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Performance Evaluation
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• Networks, contention, delays and losses
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• Models

The Theory of Queues Classical results

• Markov Chains
• Performance measures
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Current Challenges Some models with or without solution

• Internet and its evolution
• Web modeling
• Models of Multimedia applications
• From passive to active networking
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Introduction

In a communication network using routing/switching (Internet, ATM, Frame Relay...),
queues form along the communication path (statistical multiplexing, contention, ...)

These queues create delay and losses.

The problem is to know how to quantify these.

The approach is (usually) stochastic , given the uncertain nature of traffic.

Research for results permitting to define, calculate and guarantee the celebrated quality

of service (QoS).
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Methodology

How to obtain performance measures?

Real System: Define objectives

Instrument the system: place control points, place measurement points

Perform measurements

Change parameters

Do it again
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Simulated System: Define objectives

Program a sufficient representation of the system, elements and behavior

Perform measurements

Change parameters

Do it again

Mathematical analysis: Define objectives

Establish a sufficient mathematical representation of the system, elements and
behavior

Calculate measures: QoS = f(x1, . . . , xn).

For both Simulation and Analysis, one needs Models.
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Models

T0_1 T0_2 T0_3 T0_4

T1_1 T1_2 T1_3 T1_4
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T3_1 T3_2 T3_3 T3_4

Top

Bottom

Petri Nets Task Graphs Queuing Networks
(PERT networks, etc.)
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Uncertainty and randomness

Unknown quantities: arrival times of “events”, amount of resources claimed on the
system.

✷ Stochastic models: unknown quantities are random variables.

Random in, Random out ⇒ performance measures are random in nature

⇒ compute or measure their statistics (mean, variance, distribution...).

✷ Deterministic models: unknown quantities have bounds.

Analysis reveals the worst case scenarios ⇒ guaranteed performance.
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Erlang’s Model (1917)

A telephone cable with with N lines:

Average call duration = m s

Call rate = λ/s

N

Rejection

Lines

New calls

1

P{loss} =
ρN/N !

1 + ρ+ . . .+ ρN/N !
ρ = λ×m

Queueing Theory – Erlang’s Model 8



Penang’s Model (2000)

A Web server with persistent HTTP connections and finite memory:

Hit rate = λ/mn

Average connection length = m mn

1

N

Rejection

New requests

Connections

P{no service} =
ρN/N !

1 + ρ+ . . .+ ρN/N !
ρ = λ×m

Queueing Theory – Penang’s Model 9



Discrete Time Markov Chains
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Probability vectors:

π0 = (1, 0, 0)
π1 = (0.2, 0.2, 0.6)
π2 = (0.64, 0.14, 0.22)
π3 = (0.348, 0.198, 0.454)
π4 = (0.5236, 0.1686, 0.3078)
... ... ...
π∞ = (5/11, 2/11, 4/11)

π = π P

⇒ the stationary probability.

Its computation is reduced to the solution of a linear system!
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Continuous Time Markov Chains

Let {X(t), t ∈ R
+}, having the following properties. When X enters state i:

• X stays in state i a random time, with an exponential distribution with average
1/τi, independent of the past; then

• X jumps instantly in state j with probability pij.

Let
Qij = τipij Qii = − τi .

Q is infinitesimal generator.

Queueing Theory – Continuous Time Markov Chains 12



Example
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Equilibrium equations

If limtπt = π exists, then:

0 = π Q .

These equilibrium equations can be written: ∀i ∈ E ,

(
∑

j 6=i

qi,j)π(i) =
∑

j 6=i

π(j)qj,i .

Interpretation: entering flow = outgoing flow.
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Queues

service departurewaitarrivals

a  , a  ...

server

...2σ1σ1 2

Queue

waiting room

Usual representation of a queue
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The elements that compose a queue are:

• one or several servers

• a waiting room

• (possibly) classes of customers

• an arrival process per class

• a process of service durations

• a service discipline
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The M/M/1 queue

Characteristics: Infinite waiting room, 1 server, FIFO.

arrivals: a Poisson process with throughput λ

services: exponential distribution with average 1/µ:

{N(t)} is a Markov Chain: a birth and death process

µ µ

λλ

n n+1n-1

µ

λλ

µ

10

λ
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Performance Measures:

Stability ⇐⇒ λ < µ

P{N ≥ n} =

(

λ

µ

)n

P{N = n} =

(

1−
λ

µ

)(

λ

µ

)n

EN =
λ

µ− λ

ER =
1

µ− λ
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Product form solutions: Jackson and Kelly Networks

N queues (stations) with services ∼ Exp.

External arrivals of customers (Poisson processes), and a routing mechanism.

1

4
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Routes

(1,4,5)
(1,4)
(1,2,5)
(1,2,3)
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Global entering throughput in station i: λi

When stability, the stationary probability distribution is:

p(n1, . . . , nN) =
N
∏

i=1

(

1−
λi

µi

) (

λi

µi

)ni

,

⇒ justification of the end-to-end response time formula:

T =

M
∑

i=1

1

Ci − Li

Ci: capacity of the link/switch, Li: entering traffic (in packets/s).
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Application: Capacity Planning

Assuming known: traffic rates and routes.

Problem: allocate link/node capacities so as to minimize collective average.

min
(µ1,...,µN)∈M

T (µ1, . . . , µN)

M = {feasible allocations}.

Queueing Theory – Queueing Networks 21



Application: Route Planning

Assuming known: node and link capacities, Origin/Destination traffics.

Problem: allocate routes so as to minimize collective average.

min
x∈R

T (x)

where R = {feasible route allocations}.

Queueing Theory – Queueing Networks 22



Routing

Consider a network with distributed routing based on distance vector tables.

According to the response time formula at nodes for Kelly networks plus the propagation
delay, a reasonable metric for link n = (i → j) is:

Dn =
1

µn − λn

+ dn .

Queueing Theory – Queueing Networks 23



Analytical approach to flow control

Consider the closed Jackson network with W customers, each node having capacity µ

2N N + 1N + 2Source Destination

21

...

...

µµµ

µ µ µ

N

The throughput and RTT (Round Trip Time) of packets are

θ =
Wµ

W + 2N − 1
RTT =

W + 2N − 1

µ

Queueing Theory – Queueing Networks 24



Theoretical Challenges

Examples of open questions:

• less restrictive assumptions on traffic models:
non-Poisson arrival processes
non-exponential services
long range dependence of processes

• finite capacities, losses, feedback

• service disciplines and stability

• distributions of end-to-end response times

Queueing Theory – Queueing Networks 25



Modeling Internet and its Evolutions

Study the protocols for:

• controlling the flow of connections: TCP

• controlling the flow of non-connection streams

• preventing the congestion

• introducing some level of “differentiated service”

Challenges – Internet Modeling 26



Models of TCP

Principles of the TCP congestion control (simplified)

• TCP sources use a window W (bytes) of unacknowledged packets

• the window decreases when packet losses are detected

• the window grows

– exponentially fast in the slow start or fast recovery modes
– linearly in the congestion avoidance mode

Challenges – Models of TCP 27



W(t) W(t)

W/2

W

cycle

slope=1/T

Deterministic cycle analysis: the effective throughput is:

θ ≃
1

T

√

3

2p

This is the “square root formula”: relates the loss probability p and the throughput θ.
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Stochastic cycle analysis:

Times Sn between losses: i.i.d. random variables with coefficient of variation c2.

W
Wn

n+1

nS TTn n+1

cycle nW(t)

θ =
1

T

√

3 + c2

2p
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Differentiated Services

Objective Improve the “quality of service” of the Internet by adding some kind of
service definition and guarantees.

Move away from “best effort” and its lack of response time/throughput guarantees.

Means Using 1 bit, define 2 classes with one of them having:

• better throughput (“Assured Forwarding”)
• better delay characteristics (Expedited Forwarding, aka: Premium Service)

Challenges – Models of Differentiated Service 30



Model for “Assured Forwarding”

Model:
OUTλ

out

INin
λ

Buffer size K

Router = single server queue

Input traffic = two classes, IN (high priority, tagged) and OUT, low priority.

Challenges – Models of Differentiated Service 31



Buffer management: RED = Random Early Detection / Discard

RIO = RED on IN and OUT
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Probability of accepting a packet:

α(n) =
λin
λ

αin(n) +
λout
λ

αout(n)

with λ = λin + λout.

Evolution of the number of customers N(t):

(0) (1) (n-1) (n) (n+1)

n n+1n-110

µµµµ

λα λα λα λα λα

K

µ
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Solution:

π(n) = π(0)

(

λ

µ

)n n−1
∏

i=0

α(i)

π(0) =

[

K
∑

n=0

(

λ

µ

)n n−1
∏

i=0

α(i)

]−1

Computation of performance measures, including throughputs:

λin
eff = λin

K−1
∑

n=0

αin(n)π(n)

λout
eff = λout

K−1
∑

n=0

αout(n)π(n)
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Results
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Research Issues

• Investigate average queue length measurements:

q̂n+1 = αqn + (1− α)q̂n

• Find the proper value of α. Depends on the traffic?

• Investigate RIO based on the queue length of tagged packets instead of total queue
length

• Investigate the interactions between RIO and TCP

Challenges – Models of Differentiated Service 36



Web Server Optimization

Caching: keep documents “closer” to the user.

Modeling: Sequence of documents D1, D2, . . ..

Document d has the probability pd of appearing.

Problem: maximize the hit ratio = P{Dn is in the cache}, or minimize the “cost” of
retrieving a document.

Difficulty: the probabilities pd are unknown...

Challenges – Web Servers 37



Traditional solution for memory pages: LRU (Least Recently Used), tries to rank the
probabilities.

Shown to be optimal if arrivals are i.i.d. Commonly used in computer systems.

Problems:

• does not take into account the size of the documents
→ document hit rate 6= byte hit rate

• may be slow to converge

• may not work well if arrivals are not i.i.d.

Challenges – Web Servers 38



Some solutions:

• climbing algorithms

• not use (empirical) hit frequency pd but density

δd =
pd
sd
, sd size of d.

• LFU (Least Frequently Used): estimate document frequency pd

Challenges – Web Servers 39



Other Web problems:

• use of the SRPT (shortest remaining processing time) policy in web servers

• replication/distribution of data

S S S1 2

• realistic workload models for benchmarking

Challenges – Web Servers 40



Multimedia over IP

Voice over IP

• influence of coding

• influence of the locality of losses

• usefulness of the FEC (Forward Error Correction) mechanisms

Challenges – Multimedia over IP 41



Video over IP: real time / video on demand

• compute buffer/bandwidth requirements

• optimal smoothing of traffic

For both:

• multi-level coding with adapted FEC

• adaptive transmission rate

• adaptive redundancy level

Challenges – Multimedia over IP 42



Example: video/voice playout

quantity of
information

Response time of the network

Maximum backlog

time

Original stream

Smoothed stream
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FEC

Forward Error Correction consists in adding redundancy to data so that it can cope with
loss.

Assume a stream of packets of the same size, grouped in blocks of size n.

It is possible to add k packets to each block so that any k losses in the super-block of
n+ k packets can be recovered.

Challenges – FEC 44



capacity K µ

Poisson (λ )

Poisson (λ )s

s

• ր probability loss recovery for the group

• ր load, ր probability of losing an individual packet

Does the compromise bring a global benefit? What is the optimal value of k?

Challenges – FEC 45



Active Networking

The control is escaping the network:

• users pay for some service

• users may want to choose the route for their traffic

• proposals for “active packets” learning their way

This poses new types of problems relevant to Game Theory.

Challenges – Active Networking 46



Example 1: definition of fairness?

Minimax criterion max
user u

min
link ℓ

θ(user u on link ℓ)

Average criterion max
φ

|all user u receives proportion φ of his demand

Example 2: Braess’ Paradox

Utility U Utility U1 2
< U   !!!

1
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Game Theory concepts:

• Nash Equilibrium (x∗
1, . . . , x

∗
n)

Ui(x
∗
1, . . . , x

∗
i , . . . , x

∗
n) ≥ Ui(x

∗
1, . . . , xi, . . . , x

∗
n) .

• Pareto Efficient solution (y∗1, . . . , y
∗
n):

6 ∃(x1, . . . , xn), Ui(x1, . . . , xn) ≥ (y∗1, . . . , y
∗
n) ∀i .

In general, Nash equilibria are very inefficient...
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Conclusion

Many challenges, and more:

• group communications: control of multicast

• ATM networks (rate control algorithms, call admission control, pricing, policing)

• mobile communications (capacity planning, prevention of interruptions)

• satellite communications (noisy, asymmetric transmission, low orbit constellations)

• optical communications (wavelength allocations, hot potato routing)

Many opportunities for Performance Evaluation.
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