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Abstract. This paper presents a system that performs the recovery of camera motion parameters
and the segmentation of mobile objects in video documents for content indexing. Two di�erent
methods are used for the recovery of the camera motion (relatively to the main background), the
�rst for a camera maintained at a �xed location with rotational and zoom degrees of freedom, and
the second for a camera of arbitrary motion but assuming a �xed focal length. The �rst method is
based on the search of an optimal projective transform between consecutive images combined with
an iterative background / mobile objects segmentation process. The second method is based on
a paraperspective factorization method for shape and motion recovery. Both methods rely on the
use of a dense and high-quality matching between consecutive images (optical ow). The system
also attempts to classify shots or sub-segments of shots into one of the following categories of
\no motion", \non mobile camera motion", \mobile camera motion" or \other type of motion".
Further subcategorization can be done for each recovered type. Results are presented using sequences
extracted from document 8 of the ISIS GDR-PRC GT10/AIM corpus.

1 Introduction

Recovering camera motion parameters and segmenting mobile objects are important tasks for video
document content indexing (MPEG-7) [1]. They may also be useful for other applications like video com-
pression (MPEG-4) or robotics. These tasks are generally performed on continuous video shots obtained
after temporal video segmentation. They can be used for micro-segmentation (splitting a shot into sub-
units with di�erent global motions) prior to object identi�cation. The information can also be used to
build synthetic views like reconstructed panoramic views, extracted objects view or three-dimensional
views of the background.

Both tasks are related since only objects that do not follow the background global motion can be
identi�ed and tracked and similarly the relative motion between the camera and the background can be
recovered accurately only if the background and the mobile components have been identi�ed. When the
background occupies a signi�cant part of the image and the camera motion is actually of a predicted
type, it is often possible to obtain both information simultaneously using an iterative and cooperative
background segmentation / background parameters motion estimation process.

In the case of video documents, and unlike in robotics for example, no information is generally available
about the intrinsic camera parameters (focal length, optical center) except the pixel aspect ratio which
is usually known from the video format. Therefore, systems must be able to recover them or to be robust
enough to the fact that they are unknown or approximately known. Also, no clue is available about the
possible camera motion and the type of observed scene.

Many methods are available for temporal video segmentation [2]. In this work, we use a system using
a combination of several techniques (color histograms, rough contour tracking, motion compensated
di�erences and dissolve detection [3]).

Simple methods have been developed for recovering rough camera motion from medium to low quality
vector �elds (MPEG prediction vectors for instance) [4]. Such methods may be useful for indexing purposes
but the information they provide is poor (for instance it does not allow to distinguish between a camera
translation and rotation) and are not very reliable (since MPEG vectors are not computed for this
purpose). Intermediate methods, relying on the search for aÆne transforms between images, are able to
provide both a good qualitative camera motion estimation and a panoramic view of the background [5].

More sophisticated camera motion recovery methods have been proposed by making some assumptions
about the possible camera motion (limiting the number of degrees of freedom) and about the scene
content (\solid" background occupying a large area in the images). For instance, the projective model
based approach makes the assumption of a �xed camera location with degrees of freedom only in rotation



and zoom [6] [7] and \motion and structure from motion" approach makes the assumption of a camera
with �xed focal length [8].

In this paper, we present a system that integrates speci�c variants of both type of methods and able
to recover both types of camera motion. These methods are presented in the next two sections. They
both rely on the use of an optical ow method [9] that provides a dense and high quality matching of
images in a continuous sequence.

2 Camera with degrees of freedom in rotation and zoom

The assumption here is that the camera is �xed and has degrees of freedom only in rotation (tilt, pan
and roll angles) and zoom. In this case, simple geometry considerations shows that the transformation
giving corresponding points between any two images in the sequence has the form of an homography (or
projective transform, [10]):

H(a;b;c;d;e;f;g;h) : R2 ! R2

(x; y) 7!
�
ax+by+c
gx+hy+1 ;

dx+ey+f
gx+hy+1

�
(1)

where the (a; b; c; d; e; f; g; h) parameters depend upon the intrinsic and extrinsic camera parameters. The
problem is therefore split into two parts: recovering the optimal homography between consecutive images,
and recovering the intrinsic and extrinsic camera parameters from the sequence of found homographies.

2.1 Search for homographies and background regions

Correspondence between four non-aligned points is theoretically enough to recover the eight parameters.
However, using as many of them as possible in a statistical combination improves the result. Traditionally,
extracted and matched feature points constituting a sparse motion vector set are used for this purpose
(like in [7]). However, we have estimated that the dense vector �elds obtained with an optical ow
technique [9] could further improve the accuracy because there are many more available vectors for the
statistic and also because, with the chosen method, the matching is obtained with a sub-pixel accuracy
which is expected to be much better than what can be obtained from the matching of extracted feature
points.

The homography coeÆcients are searched for using a least square minimization. The optical ow
provides a dense function G:

G : R2 ! R2

(x; y) 7! (x+�x(x; y); y +�y(x; y))
(2)

and we search the parameter set (a; b; c; d; e; f; g; h) that minimizes the residue function E:
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where �(x; y) is a weighting term combining an estimation of the con�dence associated to the com-
puted optical ow vectors and an estimation of the probability for the current location to belong to the
background. The E function can be rewritten as:

E(a; b; c; d; e; f; g; h) =
X
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with x0 = x+�x(x; y) and y0 = y+�y(x; y). Since within the image area we have: gx+hy � 1 in most
cases, it makes little di�erence to minimize the following function F instead of E :

F (a; : : : ; h) =
X
x

X
y

�
0(x; y)

��
(gx+ hy + 1)x0

� (ax+ by + c)
�
2

+
�
(gx+ hy + 1)y0

� (dx+ ey + f)
�
2

�
(5)

The advantage of the E to F function substitution is that �nding a parameter set (a; b; c; d; e; f; g; h) that
minimizes function F is straightforward since that function is quadratic in its variables.



Now that we have an eÆcient way to obtain an optimal parameter set (a; b; c; d; e; f; g; h) from a vector
�eld G and an con�dence estimate �, we can use it in an iterative process to identify the background. In
iteration p, we search for the optimal paramter set (ap; bp; cp; dp; ep; fp; gp; hp) using a con�dence estimate
alphap de�ned as follows:

p = 0 : �0(x; y) = �c(x; y) (6)

p > 0 : �p(x; y) = �c(x; y):�fp(x; y)=(gp�1x+ hp�1y + 1)2 (7)

where �c is the con�dence estimate associated with the computed vector �eld G and �fp is a con�dence
estimate for the current point to belong to the background computed using the previous estimate of the
parameter set that is, (ap�1; bp�1; cp�1; dp�1; ep�1; fp�1; gp�1; hp�1). The 1=(gp�1x + hp�1y + 1)2 factor
is the correction for the approximation caused by the E to F function substitution. The �c function is
a combination of three criteria: the �rst two correspond to the selection of \edge" and \corners" points
(identi�ed respectively as having a high modulus of intensity gradient and a high modulus of the gradient
of the angle of the intensity gradient), and the second one corresponds to the elimination of points with
high velocity gradients. The �fp function is itself the product of two functions, the �rst, �vp, evaluates
how well the predicted motion matches the extractedone:

p > 0 : �vp(x; y) = f�v(
G(x; y)�H(ap�1; bp�1; cp�1; dp�1; ep�1; fp�1; gp�1; hp�1)(x; y)

2) (8)

and the second, �ip, evaluates how well the predicted image intensity matches the extracted one:

p > 0 : �ip(x; y) = f�i(
I1(x; y)� I2(H(ap�1; bp�1; cp�1; dp�1; ep�1; fp�1; gp�1; hp�1)(x; y))

2) (9)

where f� is a sigmoid function controlled by a threshold parameter �. It associates a non-binary mem-
bership value with the point to belong to the background and also ensures convergence of the iterative
process.

After convergence, we obtain the optimal parameter set (a; b; c; d; e; f; g; h) for the background motion
and a function �f giving an estimation for a point to belong to the background. However, this estimate,
though good for the iterative search is not very good for mobile object segmentation. A better way to
segment mobile objects from the background is to use the homographic information on the whole sequence
to build a panoramic reconstruction. Using combinations of homographies, it is possible to align any view
with any other view. All the images of the sequence can be superimposed and a mosaic can be built
using the more stable intensity (or color) value. Figure 1 shows an example of such mosaic reconstruction
from homography sequence recovery using an image sequence from document 8 of the ISIS GDR-PRC
GT10/AIM corpus. Objects can then be segmented (with some �ltering) as regions where the intensity
(or color) value di�ers signi�cantly from the background (Figure 2).

2.2 Search for camera parameters

A standard pinhole camera model is used. It comprises four intrinsic parameters: the horizontal and
vertical scale factors (au; av), and the location of the optical axis in the image plane (u0; v0), and six
extrinsic parameters de�ning the camera location and orientation. The focal length is the only intrinsic
parameter supposed to change during the sequence. u0 and v0 are supposed to be �xed (but are unknown).
The two scale factors are related by the pixel aspect ratio (av = r:au), known from the video format,
and change with the focal length (zoom factor). The location of the camera is also supposed to remain
unchanged and this location will be taken as the world origin. The orientation of the camera is also
de�ned up to an arbitrary rotation and the orientation of the camera in the �rst image is taken as the
reference.

For convenience, for a sequence of N consecutive images (numbered from 0 to N � 1), the parameters
to be recovered are chosen as:

{ u0 and v0, location of the optical axis in the image plane,
{ au, horizontal scale factor in the �rst image,
{ zn, for 1 � n < N , the ratio of the scale factors between images n and n� 1,
{ �xn, �yn and �zn, for 1 � n < N , angles around x, y and z axes between camera orientations for
images n and n� 1.



Fig. 1. Car sequence #1 (45-frame, top) Homographic alignment of images (bottom left) and reconstruction of a
panoramic view (bottom right).

Fig. 2. Separation of background and mobile objects, car sequence #1. Original image (left), corresponding image
from mosaic (middle), extracted mobile objects (right).

This combination has the advantage to split the parameters to be recovered in two categories. \Global"
parameters: u0, v0 and au are related to the whole sequence of recovered homographies and \local" param-
eters: zn, �xn, �yn and �zn depend only upon the global parameters and the Hn recovered homography
between image n� 1 and image n. This split allows us to search for the whole set of parameters via an
iterative process in which the local and global parameters are alternatively re�ned.

For any set of values (zn; �xn; �yn; �zn) de�ning a change in the camera orientation and zoom factor,
there is a corresponding homography h(zn; �xn; �yn; �zn) that can be explicitly computed. This function
also depends of the global parameters and the sequence of zp values for p < n, obtained from previous
iterations. A value for (zn; �xn; �yn; �zn) is obtained as the one minimizing the square di�erence with the
homography Hn recovered between images n� 1 and n. This is a direct minimization of a four-variable
function. It is done independently for each n between 1 and N � 1. u0, v0, au and zp for p < n are
considered to be constant during this search.

After the optimal search of the (zn; �xn; �yn; �zn) values, a search is performed for optimal values for
u0, v0 and au. Again, the homographies between consecutive images are built but this time as functions
of u0, v0 and au: hn(u0; v0; au). A value for them is obtained as the one minimizing the sum, for the whole
sequence, of square di�erences with the Hn recovered homographies. This is a direct minimization of a
three-variable function. (zn; �xn; �yn; �zn) are considered constant during this search except that angles
around vertical and horizontal axes are corrected in order to compensate for the change in focal length.

The iterative process is started with initial values set as: center of the image for (u0; v0), length of
the image diagonal for the au scale factor, 1 for all zn values. Local and global re�nements are iterated
starting with a local one. After convergence, all the parameters are known. (u0; v0) is not a very useful



information but it had to be taken into account for accurate convergence. au gives information about the
camera angular aperture and is also useful in setting an absolute scale for the recovered angle information.

Figure 3 shows the recovered camera motion parameters for the sequence whose homographic align-
ment is shown in Figure 1. Recovered motion is very consistent with human estimation. The camera has a
main motion toward the right (pan) with a smaller motion upward (tilt). Very little roll motion and zoom
change were found where, probably, none were in the original sequence. This gives an indication of the
drift which is about 2 % for the whole 45-image sequence. The optical center was found near the image
center. Figure 4 shows similar results for a 146-image sequence in which there is a signi�cant motion
toward the left (pan), a large zoom out and very little tilt and roll motion. Part of the sequence has no
camera motion at all. The scale factor (absolute angle of view) was recovered for both sequences but its
accuracy could not be evaluated since the actual value is unknown. However, in other experiments using
several photographs taken from the same viewpoint, the known angle of view was found correct with an
error less than 5 %.
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Fig. 3. Recovery of camera motion parameters, rotation and zoom only in car sequence #1

3 Camera with degrees of freedom in rotation and translation

For the recovery of the motion of a mobile camera, the paraperspective factorization method for shape
and motion recovery proposed by Poelman and Kanade [8] was used. The paraperspective projection is
an approximation to the true perspective projection corresponding to the pinhole camera model. The
true perspective projection is a direct point projection of the 3D points of the object on the 2D image
plane of the camera. The paraperspective projection is a combination of two projections (Figure 5). The
�rst one is a projection on a plane passing through the center of gravity of the set of considered 3D points
and parallel to the image plane (called hypothetical image plane) along a direction de�ned by the camera
optical center and the same center of gravity. The second projection is the same point projection as the
one used in the true perspective model.
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The paraperspective model is somehow equivalent to taking a virtually in�nite focal length and
distance to the scene but conserving a given ratio between them. There is no di�erence in this model
between zooming and moving towards the scene. Therefore, the recovered camera motion will be up to
a scaling factor (linked to the unknown focal length) for the distance to the scene (relative to the scene
scale). There is also another unknown scaling factor which is linked to the unknown scene absolute scale.

The approximations of the paraperspective projection are both very good ones (except for wide angle
views) and suÆcient to keep enough linearities in the system so that the paraperspective factorization
method can be used. If we consider P feature points de�ned by their sp 3D coordinates tracked during F
frames in which the camera locations are de�ned by the tf 3D coordinates of their optical center and the
if , jf kf vectors de�ning their axes, (ufp; vfp) being the coordinates of the paraperspective projection of
point p in frame f (Figure 5), there exists a decomposition of the W (world) 2:F � P (ufp; vfp) matrix:

W =M:S + T:[1 : : : 1] (10)

in which M is a 2:F � 3 matrix, S is a 3� P matrix, and T is a 2:F � 1 vector [8]. The sp coordinates
can be deduced from the columns of the S (shape) matrix and the tf , if , jf kf vectors can be deduced
from the rows of the M (motion) and T (translation) matrix and vector. All results are de�ned up to an
isometrical transform (world origin and orientation are arbitrary) and a scaling factor (the scene absolute
scale is unknown). There is also a scaling factor for the camera distance to the scene due to the unknown
focal length.

The originality of this work is again in the tracking and selection of feature points. Again, the tracking
is obtained from the computation of dense vector �elds using an optical ow technique. All frames in the
sequence (or in a sub-segment of the sequence) are aligned with one reference frame for the whole part
of the scene visible in all these frames. Feature points are chosen only in the reference frame and tracked



using the optical ow technique. They are directly predicted in other frames and not re-extracted. This
has the advantage that, even if a feature point is not exactly located where it should be according to a
formal de�nition, the motion is locally well de�ned (because of the continuity of the vector �eld and of
a high local curvature in the image intensity) and the matching for the point is obtained with sub-pixel
accuracy in the whole sequence.

The use of as many feature points as possible is desirable in order to bene�t from the statistical e�ect
on the accuracy of the result. However, it is not possible to use all points visible in all frames with an
appropriate weighting like was done in the case of the non-mobile camera because that would amount to
too much data for the linear decomposition program and there is no way to weigh the contribution of all
the points in that case. Therefore a selection of feature points is necessary.

All points are sorted using a con�dence criterion of both a high curvature on the image intensity
(high intensity gradient and high gradient for the angle of the intensity gradient) and a low gradient
in the recovered vector �eld. Then, points are selected using a criterion combining both con�dence and
dispersion. Points are chosen sequentially from those having the best con�dence value and are apart by
a given minimum distance from the previously selected points. The thresholds on a minimum con�dence
value and minimum distance between points can be tuned so that the number of selected points remain
below a given value (typically a few thousands).

After the selection of the feature points is done, application of the paraperspective factorization is
straightforward. It gives the camera motion up to two scaling factors: one for the scene absolute scale
and the other for the unknown focal length. Figure 6 shows the result of the camera motion recovery on
a sequence with mobile camera from the AIM corpus. The results are presented with reference origin and
orientation corresponding to the �rst camera parameters. Though no ground truth motion is available
for evaluation, the result is very consistent with human analysis. The main translation motion is toward
the left and the main rotation motion is a rotation to the right (pan) compensating for it so that the
scene remains centered. There is also a small translation downwards and toward the scene. A small tilt
is also recovered and very little roll is observed.
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Fig. 6. Car sequence #3 (20-frame subsegment top), recovery of camera motion parameters, mobile camera, �xed
focal. Pitch, pan and roll angle (in radians, bottom left), track, boom and dolly motion (in units relative to the
mean distance to the scene, bottom right). car sequence #3

The paraperspective factorization also provides the recovered shape of the scene. Feature points lo-
cations are readily available and a whole 3D surface can be reconstructed using the recovered camera
locations and the matching of all the points visible in all frames (using a least square method). Such
reconstruction is not necessarily accurate everywhere (if either the matching is not reliable or there are
some moving objects) but it may be a good representation of the three-dimensional aspect of the scene.
Figure 7 shows a facet based 3D reconstruction of the scene shown in Figure 6.



Fig. 7. Three-dimensional view of the scene of car sequence #3. Textured (left, middle) and slices (right).

4 Integration

The two methods come with a criterion that assesses the validity of the assumptions they rely upon.
This criterion is a combination of the residual reconstruction error with a weight associated with the
type of the local texture in the regions identi�ed as background. Using these criteria, the system is
able to determine whether any of them is good and, if yes, which one. Classi�cation in one of the \no
motion", \non-mobile camera motion", \mobile camera motion" or \other type of motion" is performed.
If the camera motion parameters have been successfully recovered, the quantitative information is used
to further classify the type of motion (pure zoom, pure rotation or pure translation for example). The
criteria can also be obtained on a frame by frame basis and continuous motion type can be assigned to
sub-segments de�ning shots micro-segmentation.

5 Conclusion

Two di�erent methods for the recovery of camera motion (relatively to the main background) and the
segmentation of mobile objects have been integrated into a system dedicated to video document content
indexing. The �rst one is dedicated to the case where the camera is non mobile and have degrees of freedom
only in rotation and zoom. It is based on the search of an optimal projective transform between consecutive
images combined with an iterative background / mobile objects segmentation process. The second method
is based on a paraperspective factorization method for shape and motion recovery. Both methods rely on
the use of a dense and high-quality matching between consecutive images (optical ow). The system also
attempts to classify shots or sub-segments of shots in the appropriate category between \no motion",
\non mobile camera motion", \mobile camera motion" or \other type of motion". Subcategories can also
be searched for each recovered type using the quantitative data associated to the recovered motion. The
�rst method gives a more complete camera information and can tolerate larger mobile objects. Panoramic
reconstructions, three-dimensional representations and segmented mobile objects can be used for content
indexing or for generating synthetic views of the document content.
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