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Abstract

We study the parametric perturbation of Markov chains with denumerable state spaces.
We consider both regular and singular perturbations. By the latter we mean that transition
probabilities of a Markov chain, with several ergodic classes, are perturbed such that (rare)
transitions among the different ergodic classes of the unperturbed chain are allowed.
Singularly perturbed Markov chains have been studied in the literature under more
restrictive assumptions such as strong recurrence ergodicity or Doeblin conditions. We
relax these conditions so that our results can be applied to queueing models (where the
conditions mentioned above typically fail to hold). Assuming ν-geometric ergodicity, we
are able to explicitly express the steady-state distribution of the perturbed Markov chain
as a Taylor series in the perturbation parameter. We apply our results to quasi-birth-and-
death processes and queueing models.
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1. Introduction

Let us consider a Markov chain on the denumerable state space E = {1, 2, . . . } whose
generator depends on a small parameter ε, that is,

G(ε) = G(0) + εG(1). (1.1)

Throughout this paper we restrict ourselves to a discrete-time Markov chain, in which case the
transition matrix of the chain is given by P(ε) = � + G(ε), where � is the identity matrix.
However, our analysis equally applies to a continuous-time Markov process with transition rates
uniformly bounded by some constant r > 0; in that case we shall focus on the uniformized
discrete-time chain

P(ε) = � + �G(ε)

with � < r−1 [27]. We call G(ε) the perturbed generator and G(0) the unperturbed generator.
From now on, we assume that there exists a nonzero ε̄ such that G(ε) is the generator of an
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irreducible Markov chain for ε ∈ (0, ε̄] (i.e. all states communicate; transient states are excluded
from our consideration). We consider two types of perturbations: regular perturbation, if the
unperturbed generator G(0) is also irreducible, and singular perturbation, if the unperturbed
Markov chain has several ergodic classes. Let us note that the irreducibility of the perturbed
Markov chain implies that, if the invariant probability measure denoted by π(ε) exists, it is
unique and satisfies ∑

i∈E

πi(ε)Gij (ε) = 0, j ∈ E, (1.2)

∑
i∈E

πi(ε) = 1 (1.3)

for ε ∈ (0, ε̄]. We give conditions for its existence in terms of the characteristics of the
unperturbed Markov chain (e.g. probability measure(s), deviation matrix) and the perturbation
term G(1). Furthermore, we show that, under rather weak conditions, the invariant probability
measure of the perturbed chain π(ε) is analytic in ε in the punctured neighbourhood of zero.
Specifically,

π(ε) = π(0) + επ(1) + · · · . (1.4)

The radius if convergence is given in Theorems 3.1 and 4.1 below. Note that π(0), the invariant
probability measure of the unperturbed chain, is not well defined if the perturbation is singular.
We shall show that the coefficients of the power series (1.4) form a geometric sequence and,
hence, there exists a computationally stable up-dating formula for π(ε).

Before proceeding, let us discuss the existing results on perturbation analysis of Markov
chains and Markov processes. There is a significant body of literature on perturbation analysis
of finite-state Markov chains and Markov processes; for an extensive bibliography, see the books
[8], [25] and [30] and the survey paper [4]. However, there are only a few references available
on perturbation analysis of Markov chains with an infinite state space. Singularly perturbed
Markov chains on general measurable state spaces have been analysed in the book [18] of
Korolyuk and Turbin and in the paper [5] of Bielecki and Stettner. Note that in [5] and [18] the
authors impose Doeblin-type conditions for the unperturbed Markov chain. These conditions
are quite restrictive. For instance, the simple M/M/1 queueing model does not satisfy them.
Furthermore, the case of an infinite number of ergodic classes in the unperturbed Markov chain
cannot be considered under the Doeblin conditions. Cao and Chen [6] have analysed regularly
perturbed Markov chains on countable state spaces under a strong ergodicity assumption. This
assumption also excludes such simple models as an M/M/1 queue. In [29], Yin and H. Zhang
analysed singularly perturbed continuous-time Markov processes on denumerable state space
under conditions equivalent to the Doeblin conditions. These authors mistakenly stated that
the M/M/1 model satisfies the Doeblin conditions (see for instance Section 7.1 of [16] for
explanations of why the M/M/1 model does not satisfy the Doeblin conditions). In the present
work, we use the concepts of Lyapunov functions and ν-geometric ergodicity ([9], [16], [21],
[27], [28]) that allow us to treat the cases that satisfy neither Doeblin conditions nor the strong
ergodicity condition. Works on the application of singularly perturbed Markov chains to quasi-
birth-and-death models, queueing models and reliability theory include [1], [2], [7], [11], [20],
[24]. The singular perturbation techniques allow us to solve models with significantly larger
state space than in the case of direct application of standard tools. At the end of this paper we
consider some of these models as examples of our framework. In particular, with the help of
these examples we show how the general Lyapunov-function-based conditions presented in the
paper can be applied to queueing models.
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2. Preliminaries

We recall the notions of ν-geometric ergodicity and Lyapunov functions and the relation
between these two concepts. Fix a denumerable vector ν with strictly positive entries. Let x

be a vector defined on a subset X of the nonnegative integers. Then its ν-norm is defined as
follows:

‖x‖ν = sup
i∈X

|xi |
νi

.

The corresponding induced ν-norm for any operator A on X × X is given by

‖A‖ν = sup
i∈X

ν−1
i

∑
j∈X

|Aij |νj .

A Markov chain on a denumerable (or finite) state space with transition operator P is said to
be ν-geometrically ergodic if

‖P k − �‖ν ≤ cβk, k = 0, 1, 2, . . . , (2.1)

where � = 1π is the ergodic projection of the unperturbed Markov chain, i.e.

� = lim
k→∞

1

k

k∑
j=1

P j ,

with 1 a column vector of ones, π a row vector and c, β < 1 (scalar) constants. The notion of
ν-geometric ergodicity is a powerful theoretical tool. However, in applications the condition
(2.1) is often difficult to verify. The main difficulty lies in the computation of the powers of
the transition operator. Often even for low values of n the expression for P n becomes very
cumbersome. Thus, instead of actually checking all of the powers, it would be simpler if we
could obtain the second largest (in absolute value) eigenvalue of P or a bound on it. As we
shall see (Theorem 2.1), this can be done using a Lyapunov-function approach.

Consider the following stability condition based on Lyapunov functions: there exist a
strongly aperiodic state α ∈ E (i.e. a state satisfying Pαα > p0 for some p0 > 0), constants
δ < 1 and b < ∞ and a Lyapunov function V, with Vi ≥ 1 for all i ∈ E, such that

PV ≤ δV + b1α, (2.2)

where 1α is a vector with 1 in the αth entry and zeroes elsewhere. The vector inequality (2.2)
should be considered componentwise, that is, for two vectors v and w, the inequality v ≤ w

means that vi ≤ wi for each i. The following theorem shows that Lyapunov-function-based
stability implies ν-geometric ergodicity.

Theorem 2.1. (Meyn and Tweedie [22].) Let the Lyapunov-function-based stability condition
(2.2) hold for a Markov chain. Then the chain is V-geometrically ergodic; it satisfies (2.1) for
any β > θ and c = β/(β − θ), where θ = 1 − M−1

α ,

Mα = 1

(1 − δ)2 [1 − δ + b + b2 + ζα(b(1 − δ) + b2)],

and where ζα is some positive constant satisfying

ζα ≤ 32 − 8p2
0

p3
0

(
b

1 − δ

)2

.
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The above theorem demonstrates that the Lyapunov function V can be used as a bounding
function for the ν-norm.

3. Regular perturbation

We first make several rather weak assumptions. The first assumption guarantees that the
perturbation is regular.

Assumption 3.1. The unperturbed Markov chain is irreducible.

Assumption 3.2. The unperturbed Markov chain satisfies the stability condition (2.2) for some
strongly aperiodic state α ∈ E (that is, Pαα > p0 for some p0 > 0), some constants δ < 1 and
b < ∞ and a Lyapunov function V, with Vi ≥ 1 for all i ∈ E.

Assumption 3.3. The perturbation matrix G(1) is V-bounded, that is, ‖G(1)‖V ≤ g1, where
g1 > 0 is some constant.

Assumptions 3.1 and 3.2 imply that the unperturbed Markov chain has a unique invariant
probability measure π , which is a solution of the following system:∑

i∈E

πiG
(0)
ij = 0, j ∈ E,

∑
i∈E

πi = 1;

see [21], [27]. Furthermore, from Assumption 3.2 and Theorem 2.1 we conclude that there
exist constants c and β (c > 0, 0 < β < 1) such that (2.1) holds for P(0), where � = 1π is
the ergodic projection of the unperturbed Markov chain. Hence, by Lemma 4.1 of [27], there
exists a V-bounded deviation matrix H = ∑∞

j=0(P (0) − �)j which is the unique solution of
the following equations:

HG(0) = G(0)H = � − � , (3.1)

H� = �H = 0. (3.2)

We have the following bound for the V-norm of the deviation matrix:

‖H‖V ≤ c

1 − β
.

Now we are able to formulate and prove the main result of this section.

Theorem 3.1. Let Assumptions 3.1, 3.2 and 3.3 be satisfied and let g1, β and c be as in (2.1)
and Assumption 3.3. Then the perturbed Markov chain has a unique invariant probability
measure π(ε), which is an analytic function of ε,

π(ε) = π(0) + επ(1) + ε2π(2) + · · · , 0 ≤ ε ≤ min

{
ε̄,

1 − β

g1c

}
,

with π(k) = π [(G(1)H)k], where π is the invariant probability measure of the unperturbed
Markov chain. Moreover, the invariant probability measure of the perturbed chain can be
calculated by the up-dating formula

π(ε) = π [� − εG(1)H ]−1, 0 ≤ ε ≤ min

{
ε̄,

1 − β

g1c

}
. (3.3)
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Proof. Recall that G(ε) is an irreducible generator. Hence, if a solution of (1.2) and (1.3)
exists, it is unique. Next, we show constructively that π(ε) can be represented by a power
series (1.4) with nonzero radius of convergence. Towards this end, let us substitute (1.1) and
(1.4) into (1.2) and equate coefficients with the same powers of ε. This leads to the following
system of equations:

π(0)G(0) = 0, (3.4)

π(k)G(0) + π(k−1)G(1) = 0, k = 1, 2, . . . . (3.5)

The normalization condition (1.3) implies that

π(0)1 = 1, (3.6)

π(k)1 = 0, k = 1, 2, . . . . (3.7)

Since the unperturbed Markov chain has a unique invariant probability measure, from (3.4)
and (3.6) we conclude that the first term in the power series of (1.4) is equal to the invariant
probability measure of the unperturbed Markov chain, that is π(0) = π . Next, let us consider
(3.5). As H is the group generalized inverse of −G(0) (see (3.1) and (3.2) and [27]), we can
write the general solution of (3.5) in the form

π(k) = c(k)π + π(k−1)G(1)H,

where c(k) is some constant. Now we use the condition (3.7) and the fact that 1π = 1 to give

π(k)1 = c(k) + π(k−1)G(1)H1 = 0.

Note that it follows from (3.2) that H1 = 0; hence c(k) = 0 for k = 1, 2, . . . and

π(k) = π(k−1)G(1)H, k = 1, 2, . . . .

Since the matrices G(1) and H are V-bounded, the power series (1.4) is absolutely convergent
with nonzero radius of convergence (the radius of convergence is greater than or equal to
‖G(1)‖−1

V ‖H‖−1
V ). This justifies the substitution of (1.4) into (1.2) and (1.3). Finally, the up-

dating formula (3.3) is an immediate consequence of the fact that the coefficients of the power
series (1.4) form a geometric sequence.

Remark 3.1. The up-dating formula (3.3) can alternatively be expressed as

π(ε) = π + επ(ε)G(1)H.

Thus, new approximations of π(ε) can be computed recursively (hence, the term ‘up-dating’
formula).

4. Singular perturbation

Next, we study singularly perturbed Markov chains. In the case of singular perturbation,
several ergodic classes are connected in a single Markov chain by ‘small’transition probabilities.

Assumption 4.1. The unperturbed Markov chain consists of several ergodic classes and there
are no transient states. Denote the ergodic classes by EI for I ∈ Ē, where the set Ē is either
finite or denumerable. Each EI itself is either finite or denumerable. We denote the transition
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operator of each ergodic class by AI for I ∈ Ē. Thus, the transition operator of the unperturbed
Markov chain can be written in the form

P (0) =
⎡
⎢⎣

A1 0 · · ·
0 A2 · · ·
...

...
. . .

⎤
⎥⎦ .

Assumption 4.2. The Markov chains corresponding to ergodic classes of the unperturbed
Markov chain are uniformly Lyapunov stable. That is, for each ergodic class there exist a
strongly aperiodic state α(I) ∈ EI (with Pα(I)α(I ) > p0 for some p0 > 0; without loss of
generality we can take α = (I, 1)), constants δ < 1 and b < ∞ and a Lyapunov function V,
with Vi ≥ 1 for all i ∈ EI , such that

AIV ≤ δV + b1α(I), I ∈ Ē.

We emphasize that the Lyapunov function V as well as the constants δ and b are the same for
all ergodic classes.

Assumption 4.2 together with Theorem 2.1 implies that the Markov chains corresponding
to the ergodic classes of the unperturbed Markov chain are uniform V-geometrically ergodic.
Namely, there exist constants c and β (where c > 0, 0 < β < 1), the same for all classes, such
that

‖An
I − �I‖V ≤ cβn, k = 0, 1, 2, . . . , (4.1)

where �I is the ergodic projection for the I th ergodic class.

Remark 4.1. We allow some—or all—of the ergodic classes to have a finite number of states.
An ergodic Markov chain on a finite state space is always geometrically ergodic. Still, we need
to ensure that the condition (4.1) holds uniformly for all ergodic classes. In particular, if an
ergodic class of the unperturbed Markov chain is finite, we use the restriction of the Lyapunov
function V to that class and require the condition (4.1) to be satisfied with the same constants
c and β < 1. Thus, without loss of generality, we can consider only the case of denumerable
Markov chains.

We now introduce the so-called ‘aggregated’ Markov chain [3], [8], [10], [18], [25]. Define
V ∈ R

Ē×E to be a matrix whose I th row corresponds to the invariant probability measure of
the unperturbed Markov chain given that the process starts in the I th ergodic class. Also we
introduce a matrix W ∈ R

E×Ē , whose J th column has ones in the components corresponding
to the J th ergodic class and zeros in the other components. Note that the columns of the matrix
W form a basis for the null space of G(0) and the rows of the matrix V form a basis for the null
space of the adjoint operator G(0)∗. Now define the generator of the aggregated Markov chain
by � = V G(1)W ∈ R

Ē×Ē or, in component form,

�IJ = πIG
(1)
IJ 1J , I, J ∈ Ē,

where πI is the invariant probability measure of the I th ergodic class before perturbation, G(1)
IJ

is the block I, J of the perturbation matrix and 1J is a vector of ones of dimension |EJ |.
Assumption 4.3. The aggregated Markov chain is irreducible and Lyapunov stable, i.e. there
exist a strongly aperiodic state ᾱ ∈ Ē (with Pᾱᾱ > p̄0 for some p̄0 > 0), constants δ̄ < 1 and
b̄ < ∞ and a Lyapunov function V̄, with V̄I ≥ 1 for all I ∈ Ē, such that

(� + �)V̄ ≤ δ̄V̄ + b̄1ᾱ .
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Again invoking Theorem 2.1 we conclude from Assumption 4.3 that the aggregated Markov
chain is V̄-geometrically ergodic, that is,

‖(� + �)k − �̄‖V̄ ≤ c̄β̄k, k = 0, 1, 2, . . . ,

where �̄ = 1π̄ is the ergodic projection and π̄ is the invariant probability measure of the
aggregated Markov chain. Using Lemma 4.1 of [27] again, we conclude that there exists a
V̄-bounded deviation matrix of the aggregated Markov chain. Let us denote it by �.

Note that in the above we defined ν-norms for the ergodic classes of the unperturbed Markov
chain and the aggregated Markov chain using Lyapunov functions. We can also define a ν-
norm for the whole state space E = ⋃

I∈Ē EI . Namely, for a pair I ∈ Ē, i ∈ EI , let us define
νIi = V̄IVi . Since

‖P (0)k − �‖ν = sup
I∈Ē,i∈EI

1

νIi

∑
j∈EI

|(Ak
I − �I)ij |V̄IVj

= sup
I∈Ē,i∈EI

1

Vi

∑
j∈EI

|(Ak
I − �I)ij |Vj

= sup
I∈Ē

‖Ak
I − �I‖V

≤ cβk, k = 0, 1, 2, . . . ,

there exists a ν-bounded deviation matrix H of the unperturbed Markov chain. Furthermore,
we have the following bound for the norm of H :

‖H‖ν ≤ c

1 − β
.

It follows from Assumption 4.1 that H has a block-diagonal structure

H =
⎡
⎢⎣

H1 0 · · ·
0 H2 · · ·
...

...
. . .

⎤
⎥⎦ ,

where HI , I ∈ Ē, is the deviation matrix of each ergodic class of the unperturbed Markov
chain. Finally, as in the case of regular perturbation, we make an assumption on the perturbation
matrix.

Assumption 4.4. The perturbation matrix G(1) is ν-bounded (for νIi = V̄IVi , I ∈ Ē, i ∈ EI ).
Namely, ‖G(1)‖ν ≤ g1, where g1 > 0 is some constant.

Remark 4.2. Fix some ε1, ε2 ∈ (0, ε̄) with ε1 �= ε2. Since G(1) = (P (ε1)−P(ε2))/(ε1 −ε2),
a sufficient condition for Assumption 4.4 to hold is that ‖P(ε1)‖ν and ‖P(ε2)‖ν are finite.

Now we are able to formulate and prove the main result of this section.

Theorem 4.1. Let Assumptions 4.1–4.4 hold. Then the perturbed Markov chain has a unique
invariant probability measure π(ε), which is an analytic function of ε,

π(ε) = π(0) + επ(1) + ε2π(2) + · · · , 0 < ε ≤ min

{
ε̄,

1 − β

g1c

(
1 + g1c̄(c + 1)

1 − β̄

)−1}
,
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where
π(k) = π(0)Uk, π(0) = π̄V , (4.2)

and the ν-bounded matrix U is given by

U = G(1)H(� + G(1)W�V ).

Moreover, the invariant probability measure of the perturbed Markov chain can be calculated
by the up-dating formula

π(ε) = π(0)[� − εU ]−1, 0 < ε ≤ min

{
ε̄,

1 − β

g1c

(
1 + g1c̄(c + 1)

1 − β̄

)−1}
. (4.3)

Proof. From the construction of the aggregated Markov chain, we can see that the irre-
ducibility of the perturbed Markov chain is equivalent to the irreducibility of the aggregated
Markov chain. Hence, from Assumption 4.3 we conclude that, if there exists an invariant
probability measure of the perturbed Markov chain (0 < ε ≤ ε̄), it is unique. As in the proof
of Theorem 3.1, let us formally construct a power series for π(ε), which satisfies (1.2) and
(1.3), and then show that it is absolutely convergent in some nonempty region. As in the case
of regular perturbation, we have to solve the infinite system of matrix equations (3.4)–(3.7).
The difference with the regular case is that the equations (3.4) and (3.6) do not have a unique
solution. From (3.4) and (3.6) we can only conclude that π(0) is a linear combination of the
stationary distributions corresponding to the ergodic classes of the unperturbed Markov chain.
Namely,

π(0) = c(0)V (4.4)

for some vector c(0) ∈ R
1×Ē . In order for the equation (3.5) for k = 1 to be feasible, c(0)

should be chosen to satisfy the following condition:

(−π(0)G(1))W = 0. (4.5)

This condition is known as the Fredholm alternative in operator theory (see e.g. [15]). Substi-
tuting (4.4) into (4.5), we get

c(0)V G(1)W = 0

or, equivalently,
c(0)� = 0. (4.6)

We also substitute (4.4) into the normalization condition (3.6), giving

c(0)V 1 = 1

Since each row of V is a probability measure, we have

c(0)1 = 1. (4.7)

Since, according to Assumption 4.3, the aggregated Markov process has a unique invariant
probability measure π̄ , (4.6) and (4.7) imply that c(0) = π̄ . Thus, we obtain the second formula
in (4.2).

Now we show that π(k) = π(k−1)U for k = 1, 2, . . . . We can write the general solution of
(3.5) in the following form:

π(k) = c(k)V + π(k−1)G(1)H, (4.8)
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where c(k) ∈ R
1×Ē is an arbitrary vector. The vector c(k) is determined from the feasibility

condition of the (k + 1)th equation in (3.5). Namely,

(−π(k)G(1))W = 0,

c(k)V G(1)W + π(k−1)G(1)HG(1)W = 0.

From the normalization condition (3.7) and the property (3.2) of the deviation matrix H , we
obtain

c(k)V 1 = c(k)1 = 0.

Thus, we get a system of equations for c(k):

c(k)� = −π(k−1)G(1)HG(1)W,

c(k)1 = 0.

Since the aggregated Markov chain is irreducible and ν-geometrically ergodic, the above system
has a unique solution which is given by the following explicit expression:

c(k) = π(k−1)G(1)HG(1)W�,

where � is the deviation matrix of the aggregated Markov chain. Combining the above
expression with (4.8), we obtain the recursion π(k+1) = π(k)U for k = 1, 2, . . . with

U = G(1)H(� + G(1)W�V ).

Next, let us show that the matrix U is ν-bounded and, consequently, the power series for π(ε)

has a nonzero radius of convergence. First we note that

‖�J ‖V = ‖�J − � + �‖V ≤ ‖�J − �‖V + ‖�‖V ≤ c + 1.

Next, we give a bound for the ν-norm of W�V . The matrix W�V has the following structure:

W�V =
⎡
⎢⎣

ϕ11�1 ϕ121π2 · · ·
ϕ211π1 ϕ22�2 · · ·

...
...

. . .

⎤
⎥⎦ ,

where 1 is a vector of ones with appropriate dimension. Hence,

‖W�V ‖ν = sup
I∈Ē,i∈EI

1

νIi

∑
J∈Ē

|ϕIJ |
∑
j∈EJ

αJj V̄J Vj

≤ sup
I∈Ē,i∈EI

1

V̄I

∑
J∈Ē

|ϕIJ |V̄J ‖�J ‖V

≤ sup
I∈Ē,i∈EI

1

V̄I

∑
J∈Ē

|ϕIJ |V̄J (c + 1)

≤ ‖�‖V̄(c + 1)

≤ c̄(c + 1)

1 − β̄
.
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Thus, the radius of convergence of the power series (1.4) is greater than or equal to

1 − β

g1c

(
1 + g1c̄(c + 1)

1 − β̄

)−1

.

Finally, the up-dating formula (4.3) immediately follows from the fact that the coefficients
π(k), k = 0, 1, 2, . . . , form a geometric sequence.

In addition, note that for computational purposes it is more convenient to write the matrix
U in terms of blocks that correspond to the ergodic classes of the unperturbed Markov chain.
Specifically, we have U = {UIJ }I,J∈Ē , where UIJ is given by

UIJ = G
(1)
IJ HJ +

∑
L∈Ē

G
(1)
ILHL

∑
K∈Ē

G
(1)
LKϕKJ 1πJ , I, J ∈ Ē.

5. Applications to quasi-birth-and-death processes and queueing models

To illustrate our results on singular perturbation we now apply them for quasi-birth-and-
death (QBD) processes; we refer the reader to [19] and [23] for general discussions on QBDs.
(The results on regular perturbation can also be used for infinitesimal perturbation analysis [6],
[12], [13], [14], [26].) After introducing some notation, we develop our results in Sections 5.1
and 5.2 without assuming a further particular structure for so-called phase transitions. Then,
in Section 5.3 we elaborate on a particular queueing example.

An (inhomogeneous) QBD process is a Markov chain whose generator has the following
structure:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A01 − A
(d)
02 A02 0 0 · · ·

A10 A11 − A
(d)
1 A12 0 · · ·

0 A20 A21 − A
(d)
2 A22

. . .

0 0 A30 A31 − A
(d)
3

. . .

...
...

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Ak := A
(d)
k0 + A

(d)
k2 and, for any m×n matrix M , we use M(d) to denote the m-dimensional

square diagonal matrix with ith diagonal element equal to the ith row sum of M . (Although, by
definition, Ak = A

(d)
k , we shall use A

(d)
k to emphasize that it is a diagonal matrix.) The QBD

process is said to be homogeneous if Ak1 ≡ A11 and Ak2 ≡ A12 for k ≥ 1 and Ak0 ≡ A10
for k ≥ 2. In that case, A20, A11 and A12 are square matrices of the same dimension (not
necessarily finite). The square matrix A01 may have a different dimension, while A02 and A10
need not be square.

The structure corresponds to a partition of states into so-called levels. The ith block row of
Q corresponds to transitions originating from states in the ith level. The states within a given
level are commonly called phases. The rates of transitions that do not involve a change of level
are contained by the matrices Ak1 (transitions take place within level k). Transitions among
levels are only possible from level k to either level k − 1 or level k + 1, the rates of which
are gathered in Ak0 and Ak2 respectively. We emphasize that we allow an infinite number of
phases within a level.
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We shall be interested in the case where transitions between levels are much less frequent
than transitions between the states inside the same level. Instead of Q we will therefore consider
the generator G(ε) = G(0) + εG(1), where

G(0) =

⎡
⎢⎢⎢⎢⎢⎣

A01 0 0 · · ·
0 A11 0

. . .

0 0 A21
. . .

...
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦ , G(1) =

⎡
⎢⎢⎢⎢⎢⎣

−A
(d)
02 A02 0 · · ·

A10 −A
(d)
1 A12

. . .

0 A20 −A
(d)
2

. . .

...
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦ . (5.1)

Remark 5.1. Note that, alternatively, it would also be natural to investigate the case when
transitions within the levels are much less frequent than between levels, i.e. when G(ε) =
εG(0) +G(1) for the same matrices G(0) and G(1). However, in that case the unperturbed chain
is again a QBD process itself (with no transitions within levels), making the analysis of the
unperturbed chain as involved as the (original) perturbed chain, unless a special structure within
levels is assumed. A special structure arising in many applications is that where the matrices
Ak0 and Ak2 are (square) diagonal matrices. This implies that transitions between levels do not
involve a change in phase. For instance, in the two-queue system studied in [1] and [24] the
level index counts the number of customers in the first queue and the phase index that in the
second queue. However, interchanging the role of the levels and phases (the first and the second
queue), the same structure as in (5.1) can be obtained again. We elaborate on this example in
Section 5.3.

5.1. General phase transitions

For the unperturbed chain, the ergodic classes correspond to the levels of the QBD process.
We assume that all states in the same level are communicating. Hence, Assumption 4.1 is
satisfied. Let Assumption 4.2 hold as well. As before, denote the stationary distribution of the
I th ergodic class (level) by the vector πI , I = 0, 1, . . . . In particular, if G(0) is homogeneous
beyond level 1, the uniform Lyapunov stability assumption is equivalent to (regular) Lyapunov
stability. In that case we also have that πI ≡ π1 for all levels I ≥ 1. In general, the structure
of the matrix V is given by

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

π0 0 0 0 · · ·
0 π1 0 0 · · ·
0 0 π2 0 · · ·
0 0 0 π3

. . .

...
...

...
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

,

which gives

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−π0A
(d)
02 1 π0A021 0 0 · · ·

π1A101 −π1A
(d)
1 1 π1A121 0 · · ·

0 π2A201 −π2A
(d)
2 1 π2A221

. . .

0 0 π3A301 −π3A
(d)
3 1

. . .

...
...

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.



850 E. ALTMAN ET AL.

Note that � is the generator of an ordinary (one-dimensional, inhomogeneous) birth-and-death
process on states I ∈ {0, 1, 2, . . . } with birth rate λ̄I := πIAI21 for I ≥ 0 and death rate
µ̄I := πIAI01 for I ≥ 1. The invariant distribution of the aggregated chain is given by

π̄I =
∏I−1

J=0 λ̄J /µ̄J∑∞
K=0

∏K−1
J=0 λ̄J /µ̄J

, I ≥ 0,

whenever the denominator is well defined (the empty product is set equal to 1). This inhomo-
geneous birth-and-death process can be shown to be Lyapunov stable if there exists an r̄ such
that λ̄I /µ̄I+1 < r̄ < 1 for all I ≥ 0. It is beyond the scope of this paper to work out all the
details for this general case; instead we shall focus on homogeneous QBD processes. It is
worthwhile to note that in Section 5.3 below we analyse an inhomogeneous QBD process that
gives rise to an aggregated process that is a homogeneous birth-and-death process.

5.2. General phase transitions: homogeneous QBD processes

If the underlying QBD process is homogeneous, then λ̄I ≡ λ̄ for I ≥ 1 and µ̄I ≡ µ̄ for
I ≥ 2. In addition we assume that λ̄0 = λ̄ and µ̄1 = µ̄, which is the case in the examples of
Section 5.3. (The analysis does not change essentially otherwise, but we do not consider this
since it is not necessary for the queueing examples.) The generator of the aggregated chain
coincides with that of the M/M/1 queue with arrival rate λ̄ and service rate µ̄. The aggregated
chain is ergodic if and only if ρ̄ := λ̄/µ̄ < 1. In this case verification of Assumption 4.3 is also
straightforward. Let us choose ᾱ = 0. We need to find a Lyapunov function V̄ and constants
δ̄ ∈ (0, 1) and b̄ ≥ 0 such that

µ̄V̄I−1 + (1 − λ̄ − µ̄)V̄I + λ̄V̄I+1 ≤ δ̄V̄I , I ≥ 1,

(1 − λ̄)V̄0 + λ̄V̄1 ≤ δ̄V̄0 + b̄.

We aim at solving these equations with equality. Introducing the generating function V̄(z) =∑∞
I=0z

I V̄I (later we verify that this can be justified) the above equations translate into

(µ̄z2 + (1 − δ̄ − µ̄ − λ̄)z + λ̄)V̄(z) = b̄z + (λ̄ − µ̄z)V̄0.

Concentrating on the kernel (µ̄z2 + (1 − δ̄ − µ̄ − λ̄)z + λ̄, we see that we have two real roots
for z if δ̄ ≥ 1 − (µ̄ − λ̄)2. It is convenient to take δ̄ = 1 − (µ̄ − λ̄)2; this quantity is indeed in
the interval (0, 1). The corresponding root (with multiplicity 2) is z = √

ρ̄ and if we choose
b̄ = √

µ̄(1 − √
ρ̄)V̄0 one of the two roots cancels out, leaving us with

V̄(z) = V̄0

1 − z/
√

ρ̄
.

Finally, choosing V̄0 = 1, Assumption 4.3 is satisfied with V̄I = (
√

1/ρ̄)I .
Note also that, in this case, if ‖A02‖V , ‖A10‖V , ‖A12‖V , maxi{(A(d)

02 )ii} and maxi{(A(d)
1 )ii}

are finite, then Assumption 4.4 is satisfied. This is a consequence of the following bound:

‖G(1)‖ν ≤ max

{
max

i
{(A(d)

02 )ii} +
√

1

ρ̄
‖A02‖V ,

√
ρ̄‖A10‖V + max

i
{(A(d)

1 )ii} +
√

1

ρ̄
‖A12‖V

}
.
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The deviation matrix for the M/M/1 queue was determined in [17]:

�I,J = D(I, J, ρ̄, µ̄) := ρ̄max{J−I,0} − (I + J + 1)(1 − ρ̄)ρ̄J

µ̄(1 − ρ̄)
. (5.2)

The above enables us to apply Theorem 4.1 once the invariant distributions and the deviation
matrices of the levels I = 0 and I ≥ 1 have been determined. This is the task of the following
section where we elaborate on our results for a particular example.

5.3. Queueing examples

We now focus on a particular queueing model and study two cases, one giving rise to a
homogeneous QBD process and the other corresponding to an inhomogeneous QBD process.

5.3.1. Priority queue with fast dynamics. Let us study a system of two M/M/1 queues with
strict priorities. Customers arrive at the first queue according to a Poisson process with rate λ

and are served at rate µ. The arrival rate and service rate in the second queue may both depend
on the number of customers in the first queue (denoted by X(t)). If X(t) = i, then customers
arrive at the second queue as a Poisson process of intensity ελi and customers depart from the
second queue (if not empty) at rate εµi . We denote the number of customers in the second
queue by Y (t). The generator of (X(t), Y (t)) can be written as a QBD process by letting X(t)

correspond to the phase of the process and letting Y (t) be the level. Letting ε → 0 corresponds
to slow dynamics in the second queue, i.e. with slow transitions among levels.

The blocks of (5.1) are given by Aj0 = diag{µ0, µ1, . . . } and Aj2 = diag{λ0, λ1, . . . }
and Aj1 is the generator of an ordinary M/M/1 queue with arrival rate λ and service rate µ.
Since this corresponds to a homogeneous QBD, in view of the results in Section 5.2 we can
apply Theorem 4.1 once we have determined the invariant distributions and deviation matrices
of the levels (ergodic classes), which all correspond to the ordinary M/M/1 queue describing
X(t). The invariant distribution is well known: πI,i ≡ (1 − ρ)ρi for all levels I and phases
i, with ρ = λ/µ. As for (5.2) we can use the results of [17], giving the deviation matrix
Hi,j = D(i, j, ρ, µ). We emphasize that in this case the aggregated chain and the ergodic
classes of the unperturbed chain correspond to ordinary M/M/1 queues.

5.3.2. Priority queue with slow dynamics. Alternatively, the dynamics of the first queue could
be slow. Let the arrival rate and service rate at the first queue be ελ and εµ respectively, and
the arrival and service rates at the second queue be λi and µi respectively when X(t) = i. As
in the above example, X(t) is the number of customers in the first queue. We again have a
QBD process if we let X(t) correspond to the level and let Y (t) be the phase of the process.
The block matrices in (5.1) are now given by Ak0 = diag{µ, µ, . . . } and Ak2 = diag{λ, λ, . . . }
and Ak1 is the generator of an ordinary M/M/1 queue with arrival rate λk and service rate µk .
Thus, the QBD process is not homogeneous.

In the unperturbed chain we have infinitely many classes, each (again) corresponding to
a level of the QBD process. In the I th level the dynamics are those of the ordinary M/M/1
queue with arrival rate λI and service rate µI . We assume that ρI := λI /µI < r < 1 for
some r ∈ (0, 1). This implies that Assumption 4.2 is satisfied with αI = 0, Vj = (

√
1/r)j ,

δ = 1 − (
√

µI − √
λI )

2 and b ≥ √
1/r . The deviation matrix of the ergodic classes is again

that of an M/M/1 queue: H
(I)
i,j = D(i, j, ρI , µI ). (Here we concentrate on the case where

all classes of the unperturbed chain are ergodic. In this particular example it makes sense in
some cases to allow ρI > 1 for some � , i.e. when the phase process requires level transitions
(however infrequent) to guarantee ergodicity; see for instance [24].)
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Note that G(1) has a simple structure, since Ak0 = µ� and Ak2 = λ� . Assumption 4.4
is always satisfied, since in this example we have ‖G(1)‖ν ≤ λ + µ + 2

√
λµ. Finally, the

deviation matrix of the aggregated chain is again that of the M/M/1 queue with arrival rate λ

and service rate µ: �I,J = D(I, J, ρ, µ), where as before ρ = λ/µ.
We again note that both the aggregated chain and the ergodic classes of the unperturbed

chain correspond to ordinary M/M/1 queues. Unlike the case when the second queue has slow
dynamics, however, the ergodic classes of the unperturbed chain are not identical.
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