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Arrival

Customers arrive to an infinite-buffer queue.

Time is discrete.

The distribution of arrivals in each slot At , arbitrary with
mean λ (customers/slot)
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Services

Service occurs by batches of size B.

Service time is one slot.
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Deadline

Customers are impatient: they may leave before service.

the individual probability of being impatient in each slot: α

memoryless, geometrically distributed patience
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Control

Service is controlled.

The controller knows the number of customers but not
their amount of patience: just the distribution.

It decides whether to serve a batch or not.
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The Question

What is the optimal policy π∗ of the controller, so as to
minimize the θ-discounted global cost:

vπθ (x) = Eπx

[ ∞∑
n=0

θn c(xn, qn)

]
,

where:

xn: number of customers at step n;

qn: decision taken at step n;

and c(x , q) is the cost incurred, involving:

cB : cost for serving a batch (setup cost)

cH : per capita holding cost of customers

cL: per capita loss cost of impatient customers.
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Related Literature

Control of queues and/or impatience (or reneging,
abandonment) has a long history.
Optimal, deadline-based scheduling:

Bhattacharya & Ephremides, 1989

Towsley & Panwar, 1990

Optimal admission/service control (without impatience)

Deb & Serfozo, 1973

Altman & Koole, 1998 (admission)

Papadaki & Powell, 2002 (service)

Optimal routing control with impatience

Kocaga & Ward, 2009

Movaghar, 2005

No optimal control of batch service in presence of stochastic
impatience, so far.
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Purpose of this talk

In the talk, we:

give the solution to this problem for B = 1

explain what goes wrong when B ≥ 2
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State dynamics

xn: number of customers in the queue at time n.
qn = 1 is service occurs, qn = 0 if not, at time n.

Sequence of events (at each slot)

1 Begining of the slot

2 Admission in service

3 Impatience on remaining customers

4 Arrivals
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State dynamics (ctd.)

The sequence of events leads to :

xn+1 = S
(
[xn − qnB]+

)
+ An+1 .

S(x): the (random) number of “survivors” after impatience,
out of x customers initially present.

I (x): the number of impatient customers.
=⇒ binomially distributed random variables
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Costs

The cost at step n is:

cBqn + cLI ([xn − qnB]+) + cH [xn − qnB]+

Average Cost

c(x , q) = q cB + (cL α+cH) (x−qB)+ = q cB +cQ (x−qB)+ .

Optimization criterion:

vπθ (x) = Eπx

[ ∞∑
n=0

θn c(xn, qn)

]
.
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Dynamic programming equation

The optimal value function V (x) is solution to:

The dynamic programming equation

V (x) = min
q∈{0,1}

{cBq+cQ [x−Bq]++θE
(
V (S([x − Bq]+) + A)

)
}.

The optimal policy is Markovian and feedback: there exists a
function of the state x , d(x), such that

π∗ = (d , d , . . . , d , . . .)

and d(x) is given by:

The optimal policy

d(x) = arg min
q∈{0,1}

{...}.
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Optimality Results

Theorem

The optimal policy is of threshold type: there exists a ν such
that d(x) = 1{x≥ν}.

Theorem

Let ψ be the number defined by

ψ = cB −
cQ

1− αθ
.

Then,

1 If ψ > 0, the optimal threshold is ν = +∞.

2 If ψ < 0, the optimal threshold is ν = 1.

3 If ψ = 0, any threshold ν ≥ 1 gives the same value.
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Method of Proof

Framework: propagation of properties through the dynamic
programming operator (Puterman, Glasserman & Yao).

Requirement 1

∃w(·) ≥ 0, sup
(x ,q)

|c(x , q)|
w(x)

< +∞ ,

sup
(x ,q)

1

w(x)

∑
y

P(y |x , q)w(y) < +∞ ,

and ∀µ, 0 ≤ µ < 1, ∃η, 0 ≤ η < 1, ∃J, such that: ∀ J-uple of
Markov Deterministic decision rules π = (d1, . . . , dJ), and ∀x ,

µJ
∑
y

Pπ(y |x)w(y) ≤ ηw(x) .

→ works with w(x) = C + cQx
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Method of Proof

Framework: propagation of properties through the dynamic
programming operator (Puterman, Glasserman & Yao).

Requirement 2

∃V σ,Dσ

1 v ∈ V σ implies Lv ∈ V σ,

2 v ∈ V σ implies there exists a decision d such that
d ∈ Dσ ∩ arg mind Ldv ,

3 V σ is a closed by simple convergence.

→ works with:

V σ = { increasing and convex } and
Dσ = { monotone controls }
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Propagation of structure

Theorem

Let, for any function v, ṽ(x) = min
q

Tv(x , q). Then:

1 If v increasing, then ṽ increasing

2 If v increasing and convex, then ṽ increasing convex

Theorem

If v is increasing and convex, then Tv(x , q) is submodular over
N×Q. As a consequence, x 7→ arg minq Tv(x , q) is increasing.

Submodularity (Topkis, Glasserman & Yao, Puterman)

g submodular if, for any x ≥ x ∈ X and any q ≥ q ∈ Q:

g(x , q)− g(x , q) ≤ g(x , q)− g(x , q).
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Optimal Threshold / 1

The system under threshold ν evolves as:

xn+1 = Rν(xn) := S
(
[xn − 1{x≥ν}]

+
)

+ An+1 .

A direct computation gives:

Vν(x) =
cQ

1− θα

(
x +

θλ

1− θ

)
+ ψ Φ(ν, x)

Φ(ν, x) =
∞∑

n=0

θnP(R(n)
ν (x) ≥ ν)

ψ = cB −
cQ

1− αθ
.
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Optimal Threshold / 2

Lemma

The function Φ(ν, x) is decreasing in ν ≥ 1, for every x.

Proof by a coupling argument. If O
(n)
ν = set of customers

present at time n under threshold ν, starting from x0 = x :

Lemma

For every trajectory, we have

O
(n)
ν+1 =

{
either O

(n)
ν

or O
(n)
ν ·∪{jn}

where jn is the customer of smaller index in O
(n)
ν+1.

=⇒
{

R
(n)
ν+1(x) ≥ ν + 1

}
⊂
{

R(n)
ν (x) ≥ ν

}
.
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What goes wrong when B ≥ 2

Numerical experiments and exact results in special cases reveal
that:

The value function V (x) is not convex in general
The function TV (x , q) is not submodular in general

Examples with B = 10, α = 1/10, θ = 8/10: V not convex

 0
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What goes wrong when B ≥ 2, ctd.

Submodularity: if Tv(x , 1) is submodular, then
x 7→ Tv(x , 1)− Tv(x , 0) is decreasing.
A counterexample with B = 2, λ = 1/10, α = 9/10, θ = 9/10.

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

Increments of Tv(x,1) - Tv(x,0)
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What goes wrong when B ≥ 2, end.

Papadaki & Powell study the same problem without impatience.

Dynamics without impatience

xn+1 = [xn − qnB]+ + An+1 .

They show that the following “K-convexity” propagates:

K -convexity

V (x + K )− V (x) ≥ V (x − 1 + K )− V (x − 1) .

Also used in Altman & Koole for batch arrivals.
=⇒ does not work here.

Koole (2006) and Koçağa & Ward (2009) mention the
incompatibility of impatience with structure theorems.
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Extensions to the model

Average case / no discount: θ = 1.
=⇒ should work as long as α 6= 0 (α 6= 1)

Critical value:

ψ = cB − cQ
1

α
= cB − cL −

cH

α
.

Branching processes: at each step, each customer is replaced
by X customers. α = EX , must be α < θ−1.
=⇒ same formula for the optimal policy

Critical value:

ψ = cB −
cQ

1− αθ
.
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