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Abstract— We study a fixed point formalisation of the well
known analysis of Bianchi. We provide a significant simplifi-
cation and generalisation of the analysis. In this more general
framework, the fixed point solution and performance measures
resulting from it are studied. Uniqueness of the fixed point is es-
tablished. Simple and general throughput formulas are provided.
It is shown that the throughput of any flow will be bounded
by the one with the smallest transmission rate. The aggregate
throughput is bounded by the reciprocal of the harmonic mean
of the transmission rates. In an asymptotic regime with a large
number of nodes, explicit formulas for the collision probability,
the aggregate attempt rate and the aggregate throughput are
provided. The results from the analysis are compared with ns2
simulations, and also with an exact Markov model of the back-
off process. It is shown how the saturated network analysis can
be used to obtain TCP transfer throughputs in some cases.
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of MAC protocols

I. INTRODUCTION

We are concerned in this paper with the situation in which
there are several IEEE 802.11 compliant nodes within such
a distance of each other that only one transmission can be
sustained at any point of time. We call these single-cell
networks. Our discussion covers ad hoc networks, and also
infrastructure networks, in which an AP acts as a conduit
between the wireless network and a wired “infrastructure.”
Our analysis is limited to the situation in which all nodes use
the RTS/CTS based distributed coordination function (DCF)
without the QoS extensions (as in IEEE 802.11e) (but see [8]
for our extensions of the work in the present paper).

Each node may have several physical connections or asso-
ciations with several other nodes. On each such connection
the sustainable physical transmission rate may be different.
Between each such pair of nodes there are flows whose
throughput performance we are concerned with. It is assumed
throughout this paper that all flows are infinitely back-logged
at their transmitters; i.e., there are always packets to transmit
when a node gets a chance to do so.

In such a scenario, we are interested in obtaining quantita-
tive formulas and qualitative insights via a stochastic analysis
of the way that the IEEE 802.11 CSMA/CA protocol allocates
the wireless medium to the node transmitters. Our approach
is to begin with a key approximation made by Bianchi [2].
This leads to a fixed point equation, which can be expected to
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characterise the operating points of the system. This fixed point
equation is our point of departure. We simplify and generalise
the analysis leading to the fixed point equation. We then
establish a simple, and practically appealing, condition for the
uniqueness of the fixed point in this more general framework.
Some simple observations lead to throughput formulas for the
overall network and for the individual flows. These formulas
allow us to recover the well known observation that the slowest
transmission rate dominates the throughput performance. We
also analyse the fixed point in the asymptotic regime of a
large number of nodes and find explicit formulas for the
collision probability, the channel access rate and the network
throughput. A key parameter in the protocol is the back-off
multiplier, whose default value in the IEEE 802.11 MAC
standard is 2; our asymptotic analysis provides some insights
into the role of the back-off multiplier.

We provide ns2 simulation results for the collision proba-
bilities and compare these with results obtained from the fixed
point analysis. We also provide results from an exact Markov
chain model for the back-off process and also compare these
results with those from the fixed point analysis.

As already pointed out, the above described modeling
assumes that there are always packets backlogged on ev-
ery connection. Such a saturation assumption is a common
simplification and is useful in the following ways. In some
situations it has been formally proved (see, for example, [4])
that the saturation throughput provides a sufficient condition
for stability of the queues; i.e., if at each queue the arrival
rate is less than the saturation throughput then the queues will
have a proper, joint stationary distribution. In this paper we
also apply the saturation throughput analysis to provide an
analysis for TCP controlled file transfer throughputs in certain
local area network scenarios.

The most popular model for IEEE 802.11 networks, and one
that has led to many applications and extensions, is the one
reported in [2]. Another analysis, that also incorporates the
feature of adapting the back-off parameters, has been reported
in [3]. The recent paper [1] is one of the many that have
reported a throughput “anomaly” in IEEE 802.11 networks;
i.e., if the network has low speed connections, even the high
speed connections experience throughput no better than what
is obtained by the low speed connections.

The paper is organised as follows. In Sec II we provide
the key observation and approximation on which the analysis
is based. In Sec III we analyse the back-off process in a
fairly general setting. The fixed-point equation is provided in
Sec IV and analysed in Sec V; a validation through an exact



solution of a Markov model is given in Sec V-B. In Sec VI
the throughput formulas are provided. The asymptotic analysis
is developed in Sec VII. An application of the results to the
analysis of TCP is given in Sec VIII and the paper ends with
a concluding section. Some proofs are provided in-line and
others are in the Appendix. Many details, not provided in this
paper (including one proof), can be found in the report [5].

II. A KEY OBSERVATION AND AN APPROXIMATION

A. Sufficient to Analyse the Back-Off Process

We begin by extracting from a description of the system
the key modeling abstractions that will allow us to develop
the analysis. Figure 1 shows the evolution of the system
for 4 nodes; shown are the back-offs, the transmissions and
collisions. In the IEEE 802.11 standard, the back-off durations
are in multiples of a standardised time interval called a slot
(e.g., 20 µs in IEEE 802.11b). However, this discrete nature
of the back-offs does not affect the following argument. When
a node completes its back-off (for example, node 1 is the first
to complete its back-off in Figure 1), it seeks a reservation
of the channel by sending an RTS packet. If no other node
completes its back-off before hearing this transmission then
the RTS effectively reserves the channel for the first node.
There follows a CTS from the intended recipient of the RTS,
and then there follows a packet transmission and a MAC
level ACK. This ends the reservation period and the node that
transmitted the packet samples a new back-off interval. Note
that we assume throughout that nodes always have packets to
transmit; i.e., all the transmission queues are saturated.

If the RTS collides with that of another node (note that
we do not model the phenomenon of packet capture), then
after fully transmitting their RTSs each node waits for a
time interval DIFS before returning to the back-off state. For
example, in Figure 1 nodes 2 and 4 collide after the first two
attempts (by nodes 1 and 3, respectively) are successful. The
other nodes, not involved in the collision, listen to the channel
activity until the end of the RTS transmissions, and then also
start their DIFS timers. Thus after a collision all nodes resume
their back-off phases after an amount of time equal to the
transmission time of an RTS plus a DIFS.

If attempts to send the packet at the head-of-the-line (HOL)
meet with several successive failures, this packet is discarded.
By our assumption of saturated queues, there is always another
packet waiting to be sent by the upper layers: either the same
packet or the next one in line.

We see from the figure that when any node has reserved the
channel or whenever there is a collision, all other nodes freeze
their back-off timers. We also notice that the evolution of the
channel activity after an attempt is deterministic. It is either
the time taken for a transmission or for a collision. If there is
a transmission then the time depends on which node captures
the channel. The latter dependence comes about because the
transmission time of a packet depends on the transmission rate
and hence on the transmitting node.

Since all nodes freeze their back-offs during channel activ-
ity, the total time spent in back-off up to any time t, is the

same for every node. With this observation, let us now look
at Figure 2 which shows the back-offs of Figure 1 with the
channel activity removed. Thus in this picture “time” is just
the cumulative back-off time at each node. In the IEEE 802.11
standard the back-offs are multiples of the slot time. A success
occurs if a single back-off ends at a slot boundary, and a
collision occurs when two or more back-offs end at a slot
boundary. The nodes could have different back-off parameters
(the mean back-off intervals, how these are varied in response
to collisions and successes, and the number of retries of a
packet). It is clear, however, that the (random) sequence in
which the nodes seek turns to access the channel and whether
or not each such attempt succeeds depends only on the back-
off process shown in Figure 2. It is therefore sufficient to
analyse the back-off process in order to understand the channel
allocation process. The saturation assumption is crucial here
since, with this assumption, we do not have to take care of any
external packet arrivals that may occur during channel activity
periods.

Thus, in summary, we can delete the channel activity
periods, and we are left with a “conditional time” which we
will call back-off time. We will analyse the back-off process
conditioned on being in back-off time. It will then be shown
how this analysis can be used to yield the desired performance
measures over all time.

B. A Key Approximation

Throughout the rest of the paper we assume that all the
nodes use the same back-off parameters. Hence the back-
off process shown in Figure 2 is symmetric over the nodes.
We call this the homogeneous case to distinguish it from
the nonhomogeneous case in which different nodes may use
different back-off parameters, as, for example, proposed in the
IEEE 802.11e standard (see [7]).

In Figure 2 we also show the aggregate sequence of suc-
cesses and collisions. In general, this is a complex process, and
it is also clear that the success and collision processes of the
various nodes are coupled and strongly correlated. In Sec V-B
we will describe an exact Markov chain model for the joint
backoff process of the nodes, but this model is analytically
intractable. The following key approximation is made in [2].
The Decoupling Approximation: Let β denote the long run
average back-off rate (in back-off time) for each node. By
the fact that all nodes use the same back-off parameters,
and by symmetry, it is assumed that all nodes achieve the
same value of β. Let there be n contending transmitters, and
consider a given node. The key approximation is to assume
that the aggregate attempt process of the other (n − 1) nodes
is independent of the back-off process of the given node. In
IEEE 802.11 the back-off evolves over slots, hence a discrete
time model (embedded at slot boundaries) can be adopted.
Then the approximation says that if the attempt rate per node
is β attempts per slot (0 ≤ β ≤ 1), then from the point of
view of the given node the number of attempts by the other
nodes in successive slots are i.i.d. Binomial random variables
with parameters (n−1) and β. It might be expected that such
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Fig. 1. The evolution of the back-off periods and channel activity for four
nodes. It can be seen that back-offs are interrupted by channel activity, i.e.,
packet transmissions and RTS collisions.
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Fig. 2. After removing the channel activity from Figure 1 only the back-
offs remain. These determine the scheduling of channel access. At the
bottom is shown the aggregate attempt process on the channel, with three
successes and one collision.

a decoupling approximation should work well when there is a
large number of transmitters accessing the channel.

III. ANALYSIS OF THE BACK-OFF PROCESS

We generalise the back-off behaviour of the nodes, and
define the following back-off parameters.

K := At the (K + 1)th attempt either the packet succeeds
or is discarded

bk := The mean back-off duration (in slots) at the kth
attempt for a packet, 0 ≤ k ≤ K

Since we are limiting ourselves to the homogeneous case, these
parameters are the same for all the nodes.

In Figure 3 we show the evolution of the back-off process
for a single node. There are Rj attempts until success for the
jth packet (no case of a discarded packet is shown in this
diagram), and the sequence of back-offs for the jth packet
is B

(i)
j , 0 ≤ i ≤ Rj − 1. Thus the total back-off for the jth

packet is given by Xj =
∑Rj−1

i=0 B
(i)
j with E

(

B
(i)
j

)

= bi. We
observe that the sequence Xj , j ≥ 1, are renewal life times.
Hence, viewing the number of attempts Rj for the jth packet
as a “reward” associated with the renewal cycle of length Xj ,
we obtain from the renewal reward theorem that the back-
off rate is given by E(R)/E(X). Now let γ be the collision
probability seen by a node, i.e.,

γ := Pr (an attempt by a node fails because of a collision)

Since the back-off behaviour of all the nodes is the same,
the collision probability is the same for all the nodes. By the
approximation made in Sec II, the successive collision events
are independent. It is then easily seen that

E(R) = 1 + γ + γ2 · · · + γK

E(X) = b0 + γb1 + γ2b2 + · · · + γkbk + · · · + γKbK

which yields the following formula for the attempt rate for a
given collision probability γ

G(γ) :=
1 + γ + γ2 · · · + γK

b0 + γb1 + γ2b2 + · · · + γkbk + · · · + γKbK

(1)

Note that, since the back-off times are in slots, the attempt
rate G(γ) is in attempts per slot.

Remarks 3.1:
1) Note that the distribution of the back-off durations does
not matter. Also, observe that the above analysis remains
unchanged whether the back-off distributions are discrete (i.e.,
the back-offs evolve over slots) or are continuous.
2) It is easily seen that the back-off model considered in [2]
yields

G(γ) =
2(1 − 2γ)

(1 − 2γ)(CWmin ± 1) + γCWmin(1 − (2γ)m)

attempts per slot, which is the same as in the paper [2]. Note
that the ± alternatives arise depending on whether we take
the back-off to be uniformly distributed over [1, 2, · · · , CW ]
or over [0, 1, · · · , CW −1]. Evidently, the uniform distribution
of back-off durations plays no role in the final results in [2].
3) A more detailed evolution of the back-off process in
Figure 3 is shown in Figure 4, where at each time t the
residual back-off duration Y (t) is also shown. The process
Z(t) is the back-off stage the node is in. Thus if K = 7,
Z(t) = 3, and Y (t) = 5, then after 5 time units the current
back-off ends. If there is a collision, Z(t) changes to 4 and
a back-off with mean b4 is sampled from the specified back-
off distribution (uniform in the standard). If Z(t) = 7 then at
the end of the current back-off, irrespective of whether there
is a collision or a success, the next back-off has mean b0,
and is sampled from the specified distribution. It is clear that
the process (Z(t), Y (t)) is Markov. The point is that it is not
necessary to analyse this Markov chain, which is essentially
what is done in [2]. Let Zk, k ≥ 0, denote the process Z(t)
embedded at the attempt instants (the instants corresponding
to the vertical sides of the triangles in Figure 4). Then Zk is an
embedded Markov chain. Further, Zk and the successive back-
off intervals (the bases of the triangles) constitute a Markov
renewal process. It is well known that for Markov renewal
processes event rates and time probabilities are insensitive to
distributions of life-times. It should thus be clear why one
can directly obtain the formulas above without needing to go
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Fig. 4. Evolution of the back-off stage (Z(t)) and the residual back-off
time (Y (t)) for the case in which the back-offs are continuous variables.

through the analysis of the Markov chain in [2], and also why
the results are insensitive to the back-off distribution.

IV. THE FIXED POINT EQUATION

Focusing on the back-off and attempt process of a node,
and being given the collision probability γ the attempt rate
is provided by G(γ) in Eq 1. It is important to recall that in
the present discussion all rates are conditioned on being in
the back-off periods. Later we will see how to incorporate the
channel activity periods. Now if all nodes have the same back-
off parameters, they will all see the same average collision
probability, γ, and hence will have the same attempt rate.
If the attempt rate (or probability) of each node per slot is
β, 0 ≤ β ≤ 1, then, conditioning on an attempt of the given
node, the probability of this attempt experiencing a collision
is the probability that any of the other nodes attempts in the
same slot. Under the decoupling approximation, the number
of attempts made by the other nodes is binomially distributed
with parameters β and n − 1. Under the approximation, the
number of attempts in successive form an i.i.d. sequence. The
probability of collision of an attempt by a node is given by

Γ(β) := 1 − (1 − β)(n−1) (2)

We will show later in the paper that under a certain asymptotic
regime the aggregate attempt rate nβ converges to a positive
value as n → ∞. Then (motivated by the binomial to Poisson
convergence theorem) for a large number of nodes, it is
reasonable to model the attempt process of the other nodes
(with respect to a given node) as a sequence of i.i.d. batches
(at slot boundaries) with the batch distribution being Poisson
with mean (n−1)β. The collision probability under this model
is then clearly given by

Γ(β) := 1 − e−(n−1)β (3)

It is now natural to expect that the equilibrium behaviour
of the system will be characterised by the solutions of the
following fixed point equation

γ = Γ(G(γ)) (4)

If this equation can be solved it will yield the collision
probability, from which the attempt rate can be obtained using
Eq 1. We will see in Sec VI that throughputs can be obtained
once these quantities are determined.

V. ANALYSIS OF THE FIXED POINT PROBLEM

Since Γ(G(γk)) is a composition of continuous functions it
is continuous. We thus have a continuous mapping from [0, 1]
to [0, 1]. Hence by Brouwer’s fixed point theorem there exists
a fixed point in [0, 1]. We next turn to uniqueness.

Lemma 5.1: G(γ) is non-increasing in γ if bk, k ≥ 0, is a
non-decreasing sequence.

Proof: Provided in the Appendix.
Theorem 5.1: Γ(G(γ)) : [0, 1] → [0, 1], has a unique fixed

point if bk, k ≥ 0, is a nondecreasing sequence.
Proof: Since Γ(β) is non-decreasing in β and, by

Lemma 5.1, G(γ) is non-increasing in γ, it follows that
Γ(G(γ)) is non-increasing in γ. The fixed point must therefore
be unique, since multiple fixed points will lead to a contradic-
tion to the non-increasing property of Γ(G(γ)).

Remarks 5.1:
(1) We observe that in the IEEE 802.11 standard the sequence
bk is non-decreasing. Hence for the practical system there will
be a unique fixed point.
(2) In the above discussion we have only considered balanced
fixed points, i.e., ones in which all the nodes have the same
value of collision probability γ. It is possible, however, under
the decoupling approximation, to set up a system of fixed point
equations for unbalanced fixed points, i.e., ones in which the
collision probability of node j is γj , with these values being
possibly different for different j. By symmetry we expect
that the long run average operating point of the system will
correspond to a balanced fixed point. However, in [8] we have
shown that in general there can also exist unbalanced fixed
points, which suggest multistability, and indeed simulations
reveal that in such cases there is serious short term unfairness.
In [8] we also provide a sufficient condition for there to
be no unbalanced fixed points. It turns out that the default
IEEE 802.11 parameters satisfy these conditions. Thus in
practice there will be a unique balanced fixed point and no
unbalanced ones.

A. Examples and Comparison with ns2 Simulations

In Figure 5, we show plots of Γ(G(γ)) vs. γ for several
parameters. Here p = 2, as in the IEEE 802.11 standard. In the
plot on the top we use the value K = 7. In both the plots the
initial mean back-off b0 is 16 slots. The intersection of these
plots with the “y=x” line corresponds to the fixed point. We
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Fig. 5. Plots of Γ(G(γ)) vs. γ for two values of K (7 (top) and
100 (bottom)), b0 = 16 slots, and multiplicatively increasing bk with
multiplier p = 2. For each K, plots are shown for number of nodes
n = 2, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.
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and the fixed point analysis (plot labeled FP). 95% confidence intervals are
shown for the values obtained from the ns2 simulation. In the ns2 simulation
the default IEEE 802.11 parameters are used: the data rate is 11 Mbps and
the control packet rate is 2 Mbps.

see that the collision probability increases with an increasing
number of nodes. For n ≥ 30, with K = 7, the collision
probability is larger than with K = 100. This is because with
larger K nodes are able to expand their back-off durations
more and hence attempt less often. The collision probability
for n ≤ 20 is not sensitive to K for K ≥ 7, since with n ≤ 20
there are rarely more than 7 consecutive collisions.

It was reported in [2] that the fixed point analysis works well
for IEEE 802.11 parameters. In Figure 6 we demonstrate this
by plotting the collision probability obtained from the fixed
point method and from an ns2 simulation.

In all the ns2 simulations presented in this paper we
have used ns2 version 2.26. The bugs present in the
IEEE 802.11 code were patched by using an updated version
of the code taken from the ns2 snapshot dated January

5, 2004. Static routing was implemented by using NOAH
code (dated November 2003), downloaded from the web site
of J. Widmer, EPFL, (http://icapeople.epfl.ch/widmer/uwb/ns-
2/noah/index.html). As can be seen, the fixed point analysis
provides a good approximation for a wide range of values of
the number nodes.

B. Comparison with the Coupled Back-Off DTMC

It can be seen that when the back-off durations are geo-
metrically distributed, then the coupled evolution of the back-
offs of the nodes, as shown in Figure 2, is exactly modeled
by a discrete time Markov chain (DTMC). Hence if the
decoupling approximation works well, it should be able to
match the results obtained from this DTMC. We now turn
to this question. We proceed with the following assumptions:
(i)The number of nodes n ≥ 2, (ii) Exponential back-off with
multiplier p > 1, i.e., bk = pkb0, 1 ≤ k ≤ K, (iii) Back-off
durations are geometrically distributed, or, equivalently (with
the bk expressed in number of slots), when a node is in back-
off stage k, it attempts in the next slot with probability 1

bk
.

We only need to consider the system back-off periods, and we
index the slots in back-off time by t = 0, 1, 2, · · ·.

It is convenient to work with the process that counts the
number of nodes in each back-off stage. This will be a K +
1 dimensional process for any number of nodes. Define the
number of nodes in the back-off stage k ∈ {0, 1, · · · , K} in
slot t to be M

(n)
k (t). Let M

(n)(t) denote the vector random
process with components M

(n)
k (t). From the foregoing, it is

clear that M
(n)(t) is a Markov process taking values in the

set M(n) := {m : mk nonnegative integers;
∑K

k=0 mk = n}.
Theorem 5.2: [5] For b0 > 1, and p > 1, the DTMC

M
(n)(t) on M(n) is irreducible.

It follows that under the conditions b0 > 1 and p > 1, the
DTMC M

(n)(t) is positive recurrent. Let π
(n) denote the

stationary probability measure on M(n).
For small values of K (e.g., 1 or 2) π

(n) can be numerically
computed. Now given π

(n), the collision probability γ can
be obtained in a straight forward manner (see [5]). Sample
results are shown in Table I. Results are shown for K = 1
and K = 2, and b0 = 16. It can be seen that the fixed point
analysis approximates the collision probability very well.

VI. CALCULATING THROUGHPUTS

We make two key observations. The first is demonstrated
by Figure 7. Because of the i.i.d. batch binomial assumption
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Fig. 7. The aggregate process of back-offs and channel activity



No. of DTMC FPA DTMC FPA
Nodes (K = 1) (K = 1) (K = 2) (K = 2)

2 0.0598 0.0592 0.0595 0.0587
3 0.1111 0.1105 0.1088 0.1078
4 0.1568 0.1563 0.1510 0.1500
5 0.1983 0.1979 0.1879 0.1870
6 0.2365 0.2362 0.2209 0.2202
7 0.2720 0.2718 0.2508 0.2502
8 0.3052 0.3050 0.2782 0.2778
9 0.3363 0.3362 0.3036 0.3033

10 0.3657 0.3656 0.3272 0.3270
11 0.3933 0.3933 0.3494 0.3493
12 0.4196 0.4195 0.3703 0.3702
13 0.4444 0.4444 0.3900 0.3900
14 0.4680 0.4680 0.4088 0.4088
15 0.4905 0.4905 0.4266 0.4266
16 0.5119 0.5119 0.4436 0.4436
17 0.5323 0.5323 0.4598 0.4599
18 0.5518 0.5518 0.4754 0.4755
19 0.5703 0.5703 0.4903 0.4904
20 0.5881 0.5881 0.5046 0.5048

TABLE I
COLLISION PROBABILITIES: DTMC AND FIXED POINT ANALYSIS (FPA);

K = 1 AND K = 2, AND b0 = 16.

p
2,j

p
n,j

p
1,j

. . 
. . 

.

1

2

n

random order
of visit, with
probability 1/n
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Fig. 8. The n transmitters are served in random order with equal probability
for each node.

on the aggregate attempt process, the instants at which a suc-
cessful transmission or a collision ends are renewal instants.
Each such instant is followed by a time until the next attempt,
followed by a collision or a success, and so on. The second
observation is that since all the nodes follow the same back-
off process, each node has an equal probability of winning the
allocation “race.” With this in mind we can now discard the
back-off times and focus only on the times when an attempt
is made and on the intervening channel activity. A successful
attempt leads to the channel being allocated to one of the n
contending nodes with equal probability. Hence in a saturated
system, in order to compute the amount of time the channel
will be allocated to a node, we only need to know the identity
of the packet that will be found at the head-of-the-line if the
channel is allocated to the node.

Consider the model shown in Figure 8. The nodes are visited
in random order with equal probability. Each node receives
an open loop stream of packets. There are mi streams being
handled by node i. These are indexed by 1 ≤ j ≤ mi; these
would represent mi flows from node i to some of the other
nodes. We can thus use the term “flow (i, j)”.

By “open-loop” we mean that packets arrive to the node

and have to be delivered; there are no acknowledgement and
flow control as in TCP controlled traffic. A fraction pi,j of
the packets at node i belong to stream j, 1 ≤ j ≤ mi. Since
the node is saturated there is always a packet at the head-of-
the-line when the channel is allocated to any node, and pi,j

is the probability that the packet is from flow j. Let us define
the packet length of flow (i, j) to be Li,j and the physical
transmission rate for flow (i, j) to be Ci,j bits per slot.

In addition, we define,
To := is the fixed overhead with a packet transmission in

slots (e.g., IEEE 802.11b: To = 52 slots)
Tc := is the fixed overhead for an RTS collision in slots

(e.g., IEEE 802.11b: Tc = 17 slots)

The above two observations, the traffic model described
above, and the parameters listed above, lead immediately to
the expression in Eq 5 for the saturation throughput of flow
(i, j) (in bits per slot) given the collision probability γ and
the per node attempt rate β.

The formula follows from the renewal reward theorem. The
mean renewal time (see Figure 7) is the mean time until
an attempt, plus the mean time for channel activity; i.e., a
transmission or a collision. The term 1

1−(1−β)n is the mean
time until an attempt and assumes that the aggregate attempt
process is binomial. When there is an attempt the channel is
allocated to node i (with probability β(1−β)n−1

1−(1−β)n ), else there
is a collision, for which the channel will be busy for the
time Tc. If the channel reservation succeeds, then the head-
of-the-line packet at node i is of flow (i, j) with probability
pi,j , and transmitting this takes the time Li,j

Ci,j
+ To. The mean

reward during the cycle is β(1−β)n−1

1−(1−β)n pi,jLi,j , thus yielding
the displayed expression. Canceling the term 1− (1−β)n, the
formula simplifies to the expression in Eq 6.

A. Low Speed Transmitters Bound All Throughputs

It has been observed (see, for example, [1]) that when there
are several flows with different physical transmission rates
then the throughput of all the flows is bounded by the slowest
transmission rate. We can examine this observation using Eq 6.

If 2 nodes i1 and i2 are such that for some j1, 1 ≤ j1 ≤
m1, and j2, 1 ≤ j2 ≤ m2, pi1,j1Li1,j1 = pi2,j2Li2,j2 then
it follows from Eq 6 that θi1,j1(γ, β) ≤ min{Ci1,j1 , Ci2,j2}
and θi2,j2(γ, β) ≤ min{Ci1,j1 , Ci2 ,j2}, i.e., the flow with the
lower physical rate will bound the throughput of both.
Remark: The above analysis points to an important observa-
tion. Suppose we are interested in achieving flow through-
puts that are proportional to their physical link rates; i.e.,
θi,j = νCi,j for some ν. It has been suggested in previous
literature that this can be achieved by appropriately choosing
the packet lengths. We notice from Eq 6 that the desired
throughput proportionality can be achieved only be making
Li,j proportional to Ci,j

pi,j
, which requires knowledge of the

pi,js, which may not be practicable.
Let us now consider a simpler situation with n nodes each

being the transmitter for a single flow and all packet lengths
being equal to L. Then the total network throughput is given



θi,j(β) =

β(1−β)n−1

1−(1−β)n pi,jLi,j

1
1−(1−β)n +

∑n

i=1

(

β(1−β)n−1

1−(1−β)n

((

∑mi

k=1 pi,k
Li,k

Ci,k

)

+ To

))

+
(

(1−(1−β)n−nβ(1−β)n−1)
1−(1−β)n Tc

) (5)

θi,j(β) =
β(1 − β)n−1pi,jLi,j

1 +
∑n

i=1

(

β(1 − β)n−1
((

∑mi

k=1 pi,k
Li,k

Ci,k

)

+ To

))

+ ((1 − (1 − β)n − nβ(1 − β)n−1) Tc)
(6)

by
Θ(β) = (7)

nβ(1 − β)n−1L

1 +

n
∑

i=1

(

β(1 − β)n−1

(

L

Ci

+ To

))

+

(

(1 − (1 − β)n − nβ(1 − β)n−1) Tc

)

Since the denominator is bounded below by
∑n

i=1

(

β(1 − β)n−1
(

L
Ci

+ To

))

, it can be seen that

Θ(β) ≤
1

1
n

∑n
i=1

1
Ci

≤ n × min
1≤i≤n

Ci

i.e., the total network throughput is bounded above by the
reciprocal of the harmonic means of the physical bit rates of
the n flows. Thus, for example, if there are two flows with
physical rates 2 Mbps and 4 Mbps then the total network
throughput will be bounded by 2

1
2+ 1

4

= 2.667 Mbps. Also,
with equal packet lengths, we see that this total throughput is
shared equally among all the flows.

VII. AN ASYMPTOTIC ANALYSIS

If we numerically examine the fixed points (see [5]), we
notice that the fixed points appear to be converging as K
becomes large, and there is not much variation in them for
K ≥ 15. Thus we are motivated to analyse the fixed point
for K → ∞. A similar asymptotic analysis has also been
carried out independently by Kwak et al in [6]; while their final
results are the same as our Theorem 7.2, we have displayed an
analytical form for the fixed point solution (see Theorem 7.1),
and we derive our asymptotic results by taking a limit in
this solution. Further, we also provide a relaxed fixed point
iteration for computing the fixed point (see Sec VII-A).

To permit closed form analysis, let us take b0 = b slots, and
bk = pk × b0, where p ≥ 1; hence, by Theorem 5.1, a unique
fixed point still exists. The multiplicative increase is in any
case a part of the IEEE 802.11 standard; we are generalising
to an arbitrary multiplier in order to study the impact of the
value of this multiplier.

Assuming γ < 1/p, and taking K → ∞, we see that

G(γ) =
1

bo

×
1 − pγ

1 − γ

Note that the assumption that γ < 1/p does not affect the
fixed point analysis presented earlier, since we will see in
Theorem 7.2 that the fixed point in the limit K → ∞ is less
than 1/p.

Given γ, G(γ) is the probability of attempt of any node. Then
using the batch Poisson version of the collision probability in
Eq 3, the fixed point equation becomes

γ = f(γ) where f(γ) := 1 − exp

(

−
n − 1

b0
×

1 − pγ

1 − γ

)

(8)

In order to obtain compact expressions, let us define η = n−1
b0

.

z e z
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z
−1

LambertW(x)

− (1/e)

Fig. 9. The LambertW function is the inverse function of zez ; notice that
for x ≥ − 1

e
, LambertW (x) ≤ x, with equality only for x = 0.

Theorem 7.1: The fixed point is of the form

γ(η) =
LambertW (η(p − 1)eηp) − η(p − 1)

LambertW (η(p − 1)eηp)
.

Remark: For x ≥ −1/e, LambertW (x) is defined as the
inverse of the function zez; see Figure 9.

Proof: We proceed from Eq 8. Writing ν = 1 − γ, and
using the definition of η, this equation can be rewritten as
ν = exp(−ηp) exp

(

η(p−1)
ν

)

. Multiplying both sides by η(p−

1), we obtain η(p − 1) exp(ηp) = η(p−1)
ν

exp
(

η(p−1)
ν

)

. It

follows from the definition of LambertW (·) that η(p−1)
ν

=

LambertW
(

η(p−1) exp(ηp)
)

from which the result follows
by substituting 1 − γ for ν.

A. A Relaxed Fixed Point Iteration

The fixed point γ(η) can only be computed numerically. In
this section we provide a relaxed fixed point iteration. With
reference to Eq 8, and, with γ0 := 1/p, consider the sequence
of values generated by the iterations

γk+1 = (1 − α)f(γk) + αγk (9)

where 0 < α < 1. Notice that α = 0 corresponds to the
usual fixed point iteration, which will converge if f(γ) is
a contraction. The above iteration is called a relaxed fixed
point iteration. We will now provide a condition on α that
will ensure that the iterates converge to the fixed point.



First of all, since f(γ) is continuous, it is clear from the
iteration in Eq 9 that if the sequence of iterates converge then
they must converge to the fixed point. It is also clear that if, for
each k, γk ≥ f(γk) then the sequence {γk} is nonincreasing.
This follows because γk+1 = (1−α)f(γk)+αγk ≤ γk if and
only if f(γk) ≤ γk. Thus, since γk ≥ 0, for the convergence
of the sequence {γk} it suffices to ensure that γk ≥ f(γk) for
all k.

Now, it can easily be shown that the derivative of f(γ) at
γ = 1/p is given by D := −n−1

b0

p2

p−1 , and that, for γk+1 ≤ γk

f(γk+1) − f(γk) ≤ |D| (γk − γk+1)

From this inequality we can see that to ensure f(γk) ≤ γk,
for all k, it is sufficient to ensure that, for all k, |D| (γk −
γk+1) ≤ γk+1 − f(γk). Using the iteration in Eq 9 this is
equivalent to ensuring that, for all k, |D|(1−α)(γk−f(γk)) ≤
α(γk − f(γk)). Hence it suffices that |D|(1−α) ≤ α, or that
α ≥ |D|/(|D| + 1). Thus, for example, with n = 10 nodes,
b0 = 16 slots, and p = 2, it relaxed fixed point iteration with
α such that 2.25

3.25 < α < 1 will yield the unique fixed point
γ(η).

B. Taking n to ∞

We now wish to take n to ∞ and study the limit of the fixed
point solution obtained in Theorem 7.1. For this we need the
following properties of the LambertW function.

Lemma 7.1:

1) For a > 0,

lim
x→∞

LambertW (axex)

x
= 1 (10)

2) For 0 < a ≤ 1, LambertW (axex) ≤ x
3) For 0 < a < 1, the convergence in Eq 10 is from below.

Proof: Provided in the Appendix.
The following result is now obtained by applying

Lemma 7.1 to the expression for γ in Theorem 7.1.
Theorem 7.2:

1) γ(η) < 1/p,
2) limn→∞ γ(η) ↑ 1/p,
3) limn→∞ nβ ↑ ln( p

p−1 ).
Remarks 7.1:

1) Theorem 7.2 provides explicit expressions for the collision
probability and the fixed point for large K and a large number
of nodes. We see that for large n the collision probability
is directly related to the back-off multiplier p, and is the
reciprocal of this multiplier.
2) We also see that nβ, the mean attempt rate per slot, goes to
ln( p

p−1 ), and hence the attempt probability per node (during
back-off periods) behaves like O( 1

n
). This lends some support

to the original assumption that from the point of view of a
node the attempt process of the other nodes can be viewed
as an independent process with i.i.d. batch Poisson arrivals in
successive slots.
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Fig. 10. Aggregate throughput plotted vs. the back-off multiplier p for two
values values of n. The network parameters are K = 10, b0 = 16 slots,
data packet length 8000 bits, packet overhead 592 bits, slot time 20 µs,
transmission rate for all flows 11 Mbps, fixed (rate independent) data packet
transmission overhead 52 slots, collision overhead 17 slots.

C. Asymptotic Aggregate Throughput
Let us now consider n nodes handling n flows with all the

flows having the same transmission rate, C. The aggregate
throughput of the network is given by (compare with Eq 7)

Θ(β) =
nβe−nβL

1 +
(

nβe−nβ
(

L
C

+ To

))

+ ((1 − e−nβ
− nβe−nβ) Tc)

We infer from this equation that, as n → ∞ the aggregate
throughput converges to

τ(p) :=
(1 − 1

p
)L

1
ln( p

p−1 ) + (1 − 1
p
)( L

C
+ To) +

( 1
p

ln( p
p−1 ) − (1 − 1

p
)
)

Tc

The following result is then immediately obtained
Theorem 7.3:

1) limp→∞ τ(p) = 0,
2) limp→1 τ(p) = 0,
3) τ(p) is maximised at

p =
Tc

Tc+1

LambertW
(

− 1
e
· Tc

(Tc+1)

)

+ Tc

Tc+1

Remarks 7.2: 1) The behaviour of the aggregate throughput
as p goes to its two extremes is as expected. If p → 1 then
the nodes do not increase their back-off intervals in response
to collisions. The collision probability becomes large and the
throughput drops to 0. Obviously, as p → ∞ collisions cause
a drastic reduction in attempts essentially shutting the nodes
off.

2) In an attempt see what the above asymptotic results have
to say about realistic network parameters, in Figure 10 we plot
the aggregate throughput for finite K and finite n, using the
formula in Eq 7 with equal transmission rate for all the flows.
We see that the throughput increases steeply for 1 < p < 2,
but is quite flat with p after p = 2. There is an optimal value
of p, but unless p is very close to 1, the throughput is not very
sensitive to p. It can be seen that the back-off multiplier used



in the standard, i.e., p = 2, is adequate unless the number of
nodes becomes very large. For Tc = 17 (slots), the third part
of Theorem 7.3 returns p = 3.85, which compares well with
the curve for n = 60 in Figure 10.

VIII. APPLICATION TO THE ANALYSIS OF TCP
CONTROLLED FILE TRANSFERS

A. Some Modeling Assumptions

We will make the following assumptions:
A1: The files are infinitely long. Thus we do not deal

with web transfers. Practically, this assumption means that
our analysis applies to large file transfers, such as software,
document, or media downloads.

A2: The modulation scheme and bit rate of the physical
connection between a pair of communicating wireless devices
is ideally adapted (but fixed) so that there is no packet loss
owing to bit errors. Further, the retransmission time-out at each
TCP transmitter is large enough so that time-outs never takes
place.

A3: At the transmitter of each wireless device the capacity
of the buffer is such that there is no packet loss. This
assumption effectively holds in practice if the number of file
transfer connections through a node is small enough so that
the sum of the maximum TCP windows of all the connections
is less than the buffer size. For, say, 10 connections, this would
typically require a buffer of no more than 512 KB.

A4: The file transfer throughputs are bottlenecked only
by the rates they obtain over the WLAN. For example, the
transfers could be between the wireless devices across an
ad hoc WLAN, or, in the infrastructure case, between the
wireless devices and devices attached to a high speed wired
LAN to which the AP is attached. For transfers within a
building or campus this assumption is practically valid since
most wired LANs are based on 100 Mbps to 1 Gbps Ethernet.

Owing to Assumption A1 it makes sense to talk about
the long run time average throughput of a transfer. From
Assumptions A2 and A3 it follows that the TCP window
of each connection grows to its maximum value, and by
Assumption A4, each data packet or ACK of all the TCP
connections will be queued at the transmitter of one of the
WLAN devices.

Let us adopt the following connection model. There are
m connections, indexed by j, 1 ≤ j ≤ m. The source node
of connection j is denoted by s(j), and the receiver node is
denoted by r(j)(6= s(j)). Thus, for connection j, the TCP
ACKs will queue up at the transmitter of node r(j). The data
packet length for connection j is denoted by Lj and the ACK
packet length by L

(ack)
j . In general, each node will transmit

data packets for some connections and ACK packets for other
connections.

In order to use the “saturated queues” analysis presented
earlier in the paper, we make the following additional assump-
tion

random order
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probability 1/n

. .
 . 

. .

1

2

TCP connection from node n to node 2

TCP connection from node 2 to node 1

n

Fig. 11. There are several TCP connections, modeled as “chains” of
customers with a fixed population (the window size) circulating in a random
polling network. The solid arrows between the queues show the direction of
TCP data transfer for a connection, and the dashed arrows show the direction
of TCP ACK transmission. The n transmitters are served in random order
with equal probability for each node.

A5: The configuration of the TCP connections and the sizes
of their windows are such that the transmitter queues of the
wireless devices never empty out.
Remark: This assumption is made to permit us to use the
fixed point analysis presented earlier in the paper. It, however,
considerably restricts the scenarios to which the analysis will
apply. For example, the common situation of two or more
devices simultaneously downloading files via an AP is not
covered by our analysis. This is because the AP needs to send
many more packets for each packet that each of the devices
sends, and hence the device queues will empty out, violating
our saturated queues assumption.

We will utilise Assumption A5 as follows. Recall our
discussion in Sec VI. If all the n queues always have packets
to send, then they always contend for the channel, and each
successful attempt “belongs” to each of the queues with equal
probability, 1/n.

B. A Formula for Connection Throughput

Let us now focus only on the successful attempt instants.
Such a success belongs to node i with probability 1

n
. The

HOL packet at that node is then transmitted. If this packet is
of length L and the transmission rate is C then a time L

C
+To

elapses. If the packet transmitted is a data packet then possibly
an ACK is inserted into the transmitter queue of the receiving
node (note that if delayed ACKs are used then not every data
packet causes an ACK to be generated). On the other hand,
if the packet transmitted is an ACK packet then one or more
packets are inserted into the transmitter queue of the receiving
node. Thus the queues can be viewed as evolving only at
successful polling instants. This is an important observation
as it allows us to ignore the back-off periods while analysing
the evolution of the packet queues. Note that this observation
does not hold if there are finite rate open-loop arrival processes
into the nodes, as these arrival processes will cause the queues
to evolve even during back-off periods.

From the above observations, we can now proceed by
analysing the discrete time random polling model shown in
Figure 11. The discrete “time” in this model evolves over
packets. Note that we do not need to be concerned with packet



θj(β) =

β(1 − β)n−1hs(j),jLj

1 +
∑n

i=1
β(1 − β)n−1

((

∑

{j:s(j)=i}
hi,j

Lj

Ci,r(j)
+

∑

{j:r(j)=i}
h

(ack)
i,j

L
(ack)
j

Ci,s(j)

)

+ To

)

+ (1 − (1 − β)n
− nβ(1 − β)n−1) Tc

(11)

lengths (data or ACK), or physical bit rates. We will see that
all we need from this model is the fraction of polls to a queue
that find packets of each type at the head-of-the-line. There
are several TCP connections modeled as “chains” or classes of
customers circulating between pairs of nodes. The populations
of the chains are the TCP window sizes. If the delayed ACK
threshold for a connection is greater than 1 (let us say 2), then
at the receiving node for that connection 2 data packets give
rise to one ACK packet. We can view this ACK packet as
being a batch of 2, that is served together.

The state of the random polling model is the position and
type of each packet in each queue. This process evolves over
packet times. It is easy to see that the evolution of this rather
complicated process is Markovian. Analysis of this Markov
chain will yield the following probabilities, that will be used
in the throughput formulas.

hi,j : the probability that at a polling instant the HOL
packet at node i is a data packet from connection
j

h
(ack)
(i,j) :the probability that at a polling instant the HOL

packet at node i is an ACK packet for connection j
(for which node i is the receiver node, i.e., i = r(j))

By the observations made just before these definitions, we
can conclude that the probabilities hi,j and h

(ack)
(i,j) do not

depend on data and ACK packet lengths, nor on the physical
bit rates of the connections. These probabilities will depend
only on the maximum TCP window sizes, the delayed ACK
thresholds, and the connection configurations (i.e., which
nodes carry which connections). We also note that once we
have these probabilities, the throughput of connection j can
be immediately obtained as in Eq 11 (see also Eq 6), where
(γ, β) are obtained from the fixed-point analysis. This formula
has the same form as the one in Eq 6. In the numerator the
term β(1 − β)n−1 is the probability that node s(j) has a
success, hs(j),j is the probability that the HOL packet belongs
to connection j, and when both these events occur connection
j has a “reward” of Lj bits. The denominator is the mean
length of a back-off and and attempt cycle.

Remarks 8.1:
1) To be technically correct Eq 11 should have been obtained
as the ratio of two expectations with respect to the stationary
distribution of the Markov chain describing the random polling
model. We have shown only the final result in terms of the
HOL probabilities at the polling instants, as this is simple and
intuitively clear.

2) In Eq 6 the HOL probabilities were obtained from the
ratios of the open-loop arrival rates into the queues. In Eq 11,

however, the HOL probabilities will need to be obtained from
the packet level analysis of the random polling model shown
in Figure 11. We will show how this is done in the next
subsection.

3) The denominator of the expression now includes a term
for the service provided to TCP ACKs.

4) We have used the fact that all data packets within TCP
connection j have the same length Lj , and the ACK packets
within TCP connection j have the same size L

(ack)
j . If this

were not the case then we would need to make a more
elaborate definition of the HOL probabilities which would
have to include the probability of finding packets of each
possible length.

C. Obtaining the HOL Probabilities

Let λj be the throughput of connection j through its sender
node s(j) in the random polling model shown in Figure 11.
Thus λj the average number of packets of connection j that
pass through the node s(j) per packet served in the polling
model.

Theorem 8.1: If at each success instant one of the nodes
is polled with equal probability (i.e., we have the model in
Figure 11) then hs(j),j = λjn.

Proof: Let πs(j),j denote the fraction of packet services
in the model of Figure 11 during which the HOL position at
node s(j) is occupied by a data packet of connection j. Since
the mean time that a packet spends in the HOL position is n,
by Little’s Theorem we have

πs(j),j = λjn

Owing to random polling, the HOL position at node s(j) is
observed by a Bernoulli process with probability of “success”
equal to 1

n
. Hence by the result that Bernoulli “arrivals” see

time averages, we can conclude that

hs(j),j = πs(j),j = λjn

Remarks 8.2: 1) If the throughput of ACKs for connection
j through its receiver node r(j) is λ

(ack)
j then by the same

argument as in Theorem 8.1 it follows that h
(ack)
s(j),j = λ

(ack)
j n.

2) We note that the hypothesis of the Theorem 8.1 that “at
each success instant one of the nodes is polled with equal
probability” requires the saturation assumption, i.e., Assump-
tion A5, to hold. There are TCP connection configurations for
which this assumption will not hold. For example consider
a single TCP connection from Node 1 to Node 2. The TCP
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Fig. 12. Plot of aggregate TCP controlled file transfer throughput vs. number
of simultaneous transfers over an IEEE 802.11b network. Results obtained
from the approximate analysis in the paper and from ns2 simulations are
shown. We show 95% confidence intervals around the simulation results. In
the ns2 simulation the IEEE 802.11 parameters are used; the data rate is
11 Mbps and the control rate (used to send RTS, CTS and ACK) is 2 Mbps.

receiver uses a delayed ACK threshold of 2; i.e., it returns
one ACK for two received data packets. Clearly over a large
number of packet transmitted we cannot say that about half
will come from Node 1 and the other half from Node 2. In this
case the receiver node will tend to empty out and the saturation
assumption will not apply. On the other hand if Node 2 was
also sending to Node 1 then our analysis will apply.

3) In view of Theorem 8.1 we need to analyse the random
polling model and obtain the λjs and the λ

(ack)
j s, and this will

yield the HOL probabilities needed in the throughput formula.

D. Comparison with ns2 Simulations

In Figure 12 we compare the results from the analysis
presented above and ns2 simulations; 95% confidence intervals
are shown around the simulation results. For comments on the
version of ns2 used, see Sec V-A. The scenario simulated is
that there are n nodes paired up with n other nodes; each
node in the first group is performing a TCP controlled long
file transfer to its corresponding member in the other group.
The maximum receiver window for each TCP connection is
20 packets, the TCP packet length is 1 KB, and the receivers
do not delay the ACKs (i.e., an ACK is returned for each
received data packet). In this situation, of course, hi,j will be 1
whenever Node i is the source node of connection j, and hack

i,j

will be 1 whenever Node i is the receiver node for connection
j. The physical link rates are all 11 Mbps. The aggregate
throughput over all the connections is plotted vs. the number
of connections. We notice that the match between analysis and
simulations is good, with the worst case error being about 6%.
The simulation trace file showed that during the simulations
there was no TCP time-out; thus our Assumption A2 held in
this case.

Another scenario that we evaluated was two nodes sending
files to each other, simultaneously. In this case the aggre-
gate throughput predicted by the model is 2.4164 Mb/s,
while ns2 simulations return a 95% confidence interval of
[2.4054,2.4153] Mb/s. In the simulation, the throughput ob-
tained by each transfer is approximately a half of the aggregate

throughput.

IX. SUMMARY

Our analysis has provided a simple and general represen-
tation of the fixed point equation that arises from an analysis
initiated by Bianchi in [2]. The representation is insensitive
to the distribution of the back-off times. We show that if the
mean back-off durations for successive retrials are monotone
nondecreasing then the fixed point equation has a unique
solution. Then we provide general throughput formulas for
open-loop arrival processes (e.g., UDP transfers). We recover
the observation that connections with small physical rates
dominate the throughputs of other connections. We then turn
to the special case of exponential back-off with an arbitrary
positive multiplier, p, and where we do not limit the number
of retrials a node can make. This leads to simpler expressions
which permit us to study the network performance as the
number of nodes goes to infinity. For this case, we obtain
a characterisation of the fixed point solution for the collision
probability for each n. Then we take n to ∞ and obtain the
limit of the collision probability and aggregate attempt rate that
agree with the results of Kwak et al in [6]. We also provide a
relaxed fixed point iteration for computing the fixed point for
any finite n when the number of retrials is not limited. The
asymptotic aggregate throughput is obtained and from this the
optimal back-off multiplier p is also derived.

For exponential back-off, and geometrically distributed
back-off periods, the back-off process can be modeled via
a discrete time Markov chain. In Section V-B we study this
DTMC, and for some simple computable cases we compare
the collision probability obtained from the DTMC with that
obtained from the fixed point analysis.

Finally, we show how the saturation throughput analysis
can be used to obtain TCP controlled file transfer throughputs
for some network scenarios. In this analysis we exploited the
idea that, for window controlled traffic, the back-off process
evolution can be decoupled from the packet service process,
the latter being modeled by a random polling queue.

APPENDIX

Proof: (Lemma 5.1) We have

G(γ) :=
1 + γ + γ2 · · · + γK

b0 + γb1 + γ2b2 + · · · + γkbk + · · · + γKbK

and we need to show that the derivative of this function with
respect to γ is negative. Taking the derivative we find that we
need to show that

K
∑

k=0

bkγk





K
∑

j=1

jγ(j−1)



 ≤
K

∑

k=0

γk





K
∑

j=1

jbjγ
(j−1)





i.e.,
K

∑

k=0

K
∑

j=1

jbkγ(k+j−1) ≤

K
∑

k=0

K
∑

j=1

jbjγ
(k+j−1)



or, equivalently, we need to show that

2K
∑

n=1

γ(n−1)

min{n,K}
∑

j=max{(n−K),1}

k=(n−j)

j(bj − bk) ≥ 0

Now we consider each term
∑min{n,K}

j=max{(n−K),1}

k=(n−j)

j(bj − bk) and

show that it is nonnegative. To this end, define

m(n) = |{(j, k) : j + k = n, 1 ≤ j ≤ K, 0 ≤ k ≤ K}|,

where | · | denotes set cardinality. When k = j, jbj − jbk = 0
and the corresponding term vanishes from the sum. Also, k
equals 0 only when j = n and 1 ≤ n ≤ K. Hence, simplifying
the above expression, we get,
max{(n−K),1}+b m

2
c−1

∑

j=max{(n−K),1}

((n − j) − j) (bn−j−bj)+n(bn−b0)1{1≤n≤K}

which is nonnegative since, in the range of the sum, (n −
j) − j ≥ 0 and bn−j − bj ≥ 0. It is also easily seen that the
derivative of G(·) is strictly negative for γ > 0 if the bk are
not all equal, this implies that G(·) is strictly decreasing in
this case.

Proof: (Lemma 7.1)
1) For x ≥ 0, write z(x) = LambertW (axex), i.e.,

z(x)ez(x) = axex

It is easily seen that for x > 0, z(x) > 0, and z(x) ↑ ∞
for x → ∞. Now, taking natural logarithms, we obtain,
for all x > 0,

ln z(x) + z(x) = ln ax + x

or
z(x)

x
=

ln ax
x

+ 1
ln z(x)
z(x) + 1

which, on taking x → ∞ yields the desired result since
ln ax

x
and ln z(x)

z(x) both go to 0.
2) By definition, LambertW (xex) = x, and LambertW is

monotone increasing for positive arguments. Hence, for
0 < a ≤ 1, LambertW (axex) ≤ x.

3) Follows by combining the previous two parts.
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