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Introduction: the optimal control of queues

In many situations, the operation of queueing systems involves
decisions...

service departurewaitarrivals

a  , a  ...

server

...2σ1σ
1 2

Queue

waiting room

Arrivals:

accept a customer?

classify in a service class, priority?

set service price
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Introduction: the optimal control of queues

In many situations, the operation of queueing systems involves
decisions...

service departurewaitarrivals

a  , a  ...

server

...2σ1σ
1 2

Queue

waiting room

Service:

start a service? go on a vacation?

start/stop a server (machine, team, ...)?

choose service speed
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Introduction: the optimal control of queues

In many situations, the operation of queueing systems involves
decisions...

service departurewaitarrivals

a  , a  ...

server

...2σ1σ
1 2

Queue

waiting room

Customer:

should I enter the queue?

should I stay or should I go?

how much should I pay for service?
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More decision problems

See also Manufacturing Systems

order parts? how much?

accept order?

See also Call Centers

add more servers?

match customer to server?

See also (Wireless) Communications

what packets to transmit?

See also Health Systems

what \ressources" to match?
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This presentation

Review the Stochastic (Markovian) Optimal Control
framework, which is suited for modeling some of these
decision problems

Discuss its application to some queues with impatience

Present some advances in the methodology
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Outline

1 Introduction

2 Stochastic Optimal Control

3 The Discrete-Time Model

4 The Continuous-Time Model

5 Conclusion
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Progress

1 Introduction

2 Stochastic Optimal Control

3 The Discrete-Time Model

4 The Continuous-Time Model

5 Conclusion
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Stochastic Optimal Control

The classical Stochastic Dynamic Optimal Control framework: a
crash course.
The standard desciption of Markov Decision Processes has 6
elements:

a state space S;

action spaces A(x) for all x 2 S;

transition probabilities p(x ; a; y), x ; y 2 S, a 2 A(x);

costs/rewards c(x ; a);

an optimization criterion, e.g.

E

"
1X
n=0

�nc(Xn;An)

#
; lim inf

T

1

T
E

"
T�1X
n=0

c(Xn;An)

#
:

a class of policies

A. Jean-Marie Impatient Customers and Optimal Control



Introduction
Stochastic Optimal Control
The Discrete-Time Model

The Continuous-Time Model
Conclusion

Questions for MDP

The theory typically addresses the following issues:

assess the existence of optimal policies, or else of "-optimal
ones

determine the amount of information these strategy need:
knowledge of time, past actions, past states, ...?

characterize mathematically optimal strategies

�nd formulas and/or algorithms to compute them

quantify errors made when using sub-optimal approximations
(\heuristics").
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Optimality Equations

Illustration of this research program: for the expected discounted
cost:

V (x) = inf
� policy

E
�
x

"
1X
n=0

�n c(xn; an)

#
:

Bellman Equations

Under appropriate conditions, the (optimal) value function V is the
unique solution to the equation: for all state x ,

V (x) = min
a2A(x)

(
c(x ; a) + �

X
y

p(x ; a; y)V (y)

)
:
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Optimality Equations (ctd.)

Markov policies depend only on the current state.

Synthesis of control

Any Markov deterministic policy  such that:

(x) 2 arg min
a2A(x)

(
c(x ; a) + �

X
y

p(x ; a; y)V (y)

)

is optimal.

A. Jean-Marie Impatient Customers and Optimal Control



Introduction
Stochastic Optimal Control
The Discrete-Time Model

The Continuous-Time Model
Conclusion

Fixed points and iterations

The value function is the �xed point of a non-linear operator, the
dynamic programming operator:

V = TV :

Value Iteration

Let V0 be a function from S to R. Consider the sequence of
functions

Vk+1 = TVk :

This sequence converges to the value function.

This property is extremely useful:

theoretically

algorithmically
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The Model
Dynamic Programming representation
B = 1
B � 2

Progress

1 Introduction

2 Stochastic Optimal Control

3 The Discrete-Time Model
The Model
Dynamic Programming representation
The case B = 1
The case B � 2

4 The Continuous-Time Model

5 Conclusion
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The Model
Dynamic Programming representation
B = 1
B � 2

The Model

Controler

Impatience

Queue

Arrivals

Server

A discrete-time batch queue with geometric patience.
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The Model
Dynamic Programming representation
B = 1
B � 2

Model elements

Arrival

Customers arrive to an in�nite-bu�er queue.

Time is discrete.

The distribution of arrivals in each slot At , arbitrary with
mean � (customers/slot), i.i.d.

Services

Service occurs by batches of size B.

Service time is one slot.
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The Model
Dynamic Programming representation
B = 1
B � 2

Model elements (ctd)

Deadline

Customers are impatient: they may leave before service.

the individual probability of being impatient in each slot: �

memoryless, geometrically distributed patience

Control

Service is controlled.

The controller knows the number of customers but not their
amount of patience: just the distribution.

It decides whether to serve a batch or not.
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The Model
Dynamic Programming representation
B = 1
B � 2

The Question

What is the optimal policy �� of the controller, so as to minimize
the �-discounted global cost:

v�� (x) = E
�
x

"
1X
n=0

�n c(xn; qn)

#
;

where:

xn: number of customers at step n;

qn: decision taken at step n;

and c(x ; q) is the cost incurred, involving:

cB : cost for serving a batch (setup cost)

cH : per capita holding cost of customers

cL: per capita loss cost of impatient customers.
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The Model
Dynamic Programming representation
B = 1
B � 2

Related Literature I

Control of queues and/or impatience (or reneging, abandonment)
has a long history.

Optimal, deadline-based scheduling:

Bhattacharya & Ephremides, 1989

Towsley & Panwar, 1990

Optimal admission/service control (without impatience)

Deb & Serfozo, 1973

Altman & Koole, 1998 (admission)

Papadaki & Powell, 2002 (service)

Optimal routing control with impatience

Movaghar, 2005
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The Model
Dynamic Programming representation
B = 1
B � 2

Related Literature II

Optimal service control with impatience

Ko�caga & Ward, 2010

Benja�ar & al., 2010 (inventory control)

Larra~naga, Boxma, N�u~nez-Qeija and Squillante, 2015

Structure analysis of retrial queues

Bhulai, Brooms and Spieksma, 2014
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The Model
Dynamic Programming representation
B = 1
B � 2

Adding to the state of the art...

Absent from the literature: optimal control of (�nite) batch service
in presence of stochastic impatience, with nonzero batch cost,
discrete-time or continuous-time.

In the talk, we:

give the solution to this problem, discrete-time, for B = 1

explain what goes wrong when B � 2

give the solution to this problem, continuous-time.
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The Model
Dynamic Programming representation
B = 1
B � 2

State dynamics

xn: number of customers in the queue at time n.
qn = 1 is service occurs, qn = 0 if not, at time n.

Sequence of events (at each slot)

1 Begining of the slot

2 Admission in service

3 Impatience on remaining customers

4 Arrivals
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The Model
Dynamic Programming representation
B = 1
B � 2

State dynamics (ctd.)

The sequence of events leads to :

xn+1 = S
�
[xn � qnB]

+
�

+ An+1 :

S(x): the (random) number of \survivors" after impatience, out of
x customers initially present.

I (x): the number of impatient customers.
=) binomially distributed random variables
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The Model
Dynamic Programming representation
B = 1
B � 2

Costs

The cost at step n is:

cBqn + cLI ([xn � qnB]
+) + cH [xn � qnB]

+

Average Cost

c(x ; q) = q cB + (cL �+cH) (x�qB)+ = q cB +cQ (x�qB)+ :

Optimization criterion:

v�� (x) = E
�
x

"
1X
n=0

�n c(xn; qn)

#
:
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The Model
Dynamic Programming representation
B = 1
B � 2

Dynamic programming equation

The optimal value function V (x) is solution to:

The dynamic programming equation

V (x) = min
q2f0;1g

fcBq+ cQ [x �Bq]+ + �E
�
V (S([x � Bq]+) + A)

�
g:

The optimal policy is Markovian and feedback:

�� = (d ; d ; : : : ; d ; : : :)

and d(x) is given by:

The optimal policy

d(x) = arg min
q2f0;1g

f:::g:
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The Model
Dynamic Programming representation
B = 1
B � 2

Optimality Results

Theorem

The optimal policy is of threshold type: there exists a � such that

d(x) = 1fx��g.

Theorem

Let  be the number de�ned by

 = cB �
cQ

1� ��
:

Then,

1 If  > 0, the optimal threshold is � = +1.
2 If  < 0, the optimal threshold is � = 1.
3 If  = 0, any threshold � � 1 gives the same value.
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The Model
Dynamic Programming representation
B = 1
B � 2

Method of Proof

Framework: propagation of properties through the dynamic
programming operator (Puterman, Glasserman & Yao).

Requirement 1 (Puterman)

9w(�) � 0, sup
(x ;q)

jc(x ; q)j

w(x)
< +1 ;

sup
(x ;q)

1

w(x)

X
y

P(y jx ; q)w(y) < +1 ;

and 8�, 0 � � < 1, 9�, 0 � � < 1, 9J, such that: 8 J-uple of Markov
Deterministic decision rules � = (d1; : : : ; dJ), and 8x ,

�J
X
y

P�(y jx)w(y) � �w(x) :

! works with w(x) = C + cQx
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The Model
Dynamic Programming representation
B = 1
B � 2

Method of Proof

Framework: propagation of properties through the dynamic
programming operator (Puterman, Glasserman & Yao).

Requirement 2 (Puterman, Glasserman & Yao)

9V �;D�

1 v 2 V � implies Lv 2 V �,
2 v 2 V � implies there exists a decision d such that

d 2 D� \ argmind Ldv ,
3 V � is a closed by simple convergence.

! works with:

V � = f increasing and convex g and
D� = f monotone controls g
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The Model
Dynamic Programming representation
B = 1
B � 2

Propagation of structure

Theorem

Let, for any function v, ~v(x) = min
q

Tv(x ; q). Then:

1 If v increasing, then ~v increasing

2 If v increasing and convex, then ~v increasing convex

Theorem

If v is increasing and convex, then Tv(x ; q) is submodular over
N�Q. As a consequence, x 7! argminq Tv(x ; q) is increasing.

Submodularity (Topkis, Glasserman & Yao, Puterman)

g submodular if, for any x � x 2 X and any q � q 2 Q:

g(x ; q)� g(x ; q) � g(x ; q)� g(x ; q):
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The Model
Dynamic Programming representation
B = 1
B � 2

Optimal Threshold / 1

The system under threshold � evolves as:

xn+1 = R�(xn) := S
�
[xn � 1fx��g]

+
�

+ An+1 :

A direct computation gives:

V�(x) =
cQ

1� ��

�
x +

��

1� �

�
+  �(�; x)

�(�; x) =
1X
n=0

�nP(R(n)
� (x) � �)

 = cB �
cQ

1� ��
:
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The Model
Dynamic Programming representation
B = 1
B � 2

Optimal Threshold / 2

Lemma

The function �(�; x) is decreasing in � � 1, for every x.

Proof by a coupling argument.

Finally,

if  � 0,  �(�; x) is decreasing in �: � = +1 is optimal;

if  � 0,  �(�; x) is increasing in �: � = 1 is optimal.

A. Jean-Marie Impatient Customers and Optimal Control



Introduction
Stochastic Optimal Control
The Discrete-Time Model

The Continuous-Time Model
Conclusion

The Model
Dynamic Programming representation
B = 1
B � 2

What goes wrong when B � 2

Numerical experiments and exact results in special cases reveal
that:

The value function V (x) is not convex in general
The function TV (x ; q) is not submodular in general

Examples with B = 10, � = 1=10, � = 8=10: V not convex

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  5  10  15  20  25  30

V_1(x)
V_2(x)
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The Model
Dynamic Programming representation
B = 1
B � 2

What goes wrong when B � 2, ctd.

Submodularity: if Tv(x ; 1) is submodular, then
x 7! Tv(x ; 1)� Tv(x ; 0) is decreasing.
A counterexample with B = 2, � = 1=10, � = 9=10, � = 9=10.

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

Increments of Tv(x,1) - Tv(x,0)
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The Model
Dynamic Programming representation
B = 1
B � 2

What goes wrong when B � 2, end.

Papadaki & Powell study the same problem without impatience.

Dynamics without impatience

xn+1 = [xn � qnB]
+ + An+1 :

They show that the following \K-convexity" propagates:

K -convexity

V (x + K )� V (x) � V (x � 1 + K )� V (x � 1) :

Also used in Altman & Koole for batch arrivals.
=) does not work here.
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Dynamic Programming representation
B = 1
B � 2

Extensions to the model

Average case / no discount: � = 1.
=) should work as long as � 6= 0 (� 6= 1)

Critical value:

 = cB � cQ
1

�
= cB � cL �

cH

�
:

Branching processes: at each step, each customer is replaced by X
customers. � = EX , must be � < ��1.
=) same formula for the optimal policy

Critical value:

 = cB �
cQ

1� ��
:
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The model in continuous time

Consider now the queueing model with in�nite bu�er:

Poisson arrivals rate �

single server, exponential service durations, rate �

impatience rate � per customer not in service

decision: start a service or not

cost cB for starting a service

cost cL for losing a customer by impatience

holding cost cH per customer in queue per unit time

Optimization criterion:

E

"Z 1

0
e��tcH(Xt)dt +

1X
n=0

e��Tn(cL1loss + cB1service)

#
:
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Direct solution
Solution via structure theorems

Optimality Equations

In order to obtain a \recursive-like" or \�xed point" equation, the
trick is to go back to discrete time using an embeded process.

Value at Tn $ value at Tn+1: forward reasoning with the strong
Markov property.

Time-independence =) �xed point
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Uniformizable models

When the set of all transition rates jq(x ; a; x)j is bounded, it is
possible to transform the continuous-time problem into a
discrete-time one. Technique attributed to Lippman (1975).
Let � � supx ;afjq(x ; a; x)jg. De�ne

~c(x ; a) =
c(x ; a)

� + �
; p(x ; a; y) =

q(x ; a; y)

�

and p(x ; a; x) to complete the transition distribution.

Uniformization equivalence

Then the optimal value and optimal policies for the discrete-time
model are also optimal for the original continuous-time model.
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Non-uniformizable models

What about non-uniformizable models?
Up to until quite recently:

truncate model to \size N"

solve for N as large as possible

hope that the model is \reasonable"

ignore boundary e�ects

ignore multiplicity of solutions, discontinuities...

Numerical truncation e�ects occur almost always: Salch (2013),
Bhulai, Brooms and Spieksma (2014), Larra~naga (2015), Blok and
Spieksma (2015), ...
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Non-uniformizable models

Thanks to theoretical contributions by Guo, Hern�andez-Lerma et

al. and Blok, Spieksma et al., the situation evolves

validated optimality equations

results for existence and uniqueness

continuity results for approximated models

smoothing technique to avoid boundary e�ects.
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Bellman Equation for general models

Consider the controlled model with transition rates q(x ; a; y) and
cost rates c(x ; a). De�ne q(x ; a) =

P
y 6=x q(x ; a; y).

Bellman Equation

Under appropriate conditions, the (optimal) value function V is the
unique solution to the equation: for all state x ,

V (x) = min
a2A(x)

8<
: c(x ; a)

q(x ; a) + �
+

1

q(x ; a) + �

X
y 6=x

q(x ; a; y)V (y)

9=
; :

�V (x) = min
a2A(x)

(
c(x ; a) +

X
y

q(x ; a; y)V (y)

)
:
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Bellman Equation for general models

Consider the controlled model with transition rates q(x ; a; y) and
cost rates c(x ; a). De�ne q(x ; a) =

P
y 6=x q(x ; a; y).

Bellman Equation, local uniformization

Let �(x) be any function. Under the same appropriate conditions,
the value function V is the unique solution to the equation: for all
state x ,

V (x) = min
a2A(x)

n c(x ; a)

�(x) + �
+

1

�(x) + �

X
y 6=x

q(x ; a; y)V (y)

+
�(x)� q(x ; a)

�(x) + �
V (x)

)
:
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Bellman Equation, back to uniformizable models

Choose �(x) = �.

V (x) = min
a2A(x)

nc(x ; a)
� + �

+
�

� + �

X
y 6=x

q(x ; a; y)

�
V (y)

+
�

� + �

� � q(x ; a)

�
V (x)

)
:
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Bellman Equation, back to uniformizable models

Choose �(x) = �.

V (x) = min
a2A(x)

n
~c(x ; a) + �

X
y 6=x

p(x ; a; y)V (y)

+ �p(x ; a; x)V (x)

)
:
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Application to the impatience queue

Bellman Equation

The value function of the problem is the unique solution to the Bellman equation:

V (n; 0) = min
�
cB +

1

� + (n � 1)�+ �+ �

�
k(n � 1) + �V (n; 1)

+ (n � 1)�V (n � 2; 1) + �V (n � 1; 0)
�
;

1

� + n�+ �
[k(n) + �V (n + 1; 0) + n�V (n � 1; 0)]

	
for n � 1,

V (0; 0) =
1

� + �
[k(0) + �V (1; 0)];

V (n; 1) =
1

� + n�+ �+ �
[k(n) + �V (n + 1; 1) + n�V (n � 1; 1) + �V (n; 0)] ;

for n � 0.
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Application to the impatience queue (ctd)

De�ne:

TASV (n; 0) = cB +
1

� + (n � 1)�+ �+ �

�
k(n � 1) + �V (n; 1) + (n � 1)�V (n � 2; 1) + �V (n � 1; 0)

�
;

TNSV (n; 0) =
1

� + n�+ �
[k(n) + �V (n + 1; 0) + n�V (n � 1; 0)]

	
for n � 1,

TASV (0; 0) = TNSV (0; 0) =
1

� + �
[k(0) + �V (1; 0)];

TASV (n; 1) = TNSV (n; 1) =
1

� + n�+ �+ �
[k(n) + �V (n + 1; 1) + n�V (n � 1; 1) + �V (n; 0)] ;

for n � 0.

Bellman Equation, operator version

The value function of the problem is the unique solution to the Bellman equation:

V = TV := min
�
TASV ;TNSV g :
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Direct solution (mostly) fails

Idea: optimal policy is probably threshold-based.

=) compute the value function of such policies and check
whether they solve the Bellman equation... or not.

Even simpler: compute VAS and VNS :

AS = Always Serve

NS = Never Serve
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Computing VNS

Let cQ := cH + �cL.

Value of no service

The value of the \no service" policy is:

VNS(n; �) =
cQ

�+ �

�
n +

�

�

�
:

Optimality of no service

The \no service" policy is optimal if and only if:

cB �
cQ

�+ �
:
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Computing VAS

The function VAS is de�ned by V (n; 1) = V (n + 1; 0)� cB and

V (n; 1) =
1

� + n�+ �+ �

�
ncQ + �V (n + 1; 1) +

(n�+ �)V (n � 1; 1) + �cB
�
:

=) generating function analysis, but
=) closed-form solution only for � = 0.
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Solution via structure theorems

Second idea: use Value Iteration to show that

VAS has certain properties that implied it solves the Bellman
Equation;

AS is a \limit point" of optimal policies for successive
approximations.

Among these \certain properties", one usually has monotony,
convexity.
Let us see if it works.
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Convexity analysis

Propagation of convexity fails!
Exemple with: � = 0.5, � = 5, � = 1 and � = 0.1.
Costs: cB = 1.0, cL = 2.0 and cH = 2.0.

 0

 50

 100

 150

 200

 250

 300

 350

 0  20  40  60  80  100

n=1
n=2
n=5

n=10
n=20
n=50

Value Function

A plot of n 7! Vk(n; 0) := (T (k)V0)(n; 0), for di�erent values of k ,
starting with V0 � 0 (a convex function...).
Iterates are not convex, but the limit is.
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Approximate uniformizable model I

Consider the model with:

state-dependent arrival rate �(n)

state-dependent impatience rate �(n) � �.

Let � := � + � + �.
De�ne, for n � 1:

T
(u)
AS V (n; 0) = cB +

1

� + �

�
(n � 1)cQ + �(n � 1)V (n; 1)

+ �(n � 1)V (n � 2; 1) + �V (n � 1; 0)

+ (� � �(n � 1)� �(n � 1)� �)V (n; 0)
�
;

T
(u)
NS V (n; 0) =

1

� + �

�
ncQ + �(n)V (n + 1; 0) + �(n)V (n � 1; 0)

+ (� � �(n)� �(n)� �)V (n; 0)
�
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Approximate uniformizable model II

T
(u)
AS V (0; 0) = T

(u)
NS V (0; 0)

=
1

� + �
�V (1; 0)

T
(u)
AS V (n; 1) = T

(u)
NS V (n; 1)

=
1

� + �

�
ncQ + �(n)V (n + 1; 1) + �(n)V (n � 1; 1) + �V (n; 0)

+(� � �(n)� �(n)� �)V (n; 1)
�
;

for n � 0.
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Approximate uniformizable model III

Bellman equation for the approximate model

The value function of the problem is the unique solution to the
Bellman equation:

V = T (u)V := min
�
T

(u)
AS V ;T

(u)
NS V g :
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Let us propagate

Following Bhulai, Brooms and Spieksma (2014), we are particularly
interested in:

Speci�c arrival/impatience functions

There exists some integer N such that:

a) The function �(�) is given by

�(n) = min(n;N) �;

b) The function �(�) is given by

�(n) =
�

N
max(N � n; 0):

Let's start propagating properties!
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Submodularity analysis

Even in truncated models, submodularity (partly) fails!

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0  2  4  6  8  10  12  14

alpha=0.5
alpha=1

alpha=1.5
alpha=2

alpha=2.5
alpha=5

alpha=10
alpha=20

� = 0.5, � = 2 and � = 1.5, cB = 1.0, cL = 2.0 and cH = 2.0. N = 99

A plot of n 7! TASV (n; 0)� TNSV (n; 0), for di�erent values of �.
Submodularity () this function is decreasing.
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What would make AS optimal?

Submodularity is too strong. What else?

Lemma:

If the value function VAS of the \always serve" (AS) policy
satis�es:

cB � �nVAS(n; 0) �
cQ

�+ �

for all n � 0, and if
cB(�+ �) � cQ

then the AS policy is optimal.
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What would make AS optimal? (cdt)

The function VAS is de�ned by equations

V (n; 0) = cB+
(n � 1)cQ + �V (n; 1) + (n � 1)�V (n � 2; 1) + �V (n � 1; 0)

� + (n � 1)�+ �+ �

and VAS(n + 1; 0) = cB + VAS(n; 1).
Now, VAS solves the Bellman equations:

cB(�+(n�1)�+�+�)+(n�1)cQ+�V (n; 1)+(n�1)�V (n�2; 1)+�V (n�1; 0)+�V (n; 0)

� ncQ + �V (n + 1; 0) + n�V (n � 1; 0) + �V (n; 0) :

Eliminating terms V (m; 1) = V (m + 1; 0)� cB and rearranging,
this is equivalent to:

cB(�+ �)� cQ + (�� �)�nV (n � 1; 0) � 0;

cB(�+ �)� cQ| {z }
�0

+(�� �)(�nV (n � 1; 0)� cB) � 0 :
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What would make AS optimal? (end)

Observe the term �� �.

Two cases:

� � �: it is su�cient that �nV (n � 1; 0) � cB

� � �: it is su�cient that �nV (n � 1; 0) � cQ=(�+ �).
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Propagable set of properties

Properties that propagate

If N large enough, the following set of properties are propagated by
the Dynamic Programming operator T (u):

a) n 7! �nV (n; 0) is positive and increasing for 0 � n � N

b) �nV (0; 0) � cB

c) �nV (n; 0) � cQ=(�+ �) for all 0 � n � N

d) V (n + 1; 0) = V (n; 1) + cB , for all 0 � n � N

e) (T
(u)
NS V )(n; 0) � (T

(u)
AS V )(n; 0) for all 0 � n � N.
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Necessity of smoothing

Why \for N large enough? Because:

(� + �)[(T
(u)
AS V )(n; 0)� (T

(u)
NS V )(n; 0)]

= cB (�+ �)� cQ + (�� �) (�nV )(n � 1; 0)

+[�(n � 1)� �(n)] (�nV )(n; 0) :
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Necessity of smoothing

Why \for N large enough? Because:

(� + �)[(T
(u)
AS V )(n; 0)� (T

(u)
NS V )(n; 0)]

= cB (�+ �)� cQ + (�� �) (�nV )(n � 1; 0)

+
�

N
(�nV )(n; 0) :
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Necessity of smoothing

Why \for N large enough? Because:

(� + �)[(T
(u)
AS V )(n; 0)� (T

(u)
NS V )(n; 0)]

= cB (�+ �)� cQ + (�� �) (�nV )(n � 1; 0)

+
�

N
(�nV )(n; 0) :

Why not �(n) = �1fn�Ng? Because not convex.
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Optimality of always serve

Then by the structure theorem:

Optimality for approximations

For the approximate model parametrized by N:

a) the policy \always serve" is optimal

b) V
(u)
AS has the �ve properties above.

Next, by the continuity results of Blok and Spieksma (2015):

Optimality of always serve

The \always serve" policy is optimal if and only if:

cB �
cQ

�+ �
:
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Conclusions

Impatience (a fortiori retrials) challenge the established
techiques for Markov Decision Processes

Need more structural results for dynamic programming
operators
Koole (2006) and Ko�ca�ga & Ward (2010) mention the
incompatibility of impatience with structure theorems.
Blok and Spieksma (2015) argue that structure theorems are
possible for smoothed/truncated approximations.

Exploit better the multiplicity of Bellman equations satis�ed
by the value function

Structural MDP analysis generally needs help for identifying
properties that propagate: theory and computer tools
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Open problems

Some open problems we have left along the way (for both the
discrete and continuous models):

batch service B � 2

general (non-linear) costs

phase-type impatience and optimal control of population
models
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