Conjectural Variations Equilibria

Part II: Dynamic Equilibria

Mabel Tidball Alain Jean-Marie
tidball@inra.ensam.fr ajm@lirmm.fr

INRA/LAMETA Montpellier
INRIA/LIRMM CNRS University of Montpellier 2

Contents

Dynamic conjectures, bounded rationality and learning

- The principle.
- A learning model.
- Friedman Mezzetti model.

Consistent conjectures in a dynamic setting

- The principle.
- Consistent conjectures in differential games.
- Theoretical framework in discrete time, infinite horizon.

Dynamic conjectures, bounded rationality and learning

The idea

Ingredients

- Dynamic conjectures
- Limited rationality
- Updating of conjectures

Conjecture adjustment process
$\dot{r}_{i j}(t)=\mu_{i}\left(r_{i j}^{\prime}(t)-r_{i j}(t)\right), \quad r_{i j}(t+1)=\left(1-\mu_{i}\right) r_{i j}(t)+\mu_{i} r_{i j}^{\prime}(t)$
$\mu_{i} \longrightarrow$ speed of adjustment.
$r_{i j}(t) \longrightarrow$ conjecture of i about j.
$r_{i j}^{\prime}(t) \longrightarrow$ conjecture to be used, based on observations.

The learning model

- n players, e_{i} strategy of i, e profile of strategies,
- e^{b} a given benchmark strategy,
- V^{i} instantaneous payoff of player i.

Player i makes a conjecture about j of the form

$$
e_{j}=e_{j}^{b}+r_{i j}\left(e_{i}-e_{i}^{b}\right), \quad r_{i j} \in \mathbb{R}
$$

and solves

$$
\max _{e_{i}} V^{i}\left(e_{i},\left(e_{j}^{b}+r_{i j}\left(e_{i}-e_{i}^{b}\right)\right)_{i \neq j}\right) .
$$

There exists a unique solution $e_{i}=\phi_{i}\left(e^{b} ; r_{i}\right),\left(r_{i}=\left(r_{i j}\right)_{i \neq j}\right)$.

Learning model (continued)

i observes that j has played e_{j} and concludes that her conjecture should have been $r_{i j}^{\prime} /$

$$
e_{j}=e_{j}^{b}+r_{i j}^{\prime}\left(e_{i}-e_{i}^{b}\right), \quad \Longrightarrow \quad r_{i j}^{\prime}=\frac{e_{j}-e_{j}^{b}}{e_{i}-e_{i}^{b}}
$$

Adjustment process of conjectures

$$
r_{i j}(t+1)=\left(1-\mu_{i}\right) r_{i j}(t)+\mu_{i} \frac{e_{j}(t)-e_{j}^{b}}{e_{i}(t)-e_{i}^{b}}
$$

with $e_{i}(t)=\phi_{i}\left(e^{b}, r_{i}(t)\right)$.

Properties of fixed points

Proposition 1: If $r_{i j}(t) \rightarrow r_{i j}$ as $t \rightarrow \infty$, then

$$
r_{i_{1} i_{2}} r_{i_{2} i_{3} \ldots} . r_{i_{p} i_{1}}=1 \quad \forall i_{1} \ldots i_{p}
$$

in particular

$$
r_{j i}=\left(r_{i j}\right)^{-1}
$$

The vector $\left(r_{i 1} \ldots r_{i i-1}, 1, r_{i i+1} \ldots r_{i n}\right)$ is the direction of the line (passing through e^{b}) of the space of strategy profiles, on which player i chooses her own strategy.
$e_{i}=\phi_{i}\left(e^{b}, r_{i}\right)$ is the strategy played by i in the limit.

Properties of fixed points (continued)

Proposition 2: Pareto optimality
If e is a limit point obtained by the convergence of the adjustment recurrence then e is a candidate Pareto-optimal solution.
candidate i.e. it verifies necessary optimal conditions.

Proposition 3: In the case of identical players: $\phi_{i}\left(e^{b}, r\right)=\phi\left(e^{b}, r\right), e_{i}^{b}=e^{b} \forall i$; the recurrence converges to 1 for any $0<\mu<1$ and any (common) initial condition.

Example

Cournot's oligopoly:
$V^{i}\left(e_{i}, e_{-i}\right)=\left(\alpha-\beta \sum_{j} e_{j}\right) e_{i}-\left(b e_{i}+c\right)=\beta e_{i}\left(\Gamma-\sum_{j} e_{j}\right)-c$.
Where $\Gamma=\frac{\alpha-b}{\beta}>0$.
Theorem: the unique fixed point of the adjustment process are $r_{i j}=e_{j}^{b} / e_{i}^{b}$ and the corresponding strategies are Pareto optima.

The learning procedure selects among the Pareto outcomes the only one with quantities proportional to that of the reference point.

Zones of stability

Zones of stability in the Cournot case $(\Gamma=1)$.

The Friedman-Mezzetti model

Friedman-Mezzetti (2002) study a discounted repeated game, discrete time, infinite horizon, where agents form fixed conjectures about the others agents but they update the reference point.

$$
e_{j}(t+1)=e_{j}(t)+r_{i j}\left(e_{i}(t)-e_{i}(t-1)\right)
$$

Optimization

$$
e_{i}(t)=\phi_{t}^{i}\left(e(t-1), e_{i}(t-2)\right)
$$

Optimal policy $\rightarrow \phi_{1}^{i}$ at time $t=1$, she observes $e(1)$ and applies ϕ_{1}^{i}.

$$
e_{i}(t)=\phi_{1}^{i}\left(e(t-1), e_{i}(t-2)\right), i=1 \ldots n
$$

Result

Theorem: let $e_{i}^{s}(r, \theta)$ be a fixed point of the dynamical system

$$
e_{i}(t)=\phi_{1}^{i}\left(e(t-1), e_{i}(t-2)\right), i=1 \ldots n
$$

for a fixed vector of conjectures r. Let $e_{i}^{c}(r)$ be a conjectural variations equilibrium with constant vector of conjectures r, for the associated static game.

If there exists $e_{i}^{s}(r, \theta)$, then there exists a $e_{i}^{c}(\theta r)$, and conversely. If both are unique then

$$
e_{i}^{s}(r, \theta)=e_{i}^{c}(\theta r)
$$

Adapting reference point in our learning model

$$
e_{j}(t+1)=e_{j}(t)+r_{i j}\left(e_{i}(t)-e_{i}(t-1)\right)
$$

optimization

$$
e_{i}(t+1)=\phi_{i}\left(e(t), r_{i}\right)
$$

if the recurrence converges to \bar{e}

$$
\bar{e}_{i}=\phi_{i}\left(\bar{e}, r_{i}\right)
$$

Adapting the reference point in Cournot's duopoly

$$
\begin{gathered}
V^{i}\left(e_{i}, e_{-i}\right)=\beta e_{i}\left(\Gamma-\sum_{j} e_{j}\right)-c \\
e_{i}=\frac{\left(1+r_{i j}\right) \Gamma}{\left(2+r_{12}\right)\left(2+r_{21}\right)-1} \\
\left(e_{1}, e_{2}\right) \text { Pareto } \Longleftrightarrow r_{12} r_{21}=1
\end{gathered}
$$

EXTENSION: Adapting conjectures and reference points.

Consistent conjectures in a dynamic setting

Contents

Dynamic conjectures, bounded rationality and learning

- The principle.
- A learning model.
- Friedman Mezzetti model.

Consistent conjectures in a dynamic setting

- The principle.
- Consistent conjectures in differential games.
- Theoretical framework in discrete time, infinite horizon.

Consistent conjectures in a dynamic setting

Ingredients

- Dynamic game. Repeated game
- Conjectures on how the other players react
- Consistency: conjectures of each player \equiv best response reactions of the others players

Principle

- n players, time horizon T
- $x(t)=\left(x_{1}(t), \ldots x_{n}(t)\right) \in \mathbb{R}^{m}$ state variable
- $e_{i}(t)$ control variable of i in $[t, t+1], e(t)$

Dynamics

$$
x(t+1)=f(x(t), e(t)), \quad x(0)=x_{0}
$$

(repeated game $\rightarrow x(t+1)=e(t))$
Payoff

$$
V^{i}\left(x_{0}, e(0), \ldots e(T-1)\right)=\sum_{t=1}^{T} \theta^{t-1} \Pi^{i}(x(t), e(t))
$$

Principle (continued)

Conjecture of i

$$
e_{j}^{c}(t)=\phi_{t}^{i j}(x(t)) \quad \rightarrow \quad x(t+1)=\tilde{f}_{i}\left(x(t), e_{i}(t)\right) .
$$

optimal control problem

optimal policy $e_{i}^{i *}(t)$ that we suppose unique. Player i can compute $e_{j}^{i *}(t)$ and $x^{i *}(t)$ via $\phi_{t}^{i j}$.

Call $x^{a}(t)$ the actual trajectory (replacing $e_{i}^{i *}$ in the dynamics).

Different definitions of consistency

Definition 1: $\phi_{t}^{1}, \ldots \phi_{t}^{n}$ is a state-consistent conjectural equilibrium

$$
x^{i *}(t)=x^{a}(t), \quad \forall i, t, x(0)=x_{0}
$$

Definition 2: $\phi_{t}^{1}, \ldots \phi_{t}^{n}$ is a (weak) control-consistent conjectural equilibrium \Longleftrightarrow

$$
e^{i *}(t)=e^{j *}(t), \quad \forall i \neq j, t, x(0)=x_{0} \quad(a x(0) \text { given })
$$

control-consistent c.e. \Longrightarrow state-consistent c.e.

Different definitions of consistency (continued)

Optimization problem: $\rightarrow e_{i}^{i *}(t)=\psi_{t}^{i}(x(t))$

Definition 3: $\phi_{t}^{1}, \ldots \phi_{t}^{n}$ is a feedback-consistent conjectural equilibrium

$$
\psi_{t}^{i}=\phi_{t}^{j i}, \quad \forall i \neq j, t, x(0)=x_{0}
$$

as a consequence

$$
\phi_{t}^{j i}=\phi_{t}^{k i}, \quad \forall i \neq j \neq k, t
$$

Consistency in differential games

Fershman and Kamien (1985) define consistent conjectures in differential games.

- Open-loop Nash equilibria are weak control-consistent conjectural equilibria
- Control-consistent conjectural equilibria and feedback Nash equilibria coincide

The model of Friedman (1968)

Discrete time, infinite horizon, repeated game.

$$
\begin{gathered}
V^{i}\left(x_{0}, e(0), \ldots\right)=\sum_{t=1}^{\infty} \theta^{t-1} \Pi^{i}(x(t)) \\
x(t+1)=e(t) \\
x_{j}(t+1)=\phi^{i}(x(t))
\end{gathered}
$$

Solution: Solve the control problem with finite horizon T and let T goes to infinity.

Repeated static Nash equilibria is a feedback-consistent conjectural equilibria
\exists other feedback-consistent conjectural equilibria?

The linear-quadratic case: setting of the problem

Instantaneous payoff

$$
\Pi^{i}(x)=\frac{1}{2} x^{t} K^{i} x+L^{i} x+M^{i}
$$

Discounted payoff

$$
V^{i}\left(x_{0}, e(0), \ldots\right)=\sum_{t=1}^{\infty} \theta^{t-1} \Pi^{i}(x(t))
$$

Dynamics
$x_{i}(t+1)=e_{i}(t)$
$x_{j}(t+1)=e_{j}^{c}(t)=\sum_{k=1}^{n} f_{j k}^{i}(\tau) x_{k}(t)+g_{j}^{i}(\tau)$
$\tau=T-(t+1)$ is the number of time units left before the end of the game.
optimization problem

The L-Q case: setting of the problem (continued)

The optimization problem for player i, for a finite time T is:

$$
W_{T}\left(x_{0}\right)=\max _{e(0), \ldots e(T-1)} V^{i}\left(x_{0}, x(1), \ldots x(T)\right)
$$

such that
$x(t+1)=e(t) b_{i}+F^{i}(\tau) x(t)+g^{i}(\tau), \quad x(0)=x_{0}$.
$b_{i}=(0, \ldots, 1, \ldots 0)^{t}$ with '1' in position i.
The function W_{T} is the value function of the control problem.

We can obtain

- recurrence formulas for the optimal reaction function
- necessary and sufficient conditions of convergence when $T \rightarrow \infty$.

Results

- The repeated static Nash equilibrium is the unique feedback consistent conjectural equilibrium in quadratic symmetric Cournot and Bertrand oligopoly.
- Consider a distance game, that is a game where player 1 wishes to minimize her distance to point $(1,0)$ whereas player 2 wishes to minimize her distance to $(0,1)$. We can prove that there exists an infinity of feedback consistent conjectural equilibria.

Other examples with finite number of feedback consistent conjectural equilibria?

Conclusions

Existing results call for further studies on:

- More examples of feedback-consistent equilibria.
- Learning with adaptation of conjectures and the reference point.
- Evolutionary games. Dixon and Somma (2001) have proved in Cournot's duopoly that the unique evolutionary stable strategy is the consistent CVE of the static game.

Bibliography

C. Figuières, A. Jean-Marie, N. Quérou and M. Tidball, Theory of Conjectural Variations, World Scientifi c Computing, 2004.
A. Jean-Marie and M. Tidball (2004), "Adapting behaviors in a learning model", J. Economic Behavior and Organization, to appear.

- Dixon, H. and Somma, E. (2001), "The Evolution of Consistent Conjectures", Discussion Papers in Economics, N ${ }^{o}$ 2001/16, University of York, forthcoming in Journal of Economic Behavior and Organization.
- Fershtman, C. and Kamien, M.I. (1985), "Conjectural Equilibrium and Strategy Spaces in Differential Games", Opt. Control Theory and Economic Analysis, Vol. 2, pp. 569-579.
- Friedman, J.W. (1968), "Reaction Functions and the Theory of Duopoly", Review of Economic Studies, pp. 257-272.

Bibliography (continued)

- Friedman, J.W. (1977), Oligopoly and the Theory of Games, North-Holland, Amsterdam.
- Friedman, J.W. and Mezzetti, C. (2002), "Bounded Rationality, Dynamic Oligopoly, and Conjectural Variations", Journal of Economic Behavior and Organization, Vol. 49, pp. 287-306.

