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Abstract We consider massively dense ad-hoc networks and study their continuum limits as the
node density increases and as the graph providing the available routes becomes a continuous area
with location and congestion dependent costs. We study both the global optimal solution as well
as the non-cooperative routing problem among a large population of users where each user seeks
a path from its source to its destination so as to minimize its individual cost. We seek for a
(continuum version of the) Wardrop equilibrium. We first show how to derive meaningful cost
models as a function of the scaling properties of the capacity of the network and of the density of
nodes. We present various solution methodologies for the problem: (1) the viscosity solution of
the Hamilton-Bellman-Jacobi equation, for the global optimization problem, (2) a method based
on Green Theorem for the least cost problem of an individual, and (3) a solution of the Wardrop
equilibrium problem using a transformation into an equivalent global optimization problem.

Keywords: Routing, Ad-hoc networks, equilibrium.

1 Introduction

In the design and analysis of wireless networks, researchers frequently stumble on the scala-
bility problem that can be summarized in the following sentence: “As the number of nodes
in the network increases, problems become harder to solve” [26]. The sentence takes its
meaning from several issues. Some examples are the following:

• In Routing: As the network size increases, routes consists of an increasing number of
nodes, and so they are increasingly susceptible to node mobility and channel fading [22].

• In Transmission Scheduling: The determination of the maximum number of non-
conflicting transmissions in a graph is a NP-complete problem [29].

• In Capacity of Wireless Networks: As the number of nodes increases, the determination
of the precise capacity becomes an intractable problem.
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Nevertheless when the system is sufficiently large, one may hope that a macroscopic model
will give a better description of the network and that one could predict its properties from
microscopic considerations. Indeed we are going to sacrifice some details, but this macro-
scopic view will preserve sufficient information to allow a meaningful network optimization
solution and the derivation of insightful results in a wide range of settings.

The physics-inspired paradigms used for the study of large ad-hoc networks go way beyond
those related to statistical-mechanics in which macroscopic properties are derived from mi-
croscopic structure. Starting from the pioneering work by Jacquet (see [17]) in that area,
a number of research groups have worked on massively dense ad-hoc networks using tools
from geometrical optics [17]1 as well as electrostatics (see e.g. [26, 25, 13], and the survey
[27] and references therein). We shall describe these in the next sections.

The physical paradigms allow the authors to minimize various metrics related to the routing.
In contrast, Hyytia and Virtamo propose in [15] an approach based on load balancing arguing
that if shortest path (or cost minimization) arguments were used, then some parts of the
network would carry more traffic than others and may use more energy than others. This
would result in a shorter lifetime of the network since some parts would be out of energy
earlier than others and earlier than any part in a load balanced network.

The term “massively dense” ad-hoc networks is used to indicate not only that the number of
nodes is large, but also that the network is highly connected. By the term “dense” we further
understand that for every point in the plain there is a node close to it with high probability;
by ”close” we mean that its distance is much smaller than the transmission range. In this
paper and in previous work (cited in the next paragraphs) one actually studies the limitting
properties of massively dense ad-hoc networks, as the density of nodes tends to infinity.

The development of the original theory of routing in massively dense networks among the
community of ad-hoc networks has emerged in a complete independent way of the exist-
ing theory of routing in massively dense networks which had been developed within the
community of road traffic engineers. Indeed, this approach had already been introduced in
1952 by Wardrop [30] and by Beckmann [4] and is still an active research area among that
community, see [6, 7, 14, 16, 32] and references therein. We combine in this paper various
approaches from this area as well as from optimal control theory in order to formulate mod-
els for routing in massively dense networks. We further propose simple novel approach to
that problem using a classical device of 2-D. singular optimal control [19] based on Green’s
formula to obtain a simple characterization of least cost paths of individual packets. We end
the paper by a numerical example for computing an equilibrium.

We consider in this paper static networks (say sensor networks) characterized by communica-
tions through horizontally and vertically oriented directional antennas. The use of directional
antennas allows one to save energy and to use it in an efficient way which may result in a
longer life time of the network.

The structure of this paper is as follows. We begin by presenting models for costs relevant
to optimization models in routing or to node assignment. We then formulate the global
optimization problem and the individual optimization one with a focus on the directional
antennas scenario. We provide several approaches to obtain both qualitative characterization
as well as quantitative solutions to the problems.

1We note that this approach is restricted to costs that do not depend on the congestion
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2 Determining routing costs in dense ad-hoc networks

In optimizing a routing protocol in ad-hoc networks, or in optimizing the placement of nodes,
one of the starting points is the determination of the cost function. To determine it, we need
a detailed specification of the network which includes the following:

• A model for the placement of nodes in the network.

• A forward rule that nodes will use to select the next hop of a packet.

• A model for the cost incurred in one hop, i.e. for transmitting a packet to an interme-
diate node.

Below we present several ways of choosing cost functions.

2.1 Costs derived from capacity scaling

Many models have been proposed in the literature that show how the transport capacity
scales with the number of nodes n or with their density λ. Assume that we use a protocol
that provides a transport capacity of the order of f(λ) at some region in which the density
of nodes is λ. A typical cost (see e.g. [25]) at a neighborhood of x is the density of nodes
required there to carry a given flow. Assuming that a flow2 T(x) is assigned through a
neighborhood of x, the cost is taken to be

c(x,T(x)) = f−1(|T(x)|) (1)

where | · | represents the norm of a vector.

Examples for f :

• Using a network theoretic approach based on multi-hop communication, Gupta and
Kumar prove in [12] that the throughput of the system that can be transported by

the network when the nodes are optimally located is Ω(
√

λ), and when the nodes are

randomly located this throughput becomes Ω(
√

λ√
log λ

). Using percolation theory, the

authors of [9] have shown that in the randomly located set the same Ω(
√

λ) can be
achieved.

• Baccelli, Blaszczyszyn and Mühlethaler introduce in [2] an access scheme, MSR (Multi-

hop Spatial Reuse Aloha), reaching the Gupta and Kumar bound O(
√

λ) which does
not require prior knowledge of the node density.

• A protocol introduced by Tse and Glosglauser [10] has a capacity that scales as O(λ).
However, it does not fall directly within the class of massively dense ad-hoc networks
and indeed, it relies on mobility and on relaying for handling disconnectivity.

2We denote with bold font the vectors.
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We conclude that for the model of Gupta and Kumar with either the optimal location or the
random location approaches, as well as for the MSR protocol with a Poisson distribution of
nodes, we obtain a quadratic cost of the form

c(T(x)) = k|T(x)|2 (2)

This follows from (1) as f(x) behaves like
√

x so its inverse is quadratic.

2.2 Congestion independent routing

A metric often used in the Internet for determining routing is the number of hops, which
routing protocol try to minimize. The number of hops is proportional to the expected
delay along the path in the context of ad-hoc networks, in case that the queuing delay is
negligible with respect to the transmission delay over each hop. This criterion is insensitive
to interference or congestion. We assume that it depends only on the transmission range.
We describe various cost criteria that can be formulated with this approach.

• If the range were constant then the cost density c(x) is constant so that the cost of a
path is its length in meters. The routing then follows a shortest path selection.

• Let us assume that the range R(x) depends on local radio conditions at a point x
(for example, if it is influenced by weather conditions) but not on interference. The
latter is justified when dedicated orthogonal channels (e.g. in time or frequency) can
be allocated to traffic flows that would otherwise interfere with each other. Then de-
termining the routing becomes a path cost minimization problem. We further assume,
as in Gupta and Kumar, that the range is scaled to go to 0 as the total density λ of
nodes grows to infinity. More precisely, let us consider a scaling of the range such that
the following limit exists:

r(x) := lim
λ→∞

Rλ(x)

λ

Then in the dense limit, the fraction of nodes that participate in forwarding packets
along a path is 1/r(x) and the path cost is the integral of this density along the path.

• The influence of varying radio conditions on the range can be eliminated using power
control that can equalize the hop distance.

2.3 Costs related to energy consumption

In the absence of capacity constraints, the cost can represent energy consumption. In a
general multi-hop ad-hoc network, the hop distance can be optimized so as to minimize the
energy consumption. Even within a single cell of 802.11 IEEE wireless LAN one can improve
the energy consumption by using multiple hops, as it has been shown not to be efficient in
terms of energy consumption to use a single hop [20].

Alternatively, the cost can take into account the scaling of the nodes (as we had in Subsection
2.1) that is obtained when there are energy constraints. As an example, assuming random
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deployment of nodes, where each node has data to send to another randomly selected node,
the capacity (in bits per Joule) has the form f(λ) = Ω

(
(λ/ log λ)(q−1)/2

)
where q is the

path-loss, see [21]. The cost is then obtained using (1).

3 Preliminary

In the work of Toumpis et al. ([26, 25, 13, 28, 27]), the authors address the problem of the
optimal deployment of Wireless Sensor Networks by a parallel with Electrostatic.

Consider in the two dimensional plane X1×X2, the continuous information density func-
tion ρ(x), measured in bps/m2, such that at locations x where ρ(x) > 0 there is a distributed
data source such that the rate with which information is created in an infinitesimal area of
size dΩ centered at x is ρ(x)dΩ. Similarly, at locations x where ρ(x) < 0 there is a dis-
tributed data sink such that the rate with which information is absorbed by an infinitesimal
area of size dΩ, centered at point x, is equal to −ρ(x)dΩ.

The total rate at which sinks must absorb data is the same as the total rate which the data
is created at the sources, i.e. ∫

X1×X2

ρ(x)dS = 0.

Next we present the flow conservation condition (see e.g. [25, 6] for more details). For
information to be conserved over a domain Ω0 of arbitrary shape on the X1×X2 plane, (but
with smooth boundary) it is necessary that the rate with which information is created in the
area is equal to the rate with which information is leaving the area, i.e

∫

Ω0

ρ(x)dx =

∮

∂Ω0

[T(x) · n(x)]d`

The integral on the left is the surface integral of ρ(x) over Ω0. The integral on the right is
the path integral of the inner product T · n over the curve ∂Ω0. The vector n(x) is the unit
normal vector to ∂Ω0 at the boundary point x ∈ ∂Ω0 and pointing outwards. The function
T(x) · n(x) measured in bps/m2 is equal at the rate with which information is leaving the
domain Ω0 per unit length of boundary at the boundary point x.

This holding for any (smooth) domain Ω0, it follows that necessarily

∇ ·T(x) :=
∂T1(x)

∂x1

+
∂T2(x)

∂x2

= ρ(x), (3)

where “∇·” is the divergence operator.

Extension to multi-class The work on massively dense ad-hoc networks considered a
single class of traffic. In the geometrical optics approach it corresponded to demand from
a point a to a point b. In the electrostatic case it corresponded to a set of origins and a
set of destinations where traffic from any origin point could go to any destination point.
The analogy to positive and negative charges in electrostatics may limit the perspectives
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of multi-class problems where traffic from distinct origin sets has to be routed to distinct
destination sets.

The model based on geometrical optics can directly be extended to include multiple classes
as there are no elements in the model that suggest coupling between classes. This is due in
particular to the fact that the cost density has been assumed to depend only on the density
of the mobiles and not on the density of the flows.

In contrast, the cost in the model based on electrostatics is assumed to depend both on the
location as well as on the local flow density. It thus models more complex interactions that
would occur if we considered the case of ν traffic classes. Extending the relation (3) to the
multi-class case, we have traffic conservation at each point in space to each traffic class as
expressed in the following:

∇ ·Tj(x) = ρj(x), ∀x ∈ Ω. (4)

The function Tj is the flow distribution of class j and ρj corresponds to the distribution of
the external sources and/or sinks.

Let T(x) be the total flow vector at point x ∈ Ω. A generic multi-class optimization problem

would then be: minimize Z over the flow distributions {T j
i }

Z =

∫

Ω

g(x,T(x))dx1dx2 subject to ∇ ·Tj(x) = ρj(x), j = 1, ..., ν ∀x ∈ Ω. (5)

4 Directional Antennas and Global Optimization

Unlike the previous work that we described on massively dense ad-hoc networks, we introduce
a model that uses directional antennas. The approach that we follow is inspired by the work
of Dafermos (see [6]) on road traffic. An alternative approach based on road traffic tools can
be found in [1, 23].

For energy efficiency, it is assumed that each terminal is equipped with one or with two
directional antennas, allowing transmission at each hop to be directed either from North
to South or from West to East. The model we use extends that of [6] to the multi-class

framework. We thus consider ν classes of flows T j
1 ≥ 0, T j

2 ≥ 0, j = 1, ..., ν. To be
compatible with Dafermos [6], we use her definitions of orientation according to which the
directions North to South and West to East are taken positive. In the dense limit, a curved
path can be viewed as a limit of a path with many such hops as the hop distance tends to
zero.

Some assumptions on the cost:

• Individual cost: We allow the cost for a horizontal (West-East) transmission from
a point x to be different than the cost for a vertical transmission (North-South). It
is assumed that a packet located at the point x and traveling in the direction of the
axis xi incurs a transportation cost gi and such transportation cost depends upon
the position x and the traffic flow T(x). We thus allow for a vector valued cost
g := g(x,T(x)).
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• The local cost corresponding to the global optimization problem is given by g(x,T(x)) =
g(x,T(x)) ·T(x) if it is perceived as the sum of costs of individuals.

• The global cost will be the integral of the local cost density.

• The local cost g(x,T(x)) is assumed to be non-negative, convex increasing in each of
the components of T (T1 and T2 in our 2-dimensional case).

The boundary conditions will be determined by the options that travelers have in selecting
their origins and/or destinations. Examples of the boundary conditions are:

• Assignment problem: users of the network have predetermined origins and destinations
and are free to choose their travel paths.

• Combined distribution and assignment problem: users of the network have predeter-
mined origins and are free to choose their destinations (within a certain destination
region) as well as their paths.

• Combined generation, distributions and assignment problem: users are free to choose
their origins, their destinations, as well as their travel paths.

The problem formulation is again to minimize Z as defined in (5). The natural choice of
functional spaces to make that problem precise, and take advantage of the large body of

theory developped with Sobolev spaces in the PDE community, is to seek T j
i in L2(Ω), so

that ρ may be in H−1(Ω), allowing for some localized mass of traffic source or sink.

Kuhn-Tucker conditions. Define the Lagrangian as

Lζ(x,T) :=

∫

Ω

`ζ(x,T) dx where `ζ(x,T) = g(x,T(x))−
ν∑

j=1

ζj(x)
[
∇·Tj(x)− ρj(x)

]

where the ζj(x) ∈ H1(Ω) are Lagrange multipliers. The criterion is convex, and the con-
straint (4) affine. Therefore the Kuhn-Tucker theorem holds, stating that the Lagrangian is
minimum at the optimum. A variation δT(·) will be admissible if T(x) + δT(x) ≥ 0 for all

x, hence in particular, ∀x : T j
i (x) = 0, δT j

i (x) ≥ 0.

Let DLζ denote the Gteaux derivative of Lζ w.r. to T (·). Euler’s inequality reads

∀δT admissible , DLζ · δT ≥ 0 ,

therefore here
∫

Ω

∑
j

〈∇Tjg(x,T(x)), δTj(x)〉 dx−
∫

Ω

∑
j

ζj(x)∇·δTj(x) dx ≥ 0.

Integrating by parts with Green’s formula, this is equivalent to
∫

Ω

∑
j

[〈∇Tjg, δTj〉+ 〈∇xζ
j, δTj〉] dx−

∫

∂Ω

∑
j

ζj〈δTj,n〉 d` ≥ 0 .
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We may choose all the δTk = 0 except δTj, and choose that one in (H1
0 (Ω))2, i.e. such that

the boundary integral be zero. This is always feasible and admissible. Then the last term
above vanishes, and it is a classical fact that the inequality implies for i = 1, 2:

∂g(x,T)

∂T j
i

+
∂ζj(x)

∂xi

= 0 if T j
i (x) > 0 (6a)

∂g(x,T)

∂T j
i

+
∂ζj(x)

∂xi

≥ 0 if T j
i (x) = 0. (6b)

Placing this back in Euler’s inequality, and using a δTj non zero on the boundary, it follows
that necessarily 3 ζj(x) = 0 at any x of the boundary ∂Ω where T (x) > 0. This provides
the boundary condition to recover ζj from the condition (4).

Remark: The Kuhn-Tucker type characterization (6a)-(6b) is already stated in [6] for the sin-
gle class case. However, as Dafermos states explicitly, its rigorous derivation is not available
there.

Consider the following special cases that we shall need later. We assume a single traffic class,
but this could easily be extended to several. Let

g(x,T(x)) =
∑
i=1,2

gi(x,T(x))Ti(x).

1. Monomial cost per packet:

gi(x,T(x)) = ki(x)
(
Ti(x)

)β

(7)

for some β > 1. Then (6a)-(6b) simplify to

(β + 1)ki(x) (Ti(x))β +
∂ζ(x)

∂xi

= 0 if Ti(x) > 0 (8a)

(β + 1)ki(x) (Ti(x))β +
∂ζ(x)

∂xi

≥ 0 if Ti(x) = 0. (8b)

In that case, recovery of ζ to complete the process is difficult, at best. Things are
simpler in the next case.

2. Affine cost per packet:

gi(x,T(x)) =
1

2
ki(x)Ti(x) + hi(x). (9)

Then (6a)-(6b) simplify to

ki(x)Ti(x) + hi(x) +
∂ζ(x)

∂xi

= 0 if Ti(x) > 0

ki(x)Ti(x) + hi(x) +
∂ζ(x)

∂xi

≥ 0 if Ti(x) = 0.

3This is a complementary slackness condition on the boundary.
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Assume that the ki(·) are everywhere positive and bounded away from 0. For simplicity,
let ai = 1/ki, and b be the vector with coordinates bi = hi/ki, all assumed to be square
integrable. Assume that there exists a solution where T (x) > 0 for all x. Then

Ti(x) = −
(

ai(x)
∂ζ(x)

∂xi

+ bi(x)

)
.

As a consequence, from (4) and the above remark, we get that ζ(·) is to be found as
the solution in H1

0 (Ω) of the elliptic equation (an equality in H−1(Ω))

∑
i

∂

∂xi

(
ai(x)

∂ζ

∂xi

)
+∇·b(x) + ρ(x) = 0 .

This is a well behaved Dirichlet problem, known to have a unique solution in H1
0 (Ω),

furthermore easy to compute numerically.

5 User optimization and congestion independent costs

We expand on the shortest path approach for optimization that has already appeared using
geometrical optics tools [17]. We present general optimization frameworks for handling
shortest path problems and more generally, minimum cost paths.

We consider the model of Section 4. We assume that the local cost depends on the direction
of the flow but not on its size. The cost is c1(x) for a flow that is locally horizontal and
is c2(x) for a flow that is locally vertical. We assume in this section that c1 and c2 do not
depend on T. The cost incurred by a packet transmitted along a path p is given by the line
integral

cp =

∫

p

c · dx. (11)

Let V j(x) be the minimum cost to go from a point x to a set Bj, j = 1, ..., ν. Then

V j(x) = min
(
c1(x)dx1 + V j(x1 + dx1, x2), c2(x)dx2 + V j(x1, x2 + dx2)

)
(12)

This can be written as

0 = min

(
c1(x) +

∂V j(x)

∂x1

, c2(x) +
∂V j(x)

∂x2

)
, ∀x ∈ Bj , V j(x) = 0 . (13)

If V j is differentiable then, under suitable conditions, it is the unique solution of (13). In
the case that V j is not everywhere differentiable then, under suitable conditions, it is the
unique viscosity solution of (13) (see [3, 8]).

There are many numerical approaches for solving the HJB equation. One can discretize
the HJB equation and obtain a discrete dynamic programming for which efficient solution
methods exist. If one repeats this for various discretization steps, then we know that the
solution of the discrete problem converges to the viscosity solution of the original problem
(under suitable conditions) as the step size converges to zero [3].
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6 Geometry of minimum cost paths

We begin by introducing the standard attribute (plus or minus) to a path according to the
direction of the movement along it. The definition is different than in [6] (which we used in
Section 4).

Definition 6.1 [18]. (i) Let C be some simple closed curve surrounding some region R.
Then C+ corresponds to a counterclockwise movement; more precisely, it corresponds to
moving so that the region R is to our left. The opposite orientation along C is denoted by
C−.
(ii) The orientation of path segments which are not closed are defined differently. A “plus”
indicates an orientation of left to right or bottom to top, and the “minus” indicates curves
oriented from right to left or from top to bottom.

We consider now our directional antenna model in a given rectangular area R on a region Ω,
defined by the simple closed curve ∂R+ = Γ+

1 ∪ Γ+
2 ∪ Γ−3 ∪ Γ−4 (see Fig. 1).

We obtain below optimal paths defined as paths that achieve the minimum cost in (11).
We shall study two problems:

• Point to point optimal path: we seek the minimum cost path between two points.

• Point to boundary optimal path: we seek the minimum cost path on a given region
that starts at a given point and is allowed to end at any point on the boundaries.

Define the function

U(x) =
∂c2

∂x1

(x)− ∂c1

∂x2

(x) ∀x ∈ Ω.

It will turn out that the structure of the minimum cost path depends on the costs through
the sign of the function U . Now, if the function c ∈ C1(Ω) then U is a continuous function
on Ω. This motivates us to study cases in which U has the same sign everywhere (see Fig. 2),
or in which there are two regions in R, one with U > 0 and one with U < 0, separated by a
curve on which U = 0 (e.g. Fig. 3).

Γ+
1 = {0 ≤ x1 ≤ a, x2 = 0}

Γ+
2 = {x1 = a, 0 ≤ x2 ≤ b}

Γ−3 = {0 ≤ x1 ≤ a, x2 = b}
Γ−4 = {x1 = 0, 0 ≤ x2 ≤ b}.

Figure 1: The boundaries of
the region R.

Figure 2: The region R.
The case where U > 0.

Figure 3: The case of
two regions separated by
a curve. Case 1.

We shall assume throughout that the function c ∈ C1(Ω), and that, if non empty, the set
M = {x | U(x) = 0} is a smooth line. (This is true, e.g., if c ∈ C2 and ∇U 6= 0 on M .)
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6.1 The function U has the same sign over the whole region R

Theorem 6.1 (Point to point optimal path) Suppose that a point xO = (xO
1 , xO

2 ) in R̊ (the

interior of R), wants to send a packet to a point xD = (xD
1 , xD

2 ) in R̊.

i. If U > 0 in the region ROD = {(x1, x2) such that xO
1 ≤ x1 ≤ xD

1 , xO
2 ≤ x2 ≤ xD

2 }, except
perhaps from a set of Lebesgue measure zero, then there is an optimal path given by (see
Fig. 4):

γopt = γH ∪ γV where

γH = {(x1, x2) such that xO
1 ≤ x1 ≤ xD

1 , x2 = xO
2 }

γV = {(x1, x2) such that x1 = xD
1 , xO

2 ≤ x2 ≤ xD
2 }.

ii. If U < 0 in that region except perhaps from a set of Lebesgue measure zero, then there
is an optimal path given by (see Fig. 5):

γopt = γV ∪ γH where

γV = {(x1, x2) such that x1 = xO
1 , xO

2 ≤ x2 ≤ xD
2 }

γH = {(x1, x2) such that xO
1 ≤ x1 ≤ xD

1 , x2 = xD
2 }.

iii. In both cases, γopt is unique up to a zero Lebesgue measure. (i.e. the Lebesgue measure
of the area between γopt and any other optimal path is zero).

Proof.- Consider an arbitrary path4 γC joining xO to xD, and assume that the Lebesgue
measure of the area between γopt and γC is nonzero. We call such path, the comparison path
(see Fig. 4 for the case U > 0 and Fig. 5 for U < 0).

(i) Showing that the cost over path γopt is optimal is equivalent to showing that the integral
of the cost over the closed path ξ− is negative, where ξ− is given by following γopt from the
source xO to the destination xD and then returning from xD to xO by moving along the
path γC in the reverse direction. This closed path is written as ξ− = γ+

H ∪ γ−V ∪ γ+
C and Ω1

denotes the bounded area described by ξ−. Using Green Theorem (see Appendix) we obtain
∮

ξ−
c · dx = −

∫

Ω1

U(x)dS

which is strictly negative since U > 0 a.e. on R. Decomposing the left integral, this concludes
the proof of (i), and establishes at the same time the corresponding statement on uniqueness
in (iii).
(ii) is obtained similarly. ¥

4Respecting that each subpath can be decomposed in sums of paths either from North to South or from
West to East (or is a limit of such paths). From now on, we will call a path valid if it satisfies that condition.
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Figure 4: Optimal path for U > 0. Figure 5: Optimal path for U < 0.

Theorem 6.2 (Point to boundary optimal path)

Consider the problem of finding an optimal path from a point x̄ ∈ R̊ to the boundary Γ1∪Γ2.

i. Assume that U(x) < 0 for all x ∈ R̊ except perhaps for a set of Lebesgue measure zero.
Assume that the cost on Γ1 is non-negative and that the cost on Γ2 is non-positive. Then
the optimal path is the straight vertical line.

ii. Assume that U(x) > 0 for all x ∈ R̊ except perhaps for a set of Lebesgue measure zero.
Assume that the cost on Γ1 is non-positive and that the cost on Γ2 is non-negative. Then
the optimal path is the straight horizontal line.

Proof.-

(i) Denote by γV the straight vertical path joining x̄ to Γ1. Consider another arbitrary valid
path γC joining x̄ to any point x∗ on Γ1 ∪ Γ2, and assume that the Lebesgue measure of the
area between γopt and γC is nonzero. We call such path, the comparison path.

Assume first that x∗ is on Γ2. Denote xD := Γ1 ∩ Γ2. Then by Theorem 6.1 (ii), the cost to
go from x̄ to xD is smaller when using γ−V and then continuing eastwords (along Γ+

1 ) than

when using γ+
C and then southwords (along Γ∗2). Due to our assumptions on the costs over

the boundaries, this implies that the cost along γV is smaller than along γC .

Next consider the case where x∗ is on Γ1. Denote by η the section of the boundary Γ1 that
joins γV ∩Γ1 with x∗ (see Figure 6). Then again, by Theorem 6.1 (ii), the cost to go from x̄
to x∗ is smaller when using γ−V and then continuing eastwords (along Γ+

1 ) than when using

γ+
C . Due to our assumptions that the cost on Γ1 is non-negative, this implies that the cost

along γV is smaller than along γC .

(ii) is obtained similarly. ¥
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η+ ⊆ Γ1

Γ2

Γ3

Γ4

U ≤ 0

γ+

V
γ+

C

1

Figure 6: Theorem 6.2 (i)

6.2 The function U changes sign within the region R

Consider the region on the space M := {x ∈ Ω such that U(x) = 0} . Let us consider the case
when M is only a valid path in the rectangular area, such that it starts at the intersection
Γ3 ∩ Γ4, and finishes at the intersection of the sinks Γ1 ∩ Γ2. Then the space is divided in
two areas, and as the function U is continuous we have the following cases:

1. U(x) is negative in the upper area and positive in the lower area (see Fig. 3).

2. U(x) is positive in the upper area and negative in the lower area (see Fig. 7).

Two other cases where the sign of U is the same over Ω are contained in what we solved in
the previous section (allowing U to be zero on M which has Lebesgue measure zero)

Case 1: The function U(x) is negative in the upper area and positive in the lower area.

We shall show that this case, M is an atractor.

Proposition 6.1 Assume that the source x and destination y are both on M . Then the
path pM that follows M is optimal.

Proof.- Consider an alternative path γC that coincides with M only in the source and des-
tination points. First assume γC is entirely in the upper (i.e. northen) part and call Ω1 the
surrounded area. Define ξ+ to be the closed path that follows pM from x to y and then
returns along γC .

The integral
∫
Ω1

U(x)dS is negative by assumption. By Green Theorem it equals
∮

ξ+ c · dx.

This implies that the cost along pM is strictly smaller than along γC .

A similar argument holds for the case that γC is below pM .

A path between x and y may have several intersections with M . Between each pair of
consecutive intersections of M , the subpath has a cost larger than that obtained by following
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M between these points (this follows from the previous steps of the proof). We conclude
that pM is indeed optimal. ¥

Proposition 6.2 Let a point x̄O send packets to a point xD.

i. Assume both points in the upper region. Denote by γ1 the two segments path given in
Theorem 6.1 (ii). Then the curve γ̂ obtained as the maximum between M and γ1 is
optimal.5

ii. Let both points be in the lower region. Denote by γ2 the two segments path given in
Theorem 6.1 (i). Then the curve γ obtained as the minimum between M and γ2 is
optimal.

Proof.- (i) A straightforward adaptation of the proof of the previous proposition implies that
the path in the statement of the proposition is optimal among all those restricted to the
upper region. Consider now a path γC that is not restricted to the upper region. Then
M ∩ γC contains two distinct points such that γC is strictly lower than M between these
points. Applying Proposition 6.1 we then see that the cost of γC can be strictly improved
by following M between these points instead of following γC there. This concludes (i). (ii)
is proved similarly. ¥

Proposition 6.3 Let a point x̄O send packets to a point xD.

i. Assume the origin is in the upper region and the destination in the lower one. Then the
optimal path has three segments;

1. It goes straight vertically from x̄O to M ,

2. Continues as long as possible along M , i.e. until it reaches the x coordinate of the
destination,

3. At that point it goes straight vertically from M to xD.

ii. Assume the origin is in the lower region and the destination in the upper one. Then the
optimal path has three segments;

1. It goes straight horizontally from x̄O to M ,

2. Continues as long as possible along M , i.e. until it reaches the y coordinate of the
destination,

3. At that point it goes straight horizontally from M to xD.

5By the maximum we mean the following. If γ1 does not intersect M then γ̂ = γ1. If it intersects M then
γ̂ agrees with γ1 over the path segments where γ1 is in the upper region and otherwize agrees with M . The
minimum is defined similarly
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Proof.- The proofs of (i) and of (ii) are the same. Consider an alternative route γC . Let x̃ be
some point in γC ∩M . The proof now follows by applying the previous proposition to obtain
first the optimal path between the origin and x̃ and second, the optimal path between x̃ and
the destination. ¥

Case 2: The function U is positive in the upper area and negative in the lower area.

M

Γ1

Γ2

Γ3

Γ4

U > 0

U < 0

1

Figure 7: Two regions separated by the
curve M . Case 2.

This case turns out to be more complex than the previous one. The curve M has some
obvious repelling properties which we state next, but they are not as general as the attractor
properties that we had in the previous case.

Proposition 6.4 Assume that both source and destination are in the same region. Then
the paths that are optimal in Theorem 6.1 are optimal here as well if we restrict to paths that
remain in the same region.

Proof.- Given that the source and destination are in a region we may change the cost over the
other region so that it has the same sign over all the region R. This does not influence the
cost of path restricted to the region of the source-destination pair. With this transformation
we are in the scenario of Theorem 6.1 which we can then apply. ¥
Discussion.- Note that the (sub)optimal policies obtained in Proposition 6.4 indeed look
like being repelled from M ; their two segments trajectory guarantees to go from the source
to the destination as far as possible from M .

We note that unlike the attracting structure that we obtained in Case 1, one cannot extend
the repelling structure to the case where the paths are allowed to traverse from one region
to another.

7 User optimization and congestion dependent cost

We go beyond the approach of geometrical optics by allowing the cost to depend on conges-
tion. Shortest path costs can be a system objective as we shall motivate below. But it can
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also be the result of decentralized decision making by many “infinitesimally small” players
where a player may represent a single packet (or a single session) in a context where there
is a huge population of packets (or of sessions). The result of such a decentralized decision
making can be expected to satisfy the following properties which define the so called, user
(or Wardrop) equilibrium:

“Under equilibrium conditions traffic arranges itself in congested networks such that all used
routes between OD pair (origin-destination pair), have equal and minimum costs while all
unused routes have greater or equal costs” [30].

Related work.- Both the framework of global optimization as well as the one of minimum
cost path had been studied extensively in the context of road traffic engineering. The use
of a continuum network approach was already introduced on 1952 by Wardrop [30] and by
Beckmann [4]. For more recent papers in this area, see e.g. [6, 7, 14, 16, 32] and references
therein. We formulate it below and obtain some of its properties.

Motivation.- One popular objective in some routing protocols in ad-hoc networks is to
assign routes for packets in a way that each packet follows a minimal cost path (given the
others’ paths choices) [11]. This has the advantage of equalizing source-destination delays of
packets that belong to the same class, which allows one to minimize the amount of packets
that come out of sequence. (This is desirable since in data transfers, out of order packets
are misinterpreted to be lost which results not only in retransmissions but also in drop of
systems throughput.)

Traffic assignment that satisfies the above definition is known in the context of road traffic
as Wardrop equilibrium [30].

Congestion dependent cost
We now add to c1 the dependence on T1 and to c2 the dependence on T2, as in Section 4. Let
V j(x) be the minimum cost to go from a point x to Bj at equilibrium. Equation (12) still

holds but this time with ci that depends on T j
i i = 1, 2, and on the total flows Ti i = 1, 2.

Thus (13) becomes, ∀j ∈ {1, . . . , ν},

0 = min
i=1,2

(
ci(x, Ti) +

∂V j(x)

∂xi

)
, ∀x ∈ Bj , V j(x) = 0 . (14)

We note that if T j
i (x) > 0 then by the definition of the equilibrium, i attains the minimum

at (14). Hence (14) implies the following relations for each traffic class j, and for i = 1, 2:

ci(x, Ti) +
∂V j

∂xi

= 0 if T j
i > 0, (15a)

ci(x, Ti) +
∂V j

∂xi

≥ 0 if T j
i = 0. (15b)

This is a set of coupled PDE’s, actually difficult to analyse further.

Beckmann transformation
As Beckmann et al. did in [5] for discrete networks, we transform the minimum cost problem
into an equivalent global minimization one. We shall restrict here to the single class case. To
that end, we note that equations (15a)-(15b) have exactly the same form as the Kuhn-Tucker
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conditions (6a)-(6b), except that ci(x, Ti) in the former are replaced by ∂g(x,T)/∂Ti(x) in
the latter. We therefore introduce a potential function ψ defined by

ψ(x,T) =
∑
i=1,2

∫ Ti

0

ci(x, s)ds

so that for both i = 1, 2:

ci(x, Ti) =
∂ψ(x,T)

∂Ti

.

Then the user equilibrium flow is the one obtained from the global optimization problem
where we use ψ(x,T) as local cost. Hence, the Wardrop equilibrium is obtained as the
solution of

min
T (·)

∫

Ω

ψ(x,T) dx subject to ∇ ·T(x) = ρ(x), ∀x ∈ Ω.

In the special case where costs are given as a power of the flow as defined in eq. (7), we
observe that equations (15a)-(15b) coincide with equations (8a)-(8b) (up-to a multiplicative
constant of the cost). We conclude that for such costs, the user equilibrium and the global
optimization solution coincide.

8 Numerical Example

The following example is an adaptation of the road traffic problem solved by Dafermos in [6]
to our ad-hoc setting. We therefore use the notation of [6] for the orientation, as we did in
Section 4. Thus the direction from North to South will be our positive x1 axis, and from
West to East will be the positive x2 axis. The framework we study is the user optimization
with congestion cost. For each point on the West and/or North boundary we consider the
point to boundary problem. We thus seek a Wardrop equilibrium where each user can choose
its destination among a given set. A flow configuration is a Wardrop equilibrium if under
this configuration, each origin chooses a destination and a path to that destination that
minimize that users cost among all its possible choices.

Consider the rectangular area R on the bounded domain Ω defined by the simple closed
curve ∂R+ = Γ+

1 ∪ Γ+
2 ∪ Γ−3 ∪ Γ−4 where

Γ1 = {0 ≤ x1 ≤ a, x2 = 0} , Γ2 = {x1 = a, 0 ≤ x2 ≤ b} ,
Γ3 = {0 ≤ x1 ≤ a, x2 = b} , Γ4 = {x1 = 0, 0 ≤ x2 ≤ b} .

Assume throughout that ρ = 0 for all x ∈ Ω̊, and that the costs of the routes are linear, i.e.

c1 = k1T1 + h1 and c2 = k2T2 + h2, (16)

with k1 > 0, k2 > 0, h1, and h2 constant over Ω.
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We are precisely in the framework of section 7 and 4 with affine costs per packet. As a
matter of fact, the potential function associated with these costs is

ψ(T) =
2∑

i=1

∫ Ti

0

(kis + hi) ds =
2∑

i=1

(
1

2
kiTi + hi)Ti .

Now, we want to handle a condensation of sources or sinks along the boundary. While this is
feasible with the framework of section 4, it is rather technical. We rather use a more direct
path below.

Notice that we have in Ω̊, we have

∂T1

∂x1

+
∂T2

∂x2

= 0.

Take any closed path γ surrounding a region ω. Then by Green formula,

∮

γ

T1dξ2 − T2dξ1 =

∫

ω

∂T1

∂x1

+
∂T2

∂x2

= 0

Therefore we can define

φ(x) :=

∫ x

xo

T1dξ2 − T2dξ1

the integral will not depend on the path between xo and x and φ is thus well defined, and
we have

∂φ(x)

∂x2

= T1(x)
∂φ(x)

∂x1

= −T2(x) . (17)

We now make the assumption that there is sufficient demand and that the congestion cost
is not too high so that at equilibrium the traffic T1 and T2 are strictly positive over all Ω [6].
It turns out that all paths to the destination are used. Thus, from Wardrop’s principle, the
cost

∫
c dx is equalized between any two paths. And therefore,

∂c1

∂x2

=
∂c2

∂x1

.

Using the equations in (16) then

k1
∂T1

∂x2

= k2
∂T2

∂x1

,

and from equations in (17) we have

k1
∂2φ

∂x2
2

+ k2
∂2φ

∂x2
1

= 0.

Let ki = K2
i . Divide the above equation by k1k2. One obtains

1

K2
1

∂2φ

∂x2
1

+
1

K2
2

∂2φ

∂x2
2

= 0.
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Following the classical way of analyzing the Laplace equation, (see[31]) we attempt a sepa-
ration of variables according to

φ(x1, x2) = F1(K1x1)F2(K2x2) .

We then get that
F ′′

1 (K1x1)

F1(K1x1)
= −F ′′

2 (K2x2)

F2(K2x2)
= s2 .

In that formula, since the first term in independent on x2 and the second on x1, then both
must be constant. We call s2 that constant, but we do not know its sign. Therefore, s may
be imaginary or real. All solutions of this system for a given s are of the form

F1(x) = A cos(isx) + B sin(isx) , F2 = C cos(sx) + D sin(sx) .

As a matter of fact, φ may be the sum of an arbitrary number of such multiplicative decom-
positions with different s. We therefore arrive at general formula such as

φ(x1, x2) =

∫
[A(s) cos(isK1x1) + B(s) sin(isK1x1)][C(s) cos(sK2x2) + D(s) sin(sK2x2)] ds.

From this formula, we can write T1 and T2 as integrals also. The flow T at the boundaries
should be orthogonal to the boundary, and have the local source density for inward modulus
(it is outward at a sink). There remains to expand these boundary conditions in Fourier
integrals to identify the functions A, B, C, and D. (Surely not a simple matter!) (It is
advisable to represent the integrals of the boundary densities as Fourier integrals, since then
the boundary conditions themselves will be of the form s

∫
R(s) ds, closely matching the

formulas we obtain for the Ti’s.)

9 Conclusions

Routing in ad-hoc networks have received much attention in the massively dense limit. The
main tools to describe the limits had been electrostatics and geometric optics. We exploited
another approach for the problem that has its roots in road traffic theory, and presented
both quantitative as well as qualitative results for various optimization frameworks.
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10 Appendix: Mathematical Tools

Theorem 10.1 (Green’s Theorem) Let Ω ⊆ X be a region of the space, and let Γ be its bound-
ary. Suppose that P, Q ∈ C1(Ω) (We denote C1(Ω) the set of functions that are differentiable and
whose partial derivatives are continuous on Ω.) Then

∮

Γ+

Pdx + Qdy =
∫

Ω

(
∂Q

∂x
− ∂P

∂y

)
dxdy. (18)
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