
k=1
def . . .
We may now choose f,,(h,) = 7,(z,) where r, is any monotone increasing

convex function; this will ensure that f, is indeed multimodular in the a-
sequence for any realization of the z-sequence, see [6] and Section 4.3 of [4].

Model 60 Consider a routing problem into two queues: q0, q1. An arrival is
generated at the beginning of each time slot. The routing variables a,,, n € N
take values 0 or 1; the nth packet is routed to queue b, = 1 — a,. At the
end of the time unit, a departure from queue ¢ occurs if and only if 2% =1
(otherwise, 2% ; = 0). The number z% of packets in queue ¢ at the end of the
nth slot (just after a potential departure) is given recursively by

0

Tpt1 = (3591 +an — z2+1)+

)
1 — 1 1 +
xn+1 - (xn + bn - zn+1) .

Consider the cost function
gn(xn) = corp(23) + cr7p (27,

where ¢; > 0 are some given real numbers and 7¢ are convex increasing
functions. It follows from Model 59 that 20 is multimodular in e~ ! =
(a1,...,an—1) and 2 is multimodular in b"~! = (b1, ...,b,—1) (where b"~! =
(1—=a1,...,1 —an—1)). Recalling Corollary 58, we conclude that g,(z,) is
multimodular in o™ 1.
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Model 61 We consider here (max,+) linear systems. Any system in this
class can be modeled by event graphs, which are a subset of the Petri nets,
as described in Chapter 3.

As in previous chapters, and unsing the notation from Chapter 3 and
Chapter 4, let X;(n) denote the time when transition 7 initiates its n-th
firing, then X(n) = (Xi(n), -+ ,Xg(n))" satisfies a linear equation in the
(max,+) notation of the form:

X(n)=An)® X(n—1)® B(n) ® T,n).

Define W7 = X,(n)—T, (). It is the traveling time for customer n between
its entrance in the system and its passage in transition ¢. Again, we have the
Lindley’s equation:

W, =A(n)® D(—7,) @ W,_1 & By,

where D(h) is the diagonal matrix with h on the diagonal and —oo everywhere
else. The equation is developed into:

W1 = Bn @ é Ci, (10.6)
1=1
with .
Ci = Q@A) © D(—75)) @ B(n —i — 1), (10.7)

Jj=
and B(0) = (-0, ..., —00). (see Chapter 3.)

Assume now that o, is a stationary sequence, independent of the sequence
Tn. Using (10.7), it was shown in Chapter 4 that for any convex increasing
function r and for any realization of the sequence 7,, E ,7(W2) (the ex-
pectation is taken with respect to the distribution of the o, process) are
multimodular in a.

In order to be in our general framework, we can identify the sequences o,
and 7, as the Z,, variables in the beginning of the section.

Finally, in order to obtain multimodularity of (W ?) for any realization
of Z, (and not just the expectation of r(W2)) we shall have to require that
the ¢, = o do not depend on n (note that they may still be random). The
randomness thus exists only in the arrival. We note that such Petri nets with
deterministic firing times and stochastic exogenous arrivals have been the
subject of several research work, see e.g. [78].

Many other models give rise to recursive equations of a form similar to
(10.4), and hence the same type of results that will hold for Models 59 and
60 will also hold for these:
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The G/D/1 queue: We consider general independent arrivals and a determin-
istic (constant) service time requirement of one unit time length. Let T,, be
the arrival epochs, and let 2,41 be the amount of potential service between
T, and T, ;. Hence 2,41 =T, 11 — T} At the nth epoch T,,, the number of
customers that are accepted is determined by the control and is given by a,,.
Then (10.4) holds where xz,, denotes the workload at time T5,.

The D/G/1 queue: Assume that the time between arrivals is a constant. The
waiting time of the nth customer that is admitted at the queue satisfies a
recursion similar to (10.4) (this was established in Theorem 6.4 in [4]).

10.4 Monotonicity: full information case

We consider here the the full information case. We consider the cost over a
horizon of length V.

Some of the arguments below rely on dynamic programming, which moti-
vates us to define the cost to go: having observed the actions a” and 2" during
r periods, we define recursively the cost to go ¢"*! and the optimal cost to

g0 gr4+1 as follows. For r < N we set @, dlef (ar+1), and define
¢ (ari Hy) = B (£o(Hyoa,) | Hy ) + B (g4 (o) H,)

9-(H;) = min ¢" (ar; H,). (10.8)

anr
Let U be the set of policies that choose at time r actions achieving the
min in (10.8).

Theorem 62 Consider the control problem under full information. Assume
that the cost functions f, and the terminal cost gn4+1 are multimodular for
any realization of the z sequence.

Then there ezists an optimal policy w € U such that for each integer r <
N and each history h.., the action a,, is monotone mnonincreasing in a =
(al, ceey a/'r—l)-

Proof. By standard arguments of dynamic programming we know that any
policy in U is optimal. The proof will follow directly from Theorem 57 if we

show that ¢" (ar, HT) is multimodular for all integers r < N.
The multimodularity is established as follows.

— Since f,, and gy41 are multimodular, it follows that the summation
fn(Hy,an) + g1 (Hn1)

is also multimodular.
— Taking conditional expectation, we obtain the multimodularity of ¢V +!.
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— Using the Key Lemma in the appendix, this implies the multimodularity
of gn.

— Proceeding the same way by induction, we obtain the multimodularity of
gr for all r < N.

This establishes the proof. 0

10.5 Monotonicity: general case and delayed information

We consider in this section a general information structure. We assume that
Yn(hy,) contains the realization of (ai,...,a,) (i.e. we have full information
on prevoius actions). We further assume that it is monotone increasing in n,
i.e. ¥, is contained in y,;;. Other than that it can be arbitrary. !

We note that this general information structure includes both the sam-
pled as well as the delayed information structures. It includes also the noisy-
delayed information structure studied in Altman and Koole [11].

In particular, to see that it includes the case of sampled information, we
define

_ (ark+j71 ,z

Yriti (Mrkts) =

where h,, = (a"~!,2"), r € Nand j = 1,..., k. Note that with this interpre-
tation, decisions can be made at each time unit, but no new information on
the 2’s is obtained between information samples.

We use arguments similar to the case of full information. Define (by back-
ward recursion) the cost to go and the optimal cost to go as

'rk:)

8" (n3 V) = B (fu(Ho ) + grga (Hug)| Y2 )
gn(Yn) = I%in (bn(an; Yn)7 (109)

forn=N,N—-1,...,1.
Let U be the set of policies that choose at time n actions achieving the
min in (10.9).

Theorem 63 Consider the control problem wunder the above information
structure. Assume that the cost functions fn and the terminal cost gny1 are
multimodular for any realization of the z sequence.

Then there exists an optimal policy w € U such that for each integer
r < N and each history h,, u chooses an action a, which is monotone in
a=(a1,...,ar_1).

! The increasing assumption is necessary for the use of dynamic programming.
Indeed, dynamic programming is used to identify an optimal Markov policy in
a MDP setting, where the state is the observation. However, if the information
is not increasing then given the current observation state y,, the future need
not be independent of the past. Thus the MDP structure is not satisfied and the
dynamic programming need not generate optimal Markovian policies.
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Let’s go back to our models 59, 60 and 61. In all of them we saw that
fn and g,, were indeed multimodular for any realization of the z sequence.
We conclude that the monotonicity result of Theorem 63 applies to all these
models.

10.6 State representation

The monotonicity results of the first section are in terms of a sequence of
actions. However, quite often

— (I) the cost fn(Hn,a,) at time n can be expressed as a function of a, and
of some simpler quantity z,(Hp,), called state, which is a function of the
history H,,.

— (IT) the distribution of the state zpt1(Hny1) at time n + 1 depends only
on the state z,(H,) at time n and on a,, namely:

P(@ns1(Hos1) € |H,) = P(@ny1 (Host) € olan(Hy), An).

In other words, we may also say that z,, is a random function of z,, 1,0, 1
and 2, (2, represents the randomness).

The advantage in dealing with states is that this allows typically to decrease
the dimensionality. For example, the state space is often finite and does not
grow with n, whereas the set of histories grows exponentially with n and need
not be finite. When such a state representation exists then different histories,
possibly with different lengths, may be mapped to the same state.

Model 59 (continued): The same state x may correspond to different his-
tories; in particular, the history

a; = Zi41 =0,i=1,...,k—2, 2l =0, ap—1 =2

implies that x;, = x, where k is an arbitrary integer.

Next we present simple conditions under which monotonicity in the ac-
tions, as described in Section 10.5, imply monotonicity in the state.

Case 1, an easy case: Assume that

1. the action space is a convex subset of the integers,

2. Asin Model 59, we assume that for any history h, = (a™, 2™), there exists
some action a = a(hy,) such that z,(h,) = z.((a,0)). Consequently, each
state can be identified with an action a, and it corresponds to all histories
for which

Zn(hn) = 2,((a,0)). (10.10)

The above set of assumptions now implies a natural ordering over the states.
Hence, whenever we have monotonicity of the policy in the sequence a in the
representation of Section 10.5, this implies monotonicity in the state.
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10.6.1 General full information case

Now, consider the standard information structure in MDP, ie. y,(h,) =
(xl,al, N ,.Cljn)‘

Theorem 64 Consider the control problem under the above information
structure. Let f : X x A — R and define f,, : Z™ x N* — R such that

Fm(z™,a™) £ f@m(z™,a™1),a™). Define similarly for a terminal cost
gn41: X = R grga (2N a) 2 gns1(znyr (VT a)) c ZVH x NV —
R. Assume that f and g are multimodular for any z and that the following
assumptions hold:

— <I>:zm:H, — X, where X, is some measurable space endowed with
some partial order, and A C N;

— <2>: xm(2,a) is monotone in a for any z, i.e. aV) <., a® implies that
T (2,0D) < 2, (2,02, (Equivalently, xm (2,0 + 85) < 2m(2,a),i =
2,...,m, and T (2,6 —€1) < T (2,a).)

— <3>: There exists a(x, z) = (a1, ...,an)(x, 2) where an, is a function of Tm,
and of 2™ = (21, ey Zm—1), m = 1, ..., N with the following properties.

(i) For any ™ and z™, if we assume that T, = T,(a™ Y(z,2),2™),
Fn = T (@™ Y&, 2),2™) and T, < Ty then a™(z, 2) < @™ (7, 2).

(i) For any x,, < &., there exists some 2™ = (21, ..., 2m) such that T,, =
Tm(a™ 1z, 2),2™), Tm = Em(a™ (T, 2), 2™).

Then there exists an optimal policy w € U such that for each integer r < N
and each history h,, u chooses an action a, which is monotone nonincreasing
i the current x,.

Proof. Our goal is to minimize (10.3).

Consider instead the problem of minimizing (10.3) with f, and and gy 41
replacing f, and gy 41, where we assume standard information: at time n the
controller has the knowledge of all previous actions and realizations of z.

Let A,,(a™',2z™) be the set of optimal actions at time m given the
previous actions and z™, i.e. the set of actions that minimize the sum of
immediate cost at time m plus the optimal cost to go as in eq. (10.8). Hence
we can apply Theorem 62 and choose a policy a = (aq,...,ay) which is
monotone in the history where a,, € A,,.

Now lets go back to the original problem. Fix some z,, and %,, such that
T < . Let 2™ and a be as in <3>. Define

Gm(Tm) = am(z, 2).

Then the monotonicity of a in its argument implies the monotonicity of @,
in . O

We shall now illustrate the validity of the assumptions used in the Theo-
rem in our Examples.
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Lemma 56. Consider Model 59. If a® 1 <,,, a*~! then for each z™
(a1, 2™) < z™(@"t, 2m).
Hence condition <2> holds.

Proof. ;From the associative property of the partial ordering <,, it follows
that it is sufficient to show for all n, a®~' and 2™:

z™(a™ 1, 2") < 2™(a™ " + ey, 2") (10.11)

(@™ ") < z™(a™ "t —s85,2™), i =2,3,...,n. (10.12)

Indeed, it is easy to see that both inequalities follow directly from the repre-
sentation (10.5). O

Next, we show that Condition <2> holds for Model 60. To that end, we

introduce an ordering on X = R?. We say that z,, > &, if 2%, > 7% and
0 0

xzl <zl where z,, = (22,2L), 2, = (2%,,7)) € X.

Lemma 57. Consider Model 60. If a® ' <,,, @*~' then for each z™
z™(a™ 1t 2™) < ™M@t 2.

Hence condition <2> holds.

Proof. Since for a single queue (Model 59) assumption <2> holds, it clearly
holds for the component 29, ,, in Model 60, i.e.

aM <., a® implies that 22, (z,a™) < 2° (z,a?). (10.13)

If we expressed the length of queue 1 in terms of the decision variables b™

ie. zl (2,a™) = Fm(z,b™(a™)), then this would also hold for queue 1, i.e.

bM<, b3 implies that #9 (z,b(1)) < 0 (z,b)). However, since a; = 1—b;,
aM) <., a? implies that b >, b and hence z! (z,aM) > z! (2,a?).
Combining this with (10.13), we conclude that <2> indeed holds. 0

Lemma 58. Consider Model 59. If for any n,
Tp = 2a(a™ 1, 2™), Ep =@t 2"),
and z, < I, then there exists a™ ! such that
anl<, gt

and

Hence condition <3> holds.

Proof. The proof holds by a rather straightforward induction on n. 0
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10.6.2 Monotonicity of the switching curves

Next we illustrate further structural properties of optimal policies. As in
Lemma 59, let there be a function z : H,, = N, let f: X x A — R be given
and define f’ as in Lemma 59. Consider the problem:

mo’%n f(z, ).

We know from the end of Section 10.2 that one may choose the argmin to
be of a switching curve structure. In our case it means that there exists
some minimizer u (as a function of z) that behaves as follows. There exist
thresholds I,,,,m € A such that u(x) < m if and only if x > [,,. Note that [,,
is nonincreasing, i.e.

Im+1 < lm.

Assume that f is superconvex as in property P2, or equivalently
flx,a+2)— f(r,a+1)> flz+1l,a+1)— f(z+1,a).
Then the minimizer u can further be chosen such that the following holds:
lmt1 >l — 1.

Indeed, assume that at state x + 1 it is optimal to use some action m but
it is not optimal to use any action a > m at that state. This means that
fle+1,m+1)> f(x +1,m), that 1, =z + 1.

Then the superconvexity implies that f(z,m + 2) > f(z,m + 1), which
means that it is not optimal to use m + 2 at x; thus the smallest state for
which there exists some optimal action a¢ among a < m + 1 is x. Hence
lm+12$:lm—1.

10.6.3 State representation with delayed information structure

We have established in Section 10.5 monotone properties of optimal policies
as a function of the previous taken actions for general information structure.
In Section 10.6, we considered the monotonicity of optimal policies in case
that a state representation exists. The two aspects can now be combined:
state representation with more general information patterns.

In case of general information structure, we cannot expect anymore to
have monotonicity in the current state, since the current state might not be
available to the controller. In order to obtain monotonicity in some quantities
other than the previous actions, new objects with the role of a state should
be defined.

To illustrate that, consider the case of delayed information on the state.
We thus keep the definition of state x in the beginning of this section (re-
quirements (I) and (II) there); we assume that the information available to
the controller can be expressed as
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Yn(hn) = (@1, s Gne1,T1, ..y Tn_p)-

We now define an object that will serve as state, and define a new cost
function:

§n(hn) = (xn—97 An—0,-- -, an—1)7

flénran) = B f(Xn,an)[én)-
It is easily seen that this new state and cost are legitimate in the terms of
the requirements (I),(II) given in the beginning of the section. In particular,
if we note the transition probabilities P,,c for the original state of moving
from state z to a subset C C X given that action a is chosen, then for
C = (C,an_g,...,n_1), the transition probabilities for the new state are
given by

P:E,a,C = Pzacl{an70 = An—041)An—0+1 = An—042, ---, Apn—1 = a}-

Assuming that there exists a partial ordering on z, one can now define the
partial order on the new state space as the component-wise ordering: that for
x for the first component and the m-order between the second action-vector
component.

Now, assume that conditions < 1 >-< 3 > of Theorem 64 hold for the
original state and that f and g defined there are multimodular. Now, let us
consider the delayed case. We define

_ def ~
Fl(21y ey Zmy @1y oeey G) < FE2L, oey Zmy By ooy Q1) ), Gy ) -

By definition, we have,

Fl(21y ey Zmy 1y ey ) = B (f (@ (han)y @ )| Em)

=E (f(xm(hm)aam”xmf@’ Am—0,° " 7am71)-

According to the assumption (II) made on x,,(h.m) (in Section 10.6), we
know that it is in fact a function of only %m,_1,am_1 and z,. By induc-

tion, we may say that z.,(h.,,) is a function of Zp_g, @m-1, - ,am_e and
Zm—0+1,"* »2m. LTherefore, we can write

E (f(zm(hm), am)|Tm—0,Gm—0, ", Gm—1)

=K (f(xm(hm)aam”hm—é‘aam—é‘a te aam—l)

=FE (f'(hm,am)|PAm—p,Gm—0,* Cm—1)

=F iiorzmt (215 s Zms A1, ooy ),

and hence f’ is also multimodular (we take expectation with respect to the
unknown random variables z,,4+1-g, ..., Zm+1). In a similar way, we can show
that the terminal cost is also multimodular.

It remains to check that conditions < 1 >-< 3 > of Theorem 64 hold for
the new state &,. Clearly < 1 >-< 2 > hold.
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Next we show that < 3 > holds for the new state. Choose some &, =
(Tm—g, Qm—g, -y Wm—1). With the policy a defined as in < 3 > for the original
state, define the new a as follows:

m—a—l)

(@1,--8Gm-1)ém,2) = (a1, -, @m—b-1)(Tm—a, 2 > Q@ ey 1)

With this choice, it is seen that indeed < 3 > holds for the new state. Indeed,
let &, < &m with &, = (Zm—6, @m—g, ..., &m—1). Note that

Tm—6 S i'mfea (amf‘% ---7am71) Sm (d'm797 .‘.,O~lm71).

Assumption < 3 > used for the original model implies immediately that
(a1 ey Wm—p—1) <m (@1, ey Gm_g—_1). We conclude that a(zp,, 2) <, a(Zm, 2)
(component-wise), so that < 3 > holds also for the new state.

We can thus extend Theorem 64 to the delayed case:

Theorem 65 Assume that the conditions of Theorem 64 hold (for the prob-
lem with standard information). Then the conditions and the statement of
that theorem also hold for the case of delayed information.

10.7 Relation between multimodularity, superconvexity
and submodularity

Lemma 59. Assume that the action space is a convex subset of the integers
and that <1> and <2> from Theorem 64 hold.
Let f: X x A — R be given and define

2

f’(zl, ey Bm41,01,- - ,am) f(.’Em(Zl, ey Rmy A1, - .,am),zm+1,am+1)

Then f' is multimodular for any z if and only if f satisfies:
- (P1) it is submodular, i.e., forox < ag, a; €A, i=1,2, a€ A™,

f(@m(z,8), 2mt1, @1) — f(®m(2,8), 2my1,@2) is noONincreasing in a,

- (P2) it is superconvez (this property is defined e.g. in [80]), i.e. for @ =
(ala e 7am>;

f(xm(zva)vzm+1va + 2) + f(xm(zva+ eTrL)azm+17a)
> f(@m(2,@+ em), Zmi1, @ + 1) + f(@m(2,@), 2my1, a + 1);

— (P3) for fized ams1 and z, f(Tms1(a1y oy Gmy 21, ooy Zmg1), Gmp1) - A™ —
N is multimodular.
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Proof. Assume P1, P2, P3. We have to check that for any z and any v,w €
F? v # w7

f(zra+v) + fl(z,a+w) > f'(z,a+ v +w) + f'(2,0), (10.14)

where F = {—e1,82,-.., Sm+1,€m+1}- If v,w ¢ {€mt1,8m1} then (10.14)
holds by property P3.
Let v = ema1, W # Smy1. Then z,,41(2,0 + w) <m Tma1(2,a). Setting

o d:ef am+1 and as d:ef am+1 + 1, we see that the submodularity of f implies
(10.14):

fl(zya+w)— fl(z,a+w+v) =

f(mm-l-l(z’a + w)val) - f(xm+1(z7a + w)7a2)

< f(xm+1(zaa)70‘1) - f(xm-l-l(zva)va?)

= f'(z,a) — f'(z,a +v).
It now remains to check the case where v = emt1, W = Smy1. Let @ d:ef
{a1,...,am}; then

f(zya+v)+ fl(z,a +w) =
f(@m41(2,8), amy1 + 1) + f(@mt1(2,8 + €m), ampr — 1)
fzya+v+w) = f(@mi1(2,a@+ em), am41);

(10.14) now follows from the superconvexity of f, which establishes the mul-
timodularity of f’.

To establish the converse, assume now that f’ is multimodular. Then
properties P1 and P2 follow directly from Lemma 2.2 (a) in [6], and property
P3 follows from (a) and (b.ii) in that Lemma. 0

Now, we give some comments on the generality of assumptions (P1)-(P2)-
(P3).

Remark 24. Note that superconvexity is not needed if we restrict to sequences
whose elements take only the values 0 and 1 instead of taking values in N.
More precisely, if f is defined on Nx {0,1} — R then we do not have to check
the case v = emy1, W = Smy1, since clearly a +v or a 4+ w are not within the
set N x {0,1}.

Remark 25. Since x,, is assumed to be increasing in a, a sufficient condition
for property (P1) is that f(@m,a1) — f(@m,a2) is nonincreasing in z,,, for
a1 < as.

Remark 26. Note that the superconvexity and the submodularity imply that
f is integer convex in its second argument. Indeed,
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f@m(z,a+en),a+1)— f(xm(z, T+ em), )

S f(.’L'm(Z,E),Ck + 2) - f(xm(zva)7a + 1)

< f@m(z,@ 4 em),a+2) = f(@m(z,0+em),a +1)

where the first inequality follows from the superconvexity and the second
from the submodularity of f.

Remark 27. The following superconvexity property, which is similar to (P2),
is also implied by the multimodularity of a function f': Z™ x A™*t1 — R:

fl(z,a+2em, )+ f'(z,a,a+1) > f'(z,a+em,a+ 1)+ f' (2,0 + em, ).
Again, this follows directly from Lemma 2.2 in [6].

Simple sufficient conditions can be presented for the assumptions of
Lemma 59, which are satisfied by models 59 and 60 respectively.

Indeed, let in <1>, X = R be the set of real numbers endowed with
the standard ordering between numbers. Then (P3) holds if the following
conditions hold:

— f(®m,am+1) is convex increasing in z,, for any fixed value of @11,
— &, satisfies the following:

Tmt1(2,6™)V Tmy1(2,0™ — v —w) < Tmy1(z,a™ —0) V Ty (z,a™ — w),

for any z, where v # w, and v,w € F, see [6]. Note that Model 59 satisfies

the above conditions, (see [4]) as well as assumption <2> in Lemma 59.
Next consider X = R?, with the ordering introduced just before Lemma

57. Assume that

i) 2%, 41(2,a™) are multimodular in a™ and satisfy for all v # w,v,w € F;

m

(za™—v) vl (2,0 —w)
(10.15)

min_i_l(z,am) Y xin_i_l(z,am —v—w) < z
ii) f is given by
f($m+17 aTn+1) =70 ($9n+1v am+1> + rt (.’L‘,}n+1, am+1)’

where r? are convex increasing functions. Then assumption (P3) holds, since
(10.15) implies that r*(}, 1, am+1) are multimodular in a™.

10.8 Appendix: Key Lemma

Lemma 60. Let f: A — R be a convex function where A is a convex set in
R™. If the function g, defined by

d .
9(x1, %2, ... Tk_p) éf inf f(z1, 22, - 21), (10.16)

Thk—h+15""" Tk

1s finite for all x1,x2,...%Xk—p, then it is also conver.
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Proof. We decompose a vector x in A into a vector u and a vector v of size h.
Therefore, we can rewrite Equation 10.16 as g(u) = inf, f(u,v). Let u! and u?
be any two vectors of dimension k — h. Since g(u') and g(u?) are both finite,
for all £ > 0, there exits v! (resp. v2) such that (u',v!) € A and f(ul,v!) <
inf, f(ul,v) + ¢ (resp. (u2,v%) € A and f(u?,v?) = inf, f(u?,v) +¢).

By definition of g and by convexity of f, we have

gl + (1= Nu?) < FA(ut,v!) + (1= A)(u?,0?))

< Af(u17v1)+(1_)‘)f(u2vv2)7
< )\ir;ff(ul,v) +(1=X) i%ff(u2,v) + 2e.

This is true for all € > 0. Therefore, g(Au'+(1—A)u?) < Ag(ul)+(1—X)g(u?).
O

Lemma 61 (Key Lemma). Let f : N* — R be a multimodular function.
Then g : NF=* — R defined by

de .
:f inf flai, a2, -ar)
Ck—h+41,""" 0k

g(al,ag, .. ‘ak_h)

18 also multimodular.

Proof. First, note that it is enough to prove the result for h = 1. The proof
for h > 1 is done by a straightforward induction.

Let (e1,ea, - ,er) be the canonical base of Rﬁ. We denote by V; the
vectorial space generated by (e1,--- ,e;). We define the function f: R* — R
such that f is the linear interpolation of f on the atoms of R*. Theorem 2.1
in [6] tells us that f is convex.

Now, let us define § : RE~" — R by:

. f. .=
g(ar,az,...ak1) d:e 1£1ff(a1,a2,~~~ak).

By using Theorem 2.1 in [6], we just have to prove that § is convex and
linear on all the atoms of ]Rﬁ__l.

For convenience, we introduce the following notation: for z in R% and S a

set in R% | P(z, S) is the projection along e, of z on S. Formally, P(z, S) dlef

z + de, where d is the real number with smallest absolute value such that
z+de, €8S.

Choose m € N. We denote by E,, the set Vi_1 @& [0, m]ei. Note that E,,
is a convex union of atoms in R% .

By continuity of f, for all u € R’_‘I’__l, there exists v,,(u) < m such that

gm(u) def inf,<pm f(u,v) = f(u,vm(u)). By using Lemma 60, then the func-
tion g,, is convex. For any v,z € E,,,
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gm(AY + (1= A)2) < Agm(y) + (1 = A)gm (2). (10.17)
In a given atom a of V;_1, pick any two points u' and u?. Let x d_ef
Aul + (1 — N)u?. The point (x,v,,(z)) belongs to an atom, say A of RE
included in E,,.

We consider F™* (resp. F.), the upper (resp. lower) hyperface of dimension
R’j__l of A along e,,. We project the point (z,v,(z)) on F, and F*.

p & P((2, 0m(2)), Fo),

¢ & P((@,0m (@), F*).

By linearity of f over the segment [p,q], f(z,vn(x)) is a linear combi-
nation of f(p) and f(g). Moreover, the points p and ¢ belong to E,,. By
definition of v,, (), we also have f(a: vm (7)) < f(p) and f(z,v,(z)) < fq).
Therefore, we have f(z,vm(2)) = f(p) or f(x,vm(2)) = f(¢). In the following
we will consider the case f(z,vm(x)) = f(p). The case f(z,vm(z)) = f(q) is
similar by using the face F™* instead of Fi.

We project the points (u!, v, (ul)), (u2, v, (u?)) on F.

4 P o (u1)), F),
7 P2, v (u2), F).

By linearity of f over the segment [p!,p?], and definition of vy, (z),

F((2,vm(2))) = f(p), (10.18)
=Af(p") + (1= N f(p?), (10.19)
> M (!, vm (') + (1= N F((u®, v (u®)),  (10.20)
> f(A(uh, om(u)) + (1 = X)W, vm(u?))),  (10.21)
> f((z,vm())) (10.22)

Where Equation 10.19 comes from linearity of f over A, Equation 10.20 comes
from the definition of v,,(.), Equation 10.21 comes from convexity of f and
Equation 10.22 comes from the theorem of Thales. Therefore,

gm (Mt + (1= Nu?) = gm(2), (10.23)
= f((z,vm(2))), (10.24)
= M (!, vm (W) + (1 = N F((u?, vm(u?))(10.25)
= Agm(u) + (1 — N)gm (v?), (10.26)

where Equation 10.25 comes from Equation 10.21, which is an equality.
All these arguments are illustrated in Figure 10.1, which is done with
dimension k = 2.
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€k

Fig. 10.1. Illustration of the proof of the key lemma.

To finish the proof, it is enough to notice that g(u) = lim,,— oo gm(u), to
take the limit in Equation 10.17 to establish the convexity of § and to take
the limit in Equation 10.26 to establish the linearity on atom a.

O
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Part IT shows that in general it is very difficult (and sometimes impossi-
ble) to construct the optimal policy for routing customers in several parallel
systems.

One way to overcome this problem is to replace this ambitious objective
by an easier one: improve on one initial policy. To reach this objective, we
propose several order relations between policies which all have the following
underlying idea. Policy a is smaller than policy b if @ is more regular than b.

All the orders introduced in the following three chapters have some rela-
tions with each other, but they are indeed different. The utilization of one
of them rather than the other depends on the cost function as well as the
overall context.






11 Comparison of queues with discrete-time
arrival processes

11.1 Introduction

In this chapter, traveling times in a FIFO-stochastic event graph are com-
pared in increasing convex ordering for different arrival processes. As a special
case a stochastic lower bound is obtained for the sojourn time in a tandem
network of FIFO-queues with a Markov arrival process. A counterexample
shows that the extended Ross conjecture is not true for discrete-time arrival
processes. This chapter is an adaptation of [61].

We consider an open stochastic queueing network with one input node.
The network dynamics are supposed to satisfy a linear recursion in the
(max,plus)-algebra on R” | as described in Chapter 3. It is shown in Chapter
3 that the epoch of the beginning of the n-th firing time of a FIFO-stochastic
event graph (FSEG) satisfies such a linear recursion for each transition (see
also [25]).

We recall that a special case is a stochastic network of L single-server-
FIFO-queues in tandem, with infinite buffer capacity in the first queue and
finite buffers with manufacturing blocking or infinite buffers in the other
queues. Note that the sojourn time in this tandem network of L single-server-
FIFO-queues, is the traveling time to server L plus its service time at L.
Hence, the comparison results below hold also for the sojourn time.

Let To,, n = 1,2,... be a stationary sequence of potential arrival epochs.
The number of arrivals at 73, will be denoted by A,. In general A,, n =
1,2,... may be a stochastic sequence, and A,, = ¢ means that ¢ customers
arrive at T,. Note that A,, = 0 implies that T, is not an actual arrival epoch.

Two arrival processes are compared with respect to their implied per-
formance of the stochastic network. We assume that both have the same
potential arrival epochs, but different A-sequences, say AL and A2. Let us
call these the admission sequences. Let SJ be the firing-time (service-time)
of the n-th token (customer) in transition (server) j. We assume that

Sn=(Sh,--,5%)

is a stationary sequence of stochastic vectors. Note that no independence
assumption is made on the firing-times, stationarity is sufficient. But, we as-
sume that for 7 = 1 and for ¢« = 2 every couple of sequences from {A*,T,, Sn}
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are stochastically independent. Let ,W ! denote the traveling time of the n-
th arrival to transition ¢, i.e. the time between its entrance in the stochastic
network and the beginning of its firing time at transition q. Let ,W I be the
same time of a potential arrival at T,. Recall that at T}, there may be no
arrival, and the arrival time of the n-th customer is in general not 7;,. With
Z! we denote the n-th arrival epoch for arrival process i,i = 1,2, i.e.

k
Z! = min{k : ZA}; > n}.
=1

Then the arrival time of the n-th customer is, T'7: . We also need the following
notation,

Bt 27 _zi i=1,2, n=1,2,...,

n—1»

where we take Zj = 0. Note that B! is the n-th inter-arrival length, in gen-
eral this is not equal to the inter-arrival time. Of course, B! is a function of
AL L. ,AiZ,- ; we suppress this in our notation. It is shown in Chapter 4
for a (max,plu"s)—linear system that for any transition ¢, and n =1,2,.. .,
E ;W4 is a multimodular function of (By, ..., B,), and
E .,W¢ is a multimodular function of (Aj,..., A, ), where the expectation is
with respect to T}, and S,, n € N. These multimodularity properties induce
the convexity results which we use to prove our comparison results. The ar-
rival processes in the chapter will be generated by a Markov Arrival Processes
(MAP), for which we assume a Markov process on E, a finite state space with
intensities Azy, z,¥ € E, and an arrival occurs with probability r;, when a
transition from state z to state y happens.

In [63] it is explained that a Markov arrival process (MAP) is more general
than the Markov-modulated Poisson process (MMPP) or the Phase-type re-
newal process. In [18] it is shown that any arrival process can be approximated
arbitrarily closely by a MAP. Let us mention the stochastic orders we use in
this chapter. Random vectors X! = (X7,...,X}) and X? = (X7,..., X?) are
ordered with respect to the convex ordering (X! <., X?) (resp. increasing
convex ordering (X! <;., X?2)) if

E h(X') <E h(X?)
for all convex (resp. increasing convex) functions
h:R* - R

Increasing and decreasing are in this chapter always in the non strict sense.

In section 11.2 we give a counterexample which shows that the extension
of the Ross-conjecture is not true in our comparison of queues with different
admission sequences. In section 11.3 a first comparison lemma is derived for
admission (inter-arrival) sequences which are comparable in the convex or-
dering. It is shown, that the potential (actual) traveling times are ordered in
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the increasing convex ordering. Similar comparison results hold for the sta-
tionary traveling times. As applications of the lemma, we derive the following
results:

1. independent sources have a better performance (in increasing convex or-
dering sense) than coupled sources,

2. fixed batch sizes are better than random batch sizes,

3. fluid scaling improves the performance.

In a second comparison lemma, derived in section 11.4, actual (potential)
traveling times are ordered in the icx-ordering for non-integer admission
(inter-arrival) sequences. Here a "regularization” procedure is given, which
has been used in the theory on balanced sequences and optimal routing pre-
sented in Chapters 2 and 6. In section 11.5 we construct the most regular
arrival process for a fixed arrival intensity, and we call it the Regular Ar-
rival Process (RAP). We show that the RAP provides a stochastic lower
bound for any MAP-source with the same arrival intensity. This result (The-
orem 68) can be seen as the ‘Ross-conjecture-theorem’ in the comparison of
discrete-time arrival processes. In the literature on optimal routing to parallel
queues, it was claimed (cf. [43]) that good approximations could be obtained
through replacing the MAP-arrival process by a renewal process with approx-
imately the same arrival intensity. Theorem 69 and Corollary 9 provide the
proof of these claims. Indeed, the performance of a RAP has stochastic lower
bounds for arrival processes which are (approximately) renewal processes.
For a rational arrival intensity, there is a RAP which is renewal with Erlang
distributed inter-arrival times. By a continuity argument we obtain that the
renewal-arrival process with constant inter-arrival process gives, for any real
stationary arrival probability, a stochastic lower bound on the performance.

11.2 On the Ross conjecture in discrete-time

In his inspiring paper [98] Sheldon Ross conjectured that the mean waiting
time in a -/G/1/00 queue with non-stationary Poisson arrival process is larger
than or equal to the mean waiting time of the M/G/1/0o queue with the same
arrival intensity. . This paper of Ross initiated a long sequence of research
papers on this and related problems. Rolski proved the Ross conjecture in
[97]. Recent publications on this and related topics are [17, 19, 30]. Suppose a
-/G /1] queue with potential arrival epochs given by sequence T, but with
different admission sequences A' and A2. Since the potential arrival times are
fixed and form a sequence of discrete epochs, we prefer to call this a discrete-
time model, although the T}, may have continuous distributions. Suppose A'
is time-stationary and A2 not, but they have the same intensity. Is the mean
waiting time for the A! sequence smaller than or equal to that of 427 The
A-sequence can be seen as a random environment and one may expect that
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an extended Ross conjecture holds (cf. [21], where the service process has a
random environment) which says:

"The G/G/1/00 queue in a random environment should be bounded below
by the corresponding queue where the environment process is 'frozen’ to its
mean values.”

For the setting of this chapter, it is not true as the following counter
example shows.

Let T' = {T,} be a Poisson process with rate 1. We consider the -/M/1/00
queue, and we assume that the S, arei.i.d. with exponential distribution with
mean 1. Let AL be distributed as i.i.d. Bernoulli random variables with mean
1/2. Let A2 be distributed as independent Bernoulli random variables, let
the mean of A2 be p,. We assume that p,, is random with mean 1/2. Then
Al is the arrival process for which the random environment of A2 is frozen
to its mean. So the extended Ross conjecture would claim that for W? the
stationary waiting time for sequence A%, i = 1,2

EW! <E W2 (11.1)

Suppose that the sequence (p1,p2,ps,...) is with probability 1/2 equal to
1+e2—¢€1+e, ... and with probability 1/2 equal to 3 —€, 3 +€,2 —¢,...,
where 0 < € < 1. Then E p, = 1 which is the probability in the A]-sequence.
It is easily seen that for e = 1/2 we have that W' is the stationary waiting
time of the M/M/1/co queue with traffic intensity p = , and that W? is
the stationary waiting time of the GI/M/1/00 queue with inter-arrival times
which have an Erlang distribution with 2 phases of exponential length with
mean 1. It is well-known that

EW!>EW?2,

which contradicts relation 11.1. In Section 11.5 we will derive a discrete-time
analogue of the Ross-conjecture-theorem. The above example explains why
we use regular sequences there.

11.3 A comparison lemma and its applications

In this section we derive a first comparison lemma which is a rather direct
consequence of the multimodularity of the traveling times as function of the
admission sequence. As we will see, the comparison lemma has some nice
implications.

We recall that ,W: (,W?), i = 1,2 is the traveling time of the n-th arrival
(potential arrival at T,,) to a fixed but arbitrarily chosen transition ¢ in the
FSEG.

Lemma 62. The following implications hold for any n =1,2,...
1)(14% o Ai) Lex (A% B Ai) = (an e aWi) Siex (an e GW'/%)
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Proof. The proof is given for 1); the proof of 2) goes similarly. Note that
(At ... Al) eN?, i =1,2,let h: R — R be an increasing convex function.
Then, for i =1, 2,

Wi(45, ..., AL) S Eh(Wi(AL,..., AL))

is a function from N™ to R. Theorem 18 (for the proof of part 2, use Theorem
19) shows that W (Af,..., A}) is multimodular in (A},..., A}) as function
on N* for k = 1,2,.... Since Wy(Ai,..., A%) is independent of A%, for n > k,
it trivially follows that Wy (A%,..., A%) is also multimodular in (A%,..., A?)
if n > k. It then follows from Theorem 1 that W} is integer convex on N"
i=1,2k=1,...,n.

The rest of the proof is more or less standard. Since (A},..., Al) <.
(A?,...,A2) we may by Strassen’s representation theorem assume without
loss of generality that

E ((42,...,42) | (A},..., AL)) = (4},..., AL).
From Jensen’s inequality we then have,

Wi(AL. .., An) = Wi(E ((47,..., A7) | (A1, 4))  (11.2)
<E (Wi(47,..., A7) | (41,...,47)). (11.3)

Hence,
EWi(Af,...,AL) <EW,(AZ,... A2).

Let A : R® — R be an increasing convex function. Then
h(Wi(AL,...,AL), ..., Wa(A],...,AY))

is an increasing convex function of (A%,..., AY) i = 1,2. The first inequality
below is now a consequence of (11.3) and the increasingness of h, the second
inequality follows from Jensen’s inequality

h(Wy (AL ... AL).. . Wa(AL... AL))
< I(E (Wi(A2.. A2)| (AL, AL))...E (Wn(A2...42)| (Al...AL))
<E (W(Wi(A2...A2). . W, (A2.. A2))| (AL...AL)).

Hence,

E h(Wi(A]...AL) .. . Wa(A]...AL))
<Eh(Wi(A2.. . A2).. . W,(A%...A%)).



234 11 Comparison of queues with discrete-time arrival processes

Let us assume now the following,

Assumption 66 A is a stationary sequence inn € Z for i =1,2.
The following sequences with ¢ = a or b, j = 1 or 2 are well-known as the
Loynes-sequences (cf.[21]),

Aj

A
= —nlrce

LAY,

They are monotone increasing in n. Consequently, they have a limit as n tends
to infinity, which is possibly co. These limits are called Loynes-variables, we
denote them as ,
n—oo

It is well-known (cf.[21, 34]) that under strong coupling or renovation it holds
that

W= im0
i.e. it is the time-forward limit. As an immediate consequence of the compar-
ison Lemma 62 we find,

Corollary 7. If assumption 66 holds then
1) (AL, . AY) <o (A4%3,...,A2%2) foralln>1 = WL < ,W2.2)
(B%,,B,ll) <ex (B%,,B?L) foralln>1 = bWolo <y Wozo

Proof. We prove part 1), the proof of part 2) goes similarly. From assumption
66 we have for all n,

dist
(AL, ALy, AL B (47, 45, A))
<ex (A2, AZ,... A2%)
dist
1: (A3n7A3n+17"‘7A%1)7

where dist means equality in distribution.
From the comparison Lemma 62,
2

ne

—1 —
aWn Sicx aW
The monotone convergence theorem then gives,

. —1 . =2
aWjo = lim W, <ex lim W, = 2

n [oe]
n—oo n—o0

O

It is well-known that in case of stability of the stochastic networks the Loynes-
variables are a.s. finite and represent the stationary versions of the traveling
times. So in case of stability also the stationary versions are icx-ordered. Also
a multidimensional marginal distribution of the stationary processes can be
shown (also as a consequence of comparison lemma 62) to be ordered in the
icx-ordering.
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11.3.1 Application 1: two i.i.d. M AP-sources perform better than
2 completely coupled Map-sources

Consider two MAP-arrival processes, say MAP? i = 1,2, which are indepen-
dent and have the same distribution. Denote by T* the transition epochs of
MAP® i = 1,2, and let T = T*UT? be the superposition of 7! and 72. Define
AL = 1if T,, € T is an arrival epoch of MAP' or MAP?. Then T = {T},}
are the potential arrival epochs, and the admission sequence AL generates all
arrivals of the two independent MAP’s. Consider now two completely cou-
pled MAP-sources, which is equivalent to one MAP-source which generates 2
arrivals at any of its arrival epochs. Say this MAP-source is with probability
1/2 the MAP!-source and with probability 1/2 the MAP?-source. Define for
i=1,2,

E! =

n

1 if T, is arrival epoch of MAP®
0 otherwise.

Then
A, =E} + E2,

and for A2 the admission sequence of the coupled MAP-sources we have for
1 < m < n that, A%, given A}l,..., AL is with probability 1/2 equal to 2E?,
and with probability 1/2 equal to 2E2,. Hence,

E[A} | Al,..., ALl = 4],
and therefore,
(Al,.. . ALY <o (43,...,42%) forall n.

Clearly, the events E° in MAP? are independent of the transition epochs
Ti, i = 1,2. This implies that {A%} and {T,} are independent for i =
1,2. Hence we can apply comparison lemma 62 and corollary 7, and find
that the potential (stationary) traveling times for the i.i.d. MAP-sources are
in icx-ordering smaller than those of 2 completely coupled MAP-sources. It
is possible to extend this result to: k i.i.d. MAP-sources which generate ¢
customers at each of their arrival epochs perform better in icx-order than
¢ < k ii.d. MAP-sources which generate k customers at each of their arrival
epochs.

11.3.2 Application 2: a fixed batch size is better than random
batch sizes

Consider a MAP-source, and assume that at each of its arrival-epochs a
random batch number of customers arrive, say IV, at arrival epoch T,.
We assume that {N,} is independent of {T,}, and also that {N,} is sta-
tionary and E N; = (. Take AL = ¢ and A2 = N,, n € N, then
Al is the admission sequence with fixed (or frozen) batch size. Clearly,
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(A}, ... AL) < (A%,...,A42), n € N and part 1) of comparison Lemma
62 and Corollary 7 applies.
If { =1 then (B},...,Bl)=(1,...,1) and in order to show that

(Bl,...,BY) <w (BZ,...,B2)
it suffices to verify that for k=1,...,n,
EBZ=1.
Since A2 is stationary, it follows that
EA? - EB? =1,

and E By = E B; = 1. Hence, in this case also, the actual traveling times are
smaller in icx-order for the fixed batch sizes.

11.3.3 Application 3: Fluid scaling improves the performance

Consider the following transformations of the time variable ¢t and the state
variable z,

t — Nt

x
r— —

Fluid limits are obtained by taking limits for N — oco. Here we take a
fixed N € N. If we have a MAP! with finite state space E and transition
rates Azy, =,y € E, and if we divide the time-variable by N, then we get a
MAP? with transition rates & \.,. After uniformizing both processes such
that the transition times in both processes are a Poisson process with the
same parameter \, say MAP'()\) and MAP?()\), we have that a real transition
in MAP'()) (i.e. a transition in MAP") is with probability - a real transition
in MAP?()) (i.e. a transition of MAP?). Clearly, we can couple the MAP!())
and MAP?()\) such that if T}, are the arrival epochs of MAP!()) then the
potential arrival epochs of MAP?()) are {T,}, and the admission sequence
is,

£ { 1 with probability +
n 0 else,

where the A2 are i.i.d. and independent of T},. If we take AL =1 then Al is
the admission sequence for MAP!()).
As in application 2 we have

—2 —2
(Al,... A < (47,...,AL)),
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where Zi =NA2 k> 1
The scaling of the state can be done by considering the original service re-
quirements as a number of packets (possibly of random size), and taking N

arrivals instead of one arrival. This gives the A, as admission sequence. So,

the process corresponding to the Al can be seen as a fluid scaling of the Zi—
induced process. Mathematically, it is the same comparison as in application
2. The comparison lemma 62 and corollary 7 imply that, the performance
of the fluid scaled process is better than that of the original process in icx-
ordering.

11.4 A second comparison lemma

In comparison lemma 62 we had admission sequences {A%},i = 1,2, where
A? gives the number of arrivals at T,,. This means that A% is an integer. In
the comparison lemma 63, below, the admission sequences are {p:}, where
p’, may be any nonnegative real number. For p' = (pi,ps,...) with pi, > 0,
n=1,2,... we define an integer admission sequence {A‘ (p")} by,

A (ph) 2 [ilpj +€J - [nzllp] +0J,
i= j=

where 6 is a random variable, uniformly distributed on [0,1), and where |z|
denotes the largest integer smaller than or equal to z € Ry . Note that A? (p°)
is random and integer valued, it gives the number of arrivals at T,. For the
inter-arrival-lengths we proceed similarly given ¢* = (q¢%, g3, ...) with ¢¢, > 0,
n=1,2,..., we define

n

Bi(q') 2 [Zq§+9J — [§q§+9J,
i s

where 6 is uniformly distributed on [0,1). Note that if pj,ps, ..., p}, are all
integer valued then A} (p*) = p}, for 1 < k < n, and any 6 € [0,1). Similarly,
as in comparison lemma 62, we consider the potential traveling times

[

JEE WL (ALY, . ALY), i=1,2

and the actual traveling times
i A i i :
bWy = s Wa(Bi(d)),---, Bo(¢)), i=1,2.

Lemma 63. The following implications hold for any n =1,2,...:
1) (p%7 AR 7p}L) SCX (p%? A 7p$b) :> (aW117 Tra W'r:!:) SiCX ((lW127 T a ng)
2) (Q%a aq}b) Scx (Q%7 761721) = (bW117-- <sb WTIL) Sicx (bW127-- <sb WHQ)
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Proof. We prove part 1), the proof of part 2) is similar. Since

(p%a v 7p}z,) <ex (pi s 7Pi)7

we may, by Strassen’s representation theorem, assume without loss of gener-
ality that

E((pi,---.00) | (p1,-- - 0n)) = (P15 -, P0)-

Theorem 18 together with Theorem 1 imply that for h an increasing convex
function,

i iy A QAL (o i
aWk(p17~~~7pn) = Eh(aWk(Al(p )77An(p ))7

is a convex function of (pi, ..., p%). The rest of the proof goes similarly as the
proof of comparison lemma 62 with (pi, ..., p!) substituted for (Af,..., A%).

O

Also in this setting we can consider the Loynes stochastic variables, as-
suming that p}, is defined for all n € Z,

ZWi = Z'VV,,,,(p]_n7 e ,pj_l)

and A ‘
j . w7
WL = lim ;W,.
n—oo

Assumption 67 A: (p') is a stationary sequence inn € Z for i = 1,2.

With the same proof as in Corollary 7 we then find

Corollary 8. Under assumption 67, the following holds
1) (p,...,pL) <ex (P3,....02) foralln>1= WL <, JWVL.
2) (gl .,qk) <ex (@2,...,¢2) foralln >1= WL <x yW2.

11.5 A stochastic lower bound on the traveling times

In section 11.2 we found that the intuitive argument, that queues in a random
environment should be bounded below by the corresponding queues where
the environment is ”frozen” to its mean values, is not generally true. As an
application of the second comparison lemma we will derive in this section
a lower bound in the icx-ordering. The queueing model is a FSEG with a
MAP-source. We will construct a more regular (in fact the most regular)
arrival process with the same arrival intensity as the MAP-source. This will
provide the lower bound. As we will see this regular arrival process can be ap-
proximated by a renewal arrival process with Erlang-distributed inter-arrival
times. Without loss of generality we may assume that the MAP has transi-
tion times {7} which form a Poisson(\) process. Let {X,} be the Markov
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process with transition probabilities A, which governs the transitions of the
MAP, i.e. X, is the state at T,,. We assume that the Markov process is sta-
tionary, and we denote by 7, the stationary probability on state x € E. The
probability on an arrival at T, is,

P2 mdayray (11.4)
z oy

The arrival intensity of the stationary MAP is then X 2 pA. The MAP
corresponds to the following admission sequence,

42 = 1 with probability rx,_, x,
"7 10 else.

Since A2 is 0 or 1, hence integer valued for all n, we can also use the
p-representation, i.e. take p2 = A2, n € N then

A, (p*) = A2 (for all @).
A4

Take p! = (p,p,...) and AL AL (p'). Then AL (for fixed ) is a bracket
sequence with rate p. It follows from Theorem 20 that the lower bound in icx-
ordering is obtained if we use the arrival process on 7, with A}I as admission
sequence. Let us call this the Regular Arrival Process with parameters (p, A)
(RAP(p,A)) . The Markov Arrival Process with stationary distribution 7,
x € E and arrival probabilities r5y, z,y € E, we denote by MAP(7,7).
Analogous to the -/G/1l-notation, let us denote the FSEG (with stationary
sequences T, and S,) by -/G/SEG and ;W (-/G/SEG), i = a,b for the
potential (¢ = a) or actual traveling time (¢ = b) (to a fixed transition).

Then we have the following theorem, which is an application of compari-
son Lemma 63.

Theorem 68. Fori=a,b,
iWoo (RAP(p, ) /G/SEG) <icx iWoo(MAP(m,7)/G/SEG)

Proof. For i = a we apply part 1) of comparison Lemma 63. Therefore we
have to show that

E ((pf,---,95) | (#1,---,0n)) = (B1, -, Dn)-

But p; = p for all k, therefore it suffices to show that E p? = p, for all k.
Indeed, this holds since,

E p% = Z Z 7Tz)\zy7"zy =P
z oy

In order to apply Corollary 8 we have to verify assumption 67. Indeed, the
admission sequence A2 is stationary since X, is assumed to be stationary.

Since fol |z + 0]df = x implies
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EA;<p>=/<an+eJ—L(n—1>p+eJ>de=p,

it follows that Al(p) is a stationary sequence, and assumption 67 applies for
both sequences. For ¢ = b, we consider the B,-sequence corresponding to the
Al (p)-sequence. Lemma 21 guarantees that it is a bracket sequence with rate
1/p. Since AL (p) is stationary, B} is also stationary. Hence,

B} =Bn(q) with ¢=(1/p,1/p,..).

Since the A2 sequence is integer valued, also the corresponding B2 sequence
is integer valued. It remains to verify that E B2 = 1/p, but this is a standard
result for stationary MAP-processes.

It is well-known that a MAP-process with transition times {T},}

e le O

Poisson(\) can be represented also as one with transition times {T}}
Poisson(INA) with the same 7 as stationary distribution. If we want to keep
the arrival intensity equal to A then we have to divide the p and the r,, by
N, hence 1/p is multiplied by N. Now suppose 1/p is rational, say %, then
N> /p = N is an integer. The corresponding regular arrival process has inter-
arrival lengths of V; steps, hence its inter-arrival times are Erlang distributed
with N; phases of exponential-distributed length with parameter NaA.
Using Theorem 68 we will show the following result:

Theorem 69. Fori = a,b, and any real number 0 < ¢ < 1 it holds
iWeo(RAP(p, \)/G/SEG) <;cz W (RAP(p/c, Ac)/G/SEG).

Proof. RAP(p/c, Ac) can be seen as a MAP with transition times {7, } which
form a Poisson(\) process. With probability ¢ a transition then is a real transi-
tion (i.e. a transition of the RAP(p/c, Ac) process). The stationary admission
sequence in RAP(p/c, Ac) has rate p/c on an arrival at a (real) transition.
Hence the stationary probability on an arrival at T}, is ¢ - p/c = p, and The-
orem 68 applies. 0

As a consequence of Theorem 68 we have that for a MAP(w,r) with p
(as in 11.4) rational, say p = N2/Nj, the FSEG with renewal input with
N phases of exponential distributed length with parameter NoA provides a
icx-stochastic lower bound on the actual and potential stationary traveling
times. By Theorem 69 RAP(pc,A/c) for any 0 < ¢ < 1 provides also a
icx-lower bound. Hence, since RAP(pe, \/c) is arbitrarily close to a renewal
input for ¢ sufficiently small, we get an approximation for irrational p. These
facts have been used, without proof, in papers on optimal routing to parallel
queues (cf. [43]). Clearly the limit-process of RAP(p/ec, Ac) for ¢ — o0, is
the renewal-process with constant inter-arrival-time equal to 1/pA (notation

D(1/pA))-
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Corollary 9. Fori=a,b,
1)iW(RAP(p/c, Ac)/G/SEQG) is monotone decreasing in c.
2) For any ¢ > 1:

oo (D(1/pA)/G/SEG) <iex iWie (RAP(p/c, Ae) /G/SEG)
<iex iWeo (MAP(W, T)/G/SEG)

Proof. Using a continuity argument (see [67]), the assertions 1) and 2) are
direct consequences of Theorems 68 and 69.






12 Simplex convexity

12.1 Introduction

So far, the notion of multimodularity is related to a particular base, namely
(F). One may wonder what happens if the multimodular base (F) is replaced
by another set of vectors.

This question is addressed in this chapter, using results from [8], where the
notion of multimodularity is extended to all possible initial bases. The notion
of multimodular triangulation was introduced in [27] as a generalization of the
original concept of atoms in [59]. Here, following [8], we provide a new sight
on multimodular triangulations by using a geometrical point of view which
is simpler (we do not use the set indexing techniques or lower envelops) and
more general (we do not restrict the triangulations to integer points). From
an arbitrary vectorial base of R*, we show how to build the corresponding
multimodular atoms partitioning the space and how to define the associated
simplex convexity property which generalizes multimodularity.

From there, we define the cones associated with these atoms and the
cone distance compatible with simplex convexity. Finally, we show how to
exploit the cone distance to define a partial order relation between arbitrary
admission policies in G/G/1 queues.

12.1.1 Organization of the chapter

This chapter is organized as follows. Section 12.2 defines a generalized notion
of atoms covering the whole space. Section 12.3 shows that starting with a
multimodular triangulation with simplexes formed by a set of base vectors,
satisfying simplex convexity is equivalent to the multimodular inequality.
Section 12.4 shows how one can restrict multimodularity to some sub-spaces
called sub-meshes. Finally, Section 12.5 defines the cone ordering between bi-
nary sequences and Section 12.6 provides an application to admission control
in queues.



244 12 Simplex convexity
12.2 Multimodular Triangulations

Let us start with a matrix D of size (n + 1) x n and of rank n such that the
rows of matrix D define n+ 1 vectors (sg, - - , 8n) satisfying so+---+ s, = 0.
Such a matrix will be called a multimodular (m.m.) matrix in the following.

Any multimodular matrix D can be constructed starting with a n x n
matrix M with full rank and appending minus the sum of all the rows of M
as the last row of D.

Definition 17. The mesh Mp associated with the m.m. matriz D is the set
of all the points {agso + a181 + -+ + ansn, a; €%Z, =0,---,n}.

Lemma 64. The following properties are true.
i) A point in R™ has a unique non-negative decomposition in (so---8n) (up

to the addition of (ag -+ an) withag = -+ = a, ).
i1)A point in Mp has a unique non-negative decomposition in (Sg -« - Sn) (up
to the addition of (ag -+ an) withag = -+ = ay ).
Proof. i) Since s1,- - , S, is a base of R™, then for any point z in R* z =

181 + - + a,S,. for some a; € R i = 0,...,n. Let a; be the minimal
coordinate. If a;; < 0, then

T=a181+ -+ Qndp — (S0 + -+ 8n)
= —a;80 + (1 — ;)81 + -+ - + (an — @;)Sn, (12.1)

where all the coordinates are non-negative. As for uniqueness, let z =
QoSg + -+ + ansy = Poso + -+ + Bnsn where we may assume that all co-
ordinates are non-negative and a; = 3; = 0. If 4 = j, then o = 3 because
(80, ,8n)\S: is a base of R™. If no coordinates are jointly null, then we can
write = (8o — B;)so+ - - -+ (Bn — B;)$n, which means for the jth coordinate in
the base (sg,- - ,8n)\Si, is a; = —f;, which is impossible by non-negativity.

ii) A point in Mp has a unique decomposition in (s, - , 8,), this decom-
position being in Z. By using the same method as in 12.1, we transform this
decomposition into a non-negative integer decomposition in (sg, 81, , Sn)-

O
Definition 18. A D-atom is a simplex in R™, made of the n + 1 points

Pbo = a,
P1 = a+ S¢0),
D2 = a + Sg(0) + Se(1) (12.2)

Pn =@+ S¢(0) +S¢(1) T 0+ Se(n—1)

where a € Mp (the root) and & is a permutation of {0,--- ,n}. This atom
will be denoted S(po,- - ,Pn)-
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Note that an atom is indeed a simplex since D is of rank n and that
S(po, - ,pn) and S(p1, -+ ,Pn,Po) are two notations for the same atom,
when starting with po (resp. p1) as a root.

Definition 19. A collection of simplexes is a triangulation of E (an arbi-
trary subset of R™) if

— FE is the union of all the simplexes.
— The intersection of two simplexes is either empty or a common face.

Theorem 70. The set of all the D-atoms forms a triangulation of R™, called
a multimodular triangulation.

Proof. Let x be a point in R”. By Lemma 64, x = agSg+- - - +QnSn, with non-
negative coordinates, one of which is 0. We construct a = |ag|so+- - -+ | an] $n
and & such that agiy — [agu)] > agivr) — ler1)]- We define 8, = 0,
Br-1 = Qeg(n—1) — Laﬁ(n—l)Jv Bi = Qi) — [Oég(i)J - (af(i-i-l) - |_04§(z'+1)_|)7 all
of them verify 0 < 8; <1 and 3.0 B; < 1. We have z = a + SBosg(o) + -+ - +
Bn-1(8¢0) + -+ 8¢(n—1))- Therefore, z belongs to the atom with root a and
permutation £.

Now, assume that a point x belongs to the interior of two different atoms
with respective roots a and b and permutations £ and 7. Due to shift invari-
ance, we may assume that b = 0. Moreover, with loss of generality take 7 to
be the identity.

T =a+agse0) + -+ an-1(8¢0) + -+ Se(n—1))
= Boso+ -+ PBn-1(S0- -+ 8n_1)
with Z;:OI B: <1 and Z?:_Ol a; < 1. Since 7z is in the interior of both atoms,

we also have 8; > 0 and «a; > 0 for all i+ = 0,--- ,n — 1. Therefore, by
uniqueness of the decomposition of z, and writing a = agso + - - - + ansn,

n—1
ap + Z agy = Bo+ -+ Pn
j=€71(0)

n—1
a + Z gy =B+ + Pn
J=€-1(1)

n—1

a1t Y agg) = Ba

j=€="(n-1)

n—1
ant D agy =0
j=€1(n)
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Since all the partial sums of the «; or of the 3; are all smaller than one
and since a; are integer numbers, then, a; = 0 for all « = 0,--- ,n. Both
atoms have the same root.

Now, the equality of the partial sums taken one by one imply first that
Z?;é.l_l(n) agjy = 0. Since a; > 0 for all 4, then the only possibility is
&£~(n) = n. Considering vectors s;, and sjy1, we have:

n—1 n—1
Yooam - D gy =h
7=€=1(k) j=E€=1(k+1)

> 0.

This implies that £~1(k) < £71(k + 1). This means that ¢ is the identical
permutation. Therefore, both atoms are equal. 0

In the restricted case when the mesh is Z™ and D the incidence matrix of
a graph, this theorem was proved in [27] using an intricate argument of set
indexing (see the example presented in Figure 12.1).

Lemma 65. Combinatorial properties of m.m. triangulations.

i) A point in Mp belongs to (n + 1)! D-atoms.
i1) The unit-cube in Mp is partitioned into n! D-atoms.

Proof. i) This is a straightforward consequence of the definition of atoms.
ii) The unit-cube U in Mp is the set of points of the form aq181 + -« + ansn,
with a; € {0,1} for all 1 < i < n. Given a permutation £, there exists a point
b € U such that the atom S(b, b+ s¢(), -+ ,b+ S¢(n—1) is included in U. The
point b = bys1 + - - - + by Sy, is chosen in the following way:

- {o if £1(i) < £7(0), (12,3

1 otherwise.

Each atom in U has n + 1 vertices, hence n + 1 representations of the form
S(b,b + s¢(0),- -+ ,b + S¢(n—1)). Finally, combining this with part i), (n +
1)!/(n + 1) atoms are contained in U. Since all the atoms triangulate R™,
those in U triangulate U. 0

Some multimodular triangulations have a special interest. The most used
ones are the triangulations with a m.m. matrix D being the incidence matrix
of a graph.

An oriented tree is a graph G = (V, E) with n + 1 nodes and n arcs. It
has an incidence matrix D of size (n + 1) x n defined by

+1 if vertex ¢ is the start point of edge j
D, ; = ¢ —1 if vertex ¢ is the end point of edge j
0 otherwise
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First note that whenever D has rank n, then the graph has to be a tree.
Also, since D is totally unimodular, then its mesh Mp is Z™ (see for example
[54] for a detailed presentation on totally unimodular matrices).

The L-triangulation is the triangulation associated with a linear graph
(see Figure 12.1 for an illustration in R?). The associated m.m. matrix is

1 0 0---0 O
-11 0--- 0 O
0O -11-.---0 0
p=|. . (12.4)
o o0 0-.----11
0O 0 O 0 -1

The tree associated with the
L-triangulation in R2.

The atoms of the
L-triangulation in R2

Fig. 12.1. The L-triangulation in dimension 2

On the other hand, some triangulations of the space into simplexes are
not multimodular triangulations. Such examples in dimension 2 and 3 are
given in Figure 12.2. The simplexes in the triangulation displayed in 12.2(a)
use 4 different base vectors, s1, $2,83,84. The triangulation in 12.2(b) de-
composes the unit cube in 5 simplexes instead of 3!=6 for any multimodular
triangulation.

12.3 Multimodular Functions

Let D be a m.m. matrix with row vectors, (so,--- ,$n). Sometimes in the
following, the reference to D may be omitted. Everything implicitly refers to
D such as multimodularity and atoms.

Definition 20. A function f : Mp — R is D-multimodular if and only if
for alla € Mp, and for all0 <i< j<mn,
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1402 _ -~
(a) Triangulation of R? (b) Triangulation of the cube in R?
which is not multimodular into a minimal number of simplices.

It is not multimodular

Fig. 12.2. Triangulations of R? and R® which are not multimodular triangulations

fla+s:i)+ fla+s;) > f(a)+ fla+ s+ s5). (12.5)

From f, we construct a function f : R* — R by linear interpolation of f over
the atoms defined by D.

Note that f depends on D.
Theorem 71. f is D-multimodular if and only if f is conver.

The following proof is completely different from the former proofs and
gives a generalization to more general meshes. The hard part (“only if”), in
the restricted case of the L-triangulation, was done in [59]. The extension to
the more general case of tree triangulations as well as the easy reverse part
(“if” part) were presented in [27]. A version of the proof presented here can
be found for the restricted case of the L-triangulation in Chapter 1.

A function f which is D-multimodular may also be called simplex conver,
considering Theorem 71.

Proof. “only if”: The function fis continuous by definition. Moreover, along
any direction 8, it has only a discrete number of isolated points where it is
not differentiable. By using the characterization of convexity given in [96],
we will check convexity at a point z by showing that for point 2z, and any
direction ¢, the right derivative is greater than or equal to the left derivative.
It obviously suffices to check at points that are on the boundary of an atom,
since, by definition, f is linear in the interior of atoms.
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Hence, we first assume that the point z is on the interior of a face (of
dimension n — 1) which is common between two adjacent atoms. Without
loss of generality, assume that the atoms (defined below by their extreme
points) are

S =8(x0,%1, -y Trm) and S =8(x0, 2],y Tm)-
where z; satisfy (12.2) and
T = To + Siy, Ty =Ty + 84y

Decompose direction ¢ in its projection do in the common face between
the two atoms and in the component §; along the direction (zj — z;1). In
the direction 02, the left and right derivatives are equal. In the direction 64,
the right_derivative is a constant ¢, depending on the length of 61, times
f(x7) — f(2). The left derivative is ¢(f(z) — f(21)). Omitting the constant c,
and using point z = £ (zg + @2) hence 2f(2) = f(zo) + f(x2), we get for the
difference

(F(@1) = f(2)) = (f(2) = f(x1))
= (f(a1) = f(@0)) — (f(22) = f(21)) (12.6)

The fact that (12.6) is nonnegative follows by applying 12.5 with z = z,
and

2] = To + iy

T2 = Zo + Si, + Siy

1 = g + S8i;-

It now remains to consider the case where the direction 6 in point z crosses
from atom S to atom S, and SN S is of dimension at most m — 2. In that
case, we consider the cylinder C in direction § containing the hyper-face F
of S, opposite of z in direction §.

The intersection of C' with an arbitrary atom A is of dimension, say k and
its projection on F' along direction § is the intersection of the projections of
C and A and has dimension at most k. Therefore, F' is almost everywhere
(in Lebesgue measure) covered with such projections of dimension m — 1.
Therefore, we can find an affine line L with direction 4, included in C, that
intersects S and S, the projection of which is a point in F' not belonging to
intersections of dimensions smaller than m — 1. Therefore, we can claim that
L only intersects faces of atoms of dimension m — 1. The convexity in point
z and direction 6 now follows from the convexity in points z; corresponding
to the intersections of line L with all the intermediate atoms between S and
the last atom, S.

This construction is illustrated for dimension 2 by Figure 12.3.

_“if”: Consider an arbitrary point xy and any two distinct elements s;,s; in
F. We have to show that
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Fig. 12.3. Construction of cylinder C' and line L in dimension 2.

f(@o) + f(22) — f21) = f(a]) <0, (12.7)

A N A .
where 1 = zo + 4, Ty =%+ S5, T2 =21 +8; =% + ;-
Define z £ L(x1 4+ #}) = (0 + 22) and consider the line segment z; —
z — x7. The left derivative (1.d.) and right derivative (r.d.) in z are given by

ld. = f(%(:cl +23)) = f(z1) = %f(xo) + %f(ﬂcz) = f(z1),

rd. = f(z}) — f(%(wo +22)) = f(z}) — %f(ﬂco) - %f(wz)

Since f is convex, r.d. — [.d. is non-negative, and hence (12.7) holds. 0

Lemma 66. We consider all the n-periodic sequences a = (a;);en with val-
ues in N satisfying

iai =k. (12.8)
=1

Let f be a multimodular function defined on a mesh Mp of dimension n.
Then, the quantity

Z f(a/isl ++ a/i-l—n—lsn) (129)
=1

is minimized at point r = (%51 + 4 %sn)

Proof. Let P be the set of all integer sequences a, which are n-periodic and
such that within one period, they add up to k, Y., a; = k. By periodicity,
and using Jensen inequality,

D <k k
flnelg - ;f(aisl + ot Qgn-18n) = nf(ﬁsl + -4 Esn).
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12.4 Sub-meshes

Definition 21. A sub-mesh P of Mp is the intersection of Mp with a convex
set of R™ which is the union of (faces of) D-atoms.

Since any union of D-atoms which forms a convex set is a sub-mesh
by definition, typical sub-meshes are: the positive quadrant: {agsp + --- +
(n—_15n—1,0; € N} and the unit cube {agsg + -+ an_15,-1,0; € {0,1}}.

The hyper-plane {agso+ -+ an—15n—1, 2, i = k,a; € Z} is a sub-mesh
of dimension n — 1 of the L-triangulation. An example of such a sub-mesh in
dimension 3, P = {x + y + z = 2,2,y, 2 € N}, is given in Figure 12.4,

T

Fig. 12.4. A sub-mesh is a convex union of faces of atoms

Lemma 67. Any sub-mesh P has the following properties:

i) The faces defining P form a multimodular triangulation of P.

it) The vectors of this new multimodular triangulation are disjoint sums of
the original vectors.

Proof. i) First, by convexity, P has the same dimension, say k, as any of its
faces. It should be obvious that the faces defining P form a triangulation of
P. Now, let us show that this is a multimodular triangulation.

Let F! (resp. F?) be a face in P of a simplex S* (resp. S?) with root a
(resp. b) and permutation £ (resp. ). Without loss of generality, we may as-
sume that a € S and b € S? by shifting the starting points in the definitions
of atoms S! and S2.
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Now, the vertices of F! (resp. F?) are visited in an order depending on ¢
(resp. 7), such that

pp=a py=b
Pl =a+8¢0) T+ Sgin-1) PL =D+ Sy0) + 0 F Sy(iu-1)
Ps =P+ Se(in) T F Sg(ia—1) P3 = P+ Sy(i0) 00+ S4(—1)
11 9 _ 2
Po =P+ Se(in) T+ Se(n)—1 PO = Pr T S4(G) T F Sy(n)-

Since both faces are in the same space of dimension k, then for any m < k,
we have the linear combination

Sy(im) Tt Sy (Gmg—1) = Z Qm,eSe(ip) T Se(ipyr—1)-

This is a linear combination between the vectors sg,s1, -, 8, (with the
convention that ig = 0 and j, = 0). We know that the only relation is
so + 81+ -+ 8, = 0. Therefore, for all m, there exists a unique ¢ such that
0m,q = 1. (all the other coefficients o, ¢ are null).

Sy(im) T F Sq(Gmar—1) = Se(iy) T F Se(igra) -1

This means that the vectors defining face F? are the same as the vectors
defining face F' (up to a permutation). 0

Lemma 68. Let p be a point in Mp, & be a permutation of {0,--- ,n} and
{ik }k=0,.m be an increasing sequence of integers with igc = 0 and i, = n.
We define the vectors 5; = sg(i;) + -« S¢(ij4,—1) for all j =0,---m. The set
p+{aoSo + -+ amSm,a; € N} is a sub-mesh of Mp.

Proof. First note that the set P is a convex subset of Mp of dimension m.
Now we consider the triangulation of P defined by the vectors 3o, -+ , S,
each atom of this triangulation is a face of a D-atom. 0

Thus the hyper-plane P = {aoso + -+ + Gn—15n-1,2;0; = k} is a
sub-mesh of dimension n — 1 of the L-triangulation by choosing 35, =
81,° " y8pn—2 = Sp_1 and 5,1 = S, + S0, which yields P = (k,0,0 .. ,0) =+
{woSo+ -+ xpn_15n_1,7; € N}.

Lemma 69. A function f which is D-multimodular is multimodular on any
sub-mesh P with respect to the induced multimodular matriz on P.

Proof. Let a be a point in P and let w and v be two arbitrary rows for
the multimodular matrix of P. By Lemma 67, u = s;; + -+ s;, and v =
8j, + -+ + s, where the sets {s;;,---,s; } and {sj,,---,s,, } are pairwise
distinct. Therefore, we have
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fla)+ fla+u+v)=fla)+ fla+ sy +-+ 8 +55, ++5j,.)
< flat s+ +si)+ flat+s; +--+55,)
flatu)+ fla+v).

O

Corollary 10. The function f is multimodular in a sub-mesh P if and only
if f is convex on P, the convex hull of P.

Proof. 1t should be clear from the proof of Theorem 71 that the equivalence
of the multimodularity of f and the convexity of f still holds if we restrict
the function f to P. 0

A second corollary of Theorem 71 concerns the minimization of multi-
modular functions. For a function defined on P, we call z a local minimum
on P if f(z) < f(z + &;s;) (with e; € {—1,1}) for all i such that z + ¢;s; is
in P.

Corollary 11. Let the function f be multimodular in P. Then a local mini-
mum is a global minimum on P.

Proof. If f is multimodular in P, then fis~convex in P, and is linear on the
(faces of) atoms forming P. The graph of f (i.e. { : Jy s.t. > f(y)}) is a
convex polytope. Therefore, all the local minima are global and are extreme
points of atoms. 0

12.5 Cones

Now, the convex space P of dimension n will be divided into (n + 1)! cones,
all starting at point h, any point of the mesh of P. Consider one atom
S = S(po,p1, - ,Pn) containing h = py as a vertex. Let £ and 7 be the
permutations on {0, ---n} such that 7(0) = 0 and

Pr1) = h+s¢0) (12.10)
Pr(2) = Pr(1) T S¢(1) (12.11)
= (12.12)
Pr(n) = Pr(n—1) T S¢(n-1) (12.13)
h = Pr(n) + S¢(n)- (12.14)

Now, we define for all 1 <3 < n, b; = E;zl sejy and b = (bi,--- ,bn).
Therefore, p.(;y = h+b;. The vectors (b1, - - -, b,) will be called the generators
of the cone.

The cone associated with S, denoted C(S) is made of all the points p of
P such that p = h + ctb where c is a non-negative vector in N*. First, note
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that, for each p in the cone, vector ¢ is uniquely defined since (b1, ,b,)
are independent vectors. Second, note that when we consider all the atoms
containing h as a vertex, then all the (n + 1)! associated cones will cover P.
If two adjacent atoms share a face, the two corresponding adjacent cones will
also share a “face” (of dimension n — 1).

For any point p in P, p will be in at least one cone and we will have
p = h + ct(p)b, where b is uniquely defined on the support of ¢(p). note that
p can be on the boundary of several adjacent cones.

We shall denote d(h,p) = c¢1(p) + - - -+ cn(p) and call it the cone-distance
from A to p.

All the previous remarks show that d(h,p) is well defined.

12.5.1 Minimization

In this section, we consider the case where P = R, where P is the convex
hull of P, and h = 0. We also consider a function f multimodular with respect
to the row vectors of D, sg,--- , Sp.

We focus on one arbitrary cone, C, defined by the permutation . This
means that the generators of C are the vectors

bo = 51(0),
br = 55(0) + 831);

b1 = 85(0) T Sy(1) + 7+ Sy(n-1)-

Any point in C' has non-negative coordinates fy,-:- ,B,—1 in the base
o, bn_1.

We call & the linear transformation which is the passage from the base
bo, -+ ,bn—1 to the base s,(0), Sy(1), " s Sy(n—1)-

Lemma 70. Let k be an integer. The set Cy of points in C such that By +
oo+ Pt =k is a sub-mesh of Mp.

Proof. Set p = ks,0) and 3g = 8,(1)," " ,5n—2 = Sy(n—1); Sn—1 = S4(0) T
54(n)- Then the sub-mesh p+ {}", a;3;,a; € N} N C is precisely the set Cy.

The following lemma is some kind of generalization of Theorem 6 from the
L-triangulation and the positive quadrant to any multimodular triangulation
and one of its cones.

Lemma 71. Let f be a m.m. function, then the quantity

LS Fo BB firn )
7=1
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is minimized over the set Cy at all the points B(0), 0 < 6 <1 of coordinates

5:6) = Lit 6]~ G~ 1% ).

Proof. Using Corollary 10, the function % > fo DBy, -, Bitn—1) is con-
vex. Moreover, it is minimized at point r = (8 = %, R %) over Cy
(see Lemma 66).

This function is linear on the atoms of the sub-mesh C}. Therefore, it
is also minimum at all the vertices of an atom containing the point r. The
vertices of this atom contain the points 8(6) with coordinates

5:6) = LG+ )% +0] = i~ +0],

when 6 varies from 0 to 1.

To show this, first note that these points are all in the sub-mesh, since all
their coordinates add up to k and since @(3(0)) is integer valued.

Second, let f; =1—(i+1)£ + |(i+1)£], ordered in the increasing order.

By construction, when 6 varies from 0 to 1, then the points 3(#) have at
most n — 1 values. The point 5(6) changes at all the points of the form f; for
i=0,---,n—2. At 0 = f; we add —s;41 (if f; = f; then when 6 = f; we add
—8i+1 — $;+1). Therefore, all the points 3(6) form a face of an atom. Noting
that

r= 2 B(0) + —(fo) + AU+ —— B 2),

n—1

shows that r belongs to that face. 0

12.5.2 Cone ordering and monotonicity

Now, we define a partial order on P by choosing h = r. We only consider
multimodular functions for which 7 is a minimal point.

First, this partial order (called cone ordering) is defined in a different
manner on each cone.

In a given cone C, with generating vectors by, - - - ,b,, we say that x <¢ v
if ¢(z) < ¢(y) component-wise. Note that a cone with this partial order is a
lattice which is isomorphic to N* with the classical component-wise order.

Theorem 72. If f is a multimodular function on P, then x <¢ vy implies
that f(x) < f(y). In other words, f is monotone with respect to the partial
order <¢.
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Proof. Since x and y are comparable, this means that they are in the same
cone. From now on, by, --- ,b, will be the generators of this cone.

First note that we can assume that d(z,y) = 1. If not, then we prove step
by step along the path from z to y along the direction of the generators, say
=121 <¢ - <o Tp =y that f(z) = f(21) <+ < flom) = f(y).

The proof will now proceed by induction on d(r, z).

First note that the property is true if d(x,r) = 0, since r is the argmin of
fonS.

Now, let us assume that we have d(z,r) > 1. Pick a point z such that
x = z+Db; in cone C. Equivalently, we have c(y)+e; = ¢(z) and ¢(y) < 0. Note
that d(z,r) = d(z,r) — 1 and z <¢ . By induction, this means f(z) < f(x).

Since d(z,y) = 1, there exist j such that y = = + b;. Now we have two
cases, since we may not be able to choose 4 such that ¢ = j.

— If + = j, then by convexity of f,
flz+b:) = f(2) S flz+bi +bi) = f(z+ bi).

We also know by induction that f(z + b;) — f(2) > 0. This means that
fz) < fy).

— If ¢ # j, then we choose yet another point, w, such that w = 2+b;. We can
assume that 4 > 7 (the case j < i is similar by inverting the role played by
b; and b; in the following).

Since b; is a sum of base vectors, it is also a sum of opposites of base
vectors, since all base vectors add up to 0. Note that all these base vectors
are distinct from the base vectors involved in b;.

We have:

bj = sy + o+ se(y), (12.15)
b = —8g(s41) — Se(isa) = — Se(ni1)- (12.16)
Therefore,
flw)=f(z)= f(z+ Se(1) + o Se(y) T Se(iqr) oo F 3§(n+1))
—f(.’E + 8§(i+1) +---+ 85(n+1))

< fl@+ sy + -+ se) — (@), (12.17)
= f(y) = f(=).

where Inequality 12.17 is a direct consequence of the definition of multi-
modularity. Since d(r,w) = d(r, z)+1, by induction we have, f(w)— f(z) >
0, then this implies f(y) — f(z) > 0.

O
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12.6 Application: periodic admission sequences in
G/G/1/o00 tandem queues

We consider queues in tandem with general stationary service times. As for
the arrival sequence, let (u;);en be a stationary process. The integer sequence
{a;}ien is the admission sequence into the queues. The interarrival times of
customers in the queue is a sequence (7;);en defined by:

a1+---+a;

T = E Uj.

j=a1+-tai-1

The construction of the inter-arrival sequence is illustrated in Figure 12.5.

uq un ce i.i.d sequence
( q

T1 T2 T3 (inter-arrival time)
a; =2 as =2 a3 =2 (admission sequence)

Fig. 12.5. The construction of the inter-arrival sequence from a sequence u and
admission a = (2,2,2,--).

In the following, the admission sequence will be assumed to be periodic
with period n.
As to introduce multimodularity, we choose the L-triangulation of Z™.

The atoms given by the L-triangulation with row vectors s, = —e; + €41,
and sg = e1, 8, = —€,, as in 12.4.
The sub-set of Z™ that we will work with is P = {(ag, -+ ,an),a; >

0 Vi, > ya; =k}, where k is a given integer.
The set P corresponds to all admission sequences with k& admitted cus-
tomers among n slots.

Lemma 72. P is a convex union of hyper-faces of atoms in 7™
Proof. Let us consider the constraints one by one.

— The constraints a; > 0 restrict P to N™ which is made of a convex union
of atoms.

— Now, let us look at the constraint .- a; = k. This constraint is a convex
union of faces of atoms.

To finish the proof, remark that the intersection of convex union of faces
of atoms is a convex union of faces of atoms. 0
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The atoms on P are defined by the vectors s] = $1,--+,8, 1 = Sp—1 as
for the L-triangulation of Z", and a new vector sj = sg + s, = e, —e€1.

If f is a multimodular function, f : Z™ — R, we will consider the re-
striction of f to P which is also multimodular on P with its own atoms (see
Lemma 69). By Corollary 11 f has a global minimum on P. In the following,
this minimum will be called 7.

Theorem 73. The average expected waiting time in a stochastic event graph
s a multimodular function on P.

Proof. From the vector a = (ai,---,a,) we construct an infinite sequence

a = a*. Let gn(a1, - ,an) def % szl We(ai,- -+ ,ax), where Wy is the

expected total sojourn time of the kth customer, and let G(aq, - ,an) def

limy_ oo gn(ar,: -+ ,an). We also denote p the largest integer such that pn <
N.

From Theorem 19, we know that W, is multimodular with respect to
the L-triangulation in Z*. Since the m.m. matrix for the L-triangulation
in Z* is a sub-matrix of the m.m. matrix for the L-triangulation in Z~

then we also know that W, is multimodular in Z~. Therefore, the function

H(ay, - ,an) def v ,Icvzl wy(ay, -+ ,ax) is multimodular in Z%.

For all 0 <4 < n, gn(a+8;) = H(a + 8; + Sign + -+ + Siyrn), where
k = |®=]. Now, using the general characterization of multimodularity, that
is f(a+S14+52)— f(a+ S1) < f(a+ S2) — f(a), for Sy and Sy any arbitrary
sum of base vectors, with the only restriction that no base vector appears in
S1 and in Sy, then it is immediate to check that gy (a+s;+5;)—gn(a+s;) <
gn(a+s;) —gn(a), for s; and s; any arbitrary distinct m.m. row vectors.

Therefore, gy is multimodular in Z™. The limit G is also multimodular
in Z™. By using Corollary 69 , G is also multimodular on P. 0

12.6.1 An example

We want to compare the expected waiting time under admission sequence
a = (1,2,3) and under admission sequence b = (1,1,4).

The corresponding space P is the set {(z,y, 2),z+y + 2z = 6}. The space
P is of dimension 2 with induced multimodular vectors s; = (+1,—1,0), s2 =
(0,+1,—1) and sp = (—1,0,+1) (from the L-triangulation of R?).

The cost function G (expected waiting time) is minimized at point r =
(2,2,2). This is a direct consequence of a combination of Lemma 71 (used
with the L-triangulation and the cone constructed with the n first vectors,
which is the positive quadrant) and Theorem 73.

If we consider the cone C; generated by by = sg and by = sg + s1, then
we have a = r 4+ by and b = r + by + by. Therefore, a <¢ b, which implies
G(a) < G(b) by Theorem 72. This example is illustrated in Figure 12.6.
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Fig. 12.6. comparison of b = (1,1,4) and a = (1,2, 3)






13 Orders and bounds for multimodular
functions

13.1 Introduction

In Chapter 12 we studied the question which of two deterministic periodic
admission sequences (periodic sequences of nonnegative integers) gives the
smaller average expected waiting time. A partial order, called the cone or-
der, is introduced there, and it is shown that the average waiting time and
more generally any multimodular function is monotone with respect to the
cone order. It is natural to define a multimodular order by requiring that
any multimodular function is monotone. In contrast to Chapter 11, where
we used the convex order for stochastic admission sequences, we consider
deterministic admission sequences in this chapter. Note that deterministic
admission sequences can only be ordered for all multimodular functions if
they are equal. Therefore we consider multimodular functions with a fixed
minimal point as we did with the cone order. In Section 13.2 we introduce
the multimodular order and we show that the cone order is equivalent to
the multimodular order. In Section 13.2.1 the shift invariant counterparts of
these orders are studied and it is shown that the regular admission sequence
is the minimal point. We introduce a combinatorial notion which we call the
unbalance of the admission sequence in Section 13.3. Roughly speaking it
measures its 'distance’ to the regular admission sequence. We show that the
unbalance is a shift invariant and multimodular function. For the definition of
the unbalance we introduce in Section 13.3 the graph order, which gives the
distance of a given admission sequence to the bracket sequence and thereby
defines its unbalance. The relations between the shift invariant orders and the
graph order are studied in Section 13.4. We show through counterexamples
that they are not equivalent.

For the optimal routing problem to n queues we derived in theorem 26 that
a lower bound is obtained by using regular admission sequences (or what is
the same bracket sequences) with 'minimizing’ routing fractions (densities)
as admission sequences to all queues. But generally only in the routing to
n = 2 queues, the routing fractions will be balanceable (see section 6.2) and
only in that case the admission sequences can be glued together and be made
to a feasible routing policy. In Section 13.5 we derive an upper bound for the
difference between the average expected waiting time for customers which
are routed to one queue with a given periodic admission sequence which has
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a fixed routing density, and the lower bound corresponding to the regular
admission sequence with the same density. In Section 13.6 we derive then an
upperbound for the average expected waiting time for a routing policy to n
queues as a function of its unbalance. For a routing policy the unbalance is
the sum of the unbalances of the induced admission sequences to the queues
1,...,n.

The difference between the upper and lower bound depends on the average
interarrival times but it is insensitive for their distributions and the service
time distributions. The upper bound is tight for the heavy traffic situation
in which the interarrival and service times are deterministic and the traffic
load is 1 for each of the queues. This means that the upper bound is correct
for the deterministic heavy traffic case. Clearly, it holds for low traffic that
the average expected waiting time is close to the lower bound.

All this is mainly based on the unbalance which is a combinatorial notion
and the analysis in all this chapter is mainly combinatorial, it turns out
that the unbalance is also useful in other models than routing to queues.
Indeed, the bounds can be generalized from waiting times to similar bounds
for sequences of multimodular functions as in Section 1.3 (see the remark at
the end of Section 13.4). This chapter is a modified version of [49]. It uses
at some places the results of the technical report [68]. A shortened version
of this report appeared as [69] and an extended version will be published in
two parts [72] and [71].

13.2 The multimodular order and the cone order

Let D be a multimodular matrix with rowvectors dg,dy,...,d, € R™ satis-
fying do + ...+ d, = 0 and let Mp C R™ be the corresponding mesh. Let
r € Mp and let

F(D,r)={f: Mp — Rs. t. fis D—multimodular and f(r) = m]iv}l f(z)}
zeMp

be the set of D - multimodular functions with global minimum point in r. For

given multimodular matrix D and point r € Mp we will use the multimodular

order <,,,» and a cone order <¢ on Mp. The multimodular order is defined

below and the cone order is defined in Section 12.5.

Definition 74 Let the multimodular matriz D and global minimum point
r € Mp be given. Then for x,y € Mp we say that  <mm y if f(z) < f(y)
for every f € F(D,r).

It can be shown that both the multimodular order <,,,, and the cone
order < are reflexive, antisymmetric and transitive and thus they are partial
orders on Mp. The following theorem says that these partial orders on Mp
are equivalent.
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Theorem 75 For given multimodular matrix D and global minimum point
r € Mp we have for x,y € Mp that © <,..m y if and only if x <¢ y.

In Theorem 72 it is shown for x,y € Mp that x <¢ v implies that
T <mm Y- Thus to prove Theorem 75 we have to show that = <,,,, y implies
that # <¢ y. By translation we can assume without loss of generality that
that the global minimum point r = (0,0,...,0) € Mp. Let ¢ = {C;}{"T"
be the set of cones corresponding to D and root r = (0,0,...,0) (the origin)
as defined in Chapter 12 . Then {UC; : C; € C} = R and for C; € C let C}
be the intersection of C; and Mp. We have the following proposition ( see
Lemma 64 and Section 12.5).

Proposition 18. Let C; € C. Then there exist by,bs,...,b, € R” and a
bijection o : {1,2,...,n+1} — {0,1,...,n} such that

1. by, ba, ..., b, are linearly independent.

2. b; =37 do) for j=1,2,...,n.

3. 01:{27:1)\11)1AlzofO'I“’L:].,Q,,n}
4. MD:{Z?ZI)\i'bi:)\iEZfO’f'i:].,2,...,n}.
5. C{={Z:-L:1)\i~bi:)\,‘EZZUfOT‘i=1,2,...7TL}.

Remark 28. For a convex cone C C R" we say that a set of vectors

V1,02, ...,V are generators of C' if vi,va,...,vr are linearly independent
and C = {Ele)\i cv; t A > 0fori =1,2,...,k }. In that case we say
that C is a k - dimensional cone. In particular we have for by, bs,...,b, as

in Proposition 18 that they are generators of the n -dimensional convex cone
C;.

Let by, bs, ..., b, be generators of cone C; € C as in Proposition 18. If x €
Mp then we have by Proposition 18 that there exist unique z; € Z such that
z =" 2 -b.Fork=1,2...,n we define the function f, : Mp — Z>
by

fr(z) = max(zy,0). (13.1)

Fori=1,2,...,(n+1)! let G(C;) be the set of functions {f1, fa,..., fn}
for cone C; and let G = UEZTI)!G(CZ-). For C; € C with generators by, b, ..., b,
as in Proposition 18 we say for = >, x; - b, € R™ that supp;(z) = {k €
{1,2,...,n} for which x > 0}. Thus k € supp,(z) if and only if fi(xz) > 0
for fr € G(C;). Note that we assume for k € supp,(z) not only that zp # 0
but that x > 0 which is stronger than in the standard definition of support.

We have the following proposition.

Proposition 19. For given multimodular matrix D and global minimum
point r = (0,0,...,0) € R* we have that G C F(D,r).

Proof. For f € G we have that f = f, € G(C;) for some k € {1,2,...,n} and
1 €{1,2,...,(n+ 1)!}. Let by,bo,...,b, be the generators of cone C; as in



264 13 Orders and bounds for multimodular functions

Proposition 18. Then for z = Y- | z;-b; € Mp we have that f(z) = fi(z) =
max(zg,0). Since f(x) > 0 for every x € Mp and f(r) = 0 it follows that 7 is
a global minimum point of f. It remains to prove that f is a D -multimodular
function. So, we have to show that for every x € Mp, 4,5 € {0,1,...,n} with
1 % j it holds that

fle+di)+ flx+d;) > f(x) + f(x +d; + dj). (13.2)

According to property 2 of Proposition 18 there exists a bijection o :
{1,2...,n +1} — {0,1,2,...,n} such that b; = Y7, d,q for j =
1,2,...,n. From this it follows that d,(1) = b1, dg(j) = bj—bj_1 for2<j <n
and do(nt1) = — D ieq doiy = —bn- Put I =0 (k), m = o(k+1). If ¢ & {l,m}
and j & {l,m} then we have for every x € Mp that f(zx +d;) = f(x + d;) =
f(z) = f(z + d; + d;). Hence (13.2) holds . Suppose that ¢ € {I,m} and
J & {l,m}. Then we have for every x € Mp that f(z+d;) = f(z + d; + d;)
and f(x+d;) = f(z) and thus (13.2) holds. Suppose that {i,j} = {I,m} and
assume without loss of generality that i« = [ and 5 = m. If f(x) > 0 then it
follows that f(x+d;) = f(z)+1, f(x+d;) = f(z)-1, f(x+d; +d;) = f(x)
and thus (13.2) holds. If f(x) = 0 then it follows that f(x + d;) > f(x),
flz+d;) = f(x +d; +d;) = f(z) = 0 and thus (13.2) holds. So, we can
conclude that (13.2) holds in every case and thus f € F(D,r). 0

Proposition 19 has the following corollaries.

Corollary 76 If x,y € Mp, © <;um ¥ and there exists some cone C; € C
such that z,y € C; then x <¢ y.

Proof. Let by,bs,...,b, be the generators of cone C; as in proposition 18 and
putz =31, x;-b; andy = Y ., yi-b;. Then we have by Proposition 18 that
zi,Yi € L>o for i =1,2,...,n. So, for f, € G(C;) we have that fy(z) = zi
and fr(y) = yx for k = 1,2,...,n. Hence by Proposition 19 and z <., y we
have that 0 < zp, = fr(z) < fr(y) =wp for k=1,2,...,n. Thus 2z <c y.

Corollary 77 If x,y € Mp, © <mm ¥y then supp,(x) C supp,(y) for i =
1,2,...,(n+ 1)L

Corollary 77 can be proved in the same way as Corollary 76. The following
corollary follows immediately from Corollary 76 and Corollary 77.

Corollary 78 If x,y € Mp, x <,um y and there exists some cone C; € C
such that x is an internal point of C; then x <¢ y.

To prove Theorem 75 it suffices by Corollary 76 to prove that there exists
some cone C; € C such that z,y € C, ifx <pmy. fzx=r,y=rory=XA-2
with A > 0 then it follows directly that x,y € C; for some C; € C. Suppose
that y = A -z with A < 0 and = # r. Let C; € C be a cone containing x
with generators by, ba,...,b,. Then z =3 " 2;-b;andy =1 A z;-b;
with z; > 0 for ¢« = 1,2,...,n. Moreover we have that z; > 0 for some



13.2 The multimodular order and the cone order 265

k € {1,2,...,n} since & # r. Then for fr € G(C;) we have that fip(z) =
zr > 0 and fr(y) = 0, which contradicts  <,,,m y. So, we can assume that
z and y are linearly independent vectors in R” and let H = span(x,y) the
two dimensional subspace that contains z and y. For C; € C let C; be the
intersection of C; and H. Then we have that the C} are convex cones of
dimension smaller or equal than two in the subspace H. To prove Theorem
75 we have the following lemmas.

Lemma 73. Suppose that C7 = C;NH is a two dimensional cone generated
by u and v. Then supp,;(u) is not a subset of supp;(v) and supp,;(v) is not a
subset of supp,(u).

Proof. Let by,bs,...,b, be the generators of C; as in proposition 18. Then
U= ZkESuppi(u) uy, - by with up, > 0 and v = ZkESuppi(v) vy, - by with v, > 0.
For a small positive number ¢ we have that w := v —e-u € H and if
supp,(u) C supp;(v) then it is easily seen that w = 7, o0 () Wk - bx With
w, > 0 and thus w € C}. However, w € C} contradicts the fact that u
and v are generators of C¥. For supp,;(v) C supp;(w) we get similarly a
contradiction. 0

Lemma 74. Letu,v,w € H and let A; be a two dimensional cone generated
by u and v, Az is a two dimensional cone generated by u and w and Az is a
one dimensional cone generated by u. Let w = ay-u+az-v. Then AiNAs = A3
if and only if as < 0.

Proof. 1t is obvious that A3 C A; N Ay. Let ¢ = v - u + w, where v >
max(—ag,0). Then it is easily seen that z € Ay \ As. It follows that z =
(v+a1) -u+as-vand thus x € A; N Ay if ax > 0. So, A1 N Ay = Az implies
that as < 0. Conversely, suppose that

= u+ )N -we AN A,
Since z' € A5 we have that A > 0 and X > 0. Then
=X u+XN (a1 -utaz-v)=A+XN-a1) - u+XN-ax-v

and since z’ € A; it follows that A\’ - as > 0. Thus if as < 0 then ' = 0 since
A >0 and ay - N > 0. Hence ' € As. 0

Proof. (Proof of Theorem 75) We have that UEZ}Ll)!Cj = H since UEZ}LU!C’i =
R™. Therefore one of the following two cases holds

1. There exists some two dimensional cone C} such that in the subspace H
we have that x is in the internal of cone C}.

2. There exist two dimensional cones C;,C} such that in the subspace H
we have that z is on the border of C}, x is on the border of C} and z is

in the internal of C7 U C7.
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Suppose we have case 1 and let a and b be generators of the cone C.
Then a,b € C; and ¢ = A -a+ p-b with \,u > 0. Hence x € C; and
supp;(z) = supp;(a) Usupp,;(b). Suppose that y & C}. Theny =y1-a+y2-b
with min(y;,y2) < 0 and suppose without loss of generality that y; < 0.
According to Lemma 73 there exist k € supp;(a) \ supp;(b). Then it follows
that k & supp,(y), k € supp,(z). Thus supp,(z) is not a subset of supp,(y),
but this contradicts Corolary 77. Hence y € C and thus z,y € C;. According
to Corollary 76 it follows that z <¢ y.

Suppose we have case 2. Then there exist a,b € H such that x and a are
generators of cone C} and « and b are generators of cone C7. Let uy, uz,v1,v2
be such that y = uy -z 4+u2-a = v1-x+v2-b. Ilf uy < 0 then it follows anagously
to the proof in case 1 that supp,(z) is not a subset of supp,(y), which yields a
contradiction again. Thus u; > 0 and analogously it follows that v; > 0. We
will prove that y € C7UCT. Suppose that y ¢ C7. Then it follows that uy < 0.
Let aq,as be such that a = a1 - + as - b By Lemma 74 we have that ay < 0.
Then y = uy -z+us-a =up-x+us-(a1-x+az-b) = (uy +us-ay) -+ (uz-as)-b.
Hence vy = up-as > 0. Thus y € C7 if y ¢ C and thus y € C7 U C7. Since
z € C; NC7 it follows that z,y € C; or z,y € C;. Hence z <¢ y by Corollary
76. 0

13.2.1 Shift invariant counterparts

We consider sequences (of nonnegative integers) of a given length T € N
and given sum S € N. The set of such sequences is denoted by P(T,S). So,
P(T,S)={(z1,22,...,27) : ®; € ZZOVi,Ez;l x; = S} and this is a submesh
of dimension T — 1 of Z”. Let D’ be a multimodular matrix of size T x T
induced by the submesh P(T,S).

Let z,2" € P(T,S). Then we say that x and 2’ are conjugate if they are
cyclic permutations of each other. It holds that z and z’' are conjugate if
there exist finite (possibly empty) sequences v and w such that x = vw and
2’ = wv. Tt is easily seen that this conjugacy is an equivalence relation on
P(T,S) and we write x ~ ' if  and 2’ are conjugate. We denote by Z the
conjugacy class of x € P(T,S), which is the set of all cyclic permutations of
z. By ﬁ(T, S) we denote the set of conjugacy classes of P(T,S). If z ~ '
then we also say that x and 2’ are shifts of each other. If 7 = % then we say
that x is a representative of 7.

Let f : P(T,S) — R be a function such that f(z) = f(z') if z ~ 2.
Then we say that f is a shift invariant function. A shift invariant function

f: P(T,S) — R induces a function f : P(T,S) — R by f(y) = f(z) where
z € P(T, S) is a representative of y € P(T, S). We denote by F=hi/t(D’) the
set of functions mapping ]B(T, S) to R which are induced by D’ multimodular
functions that are shift invariant. We use F***/*(D’) to define a partial order
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<mms 00 P(T, S) in the same way as F(D,r) was used to define the partial
order <,,,, on Mp. The partial order <,,n,s is called the shift invariant
multimodular order.

Definition 79 Let a multimodular matriz D’ induced by the submesh P(T, S)
be given. Then for x,y € P(T,S) we say that x <mms y if f(x) < f(y) for
every f € Fhift(D').

Let © € P(T,S). Then we say that z = (z1,22,...,27) is regular if
the induced infinite sequence * := (#1,...,2Z1,*1,--.,2T,...) is a bracket
sequence and in that case the conjugacy class ¥ € ]3(T, S) is also called
regular. We denote by R(T,S) C P(T,S) the subset of regular sequences.
The following lemma can be proved analogously to the proof for sequences
of zeros and ones that is given in [74].

Lemma 75. Let T, S € N be given. Then there erists exactly one element in
P(T,S) which is regular.

We denote by & = &(T, S) the unique element of P(T, S) that is regular.
Then we have the following theorem.

Theorem 80 Let a multimodular matriz D' induced by the submesh P(T, S)
be given and let f € F"IY(D'). Then a global minimum of f is attained in
o(T, S).

Corollary 81 We have that &(T,S) is the smallest element for the partial
order <mms on P(T,S).

We have the multimodular order <,,,, and we have the shift invariant
multimodular order <,,,,s on P(T,S). We also define a shift invariant cone
order <g, on P(T,S) which is the counterpart of the cone order <¢.

Definition 82 Let D' be as in Theorem 80. Then for u,v € P(T,S) we say
that u <gs v if and only if there exist representatives u' of u and v’ of v such
that ' <¢g v', where <¢g is the cone order for multimodular matriz D' and
root r with v being a representative of W(T,.S).

Note. According to Theorem 75 it holds that ' <¢ v’ if and only if
f') < f(v') for every f € F(D',r).

Corollary 83 Let D' be as in Theorem 80. Then for u,v € P(T,S) we have
that v <mms v if u <gs V.
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13.3 The graph order and the unbalance

Let w = (uy,us,...,ur) € P(T,S) and for [ = 0,1,...,T — 1 let v :=
(Ugg1,Uig2,y-- -, U, UL, U, ..., ;) € P(T,S) be the I-th cyclic permuta-
tion of u. For a sequence uw € P(T,S) we define a counting function
Ky : {0,1,...,T} = Z by ku(n) = Y ;, us and we define a discrepancy
function ¢, : {0,1,...,T} — Q by ¢u(n) :nu(n)—n-%forn:O,l,...,T.

Lemma 76. For w € P(T,S) and I € {0,1,...,T — 1} we have that
duy(n) >0 forn =0,1,...,T if and only if ¢.(I) = min,—o1,...,7 ¢u(n) and
G,y (n) <0 forn=0,1,...,T if and only if ¢.(l) = maxn—g1,... 7 Pu(n).

Proof. Suppose that ¢,a)(n) < 0 for somen € {0,1,...,T—1}. Then ¢,((I{+
n) (mod T)) = ¢u(l) + ¢,y (n) < ¢u(l). Thus ¢, (I) = min,—g1,...,7 pu(n)
implies that ¢,m(n) > 0 for n = 0,1,...,T. Suppose that ¢,(I') <
¢ (1) for some | # 1" € {0,1,...,T — 1}. Then ¢, o) ((I' = 1) (mod T)) =
oo (") = ¢ (1) < 0. Thus ¢,iy(n) > 0 for n = 0,1,...,T implies that
¢ () = min,—o,1,..,7 ¢u(n). Analogously it follows that ¢,u(n) < 0 for
n=0,1,...,T if and only if ¢,(I) = max,—o,1,...7 Pu(n). 0

While the multimodular order <,,,, and the cone order <¢ are partial
orders on Z” we define next a partial order on P(T,S). This induces partial
orders on P(T, S) from which we derive our bounds for the expected average
waiting time.

Definition 84 For u,v € P(T,S) we say that u 2 v if ku(n) < Ky(n) for
n=12,...,T.

We have the following (see [74] where it is proved for sequences of zeros
and ones).

Proposition 20. Let u € R(T,S). Then v’ € R(T,S) if and only if u ~ u'.
Moreover the partial order < on P(T,S) induces a total order on R(T,S).

Since R(T, S) is finite it follows from Proposition 20 that R(T, S) contains
a greatest element for this order. We denote this greatest element by w(7T', S)
or just w if no confusion is possible. For this element w the partial sums
kw(n) forn =1,2,...,T are as great as possible under the restriction that w
is regular. For example w(7,4) is the sequence (1,1,0,1,0,1,0). From [74] we
have the following lemma which can be used to determine w(T,S) quickly.

Lemma 77.

Ku(T,5)(n) = [0 - %] forn=0,1,...,T.
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We have seen in Proposition 20 that the regular sequences R(T', S) form
a conjugacy class in P(T,S). It follows that w € R(T,S) if and only if w is
a representative of (T, S) € P(T, S). Combining Lemma, 76, Proposition 20
and Lemma 77 we obtain the following theorem in which the partial order
= is used to give a characterising property of the conjugacy class R(T, k) =

&(T, S) of regular sequences in P(T, S).

Theorem 85 Every conjugacy class w of P(T,S) contains an upper bound
of R(T,S), i.e for every u € P(T,S) there exists a v € P(T,S) such that
v~u andv=w for every w € R(T, S).

We have the following preorders =g, =<y and <, on P(T,S) called the
primal or upper graph order, the dual or lower graph order and the strong
graph order respectively.

Definition 86 Letu,v € P(T,S). Then u <g v if there existu’,v' € P(T,S)
such that u' € w, v' €V and 0 < ¢y (n) < ¢y (n) forn=0,1,...,T and

u =g v if there exist v, v" € P(T,S) such that u" € w, v € ¥ and 0 >
Gun(n) > ¢y (n) forn=0,1,...,T. Further u <5 v if u <5 v and u <, v.

The preorders <7, <, and <, on P(T,S) are not partial orders. Namely,
if u,v € P(T,S) are cyclic permutations of each other then it is easily seen
that v <4 v and v <, u. Thus these orders are not antisymmetric. However,

they induce (see Definition 87 ) partial orders on P(T, S).

Definition 87 Let u,v € ﬁ(T, S) and v’ € P(T,S) be a representative of u
and v' € P(T,S) be a representative of v. Then we say that u <, v if and
only if u' 240" and similar for the orders <5 and =,.

In [74] it is shown that these induced graph orders on P(T, S) are partial
orders.

For a sequence u € P(T, S) we have a primal unbalance I(u) and a dual
unbalance I(u).

Definition 88 Let u € P(T,S). Then the primal unbalance of u is

T(w) = - Y (eur(m) — - 21),

where u' € U such that ¢ (n) >0 forn =1,2,...,T. The dual unbalance
of w is

T
1) = 2o 2 (n 2]~ rurm)

where u' € W such that ¢, (n) <0 forn=1,2,...,T.
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Remark 29. For w € P(T,S) the primal unbalance is well defined. Namely,
by Lemma 76 there exist u' € @ such that ¢, (n) > 0 forn = 1,2,...,T.
Moreover, if v',u"” € @ are such that ¢,,(n) > 0 and ¢.»(n) > 0 for n =
1,2,...,T then Y0, Ky (n) = Y0, kun(n) (see Theorem 89). Analogously
it follows that the dual unbalance is well defined. It is easily seen that for
every sequence u € P(T,S) it holds that I(u) > 0 and I(u) > 0. Namely,
for ' € P(T, S) we have that ¢,s(n) > 0 if and only if Kk, (n) > [n- £] and
¢w(n) <0 if and only if Ky (n) < [n- 2. Moreover, a sequence u € P(T, S)
is regular if and only if I(u) = 0 if and only if I(u) = 0 (see [74]).

Theorem 89 Let u € P(T,S). Then the following statements are equivalent
forle{0,1,...,T—1}.

(i) T(w) = - Yo _i (K (n) — [n- £]).
(i) S0 Ky () = MaXimg,1,.. 71 Yony K (1)
(i) ming=o1,.. 17-1 Py (n) = ¢u(t>( )=0.

(i) ¢u(l) = min=o1,...,7-1 Pu(i).

Proof. By Lemma 76 we have that (iii) implies (iv) and vice versa. We now
prove that (ii) implies (iii). Suppose there exists some t € {1,2,...,7 — 1}
such that ¢,u(t) = —p with g > 0. Let x be the prefix of length ¢ of
u) and let y be the suffix of length T — ¢ of u("). Then u( = zy and let
z = yr = u(+) (med 7)) ¢ & Then ¢,uy(n) = ¢.(n —t) — p for n =
t,t+1,....,Tand ¢,;y(n) =, (n+T —t) —pforn=1,2,...,t — 1. Hence

Egzl by (n) = ZL ¢.(n) — T - p and thus

S

T

T T T
— _T. < i
PIRIOED SRORERED SACENI TP SO}

n=1 n=1 n=1

which contradicts (ii). From the definition of the primal unbalance it follows
directly that (iii) implies (i) and to finish the proof we show that (i) implies
(ii). Suppose that Zle Ky (n) < maxi—o,1,..,7-1 25:1 Ky (n) and let [ #
I"e{0,1,...,T — 1} such that

25:1 Kyan () = maxj—g1,..,7-1 Zle Ky (n). Since we have proved that
(ii) implies (i) it follows that

1« 1 & S
T ngl u(l' - ’fL _-| ; u(l) - 'fL ) T] )7
which contradicts (i). 0

The following result follows immediately from the definitions.

Lemma 78. Let u,v € P(T,S). If u <5 v then I(u) < I(v). If u %4 v then
I(u) < I(v). Ifu 24 v then I(u) < I(v) and I(u) < I(v).
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We have the following theorem, which shows that the primal and dual
unbalance are multimodular with respect to the L - Triangulation (see Section
12.2).

Theorem 90 The primal unbalance and the dual unbalance are shift invari-
ant and multimodular on P(T,S) with respect to the base dy,dz, . ..,dr where
d; =e;,—eiy1 fori =1,2,....,T —1,dr = er —e1 and e; is the i -th unit
vector of length T fori=1,2,...,T.

Proof. For u € P(T,S) let f(u) = I(u) and g(u) = I(u). Thus f: P(T, S) —
Qs the primal unbalance function and g : P(T, S) — Q is the dual unbalance
function. From the definition it follows that if u',4” € P(T,S) are cyclic
permutations of each other then f(u') = f(u”) and g(u') = g(u"). Thus
the primal unbalance and dual unbalance are shift invariant. To prove the
multimodularity of the primal unbalance function f we have to show that for
every u € P(T,S) and 4,5 € {1,2,...,T}, i # j it holds that

Fu+d) + flutdy) > fu) + fu+d; + dy). (13.3)
We first show that for every x € P(T, S) and i € {1,2,...,T} it holds that
1
fle+d;) < f(z)+ T (13.4)

Naj{nely, put y =z +d;. WithoutTloss of generality we can assunr}e that
Yoy Fy(n) = maxi—o1,..1-1 2 ,_y Ky (n). Then f(y) = 7-32, _; (Ky(n)—
[n-2]) and

> 1 3 lhs-an) = o 71

1 S
FIONCORRIEY
= f) - 7

by Theorem 89. So, (13.4) holds and next we show that (13.3) holds. Without
loss of generality we assume that min,—q 1. 7-1 ¢u(n) = ¢,(0) = 0. Then
by Theorem 89. Suppose that ¢ # T and j # T. Then it is easily seen
that Kuyq; (n) > Ku(n), Kugq;(n) > Ku(n) and Kugdi4d;(n) > Ku(n) for
n=0,1,...,T. Hence

oo min, Puta; (n) = oo min, Puta, (n)

oo Gutd;+d; (1)

= minT_1 du(n)

n=0,1,...,

=0.
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From the definition of the primal unbalance it is easily seen that f(u +
di) = flu+d;) = flu)+ % and f(u+d; +d;) = f(u) + 2 and thus
flu+d;)+ flu+d;) = f(u) + f(u+d; +d;). It remains to show that (13.3)
holds in case i =T or j = T and we can assume that j =T and 7 # T'. Then
from the foregoing we have that f(u + d;) = f(u) + %. Moreover by (13.4)
we have that f(u+d; +d;) < f(u+d;) + F. Hence
1 1

Flu+di)+ flutdy) > (Fw) + ) + (Flut di+d) = )

= fu) + f(u+di + d;).

Thus the primal unbalance function f is multimodular and it follows analo-
gously that the dual unbalance function ¢ is multimodular. 0

Note. Since the primal and dual unbalance functions are shift invariant
on P(T,S) they induce functions on P(T,S) by I(v) = I(u) and I(v) = I(u)
if u € P(T, S)is a representative of v € P(T, S). Then by Theorem 90 we have
for these induced primal and dual unbalance functions that they are element
of Fhift(D), where D is the multimodular matrix having the multimodular

base di,ds, . ..,dr as row vectors.

Corollary 91 For this multimodular base dy,ds,...,dr we have for u,v €

IS(T, S) that u <mms v implies that I(u) < I(v) and I(u) < I(v).

13.4 Relations and counterexamples

13.4.1 The shift invariant cone order does not imply the graph
order

Consider the following example. Let v = (1,3,2,2,3) € P(5,11) and
v =(2,1,3,2,3) € P(5,11). Thus we consider sequences of length 5 and
sum 11. It is easily seen that w and v are not ordered for the dual lower
graph order (but they are ordered for the primal upper graph order). So,
4 and v are not graph ordered. However, we now first show that « and v
are ordered for shift invariant multimodular functions with respect to the
standard base dy,d1,ds,ds,ds where d; = e; — e;41 for ¢ = 1,2,3,4 and
dy = (—1,0,0,0,1). Namely, for a shift invariant multimodular function f
we have that f(u + ds) = f((1,3,2,3,2)) = f(v) and also f(u + dy) =
£((2,2,2,2,3) = £((2,2,2,3,2)) = f(u+di +das) by shift invariance. By mul-
timodularity we have that f(u+di)+ f(u+ds) > f(u) + f(u+di +ds) and
thus f(u) < f(u+d4) = f(v) for every multimodular shift invariant function

Conclusion. From this it follows that the shift invariant mutimodular
order does not imply the graph order and thus the shift invariant multimod-
ular order does not imply the shift invariant cone order or the shift invariant
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cone order does not imply the graph order (or both do not hold).

We now investigate whether u <cs v. To do this we take the regular
sequence r = (3,2,2,2,2) as root of all the cones we consider and we let
uw',v" run through all the shifts of u and v respectively. Then we check
whether u' < v’ for some cone. Doing this we find that v and v are in-
deed ordered for the shift invariant cone order. Namely, for v’ = (3,1, 3,2,2)
and v = (2,1,3,2,3) we have that v' = r + do + di + d3 + ds and
v = r+ 2dy + di1 + d3 + d4. Hence, if we consider the cone generated by
by = dy, by = doy +dy, b3 = dy + dy + ds and by = dyg + dy + d3 + d4 then
u' =71+ by and v' = r + by + by. By the way, this v’ and v’ is the only pair
of shifts that are cone ordered for some cone with root in r. Since v’ <¢g v’
and thus u <¢s v we have the following conclusion.

Conclusion. The shift invariant cone order does not imply the graph
order.

Remarks. The explanation for the fact that the ordering of v’ and v’ in
this cone does not imply the lower graph order is the following. For u’ you have
to start with the second coordinate to get the graph for the lower graph order
and for v’ you have to start with the first coordinate. This is possible, because
for r you have the start at the second coordinate for the lower graph order,
while the generating base vectors of this cone ”suggest” the lower graph order
for starting at the first coordinate. One of the consequences is that this cone
does contain other regular sequences than r. Namely, r + b; = (2,2,2,2,3) is
for example another regular sequence in this cone. It turns out that the cone
order in such cones does not imply the graph order.

If you consider the mirrored sequences of u and v then you get a similar
problem with the upper graph order instead of the lower graph order.

Note that 4 and v are ordered for the unbalance (despite that they are not
ordered for the graph order). Namely, for the primal (upper) unbalance T
we have that I(u) = 1 < 2 = I(v) and for the dual (lower) unbalance I we
have that I(u) = 1 = I(v). Of course this order for the unbalance follows
immediately from % <,,ms ¥ and Corollary 91.

13.4.2 The shift invariant multimodular order does not imply the
shift invariant cone order

A counterexample is given here to show that the shift invariant multimodular
order does not imply the shift invariant cone order. In fact it is shown that
the shift invariant cone order is not even a partial order, because it is not
transitive.

Counterexample. Again we consider sequences in P(5,11) and we
have the same multimodular standard base {d;}i=¢,1...,5 as before. Let u =
(1,2,3,2,3), v = (2,2,3,3,1) and w = (2,1,0,4,4) and as regular sequence
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we have again r = (3,2,2,2,2). Now we have for the shift invariant cone or-
der that u <g, v and v <¢, w. However, we do not have that u <¢, w.
Namely, v' = (3,2,3,1,2) = r +ds = r+ b and v' = (2,3,3,1,2) =
T+d2+2d3+d4+d0 = T+b1+b4, where bl = d37 b2 = d3+d0, bg = d3 +d0+dz
and b4 = d3 + do + d2 + d4. Hence u SCS V.

Further v" = (3,1,2,2,3) =r +dop +d1y = r + b2 and w” = (2,1,0,4,4) =
T+ 4dg + 3dy + 2ds + 2dy = 1 + by + by + 2by, where by = dg, by = dy + dy,
b3 =dy+dy +ds and by = dy + dy + ds + dy. Hence v <¢gs w. However, there
exist no cone with root in r such that some shift of u is smaller in that cone
than some shift of w. Hence, v and w are not shift invariant cone ordered,
while from v <gs v and v <¢, w it follows that v and w are ordered for the
shift invariant multimodular order.

Remark 30. So, it turns out that the shift invariant cone order is not a par-
tial order, because it is not transitive. It is natural to consider the smallest
preorder which contains the shift invariant cone order and is transitive. It is
easily seen that the shift invariant multimodular order implies this order, but
we do not know whether the converse is also true in which case this order is
equivalent to the shift invariant multimodular order.

13.4.3 The graph order does not imply the shift invariant
multimodular order

In this counterexample we show that the graph order does not imply the shift
invariant multimodular order.

Consider the sequences
u = (0,0,0,1,0,0,1,0,0,1,0,0,0,1,0,1,0,1,1,0,0,1,1,1,1,1,0,1,0,1,0,1) €
P(32,15) and
v = (0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,1,0,1) €
P(32,15). Then we have that u <, v. Thus u and v are ordered for the graph
order and we have that I(u) < I(v) and I(u) < I(v). However, it does
not hold that f(u) < f(v) for every shift invariant multimodular function
f : P(32,15) — R. Namely, we consider v and v as period cycles for the split-
ting sequences corresponding to the admission of arriving customers to some
server. Suppose that the interarrival times are deterministic and equal to 1
and the service times are deterministic and equal to (1+¢€), where € is a small
positive number. For x € P(32,15) let W(z) be the average waiting time of
customers admitted according to z. The average waiting time is multimodu-
lar with respect to the standard base of the L - Triangulation ( see Chapter
12) and since the traffic intensity for the server is smaller than one we have
that the average waiting time function W is also shift invariant (see [74]).
Thus W is a shift invariant multimodular function. However, for the given
interarrival and service times we have that W(u) = 1& - € and W(v) = 12 - €.
Thus W (v) < W(u) for these service times and thus w and v are not ordered
for the shift invariant multimodular order.
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13.5 Bounding the Difference in Waiting Times for One
Queue

In this section we give a bound for the expected average waiting time for
customers routed to a single server queue according to a routing sequence of
zeros and ones. This bound depends on the unbalance of the routing sequence.
To state the results we first have some definitions and notations.

Let w and v be infinite periodic integer sequences. Then we say that u
is equivalent to v, u ~ v if there exists a finite sequence w such that w is a
period cycle of both u and v.

In our application of routing sequences we have in general that equivalent
infinite periodic sequences have the same performance. Let P be the set of in-
finite periodic sequences of zeros and ones (modulo the equivalence relation),
R C P the subset of regular periodic sequences and for d € Q, 0 < d <1 let
P(d) C P be the subset of sequences with density d. We denote the regular
sequence in P(d) by w(d) or just w. Note that if u' € P(T, k) is a period cycle
of u € P then u € P(d) where d = £. We define the unbalance for infinite
periodic sequences of zeros and ones as follows.

Definition 92 Let u € P and let u' € P(T, k) be a period cycle of u. Then
we define the (primal) unbalance of w as I(u) := I(u').

The unbalance is well defined on P. Namely, if " and u” are both period
cycles of w then I(u') = I(u").

Let {T;}i=1,2,. be a sequence of arrival times of customers, with the
convention that Ty = 0. Put é; := T;4q — T3 for ¢ = 1,2,.... Then {6;}
is the sequence of interarrival times. Further these arriving customers are
routed to a server according to some routing sequence u = (uy,uz,...) of
zeros and ones. For such routing sequences we have the counting function
ku(n) =Y 1, u; and we define a partial order < that is similar as the order
on P(T,S). Namely, we say that u < v if ky(n) < ky(n) for n = 0,1,....
Further we define the the following related function v, (i) : Z>o — Z with

vu(j) = min{n € Zo : ku(n) = j} and we put 7,(j) = L7 6

for j =1,2,.... Then 7,(j) is the time elapsed between the routing of the
(j — 1)-th and j-th customer to the server according to routing sequence
u. If we put Ay(j) = Y7, (k) for j = 1,2,... then A,(j) is the time
at which the j — th customer is routed to the server according to routing
sequence u. We have a sequence of service times {0;};=1,2,..., where ¢; is the
service time of the j-th customer that is routed to the server according to the
routing sequence. Further we define W, (j) to be the workload for the server
at the moment the j-th customer is routed to the server according to routing
sequence u. In other words W,,(j) is the waiting time for the j -th customer
that is routed to the server. We assume that the server starts empty at 73 = 0
and thus W, (1) = 0. If the interarrival times {6;} and service times {0} are
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random variables then we say that W (u) is the almost sure long-run average
waiting time of customers routed to the server according to routing sequence
w if limy, oo = - > e Wu(j) = W(u) with probability one. From ergodic
theory we have the following theorem. See [74] for a proof of this theorem.

Theorem 93 Suppose that the interarrival times {6;} of customers arriv-
ing at the system are independent and identically distributed (i.i.d.) random
variables with mean & and the service times {o;} of the considered server
are i.1.d. random variables with mean o and independent of the interarrival
times. Further let ' and u" be routing sequences of zeros and ones that are
both representatives of some u € P(d) where d € Q (thus they have a com-
mon period cycle) and % -d < 1. Then W (u') and W (u") ezist and are finite.
Moreover W (u') = W (u").

Let 6 , o and d be as in Theorem 93. Then we say that p :== % -d is
the traffic intensity for the server. By Theorem 93 all the routing sequences
which are representative of some u € P(d) have the same long-run average
waiting time if the stability condition p < 1 is fulfilled. Therefore in this case
we denote this long-run average waiting time simply by W (u). The following
theorem which is obtained by a sample path argument is the main result of
this section.

Theorem 94 Let the interarrival times {8;} and the service times {o;} be
as in Theorem 93. Further let u € P(d) for some d € Q such that p <1 and
let w = w(d) € P(d) be the reqular sequence of density d. Then

W(u) < W(w) + g < I(u). (13.5)

Remark 31. From the results of Chapters 2 and 4 we have that W(u) >
W (w).

We give an outline of the proof of Theorem 94. For a complete proof for
this and following results in Sections 13.4 and 13.5, see [74]. We first assume
that the interarrival times {6;}i=1,2,... and service times {o;};=1,2,... are fixed
sequences of non-negative real numbers. Then we have the following lemma.

Lemma 79. Let u = (u1,us,...) and v = (v1,vs,...) be routing sequences
of zeros and ones and suppose that uw < v. Then

Wo(3) + M () < Wo(4) + Au(j) for every j € N. (13.6)

Note that W, (j) + A.(j) is the moment that the server starts serving
the j-th customer that is routed to the server according to u. So, Lemma 79
states that if u < v then the moment when the service of the j -th customer
that is routed to the server starts, is for v not later than for w. This can be
proved by induction to j.
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For every j € N we have that A, (j) — A\, (j) = E;’:gv)(;)l &;. This is a sum of
interarrival times 6;, where the number of terms in the sum is v, (j) — v, (5).
Therefore, if we put Ny, (m) = 37, (vu(j) — vu(4)) for m =1,2,... then we
have the following Corollary by Lemma 79.

Corollary 95 Let u and v be routing sequences with uw < v. For every m € N
we have that

m m m vu(j)—1
D W) D Wul)+Y. D b (13.7)
=1 i=1 =1 i=v, (5)

In the double sum the number of terms is Ny,(m).

It can be shown that if u = (u/)* and v = (v')* for some v',v' € P(T, k)
and w(T, k) <4’ < v then

Ny (m T - -

W}me # =3 (I(v) — I(u)). (13.8)

Let u € P(d) be as in Theorem 94. Then by Theorem 85 there exist T', k €

N with d = £ and u” € P(T, k) such that u' := (u”)™ is a representative of
w and w' <X u' where W' = w(T, k)* is a representative of w(d). By Theorem
93 we have that both W (u) = W (u') and W(w) = W (w') exist. We make a
coupling between the interarrival times for «’ and w’ and we also do this for
the service times. After the coupling we can apply Corollary 95 and (13.8)

and it can be shown that

which proves Theorem 94.

Remark 32. From this proof it follows that it is possible to refine Theorem 94
as follows: Let u,v € P(d) be as in Theorem 94 and let w’ be a representative
of w(d) as above. Then, if there exist representatives u’' and v’ of u and
v respectively such that w’ < «' < v’ (The reader can check that this is
equivalent to the following: there exist T, k € N and period cycles »” and v"
of u and v respectively such that d = £ , u",v" € P(T,k) and u"” <z v") it
holds that

W (0) - W) < 5(T0) - T). (13.9)

The condition p < 1 in Theorem 94 is just necessary to apply Theorem 93.
However, if both the interarrival times and the service times are deterministic
then Theorem 93 also holds if p = 1 (see [112]). Thus in that case Theorem
94 also holds if p =1 and in fact we have for that case the following stronger
result from which it follows that the bound of Theorem 94 is tight.
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Theorem 96 Suppose that the interarrival times and service times are de-
terministic and equal to § respectively o. Let u € P(d) for some d € Q such
that 6 = do, hence p =1, and let w = w(d) be the regular sequence of density
d. Then

Wu) = W(w) + g (). (13.10)

Outline of the proof. Let w’' be a representative of w(d) as above and

let u’ be a representative of u such that w’ < «’. Then it can be shown that

Wy () + A () = Wor (§) + Aor (3) = (j — 1)o for every j € N. Hence we have

for every m € N that (13.7) holds with equality for v’ and w’ with §; = ¢ for
1 =1,2,.... From this it follows that (13.5) also holds with equality.

Remark 33. The upper bound can be generalized to a sequence of multimod-
ular functions satisfying the relations of Section 1.3. Indeed, it follows from
the results in the Section 1.3 that the regular or bracket sequence is the min-
imal admission sequence. If the density is rational then the corresponding
regular admission sequence is periodic. In order to obtain upper bounds as
in Theorem 94 and Theorem 99 we need a generalization of Lemma 79, es-
pecially the relation (13.6). It is easily seen that for multimodular functions
fr corresponding to W, (7) it suffices that

fk(al,...,al+1,al+1 —1,...,ak) gfk(al,...,al,al_l_l,...,ak)+<5,

for 1 <1 < k—1 and some constant §. Clearly, also other multimodular
models treated in this monograph do satisfy this relation e.g. the models of
Chapter 9 .

13.6 Routing to Parallel Queues

In this section we derive upper bounds for the expected average waiting
time for routing arriving customers to N > 2 parallel queues according

to some periodic routing policy U = (U;,Us,...). The routing sequence
U = (U1,Us,...) can be seen as an N - word on the alphabet {1,2,...,N}.
Further to every letter i € {1,2,..., N} corresponds a sequence of zeros and

ones u® = (u},ub,...) via the support of the letter, i.e. uf, = 1 if and only if
U, =i. We call 4 the routing or splitting sequence for queue i (see Chapter
6). Extending the notion of unbalance for periodic sequences of zeros and
ones we define a (total) unbalance O(U) for periodic integer sequences and
corresponding words on some finite alphabet. Then we extend the result of
Theorem 94 for one queue to multiple queues by using the unbalance O(U)
of U.

Let di,...,dy € Qs with 317, d; = 1. We denote by Q(d1,da,...,dy)
all the infinite periodic words U on the alphabet {1,2,..., N} for which «* €
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P(d;) for i = 1,2,...,N. Further for T, ki, ks, ..., ky € N with YN k; =
T we denote by Q({T},k1,k2,...,kn) all the N-words on the alphabet
{1,2,..., N} for which every subword of length T contains exactly k; letters
ifor i = 1,2,...,N. Note that Q({T'}, k1, ko, ..., kn) C O(&t, 22, .. ’yy).
For example if U = (1, 2,1,2,1,3,1,2,1,1,2 ,3)° then U € Q({12} 2)
C Q(%,%,%). Further w' = (1,0,1,0,1,0,1,0
(0,1,0,1,0,0,0,1,0,0,1,0)® € P(%) nd u? = (

Let 9 be a routing policy and U the corresponding routing sequence. Then
for t € N we define W(t) = Wy (t) as the waiting time of the ¢ -th arriving
customer if policy 1 is applied, which is the remaining workload for server
U; at the moment that the t-th customer arrives. We assume that all the
servers i € {1,2,..., N} are empty at 71 = 0 and thus W(t) =0if t = v, (1)
for some ¢ € {1,2,...,N}. If the interarrival times and service times of the
various servers are random variables then we say that W (y) = W(U) is the
almost sure long-run average waiting time of the arriving customers routed
according to policy ¢ if lim, o 2-3°7_; Wy (t) = W (%) with probability one.
Let {6;} be the sequence of interarrival times and let {o}} be the sequence
of service times of server ¢ for¢ =1,2,..., N, i.e a is the service time of the

- th customer that is routed to server i. We define W' (¢) = Wl(u ) as the
a.lmost sure long-run average waiting time of customers routed to server ¢ if
policy v is applied in the same way as we did in the previous section. The
only differences are that routing sequence u is replaced by routing sequence
u' and the sequence of service times {o;} is replaced with the sequence of
service times {o*}. From Theorem 93 we obtain the following theorem.

Theorem 97 Suppose that the interarrival times {6;} of customers arriving
at the system are i.i.d. random variables with mean & and for every i €
{1,2,...,N} the service times {o}} are i.i.d random variables with mean
oi, and independent of the interarrival times. Let 1 be a routing policy that
corresponds to some word U € Q(dy,ds,...,dn) such that p; := %-d; < 1 for
i=1,2,...,N. Then W () exists and is finite. Moreover W () = >, d; -

W),

Definition 98 Let U € Q(dy,ds, . .., dy) for some d; € Qsg with Y0, d; =
1. Then we define the (total) unbalance of U as

N
=" T(uh). (13.11)
=1

If it is clear from the context what is meant we just say unbalance and not
total unbalance. Let the interarrival times {8;} and the service times {7} for
i=1,2,...,N be as in Theorem 97. Further let d; € Qs fori =1,2,...,N
with vazl d; = 1. Recall that w(d;) is the regular sequence of density d;. If

W' (w(d;)) exists and is finite for s = 1,2, ..., N then we put
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def < -
-~ ~ e .
R=R(dy,dy,...,dy) = Y di- W' (w(dy)). (13.12)
1=1

Remark 34. If the interarrival times and service times are random variables
then for the existence of R it suffices that p; < 1 for ¢ = 1,2,..., N, while
if the interarrival times and service times are deterministic then it suffices
that p; <1 foréi =1,2,...,N. It is possible to extend the definition of R
and some of the results to the case of irrational d;. In general R depends on
the distribution of the interarrival times and service times and in some cases
it is possible to compute R explicitly. See Chapter 8 and [112] for an exact
computation in case of deterministic interarrival and service times and see
[101] for computations and bounds in general.

Combining Theorem 94 and Theorem 97 we obtain the following theorem.

Theorem 99 Let the interarrival times {6;} and the service times {o%} for
1=1,2,...,N be as in Theorem 97. Let d; € Qso fori =1,2,...,N with
Zfil d; = 1. Suppose that a routing policy v is applied with corresponding
word U € Q(dy,dz,...,dy) and p; <1 fori=1,2,...,N. Then

W) —R<6-0(U).

From Theorem 26 we have that W () > R, which is the lower bound
obtained by replacing the routing sequence to queue ¢ by the regular routing
sequence with the same density for any queue ¢. Hence we have the following
bounds. B B

R<W@)<R+6-0(U). (13.13)

Remark 35. Suppose that we have a queueing system where the arrivals are
according to a Poisson process with parameter A. Suppose that the service
times of server i are exponentially distributed with parameter p;. If d;, the

fraction of jobs that is routed to server ¢, equals qi for some ¢; € N, then

W' (w(d;)) can be calculated in the following way. For the routing sequence
w(d;) we have that among every ¢; arriving jobs exactly one job is routed to
server 7. So, the interarrival times at server i consist of ¢; Poisson arrivals with
parameter \. Hence the interarrival times for the queue of server 7 are Erlang
distributed, namely according to an EY{* distribution. Thus W' (w(d;)) is the
same as the average waiting time for a E{' /M /1 queue, where the parameter
of the service times is p;. So (see [56]) if z; € (0,1) is a solution of the

equation

A
= (—F—)% 13.14
v=Gra e (13.14)

then
Zq

i (1 =)

=1

W (w(di)) = (13.15)
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In the following example we have calculated W' (w(d;)) for i = 1,2,3,4
by applying (13.15). Further we have explicitly calculated the lower bound
R and upper bound R + 6 - O(U) of (13.13) for W (¢), where U is the word
corresponding to the applied routing policy .

Ezxample 10. We consider a queueing system with 4 parallel servers where
the arrivals are according to a Poisson process with parameter A = 11. Hence
for the mean interarrival time § we have that 6 = 11—1 The arriving jobs are
routed to the servers according to the policy ¥ that corresponds to the word

U=(1,2,3,1,4,2,1,3,1,2,4,3)> € 0({12},4,3,3,2) C Q( ).

N
| =

1
747

Wl =

Then we have that I(u!) = &, I(u?) = 0, I(u®) = &, T(u?) = 0 and
thus O(U) = %. For every i € {1,2,3,4} the service times are exponentially
distributed with parameter p; and pu; = 4, ps = uz = 3 and puq = 2. Then

we find by (13.15) that Wl(w(%)) = 1.7792 (rounded to 4 decimals) and
thus by Corollary 94 we have that Wl(ul) < 17792+ 3 - & - & = 1.8019.
Similarly we have that W2(w(i)) = W' (u?) = 2.2105, W3(w(i)) = 2.2105,
W’ (u®) < 2.2408 and W (w(L)) = W' (u?) = 3.0732. Hence by (13.12) we
have that
~ 1 —, /1 1 —2, 1 1 —3, 1 1 —4, 1

- b R S b Z)) =221
Bt i)+ - TP ) + 1 T () + & T w(s) = 22105
and R+ 8- O(U) = 2.2105+ & - L = 2.2257. So, by (13.13) we have that
2.2105 < W () < 2.2257.

The following theorem provides conditions under which the right-hand
side inequality of (13.13) actually holds with equality.

Theorem 100 Let the interarrival times {6;} be deterministic equal to &
and the service times {0’;} be deterministic equal to o; for i = 1,2,..., N.

Letd; € Qso fori=1,2,...,N with Zfil d; = 1. Let p;,q; € N be such that

d; = % with ged(pi,qi) =1 fori=1,2,...,N. Suppose that a routing policy

P s azoplz'ed with corresponding word U € Q(dy,da,...,dy) and p; = 1 for
1=1,2,...,N. Then

N

W) =R+6-0U)=6- (%—Z;qﬁO(U))-

=1

By combining Theorem 96 and Theorem 97 we get the first equality of
Theorem 100. See [112] for the second equality which follows from the com-
putation of R for this case.
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Ezxample 11. We consider a queueing system with 3 parallel servers where
the interarrival times are deterministic and equal to § = 3. The arriving jobs
are routed to the servers according to the policy ¢ that corresponds to the
word

1 31

Uv=(1,21,2,1,3,1,2,1,3)* € 9({10},5,3,2) C Q(E, 105

).

All the service times are deterministic and for server 1 they are equal to
o1 = 6, for server 2 equal to o2 = 10 and for server 3 equal to o3 = 15. Hence
pi = 1for i =1,2,3. Further I(u') = 0, T(u?) = &, T(u®) = & and thus

O(U) = £. So, according to Theorem 100 we have that

T 10

1 1.1 1, . 1) _ 9
2 4720 1005

W) =3 (5- G+ )+

which can be checked by direct calculation.
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14.1 Introduction

As mentioned before, the control of a stream of incoming customers into
several queues in parallel is a difficult problem.When the number of queues
is not larger than two, then the problem has been solved in several cases. In
the case with full information on the state, the optimal policy has switching
curves and can be computed using dynamic programming (see [58]). When
the system is controled when no information is available, the optimal policy
is a Sturmian sequence as shown in Chapter 6 and the exact computation
of the optimal policy has been done in the deterministic case in Chapter 7.
However, when the number of queues in parallel is larger than two, then the
problem becomes more difficult. One of the reasons for this “three queue gap”
is that Sturmian sequences in dimension three or more do not exist in most
cases (see Chapter 2). The only case where this problem has been solved so
far is when the system is fully loaded and deterministic (see [112]).

Here, we will deal with the problem of routing customers in several queues
in parallel using a softer approach. As already presented in [9], we will not try
to compute the optimal policy, which seems to be a very hard task. Instead,
we will introduce a partial order on the routing sequences called the regular
ordering. The main result of the paper is the following:

If the routing sequence s is more reqular than the routing sequence u',
then the mazimal waiting times under s are smaller than the mazimal wait-
ing times under u', for the stochastic order.

This statement deserves several comments.

First, the notion of regularity is close the notion of balance (see Chapter
2) in the sense that a balanced sequence is the most regular sequence possible
(see Section 14.2.2). An integer sequence is balanced if its partial sums over
two arbitrary windows of the same length differs by at most one. They have
been extensively investigated in the past [91, 55] and lead to fruitful results
in several fields such as theoretical physics [99], combinatorics [86, 29] as well
as control theory [59, 47] and Part II of this monograph using their close
relation with bracket sequences.
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In the previous chapters, it is shown under rather general assumptions
that balanced sequences minimize several cost functions in discrete event
systems. This result relies on the following theorem.

If fo : Z™ — R are multimodular functions, then the Cezaro limit

. N o
limpy_ oo % Ym0 fn(ur, -+ ,upn) is minimized by a balanced sequence.

Second, majorization and Schur convex functions seem to be the right no-
tions to use when comparing the dispersion of finite sequences [88]. However,
majorization does not take into account the order of elements of the sequences
to be compared since it is left invariant by the group of all permutations.

It is often desirable to take the exact positions into account. For many sys-
tems, the input sequence (1,1,1,0,0,0) certainly induces a different behavior
than the input sequence (1,0,1,0,1,0), which looks more balanced. However,
these two sequences cannot be compared by using the classical majorization
technique because the former is a permutation of the latter. To overcome
this difficulty, we introduce the notion of gap sequences (similar to partial
sums, already used in [36]) that takes into account the exact positions in the
sequence. This will narrow the gap between the notion of Schur convexity
and multimodularity as shown in Appendix 14.6.

Finally, the usual performance measure in queuing networks is the average
waiting time. However, in communication models where real time constraints
are important (such as voice and video traffic) the maximal waiting time (or
sojourn time) are more important than the average. In Section 14.3, we show
that for FIFO stochastic event graphs, the maximal waiting time (or sojourn
time) is regular preserving. As for computational issues, finding good allo-
cation patterns (i.e. very regular sequences), is possible via a mathematical
programming problem with convex objective functions as in Corollary 13. A
similar procedure for minimizing the average waiting time has been used by
Combé and Boxma [43] and in [36] for different performance measures.

The rest of the chapter is organized as follows. In Section 14.2, we in-
troduce the notion of gap sequences and balanced sequences and the regular
ordering.

In Section 14.3, we introduce a model of a controlled queue with periodic
inter-arrival sequences and stationary service times. We show that the maxi-
mum waiting time is regular preserving with respect to the inter-arrival time
as well as with respect to the service times. Section 14.3.6 extends the re-
sult to a routing problem between several queues. Finally we show in Section
14.4, that the transmission rate on a link with redundancy is also regular
preserving.
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14.2 Preliminaries

This section is devoted to the definition of gap sequences, balanced sequences
and to the introduction of the notion of regularity.

14.2.1 Gap Sequences

We again use the notation N = {0,1,2,---} for the set of all non-negative
integers and we consider the set P(T,n) 2]PQP(T,n) of all non-negative
integer sequences u = (ug, %1, ,ur—1) of size T which sum exactly to n.
Let u € P(T,n). We call (p,(0),pu(1),--- ,pu(n)) the positions in u of all its
partial sums.

def def L
p.(0) = 0 and p,(i) = 1nf{j|2u;C >i}, Vi> 1.
k=0

We define the vector d*(u) of the gaps of order i > 1 in the sequence u, by

. ; f . .
Vi<j<n, diw Ep G modn) —pu).  (14)
When the sequence u is in {0,1}7, then the gaps are never null and measure
the size of the number of elements in the sequence u between the ones. This
is illustrated in Figure 14.1.

d:=6
_—
=1
d?=5
u 1 0 1. 0 0 1 0 0 O
di=2 di=3 dy =14

Fig. 14.1. Gaps of order one and two for a sequence u in P(9, 3).

14.2.2 Balanced Sequences

We repeat here some of the material presented in Chapter 2.

Definition 22. A sequence u is balanced if for all j, k and n,
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A finite sequence u is balanced if the infinite sequence 4> is balanced.
Theorem 101 ([91]). If a sequence uw in P(T,n) is balanced, then there
exists 6 € [0,1] such that for all j > 0,
. n n
up= |G+ 1)+ 6] = L +6).
Proof. The proof follows from Chapter 2 adapted to the finite case. 0

If u is a balanced sequence then the associated gap sequences have the
following property.

Lemma 80. If u is a balanced sequence in P(T,n), then for all j,1, d;(u) €
{151, 15003

Proof. By definition (everything is implicitely done modulo n) d; = p(i +
J) — p(j)- By definition of p(j), we have: p(j) = inf{k|[(k+ 1)% + 8] > j}.
Therefore, [(p(y) +1)% + 0] > j and |p(j)# + 0] < j. This implies that

n n
i~ — <p(j)=+6 <.
J T_MﬁT+ <J

Similarly, we have:

JHi— 7 Spl+iE+0<j+i.

As for d;-, we get by subtracting the two previous equations

T . T
Coi<di<S g1
n n

The following lemma is the converse of Lemma 80.

Lemma 81. Let u be a sequence such that for all i, all the gaps of order 1,
d;, differ by at most one. Then, u is balanced.

Proof. Assume that u is not balanced. There exist two intervals of the same
length (say I) wi and ws such that the sum in wy, denoted n; is larger than
the sum in ws, denoted my, plus two: my > ng + 2. This means that there
exists j; and jp such that d;”ll <[ and d;”; >0+ 2. 0

Lemma 82. A sequence u € P(T,n) is balanced if and only if d*(u) is bal-
anced.



14.2 Preliminaries 287

Proof. The “only if” assertion: we consider the sequence d*(u). Let w; =
{i,---,i+k} and wo = {j, - ,j + k} be two windows of length k. Then the
sums over wi of the sequence d'(u) are of the form dj (u) + - -+ + d}, (u) =
d¥~1(u) and the sums over wy are di(u)+-- -+d}+k(u) = d;? 1( ). By Lemma
80, then these two quantities differ by at most one.

The “if” assertion: d*(u) is balanced means that there exists § such that
for all j, d}(u) = |(j+ 1)L +6] — [5 £ +6]. Therefore, di = |[(j+1i) L +6] —
/L +6]. This means that

T iT
%—1<d’<—+1

Therefore, for any order i, the gaps of order ¢ differ by at most one. By
applying Lemma 81, u is balanced. 0

Remark 36. Note however, that the gaps of order higher than one in a bal-
anced sequence may not be balanced. For example, if d* (u) = (2,3, 3,2, 3,3, 3)
(which is balanced), then d?(u) = (5,6,5,5,6,6,5) which is not balanced
because it contains two consecutive 5 (which sum up to 10) and also two
consecutive 6 (which sum up to 12).

14.2.3 Regularity and Schur Convexity

If r € R*, then we denote by (2[1),%[2]," -+ ,¥[n)) the components of  ar-
ranged in decreasing order. For z,y € R", we say that z (resp. strictly)
majorizes y (denoted z > y) (resp. x = y) if for all 1 <m <n — 1, then

e >y and Y mg=> yw,
=1 =1 =1 =1

(resp. with strict inequality for at least one m).

A function f : R* — R is (resp. strictly) Schur convex if z = y =
f(z) > f(y) (resp. z =y = f(z) > f(y)). For more details on the theory of
majorization, see [88].

Definition 23. If u,u' € P(T, n) then u' is more regular than u (denoted
u' < s) if for all order i, d*(u') < di(u).

Lemma 83. The balanced sequences are the minimal sequences in P(T,n)
for the regularity order. Moreover, if u is balanced, then for allu’ € P(T,n),s <
u'.

Proof. This result is a consequence of Lemma 81. Indeed, if n divides T,
then for a balanced sequence o, d(o) = L which is minimal. If n does not
divide iT, then for the balanced sequence, d’(o) € {lZ£], 77} and is also
minimal. 0
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Balanced sequences in P(T,n) will also be called the “most regular” se-
quences in P(T',n) in the following.

Ezample 12. Let us compare three sequences in P(6,3): w; = (1,1,1,0,0,0),
we = (1,1,0,1,0,0) and w3 = (1,0,1,0,1,0), using the regular ordering. The
respective gap sequences are:

dl(wl) = (17 174) dl(wQ) = (17273) dl(w3) = (27272)7
dz(wl) = (27 575) dz(w2) = (37574) dz(w3) = (47474)7
& (w,) = (6,6,6) d*(ws) = (6,6,6) d*(ws) = (6,6,6).

Using majorization, it is not difficult to check that

dl(wl) - dl(wg) - dl(’w;g),
d2(w1) - d2(w2) - dl(’w;g),
d*(wy) = d®(wz) = d' (w3).

According to the definition of the regular ordering, this means that ws <
we < w;. Actually, ws is balanced and is the most regular sequence in P(6, 3).

Definition 24 (regular-preserving functions). A function f : N — R
is reqular-preserving (r.p.) if x <y = f(x) < f(y).

Lemma 84. A function f : NI — R is reqular-preserving if and only if it
can be written under the form:

f(u) = F(Hy(d' (v)), Hy(d*(w)), -+ , Ha(d"(w))),

where F' : R* — R s increasing in all coordinates and H; : N* — Ry1 =
1---,n are Schur convex.

Proof. The only if assertion is a direct consequence of Lemma 83. As for the
if assertion, then f is necessarily Schur convex in all d*. Now, the combination
of all these arguments for all ¢ shows that f is of the form given in the lemma.

O

Note that if f is regular preserving on the set P(T,n) then it reaches its
minimal value for the balanced sequences.

Remark 37. (Regularity without using the gap sequences)
The definition of regularity, as well as regular preserving functions, can be
done in a similar fashion by using the partial sum sequences of the original
sequence u instead of the partial sums of its order one gap sequence.
All the results given in this chapter are still true in this new framework.
The passage from one framework to the other is simply done through
Equation (14.1) and Lemma 91.



14.3 Application 1: Maximal Waiting Times in Networks 289

14.3 Application 1: Maximal Waiting Times in Networks

In this section, we show that the maximum waiting time in a queuing system
with general stationary inter-arrival and service times is a regular preserving
function.

14.3.1 The D/D/1 Model

First, we consider a slotted D/D/1 queue where the arrival sequence u is
periodic with n customers arriving every T time slots (each of unit length).
Therefore, v € P(T,n)*. By definition, the number of customers arriving at
time ¢ is w;. The i-th customer arrives at time p;(u) and brings a workload
of o in the system.

We will also denote by C d:ef no, the total load brought by n consecutive
customers.

We finally require that the queue is initially empty and that the customers
are served in a FIFO order (this last assumption can be relaxed to a non-
idling server assumption in some cases).

Now, let us consider the waiting time W; of the ¢th customer that enters
the system. We have

Wi(u,0) = maelY (0 — di(w) +0).
Py

We define M (u, o) def max; W(u, o).

Theorem 102. The function M(u) is reqular preserving.

Proof. First, let us remark that if C > T, then W; — oo when ¢ — oo.
Therefore M(u,0) = oco. In the rest of the proof, we will only consider the
case where C' < T'. In that case, note that after a transient period of length n,
the waiting times are periodic: W;,,, = W, if i > n. Also note that since the
system is initially empty, the maximum waiting time is not reached during
the initial transient period. So we have
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M(u,0) = max max {i(a —di(w) + o)}, (14.2)
k=3

i=n+1 j=i—n

— mAx max {(Z o) — d;'_j(u)}a

1=n+1j=i—n

2n 7 i
= +d " (w) = T}, 14.3
Dax f?f_’i{(;:j o) +d;i " (u) = T} (14.3)
n+1 )
= mAax max E + &’ - T},
= m%l)cm%fc{(n —j4+ Vo +d(u)-T}. (14.4)
J: =

Equation (14.2) follows from the fact that C' < T. Equation (14.3) follows
from Equation (14.13). Changing the order of the two max operators yields
Equation (14.4). ‘

Now, the function d’ — max? ,{(n —j + 1)o + d? — T} is Schur convex
for each j and the function M is increasing in d’ for all j, and thus satisfies
the conditions of Lemma 84. This means that M is regular preserving.

Corollary 12. Among all inter-arrival sequences in P(T,n), the balanced
sequence minimizes the mazimum waiting time in the system. Moreover, for
two sequences u,u' € P(T,n), u>u = M(u,0) > M, o).

Remark 38. The function M (u) is multimodular (see Appendix 14.6). This
is a direct consequence of Corollary 13 there.
14.3.2 Characterization using regular preserving functions

The function M when C = T plays an important role. Indeed, we have the
following result giving yet another characterization of balanced sequences.

Theorem 103. If C =T, and given uw € P(T,n), if M(u) < M(u') for all
u' € P(T,n), then u is balanced.

Proof. When C' =T, then o = T'/n. Equation (14.4) becomes

M (u) = maxmax{—jT/n +d(u)} +T/n.
i=1 j=

Note that jT'/n is the average value of df(u) Using Lemmas 80 and 81,
u is balanced is equivalent to the fact that M(u) < 1+ T/n. 0
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14.3.3 The average waiting time is not regular preserving

In this section, we will show that unlike for the maximal waiting time, the av-
erage waiting time in a stable D/D/1 queue is not regular preserving through
an example.

Consider in P(16, 5) the sequences u and u' with the respective one-order

gaps,

d'(u) = (4,4,3,1,4),
di(v') = (4,4,2,2,4).

It is immediate to check that u > u'. However, if one computes the average
waiting time in both cases, when the load brought by each customer is equal

to 3, one gets:

— 18 19
W(U) = ? < E = W(Ul>.

Remark 39. The function W is multimodular (see theorem 73). Therefore, it

is minimized by a balanced sequence in P(16,5): W (u) = 3 if u is a sequence
such that d'(u) = (3,3,3,3,4).

14.3.4 The G/G/1 Model

Here, we generalize the previous model. The deterministic arrival process is
replaced by a stochastic process with stationary interarrival times: {7 }ien.
The load carried by the k-th customer is denoted by ox. The sequence
{0k }ren, is stationary and independent of the arrival times. We denote by
6;(u) the time elapsed between the arrival of customer i and customer 7 + 1
for sequence wu,

pU('H'l)
6i(u): Z Tj7Vi=0,"',m—1.

J=pu(i)+1

Using Lindley’s equation, the waiting time of the i-th customer satisfies
Wi(u) = I?é,gg{Z(Uk - 6k(u)) + Ji}.

If we consider the maximal waiting time within on period, starting with

customer m + 1, we define &7 (u) def max] " Wi(u).

In a similar fashion as with the D/D/1 case, we define

. 1—1
o, (u) dof Bh%  mx > (or = 81(w) + 04}
k=j

1=m+1 j=1—r+1
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Intuitively, &7, is constructed by going back in time for 7 customers only,
while @7 goes back to time 0.

Note that if the queue has emptied during the last r arrivals, then both
quantities coincide.

We assume that the queuing system is stable, that is TE(r1) > nE(o1)
(this generalizes the previous assumption, C' < T to the stochastic case).
Under this stability condition, the queue empties almost surely in finite time.
Therefore, taking r large enough will ensure that &7, and &7, will coincide.
More precisely,

B an(u) = P (0)| —amso 0, a.s. (14.5)

an,an

Now, we have,

i—1

B, n(u) = X max &Y (o —6u(w) + oy o,
’ i=an+1 j=i—an+1

k=3
. i j—1 i—1
n+an )
= max  max o + Z O (u) — Z Or(u) ¢,
i=an+1 j=t—an+1
k=j k=i—an k=i—an
i+an Jj+i—1 i+an—1
n an
= max max Z ok + Z b (uw) — Z Orp(u) p . (14.6)
== k=j+i k=i k=i

Lemma 85. Let us assume that u and u' are two sequences in P(T,n) such
that u < u'. Then, 7, ... (u) <g P2, .. (u'), where < is the stochastic order

an,an an,an

between random variables.

Proof. For a given pair (4, 7) in {1,--- ,n} x{1,---an}, we know by definition
of the regular ordering that there exits ¢/ € {1,---,n} such that d/(u) <
&, (u'). Indeed, d?(u) = bT + df (u) where bn +r = j, 7 <n.

Now, we define a coupling of the service sequence as well as of the arrival
sequence such that o, = oxti and 74, (1) = Thtp,(s) for all k € N. Note
that the coupled sequences have the same probability distributions as the
original ones because of stationarity and independence between them and
because the sequences ¢ and 7 are independent of u and u’.

Using this coupling, and considering Equation (14.6), we have directly

i +an 1+an
I

2 =D o

p=i+i p=i+i

Since during a periods, the total number of arrivals under v and «' is the
same and using the coupling, we have
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itan—1 pu(it+an)
Z 6 (u) Z Tp
k=i p=pu(i)+1
pu(i)+Ta
p=pu(i)+1
pu (i')+Ta
SN
p=p,s ()41
i’ fan—1

Y Gl

k=1’

Finally, using the fact that d’(u) < d’ (u'), we also get

j+i—1 Pu(it+s)

Z b1 (u) Z Tp
k=1 p=pu(i)+1
puli)+d! (u)
= Z T
p=pu(i)+1
Pur ()47, (w)

< X
p=p, (¢')+1
J+i' =1
= ) &)
k=1
Using these three relations,
i+an J+i—1 i+an—1
an
max Z o + Z O (u) — Z O (u)
=5 | k=544 k=i k=i
i’ +an jHi -1 i'+an—1
an ! 11 i
<maxq Yo ooi+ Y o) - D &)
k=j+i’ k=i’ k=i’

This is true for all 4, and therefore also for the maximum over all possible
1 from 1 to an. Using the fact that under the coupling, the sequences ¢’ and
7' are in a “typical” situation, we get &7, ,.(u) <5 D7, .o (u). O

an,an an,an

Now, the stationary version of the queue is considered. Using a backward
coupling argument and Lemma 85, we obtain the following theorem.
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Theorem 104. Let W, be the stationary waiting time in o stable G/G/1
queue. Then for two sequences u,u’ € P(T,n)* with w < v, it holds that

m%fc W, (u) <st m%lx W, (u').
1= 1=

14.3.5 The Event Graph Model

We generalize the previous model to event graph models introduced in Chap-
ter 3. We recall briefly how this generalizes the G/G/1 queue.

— Networks assumptions. We replace the single queue by a network made of
Q servers (transitions) and P buffers (places) forming a FIFO stochastic
event graph with a single entry.

— Stochastic assumptions. The service time at node j for the k-th customer
is denoted by o7. The sequence {07 }ren,jeq is stationary and independent
of the arrival sequence. However no independence assumption among the
service times is required.

— Initial state assumptions. We assume that initially, the event graph is input-
deadlocked (this is a generalization of the empty queue assumption).

In Chapter 3 we showed that to any stochastic event graph, we can asso-
ciate a family of matrices, A({), of size @ x Q. The entry (3, j) in matrix A(¢)
is the maximum over all the sums of the service times of the ¢-th customer,
af, in all the nodes k on any path from node j to node ¢ with no initial
tokens, except at node j, and is —oo otherwise.

let X,(n) be the epoch when the n-th customer completes its service in
server ¢. Using the (max, +) notation, where @ stands for max and ® for +
(see Chapter 3 again), the vector X (n) = (X1(n),---,Xqg(n)) satisfies the
following recurrence equation:

X(n)=A(n)® X(n—-1).
Let W, be a vector , with its g-th component equal to: (W), dlef Xq(n)—
Xo(n). (Wn)g can be seen as the traveling time for customer n between its

entrance in the system and its passage in server q.
W, satisfies the following equation:

W1 = An) @ D(=6,) @ W,, ® B(n + 1), (14.7)

where D(h) is the diagonal matrix with h on the diagonal and —oco everywhere
else, and B(n) is a vector which describes the input connection.

Equation (14.7) can be seen as a vectorial form of the Lindley’s equation.
Its solution is similar to the solution of the scalar case.
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with
1

Cj(u) = (A(k) ® D(=6k(u))) ® B(n — j — 1).

If we define as previously, 7, = @7 " @;:0 C;(u) and

3
|

x>
Il

1=m+1

m+n 7 i—1

o= H H <®(A(k)®D(—6k(u)))®B(z’—j—1)),

1=m+1 j=i—r+1 k=3

we get by a similar technique as in the G/G/1 case (with a vectorial notation),

|¢Zn,an(u) - ¢Zn(u)| ——a— 07 a.s. (148)

provided the event graph is stable (see [20]).
The quantity #”_ _ (u) can be transformed using the fact that diagonal

an,an

matrices commute with everything.

an+n 7 7—1

&= B P |QRAK @B -j-1)© D(-bu))

i=an+1 j=i—an+1 k=3

an+n % i—1 i—1
=P b (A(k) @ B(i — j — 1)) ® (X) D(—6k(u))
i=an+1 j=i—ant+1l \ k=j k=j
n an 1+an—1 it+an—1
=PP| X Ak @Blan-j-1)e K D(-6u))
i=1 j=1 \ k=j+i k=j+1i
n  an 1+an—1 i+an—1
- DD ( R Ak eBan—j-1))e & D) e
=1 j=1 " k=j+i k=i
itj—1
(0% D(6k(u))). (14.9)
k=1

Lemma 86. Let us assume that u and v’ are two sequences in P(T,n)* such
that w < u'. Then, &7, ,,.(v) <5t Py, o (U').

an,an

Proof. The proof is similar to the single queue case, using a coupling argu-
ment and the definition of the regular ordering.
For a given pair (4, ) in {1,--- ,n} x {1,---an}, we know by definition of
the regular ordering that there exits i’ € {1,---,n} such that d](u) < dZ, (u').
Now, we define a coupling of the service sequence such that for each queue
g J;C‘fl_i, = 0}, As for the interarrival sequence, we set 7, (1) = Thip, (i)
for all k € N.
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Note that the coupled sequences have the same probability distributions
as the original ones because of stationarity and independence between them
and because the sequences o and 7 are independent of u and u'.

Using this coupling, we have by definition of A(k),

i+an—1 i'+an—1
Q) Ak @Blan—j-1)= Q) (Ak)@Blan—j-1)).
k=j+i k=j+i’

During a consecutive periods, the total number of arrivals with u and u’
is the same. Therefore, we have using the fact that D(—6x(u)) are diagonal
matrices,

i+an—1 pu(i+an)

® D(—7)

k=i p=pu(i)+1

o
|
>

kol
~
<
E
=
Il

I
®.
P~
2

p=pu(i)+1
Do (i) +Ta
'
& D(-7)
p=pyr (¥')+1
i +an—1

- ® D(-8w).

k=1

As for the last term,

jHi-1 Pu(i+5)
® D(ry)
k=1 P=pu(i)+1
Puli)+d! (u)
® D(7p)
p=pu(i)+1
Pur (') +d?, (')
QK D)
p=p,r(V')+1
j+i'—1

@ D& (u").

k=1

o
~~
(&%)
ol
~~
&

I

IA

These three relations are true for all 4 and j, therefore, considering Equa-
tion (14.9), &7, .. (u) <4 @Zn’an(u’). 0

an,an

Finally, we obtain the following extension of Theorem 104.
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Theorem 105. In a stochastic event graph, the maximum traveling time
M (u) over one period of the admission sequence is a regular preserving func-
tion (in the stochastic sense).

14.3.6 Routing Problem

Now, we consider a network of K identical queues in parallel. Customers enter
a system composed by K queues in parallel. The routing of the customers is
controlled by a sequence of vectors {W;}, with W; € {0,1}¥ and 1 <i < T
W7 =1 means that the i-th customer is routed to queue j. Note that u is a
feasible admission sequence as long as U} =1 for all 4.

Customers arrive in the system at each time unit and each customer brings
a constant load of o.

Figure 14.2 displays the model we are considering.

U’ —C>9

Fig. 14.2. Routing of customers in a multiple queue system

The Constrained Case We consider periodic routing policies U satisfying
the following constraint:

V1<j<K, ZU{ =nj, (14.10)

where n; are fixed with } . n; = T. In other words, uw? € P(T,n;)*. We
denote this set of policies by A(n1,- - ,nK).

Now, we define I(u) to be the maximum waiting time of any customer in

the system, for U € A(n1, - ,nk). I(U) def max)<; M;(U7), where M) is

the maximum waiting time in queue j.

We say that the vector (ny,---,nk) is balanceable if there exists U €
A(ny,- -+ ,ng) such that for all j, U7 is balanced. See Chapter 2 for a more
detailed discussion on balanceable vectors. From Lemma 83 and 102, we get,



298 14 Regular Ordering

Lemma 87. If (n1, -+ ,nk) is balanceable then I(U) is minimized by a
routing policy U such that each U7 is balanced.

Proof. This result is a direct consequence of Lemmas 83 and 102. 0

This result is similar to some extend to the results proved in Chapter 6
where multimodularity of the waiting times in each queue is used. However,
we get a new result here which follows directly from the previous lemma and
which holds for all (n1,---,nk) (i.e. not necessarily balanceable).

Theorem 106. If V.U € A(ny,--- ,nk), such that for all j, VI > U7, then
I(V) > I(U).

The Unconstrained Case Now, we do not fix the number of customers
sent to each queue.
We want to consider all admission sequences U in the set

A= U A(nl,---,nK).

>ini=T

Lemma 88. The function I(U) is minimized on A for some balanced U €
A(ni,--- ,nk), withn; € {|T/K|,[T/K]}, for all j.

Proof. First, note that if n; € {|T/K], [T/K}, for all j, then (n1,--- ,nK)
is balanceable. Let b be a vector with such a property. Second, note that
if not all n; € {|T/K],[T/K]}, then at least one of them is larger than
[T/K]. Finally, note that if U is a balanced sequence in P(T,n)“ and if
U' e P(T,n")¥, with n’ > n, then M(U’,0) > M(U, o).

Now, the proof goes like this. By Theorem 106, I is minimized on .A(b)
by a balanced sequence U(b). Moreover, there is some j such that I(U(b)) =
M;(U?(b)), with n; = [T/K]. For any U which is not in A(b), then there
exists k such that n, > [T/K].

Now, I(U) > M (U*) > M;(U?(b)) = I(U(b)). This finishes the proof

14.3.7 Computational Problems

For the constrained problem, we can compute the best sequence using a pro-
cedure similar to the one used in [36] with quadratic programming techniques.

As for the unconstrained case, from Lemma 88, it is easy to see that when
T/K € N, then the best routing policy (which minimizes the function I) is
the round robin policy.

However, when T/ K ¢ N, then little was know before. Here, we can come
up with the optimal routing sequence using the following procedure.

First, we compute the optimal sequence b = (nq,--- ,n,) using Lemma
88. This sequence is unique up to a permutation. Note that by symmetry
of the cost function, all those permutation will perform the same. Moreover,
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since all balanced sequences with the same slope in the routing sequence are
shifts of each other, then for all j such that n; = [T/K7, all the waiting
times M; (U’ (b)) are equal.

The construction of U7 (b) for any j can be done by any known method to
construct balanced sequence, as for example, by using the bracket sequence
formula given in Theorem 101.

14.3.8 A routing example

Let us assume that we want to route customers into three parallel event
graphs FEi, E», E3 with different service times. For some reason, the propor-
tions of customers sent to Ey, Ea, E3 must be 1/2,1/3 and 1/6 respectively.
This is a case where the routing policy is constrained to stay in the set
A(3,2,1) with a period equal to T' = 6.

The proportions 1/2,1/3,1/6 are not balanceable. Therefore, it is not
possible to find a routing sequence which is balanced for each event graph.
However, we can use the regular ordering to compare several policies.

Let U = (1,1,1,2,3,2) and U’ = (1,1,2,1,3,2).

If we consider the sequence of customers sent in E; we get Uy = (1,1,1,0,0,0)
and U] = (1,1,0,1,0,0). In Example 12, we showed that U] < Uj.

If we consider the sequence of customers sent in Ey we get Us = (0,0,0,2,0,2)
and U = (0,0,2,0,0,2). The sequence Uj is balanced. Therefore, U < Us.
Finally, if we consider the sequence of customers sent in Fy we get Us =
(0,0,0,0,3,0) and U} = (0,0,0,0,3,0), which are equal.

Since the sequence U’ is more regular than U for all the event graphs,
then the maximal waiting time under U’ is smaller than the maximal waiting
time under U (in the stochastic sense). This is true for all the distributions
of the service times in the three event graphs.

However, if we consider U"” = (1,3,1,2,1,2) then U’ < U{ but Uj <
UJ'. The routing sequences U’ and U" are not comparable for the regularity
ordering. For some distributions of the service times in the three event graphs
then U’ will be better than U and for some other distributions, U"” will be
better than U’.

14.4 Application 2: Assignment to queues with no
buffer with redundancy

In this section, we present an example of optimal control of admission into a
single buffer queue with redundancy.

— Transmission opportunities occur at time 7g, 77,7, ..... At each trans-
mission opportunity, a controller can decide to actually transmit a packet,
or not. If transmission occurs, we assume that it is instantaneous. Define
Cn =T, —Th_1.
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— At a down link node in the network a packet that has been transmitted
is buffered in a single buffer till its service there is completed. The duration
of the service is exponentially distributed and it has expectation p~1. We
assume that the delay between the transmitter and the down link node is
zero (the results of this section do not change if we take this time to be any
other constant period).

— If a packet is transmitted before the previous packet has completed its
service time then it is lost.

A model that can be used to solve this problem was introduced and stud-
ied in Chapter 8. Here, we further focus on the following problem arising from
higher layer network considerations. We consider the problem of redundancy
of packet transmission: each packet is retransmitted at k consecutive trans-
mission opportunities, which we call a frame, so as to decrease the probability
of losses. Thus, only if all the k& packets in a frame are lost then the frame,
or equivalently the original information packet, is considered to be lost.

Our goal, roughly speaking, is to obtain a control with two objectives: on
one hand it maximizes the average throughput, and on the other it minimizes
the loss probabilities of frames. Since the throughput is the acceptance rate
minus the losses, the problem can be formulated as maximization of the
average number of accepted packets, on one hand, and minimizing the loss
probabilities of frames, on the other.

We now formulate more precisely our problem. We define a control policy
as a sequence {u;}, ¢ € N, where u; = 1 if a transmission is scheduled at
the th transmission opportunity, and it is 0 otherwise. We consider here the
case where the controller has no information on the state of the buffer (nor
on which packet is the beginning of a frame).

Define D(n) = Y ;" ; u;. The actual nth transmission occurs at time p,(n)
(see Definition 14.1). We define the process X,, to be the number of packets
in the buffer just prior to time p,(n). Define G(u) as

X._.
Nooo N : 0,k—1 77"

N

G(u) :1imsupi AD(N)+ > E* min

j=1

where ) is a negative constant. We consider the problem of minimizing G
over all sequences u.

Note that D(N)/N is the acceptance rate, whereas the second term is
the average number of frames lost among the first IV ones. The cost thus
contains a term responsible for maximizing the throughput and a term for
minimizing the loss rates. The parameter A can be viewed as a Lagrange
multiplier related to a constrained problem; indeed, in Chapter 8 a similar
problem (for the case k = 1) is studied where the loss rate is to be minimized
subject to a constraint on the rate of acceptance of packets.

Next, we focus on the cost G(u). We shall restrict to policies u that are
periodic (see Chapter 8 for a justification for doing so). Our main result,
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stated below, is that G(u) is regular-preserving. (This allows us to conclude,
in particular, that there exists an optimal sequence which is balanced.)

Theorem 107. Assume that (; are stationary and that the service times
are 1.i.d. exponentially distributed, and independent of the sequence (. Let
uw € P(T,n)*®. Then

(i) G can be rewritten as

A 1 —
G(u) = T" + =Y e
=1

where d¥ is defined in (14.1).
(1) G(u) is regular-preserving for n > K .

Proof. (i) Let X, denote the length of the time interval that started when
the (n — K + 1)th packet was transmitted, and ended when the nth packet
is transmitted. f,(u) := ming—g,.. x—1 Xn_k equals 0 if and only if there has
been no service completion during Y,,, and is otherwise 1. Thus, the expec-
tation of f,(u) equals the probability that an exponential random variable
with parameter u is greater than or equal to X,,. Using the periodicity of u,
this yields (i).

(ii) This follows directly from Theorem 108. Note that since e(=#%) is
convex in z, g(x) = Ee(~#%) is convex too. 0

14.5 Appendix: properties of the gap sequences

This appendix gives several properties of the gap sequences which have some
interest by their own.

The two following lemmas are straightforward consequences of the defini-
tion of the gaps.

Lemma 89. The gap sequences satisfy the following properties:

k+1
A4 diy, 4ot dhy, = d (14.11)
di +ds+---+d', =T, (14.12)

d; +di =T. (14.13)

Proof. The proof is a straightforward consequence of the definition of the
gaps. 0

Lemma 90. Let u and u’ be two sequences in P(T,n). Ifu’ is a shift of u or
a mirror of u (i.e. Vj,u; = ul,, oru; =’ ;. ), then Vi,{d'(u)} = {d'(v')}.

Proof. The proof also follows directly from the definition of the gaps. 0

Remark 40. The converse of Lemma 90 is false in general, as shown by the fol-
lowing counter example!; choose u and v’ such that d* (u) = (1,1,2,0,2,1,1,0)

! This counter example was provided to the authors by Jeréme Galtier
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and d*(u') = (1,1,0,2,0,1,1,2). v’ is not a mirror nor a shift of u. However,
for all order i, we have {d‘(u)} = {d*(u')}. We will prove in the following
(see Remark 41) that the converse of Lemma 90 is true in the special case of
balanced sequences.

Lemma 91. Ifu € P(T,n), then d*(u) € P(n,T) and d*(d*(u)) is a shift of
u.

Proof. By using Equation (14.12), then d'(u) € P(n,T). Now, let u’ be
a shift of u such that p, (1) = 0 and such that d'(v') = d'(u). We will
show that d'(d'(u')) = '. Since p,s (i + 1) = inf{j| S32_, u}, > i + 1}, then
Pur (i + 1) = pur (4) = #{j| X4 _, ut = i}. Now we compute

di(d'(w') = #{j| Y di(u') = i}
k=0

= #{jlpu (i) — pu(0) = i}
= #{jlpw () = i} =

O

We can construct the different gaps by computing in the set Z[X]/(X™ -
1). Indeed, from the set d*(u), we can define the polynomial

Pi(x) %S gy x 1.

j=1

Note that by definition, we have P:(X) = (X1 +...+ X +1)P}(X) mod
(X7 —1).

Lemma 92. Let i > 1. The original sequence u can be retrieved from d*(u)
if and only if © and n are relatively prime.

Proof. There is a one to one correspondence between u and d*(u). Therefore,
we rather show that the knowledge of d*(u) enables one to compute d*(u) if
and only if 7 and n are relatively prime. If i and n are relatively prime, then
the polynomials X™ —1 and X* ! +--- + X + 1 are relatively prime. Using
the Bezout equality, there are two polynomials u(X) and v(X) in Z[X] and a
non-zero integer k such that k = (X' +---+ X + 1)u(X) + v(X)(X™ —1).
Therefore, by multiplying by P!(X), we get kP(X) = P!(X)u(X) mod
(X™ —1). The knowledge of P}(X) induces the knowledge of d* (u), which in
turn gives all gaps by using Equation 14.11.

On the other hand, if i and n are not relatively prime, then ged((X~! +

L F X +1), X" —1) = k(X), and if we denote by ¢(X) %€ (x" — 1)/k(X),
then ¢(X) € Z[X] and ¢(X)(X“ '+ -+ X +1) = Omod (X™ —1). We
have P} (X) = PY(X)(X*"'+---+ X +1) mod (X" — 1) as well as Pi(X) =
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(PLX)+q(X)(X* 1 +---+ X +1) mod (X" — 1). Therefore, two different
gap sequences of order one are compatible with the gap sequence of order 3.

O

Remark /1. Note that if for a sequence u, all the gaps of all order ¢ differ by
at most one and if {d*(u)} = {d‘(v')} for all i, then u and u’ are balanced
by lemma 81. On the other hand, all balanced sequences are shift of each
other (see Theorem 101) (It is interesting to see that in this case, all mirror
transformations are also shifts). This is an answer to the question asked
in Remark 40 in the case where the gap sequences are all formed by two
consecutive numbers.

14.6 Appendix: relations between regularity and
multimodularity

It is interesting to see if regular preserving functions have some kind of dis-
crete convexity properties. In this appendix we will show that all regular
preserving functions are multimodular in some sense whereas the reverse is
not true.

Let e; € NT denote the vector with all components equal to 0 except the
i-th component which is equal to 1. Define b; = ¢;_ 1 —e; for 1 < i < T,
bT =er—1 — € and F = {bl,bg, e ,bT}.

Since we deal with sequences which sums are fixed to n, we use an adapted
version of the definition of multimodularity (see Chapter 12).

Definition 25. A function f on P(T,n) is multimodular with respect to F
if for allw € P(T,n), v,w € F, v # w,

flutv)+ flutw) > flu)+ flu+v+w), (14.14)
whenever w + w,s +v,8+v +w € NT.

This is not the classical definition given by Hajek in [59], which considers
arbitrary sequences in N”'. However, both definitions are closely related. One
can show that the projection of a multimodular function (in the sense of
Hajek) on P(T,n) is multimodular according to Definition 25. (see Chapter
12 for a deeper insight on the definition given here.)

Theorem 108. Let f(u) be a function that only depends on d*(u), which is
also denoted by Hy(d*(w)). If H;(d*(u)) can be put under the from Y77, g(d%(u)),
where g s a convex function, then it is is multimodular on P(T, nﬂ

Proof. According to the definition of multimodularity, we need to check the
inequality (14.14) for all u € P(T,n).
First note that for all 1 < k < T, there exists j, such that:
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| di(u) =1 if j = ji,
di(u+be) = Qdi(w) +1 i j = ji +1, (14.15)
d;(u) otherwise.

Now, for any 1 < k,! < pp44 such that j, # j; =4, then b; and b, modify
different gaps. Therefore,

flu+bp) + flutb) — flu) = flu+b+br) =0
For all 1 < k,l < T such that j, = 5, — ¢, then,
flu+0bp)+ flu+b)— flu) — (u + by + br)
= (9(d5, 24(w)) + g(dj, (u) + g(dj, (u) — 1) +
9(djypi(u) + 1) + g(djy 45(u) = 1) + g(d, 10:(w) +1)) =
(9(d5, () + 9(dj, 42:(w)) + g(d5, 45(w)) +
g(dj, () = 1) + g(dj 12 (u) +1) + g(dj, 4 5(u)))
= —29(dj, 4:(w)) + 9(dj, y:(w) +1) + g(d5, 14(u) = 1)
This is positive since g is convex. m
The following corollary covers the case when several gap orders are used.

Corollary 13. If for all i, Hi(d*(u)) = X7, g:(d}(u)), where g; are convex
functions, then define the function

def -
W) Y5 m@w)), (14.16)
i=1
where ¢; are non negative constants. Then f is multimodular.
Proof. For all 4, the function f;(u) def H;(d!(u)) is multimodular. A positive
linear combination of multimodular functions is multimodular. 0

Remark 42. Note that the functions f;(u) also form a “characteristic set” of
regular preserving in the same way sums of convex functions play an impor-
tant role among Schur convex functions ([88]).

Remark 43. Functions of the form 14.16 have been used in [36] as a criterion
to test regularity of a sequence. In that paper, the minimization problem of
functions of this form is written as under quadratic assignment formulation.
This makes computations possible for small n and T and can be used for
optimization purposes.

Remark 44. Finally, one may remark that regular preserving functions con-
stitute an essential class among multimodular functions. Indeed, as shown in
Section 14.3.2, if a given sequence in P(T,n) minimizes all possible regular
preserving functions, then this sequence in balanced.
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cross traffic, 107 239

D/D/1 queue, 29 Markov decision process (MDP),

dual, 95 166
’ Markov modulated Poisson process,
expectation 175, 230

Markovian arrival process, 178
max,plus, 62

memoryless, 158

feasible policy, 26 mesh, 244

Fraenkel’s conjecture, 50 — sub-mesh, 251
monotonicity, 255

— conditional expectation, 156
exponential distribution, 156
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Morse, 40

multimodularity

— multimodular base, 12

— multimodular function, 13

— multimodular matrix, 244

— multimodular triangulation, 245
— simplex convexity, 248

multiple criteria, 26

order

— cone ordering, 255

— convex ordering, 230

— increasing convex ordering, 230

— lower graph order, 269

— multimodular order, 262

— shift invariant cone order, 267

— shift invariant multimodular or-
der, 267

— strong graph order, 269

— upper graph order, 269

oriented tree, 246

Palm probability, 190
path, 56

periodic policy, 156, 168
permutation, 244

Petri net, 56

deadlock, 59
enabling, 57

— even graph, 59

— firing, 57

— firing epochs, 60

— input connected, 60

— input deadlock, 59

— live, 59

— local FIFO, 63

— marking, 57

—— initial marking, 57
— place, 56

— timed Petri net, 56

— transition, 56

—— firing times, 56

—— input transition, 56
—— recycled transition, 63
Phase-type renewal process, 230

point process, 186
Poisson process, 163
polling, 185

prime, 23

projection, 14, 16, 36, 249

randomized policy, 22
rate, 21, 40

regular arrival process, 239
regular-preserving, 288
regularity, 287

renewal process, 196, 199
Ross conjecture, 231
round robin, 117, 186
routing control, 112

Schur concave, 160

Schur convex, 160, 162

sequence

— balanced sequence, 40, 285

— bi-infinite sequence, 39

— bracket sequence, 21, 40

— characteristic sequence, 120

— constant gap sequence, 42

— ergodic sequence, 190

— exact covering sequence, 43

— gap sequence, 285

— infinite sequence, 39

— periodic sequence, 257

— skew sequence, 41

— stationary sequence, 87, 94, 197
— support, 40

— upper bracket sequence, 120
shift, 190

simplex, 15, 244

— extreme point, 16

— face, 16, 245

— interior point, 15

Slivnyak inverse construction, 197
slope, 40

smoothing, 34

Strassen, 238

strongly connected component, 56
Sturmian word, 41

switching, 185, 196



tandem queues, 66
traveling time, 74
triangulation, 245
— L-triangulation, 247

unbalance, 269

— dual unbalance, 269

— primal unbalance, 269
unimodular matrix, 247
unit cube, 246

vacation, 183
virtual customer, 114, 196
visible service time, 107

waiting time, 92, 184

web search engine, 156, 179
Weyl ergodic theorem, 23
window flow control, 70
word, 39

workload, 81, 184

(x-y)-factor decomposition, 123



