On the Existence of Credible Incentive Equilibria

Alain Jean-Marie

Mabel Tidball

ISDG Tucson, december 2004 - p.1/2

ajm@lirmm.fr tidball@inra.ensam.fr

INRIA/LIRMM CNRS University of Montpellier 2 INRA/LAMETA Montpellier

Introduction

Necessary conditions for \exists of credible incentive equilibria

We consider:

static games and dynamic games with open-loop strategies We show:

two examples: stability of a Cartel, environmental problem

Results

- credible incentive equilibria with differentiable incentive do not exist without strong conditions on the payoff
- for piecewise-differentiable incentive functions, an infinity of credible incentive equilibria can be chosen.

Introduction

The incentive problem:

- construct a game in which players are induced to play a cooperative desired outcome E* by defining an incentive rule
- E* equilibrium of the game
- the incentive rule is credible

Credibility holds if every player, if faced with a deviation from her opponent, would prefer to follow the incentive rather than sticking to her equilibrium value.

Introduction

- Principle of incentive equilibria: developed for dynamic games by Ehtamo and Hämäläinen, inspired from the work of Osborne about the definition of a "quota rule" able to explain the stability of a Cartel.
- Used since for several applications in the Management of Natural Resources or in Marketing, by Ehtamo and Hämäläinen, by Jørgensen and Zaccour, and recently by Martín-Herrán and Zaccour.

Definitions

•

- Two-player game
- The strategy of player *i* will be denoted by $E_i \in \Sigma_i$
- The payoff function of player *i*

 $J_i: \Sigma_1 \times \Sigma_2 \to \mathbb{R}$.

 Both players agree, before playing the game, that a certain Pareto optimum E* is a desired output of the game

Definitions

Definition 1 (Incentive equilibrium) Consider a Pareto optimum (E_1^*, E_2^*) of the game. An incentive equilibrium strategy at this optimum is a pair of mappings (Ψ_1, Ψ_2) , with $\Psi_1 : \Sigma_2 \to \Sigma_1, \Psi_2 : \Sigma_1 \to \Sigma_2$, and such that:

 $J_1(E_1, \Psi_2(E_1)) \leq J_1(E_1^*, \Psi_2(E_1^*)) \quad \forall E_1 \in \Sigma_1$

 $J_2(\Psi_1(E_2), E_2) \leq J_2(\Psi_1(E_2^*), E_2^*) \quad \forall E_2 \in \Sigma_2$

 $\Psi_1(E_2^*) = E_1^* \qquad \Psi_2(E_1^*) = E_2^*.$

Definitions

Definition 2 (Credible incentive equilibrium) The pair (Ψ_1, Ψ_2) is a credible incentive equilibrium at (E_1^*, E_2^*) if it is an incentive equilibrium, and if there exists a subset $\Sigma'_1 \times \Sigma'_2$ of $\Sigma_1 \times \Sigma_2$ such that:

$$J_1(\Psi_1(E_2), E_2) \geq J_1(E_1^*, E_2)$$
,

 $J_2(E_1, \Psi_2(E_1)) \geq J_2(E_1, E_2^*)$,

for all $E_1 \in \Sigma'_1$ and $E_2 \in \Sigma'_2$.

The static case

•

Incentive functions:

$$\Psi_i(E_j) = \begin{cases} \Psi_i^+(E_j) & \text{if } E_j \ge E_j^* \\ \Psi_i^-(E_j) & \text{if } E_j \le E_j^* \end{cases},$$

where Ψ_i^+ and Ψ_i^- are differentiable, including at $E_j = E_j^*$.

$$a_i^+ = (\Psi_i^+)'(E_j^*), \text{ and } a_i^- = (\Psi_i^-)'(E_j^*)$$
$$A_i = -\frac{\partial J_i/\partial E_i}{\partial J_i/\partial E_j}(E_1^*, E_2^*).$$

Necessary conditions for equilibria

E^{\ast} NOT NECESSARILY A PARETO OPTIMUM

$\partial J_1 / \partial E_1$	$\partial J_2/\partial E_1$	Conditions
-	-	$A_2 = 0$ and $a_1^+ = a_1^- = 0$
+	+	$A_2 = 0$ and $a_1^+ = a_1^- = 0$
-	+	$a_1^+ \le \min(A_2, 0) \le \max(A_2, 0) \le a_1^-$
+	-	$a_1^- \le \min(A_2, 0) \le \max(A_2, 0) \le a_1^+$
0	-	$a_1^- \le A_2 \le a_1^+$
0	+	$a_1^+ \le A_2 \le a_1^-$
+	0	$\partial J_2/\partial E_2 = 0$ and $a_1^- \le 0 \le a_1^+$
-	0	$\partial J_2/\partial E_2 = 0$ and $a_1^+ \le 0 \le a_1^-$
0	0	$\partial J_2 / \partial E_2 = 0$

ISDG Tucson, december 2004 – p.9/2

Necessary conditions for equilibria (ctd)

Corollary 3 Let E^* be a Pareto optimum, $a/\partial J_1/\partial E_1 > 0, \ \partial J_1/\partial E_2 < 0, \ \partial J_2/\partial E_1 < 0, \ \partial J_2/\partial E_2 > 0.$ $\rightarrow a_1^- \leq 0 \leq A_2 \leq a_1^+, \text{ and } a_2^- \leq 0 \leq A_1 \leq a_2^+.$ $b/\partial J_1/\partial E_1 < 0, \ \partial J_1/\partial E_2 > 0, \ \partial J_2/\partial E_1 > 0, \ \partial J_2/\partial E_2 < 0.$ $\rightarrow a_1^+ \leq 0 \leq A_2 \leq a_1^-, \text{ and } a_2^+ \leq 0 \leq A_1 \leq a_2^-.$ $\mathcal{C}/\partial J_1/\partial E_1 > 0, \ \partial J_1/\partial E_2 > 0, \ \partial J_2/\partial E_1 < 0, \ \partial J_2/\partial E_2 < 0.$ $\rightarrow a_1^- \leq A_2 \leq 0 \leq a_1^+, \text{ and } a_2^+ \leq A_1 \leq 0 \leq a_2^-.$

Differentiable incentive equilibrium

 E^* NOT NECESSARILY A PARETO OPTIMUM a/ if $a_1 = 0$ and $a_2 = 0$, then necessarily

$$\frac{\partial J_i}{\partial E_i}(E_1^*, E_2^*) = 0, \qquad i = 1, 2;$$

b/ if $a_1 \neq 0$ and $a_2 \neq 0$, then necessarily

$$\frac{\partial J_i}{\partial E_j}(E_1^*, E_2^*) = 0, \qquad i, j = 1, 2;$$

c/ if $a_1 = 0$ and $a_2 \neq 0$, then necessarily

$$\frac{\partial J_2}{\partial E_2}(E_1^*, E_2^*) = 0 , \qquad \frac{\partial J_1}{\partial E_1}(E_1^*, E_2^*) + a_2 \frac{\partial J_1}{\partial E_2}(E_1^*, E_2^*) = 0$$

Differentiable credible incentive equilibria

Theorem 4 Let (Ψ_1, Ψ_2) be a credible incentive equilibrium at a Pareto optimum, where the incentive functions Ψ_i are differentiable. Then, necessarily:

$$\frac{\partial J_i}{\partial E_j}(E_1^*, E_2^*) = 0, \qquad i, j = 1, 2.$$

Nash equilibria and One-sided incentives

- A Nash equilibrium (E_1^N, E_2^N) , with constant incentive functions: $\Psi_i(E_j) = E_i^N$, satisfies conditions for being a credible incentive equilibrium.
- One-sided incentives: We can also find on which side of the incentive equilibrium E* it can be credible not to react, depending on the sign of the partial derivatives of the payoff functions.

Osborne's example

1

- Strategies E_i : level of production of the firms, $J_i(\cdot)$, their profit functions. With $\partial J_i / \partial E_i > 0$ and $\partial J_i / \partial E_j < 0$.
- The topic of Osborne's paper is the stability of a Cartel. In this context, the "incentive" function is actually a threat function, with which members of the Cartel would retaliate to potential cheaters.

$$\Psi_i(E_j) = \max\left\{E_i^*, E_i^* + \frac{E_i^*}{E_j^*}(E_j - E_j^*)\right\},\$$

This is a credible incentive equilibrium

The case of Nash Open-Loop equilibria

The state of the system evolves according to the differential equation

$$\dot{x}(t) = f(E_1(t), E_2(t), x(t)), \quad x(0) = x_0,$$
 (1)

where $E_i(t)$ is the action of player *i* at time *t* according to her strategy E_i . Payoff of player *i*:

$$J_i(E_1, E_2; x_0) = \int_0^T e^{-\rho t} F_i(E_1(t), E_2(t), x(t)) dt , \quad (2)$$

with a time horizon $T < +\infty$ and a discount factor $\rho \ge 0$. Affine incentive equilibrium: $\Psi_1(E_2)(t) = E_1^*(t) + v_1(t)(E_2(t) - E_2^*(t))$

Necessary conditions for the Open-Loop case

A credible affine incentive equilibrium at a Pareto optimum is a solution of the following system of equations, for some $\alpha_1 > 0$ and $\alpha_2 > 0$:

Conditions for being Pareto

$$\begin{cases} 0 = \alpha_1 \frac{\partial F_1}{\partial E_i} + \alpha_2 \frac{\partial F_2}{\partial E_i} + \lambda^* \frac{\partial f}{\partial E_i} & i = 1, 2 \\ \dot{\lambda}^* = -\alpha_1 \frac{\partial F_1}{\partial x} - \alpha_2 \frac{\partial F_2}{\partial x} - \lambda^* \frac{\partial f}{\partial x} + \rho \lambda^* ; \quad \lambda^*(T) = 0 \\ \dot{x}^* = f ; \quad x(0) = x_0 \end{cases}$$

Necessary conditions for the Open-Loop case

Conditions for being an incentive equilibria

•

$$\begin{cases} 0 = \frac{\partial F_1}{\partial E_1} + v_2 \frac{\partial F_1}{\partial E_2} + \lambda^1 \left(\frac{\partial f}{\partial E_1} + v_2 \frac{\partial f}{\partial E_2} \right) \\ \dot{\lambda}^1 = -\frac{\partial F_1}{\partial x} - \lambda^1 \frac{\partial f}{\partial x} + \rho \lambda^1 ; \quad \lambda^1(T) = 0 \\ 0 = v_1 \frac{\partial F_2}{\partial E_1} + \frac{\partial F_2}{\partial E_2} + \lambda^2 \left(v_1 \frac{\partial f}{\partial E_1} + \frac{\partial f}{\partial E_2} \right) \\ \dot{\lambda}^2 = -\frac{\partial F_2}{\partial x} - \lambda^2 \frac{\partial f}{\partial x} + \rho \lambda^2 ; \quad \lambda^2(T) = 0 \end{cases}$$

ISDG Tucson, december 2004 – p.17/2

Necessary conditions for the Open-Loop case

Conditions for being credible

•

$$\begin{cases} 0 = -v_1 \frac{\partial F_1}{\partial E_1} + \lambda^1 \frac{\partial f}{\partial E_2} + \lambda^{1c} \left(v_1 \frac{\partial f}{\partial E_1} + \frac{\partial f}{\partial E_2} \right) \\ \dot{\lambda}^{1c} = \frac{\partial F_1}{\partial x} - \lambda^{1c} \frac{\partial f}{\partial x} + \rho \lambda^{1c} ; \qquad \lambda^{1c}(T) = 0 \\ 0 = -v_2 \frac{\partial F_2}{\partial E_2} + \lambda^2 \frac{\partial f}{\partial E_1} + \lambda^{2c} \left(\frac{\partial f}{\partial E_1} + v_2 \frac{\partial f}{\partial E_2} \right) \\ \dot{\lambda}^{2c} = \frac{\partial F_2}{\partial x} - \lambda^{2c} \frac{\partial f}{\partial x} + \rho \lambda^{2c} ; \qquad \lambda^{2c}(T) = 0 \end{cases}$$

Properties

- Necessary conditions stated $\rightarrow E^*$ must be a simultaneous maximum for both payoff functions J_i .
- Piecewise-differentiable incentive functions. $V_i(t, E_j(t)) = V_i^+(t, E_j(t))$ if $E_j(t) \ge E_j^*(t)$ and $V_i(t, E_j(t)) = V_i^-(t, E_j(t))$ if $E_j(t) \le E_j^*(t)$.

Left and right-derivatives: $v_i^{\pm}(t) = \partial V_i^{\pm} / \partial E_j(t, E_j^{*}(t))$.

Transposition of the results of the static case: replace " $\partial J_i/\partial E_j$ " by " $\partial F_i/\partial E_j + \lambda^i \partial f/\partial E_j$ ".

Environmental example

•

$$J_i(E_1(\cdot), E_2(\cdot); x_0) = \int_0^\infty e^{-\rho t} \left(\log(E_i(t)) - \phi_i x(t) \right) dt ,$$

$$\dot{x}(t) = E_1(t) + E_2(t) - \delta x(t), \quad x(0) = x_0.$$

Pareto solution, the maximization of $\sum_i \alpha_i J_i$, is:

$$E_i^* = \frac{\alpha_i(\delta + \rho)}{\alpha_1 \phi_1 + \alpha_2 \phi_2}$$

ISDG Tucson, december 2004 - p.20/2

The Pareto-optimal control does not depend on time

Consider only time-invariant strategies. The total payoff of player i is given by:

$$J_i(e_1, e_2; x_0) = \frac{1}{\rho} \log(e_i) - \frac{\phi_i}{\rho(\rho + \delta)} (e_1 + e_2) - \frac{\phi_i x_0}{\rho + \delta}$$
$$A_i = \frac{\alpha_j \phi_j}{\alpha_i \phi_i} , \qquad A_j = \frac{1}{A_i} = \frac{\alpha_i \phi_i}{\alpha_j \phi_j} .$$
$$a_i^- \le 0 \le \frac{\alpha_i \phi_i}{\alpha_j \phi_j} \le a_i^+.$$

We select the piecewise affine function:

$$\Psi_i(e_j) = \max\left\{e_i^*, e_i^* + \frac{\alpha_i \phi_i}{\alpha_j \phi_j}(e_j - e_j^*)\right\}$$

For Player 1, the credibility condition becomes: for $e_2 \ge e_2^*$:

$$0 \leq \log \frac{e_1^* + \alpha_1 \phi_1 / \alpha_2 \phi_2 (e_2 - e_2^*)}{e_1^*} - \phi_1 \frac{\alpha_1 \phi_1}{\alpha_2 \phi_2} (e_2 - e_2^*).$$

 \exists interval $[e_2^*, \bar{e}_2]$ where the condition is satisfied.

$$\bar{e}_2 \geq e_2^* \left\{ 1 + 2 \frac{\alpha_2}{\alpha_1} \left(\frac{\phi_2}{\phi_1} \right)^2 \right\} .$$

ISDG Tucson, december 2004 – p.22/

 $\alpha_1 = \alpha_2 = 1.$

•

This implies that $e_1^* = e_2^* = e^* = (\delta + \rho)/(\phi_1 + \phi_2)$. We select the incentive function:

$$\Psi_i(E_j)(t) = e^* + \max\left\{\frac{\phi_i}{\phi_j}(E_j(t) - e^*), 0\right\} .$$

Condition of credibility for player 1

$$\int_0^{+\infty} \left[\log(\frac{\Psi_1(E_2(t))}{e^*}) - \phi_1 x^{\Psi}(t) + \phi_1 x^*(t) \right] e^{-\rho t} dt \ge 0 ,$$

where the two trajectories $x^{\Psi}(\cdot)$ and $x^{*}(\cdot)$ are the respective solutions of

 $\dot{x} = e^* + \frac{\phi_1}{\phi_2} \max(0, E_2(t) - e^*) + E_2(t) - \delta x(t)$ $\dot{x} = e^* + E_2(t) - \delta x(t)$

Assume that there exists $M \ge 1$ such that for all t,

 $E_2(t) \leq M e^*$.

credibility implies that $E_2(\cdot)$ verifies

•

$$\int_{0}^{+\infty} \left[\frac{\phi_{1}}{\phi_{2}} + \frac{2\phi_{1}^{2}}{\phi_{2}^{2}} \right] \frac{E_{2}(t)}{e^{*}} e^{-\rho t} dt \geq \frac{1}{\rho} \left[\frac{\phi_{1}^{2}}{\phi_{2}^{2}} (M^{2} - 1) + \frac{\phi_{1}}{\phi_{2}} + \frac{\phi_{1}^{2}}{\phi_{2}^{2}} \frac{M - 1}{\rho + \delta} e^{*} \right]$$

• •

For instance, it can be checked that the equilibrium is credible with respect to strategies of the form

$$E_2(t) = e^N + (e^* - e^N)e^{-\alpha t}$$
,

or

$$E_2(t) = e^* + (e^N - e^*)e^{-\alpha t}$$
,

where $e^N = (\rho + \delta)/2$ is the Nash equilibrium of the game (a time-invariant strategy as well).

Conclusion

- Credibility is difficult to obtain in static and continuous-time games: at a Pareto solution as well as elsewhere, if the incentive function is required to be differentiable. A credible incentive equilibria may happen only at critical points of both payoff functions simultaneously.
- With piecewise-differentiable incentive functions, (local) credibility is rather easy to obtain, and many slopes are generally allowed for these incentive functions. The actual challenge is to find incentive functions that provide a "domain of credibility" as large as possible.

Extensions

As logical continuations of this work, we mention:

- Study whether credibility of open-loop strategies may hold in a neighborhood of the equilibrium, not only in a particular subset of deviations.
- Extend the analysis to discrete-time problems.
- Investigate incentives defined on Nash-Feedback strategies.