Well-Balanced Designs for Unreliable Data Placement

Alain Jean-Marie ${ }^{12}$ Anne-Elisabeth Baert ${ }^{2}$ Vincent Boudet ${ }^{2} \quad$ Xavier Roche ${ }^{2}$ Jean-Claude Bermond ${ }^{3}$ Dorian Mazauric ${ }^{1}$ Joseph Yu ${ }^{4}$

${ }^{1}$ Inria, France

${ }^{2}$ LIRMM CNRS/Univ. Montpellier, France
${ }^{3}$ CNRS/Univ. Nice Sophia Antipolis, France
${ }^{4}$ Univ. Fraser Valley, Vancouver, Canada
AGCO Seminar, Santiago, 13 April 2016

Outline

Well-Balanced
Designs
Jean-Marie, Baert, Boudet, Roche

Introduction
The Model
Optimal

Placement

Availability
MinVar
Solution
$k=3$
Random Designs
Bibliography
(1) Introduction
(2) The Model
(3) Optimal Placement

- Availability
- MinVar
- Solution
- $k=3$

Progress

```
Well-Balanced
    Designs
    Jean-Marie,
        Baert,
        Boudet,
        Roche
(1) Introduction
Introduction
The Model
```


2 The Model

```
Optimal
Placement
Availability
MinVar
(3) Optimal Placement
- Availability
- MinVar
- Solution
- \(k=3\)
```


Motivation: Data placement and replication

Well-Balanced
Designs
Jean-Marie,
Baert,
Boudet,
Roche

Introduction

Origin of the problem: Distributed Storage and Download System

- many storage sites, each with limited capacity
- potentially unavailable
- existence of a permanent backup data storage

Questions

Well-Balanced
Designs
Jean-Marie,
Baert
Boudet,
Roche

Introduction

Among the design issues for such a system

- how much replication of the data?
- where to place it?
- what download strategy?

Question for this talk

Consider that some data must be replicated k times on unreliable servers: where to place the replications?

Progress

Well-Balanced

 DesignsJean-Marie, Baert, Boudet, Roche

(1) Introduction

Introduction
The Model
(2) The Model

Optimal
Placement
Availability
MinVar
(3) Optimal Placement

- Availability
- MinVar
- Solution
- $k=3$

Model elements

Well-Balanced
Designs
Jean-Marie,
Baert,
Boudet,
Roche

Introduction
The Model
Optimal
Placement
Availability
MinVar
Solution
$k=3$
Random Designs
Bibliography

Document model

The typical document is made of

- b distinct pieces of same size called "blocks"
- stored with a replication factor k

Server model

- v identical servers
- available with uniform probability δ, independently

Model elements, ctd.

Well-Balanced
Designs
Jean-Marie,
Baert,
Boudet,
Roche

Introduction
The Model
Optimal
Placement
Availability
MinVar
Solution
$k=3$
Random Designs
Bibliography

Network model

The client:

- can identify instantly blocks on available servers
- downloads available blocks from the servers at data rate θ_{c} (blocks/s)
- then downloads missing blocks from central server at data rate θ_{s} (blocks/s)

Model elements, end

Well-Balanced
Designs
Jean-Marie,
Baert,
Boudet,
Roche

Introduction
The Model
Optimal
Placement
Availability
MinVar
Solution
$k=3$
Random Designs
Bibliography
\rightarrow model for the time to download one document

Let Λ be the number of available blocks in the document:

Individual response time

Response time for the document

$$
\begin{aligned}
R & =\frac{\Lambda}{\theta_{c}}+\frac{b-\Lambda}{\theta_{s}} \\
& =\frac{b}{\theta_{s}}-\Lambda\left(\frac{1}{\theta_{s}}-\frac{1}{\theta_{c}}\right) .
\end{aligned}
$$

\rightarrow the statistics of Λ determine those of R.

Progress

Well-Balanced
Designs
Jean-Marie,
Baert,
Boudet,
Roche
(1) Introduction

2 The Model
Optimal
Placement
Availability
MinVar
Solution
$k=3$
Random Designs
Bibliography
(3) Optimal Placement

- Availability
- MinVar
- Solution
- $k=3$

Availability

Well-Balanced
Designs
Jean-Marie,
Baert,
Boudet,
Roche

Introduction

Let $\Lambda, \bar{\Lambda}$ the number of (un)available blocks.
One block is available if at least one of its replications is online:

$$
P(\text { block available })=1-(1-\delta)^{k}=1-\bar{\delta}^{k}
$$

Theorem

$$
\mathbb{E}\left(z^{\bar{\Lambda}}\right)=\sum_{\mathcal{S} \subset \mathcal{B}}(z-1)^{|\mathcal{S}|} \bar{\delta}^{\left|\cup_{B \in \mathcal{B}} B\right|}
$$

The first moments of Λ and $\bar{\Lambda}$ are given by:

$$
\begin{aligned}
\mathbb{E}(\bar{\Lambda}) & =b \bar{\delta}^{k} \\
\mathbb{E}(\Lambda) & =b\left(1-\bar{\delta}^{k}\right) \\
\mathbb{V}(\bar{\Lambda})=\mathbb{V}(\Lambda) & =\sum_{B, B^{\prime}}\left(\bar{\delta}^{\left|B \cup B^{\prime}\right|}-\bar{\delta}^{2 k}\right) .
\end{aligned}
$$

Optimization

Well-Balanced
Designs
Jean-Marie,
Baert,
Boudet,
Roche

Introduction
The Model
Optimal
Placement
Availability
MinVar
Solution
$k=3$
Random Designs
Bibliography

The expected value of Λ does not depend on the placement.
\rightarrow minimize variance.

$$
\begin{aligned}
\mathbb{V}(\Lambda) & =\sum_{B, B^{\prime}}\left(\bar{\delta}^{\left|B \cup B^{\prime}\right|}-\bar{\delta}^{2 k}\right) \\
& =\sum_{B \neq B^{\prime}} \bar{\delta}^{|B|+\left|B^{\prime}\right|-\left|B \cap B^{\prime}\right|}+b \bar{\delta}^{k}-b^{2} \bar{\delta}^{2 k} \\
& =\sum_{B, B^{\prime}} \bar{\delta}^{2 k} \bar{\delta}^{-\left|B \cap B^{\prime}\right|}+b \bar{\delta}^{k}-b^{2} \bar{\delta}^{2 k} \\
& =\bar{\delta}^{2 k} \sum_{B \neq B^{\prime}} \gamma^{\left|B \cap B^{\prime}\right|}+b \bar{\delta}^{k}-b^{2} \bar{\delta}^{2 k}
\end{aligned}
$$

with $\gamma:=\bar{\delta}^{-1}$.

The MinVar Problem

Well-Balanced
Designs
Jean-Marie,
Baert,
Boudet
Roche

Introduction
The Model
Optimal
Placement
Availability
MinVar
Solution
$k=3$
Random Designs
Bibliography

Such a placement is a block design \mathcal{B} of b "blocks", each being a k-subset of [1..v].

MinVar Problem

Let γ be a real number, $\gamma \geq 1$, and b, v, k be integers. Find one design \mathcal{B} with $|\mathcal{B}|=b,|\mathcal{V}|=v$ and $|B|=k$ for all $B \in \mathcal{B}$, which minimizes the function:

$$
J(\mathcal{B}, \gamma):=\sum_{B \neq B^{\prime} \in \mathcal{B}} \gamma^{\left|B \cap B^{\prime}\right|} .
$$

The MinVar Conjecture

Well-Balanced
Designs
Jean-Marie,
Baert,
Boudet
Roche

Introduction
The Model
Optimal
Placement
Availability
MinVar
Solution
$k=3$
Random Designs
Bibliography

Consider the set of all designs with these characteristics:
$\mathcal{C}_{v, b, k}:=\{\mathcal{B}$ with $|\mathcal{V}|=v,|\mathcal{B}|=b$ and $|B|=k$ for all $B \in \mathcal{B}\}$.

MinVar Conjecture

For each integer v, b, k there exists one design $\mathcal{B}^{*} \in \mathcal{C}_{v, b, k}$ such that

$$
J\left(\mathcal{B}^{*}, \gamma\right) \leq J(\mathcal{B}, \gamma)
$$

for all $\mathcal{B} \in \mathcal{C}_{v, b, k}$ and all $\gamma \geq 1$.

Alternate representations

Well-Balanced
Designs
Jean-Marie,
Baert,
Boudet,
Roche

Introduction
The Model
Optimal
Placement
Availability
MinVar
Solution
$k=3$
Random Designs
Bibliography

Define the coefficients:

$$
\begin{aligned}
\nu_{\ell} & =\#\left\{\left(b, b^{\prime}\right) \text { s.t. } b \neq b^{\prime} \text { and }\left|L(b) \cap L\left(b^{\prime}\right)\right|=\ell\right\} \\
\mu_{p} & =\sum_{b \neq b^{\prime} \in \mathcal{B}}\binom{\left|L(b) \cap L\left(b^{\prime}\right)\right|}{p} \\
\lambda_{x_{1}, \ldots, x_{j}} & =\#\left\{B \in \mathcal{B},\left\{x_{1}, \ldots, x_{j}\right\} \subset B\right\} .
\end{aligned}
$$

By definition:

$$
\begin{aligned}
J(\mathcal{B}, \gamma) & =\sum_{B \neq B^{\prime} \in \mathcal{B}} \gamma^{\left|B \cap B^{\prime}\right|} \\
& =\sum_{j=0}^{k} \nu_{j} \gamma^{j}
\end{aligned}
$$

Representations, ctd.

Well-Balanced
Designs
Jean-Marie,
Baert,
Boudet,
Roche

Introduction
The Model
Optimal
Placement
Availability
MinVar
Solution
$k=3$
Random Designs
Bibliography

Proposition

$$
\begin{aligned}
J(\mathcal{B}, \gamma) & =\sum_{j=0}^{k} \mu_{j}(\gamma-1)^{j} \\
& =\sum_{j=0}^{k} \sum_{x_{1}, \ldots, x_{j}} \lambda_{x_{1}, \ldots, x_{j}}\left(\lambda_{x_{1}, \ldots, x_{j}}-1\right)(\gamma-1)^{j} \\
& =\sum_{j=1}^{k} \sum_{x_{1}, \ldots, x_{j}} \lambda_{x_{1}, \ldots, x_{j}}^{2}(\gamma-1)^{j}-b \gamma^{k}+b^{2}
\end{aligned}
$$

\rightarrow minimize the coefficients simultaneously?

Minimizing unbalance

Well-Balanced
Designs
Jean-Marie,
Baert,
Boudet,
Roche

Introduction
The Model
Optimal
Placement
Availability
MinVar
Solution
$k=3$
Random Designs
Bibliography

Conservation of block counts

For every design $\mathcal{B} \in \mathcal{C}_{v, b, k}$, for all j,

$$
\sum_{x_{1}, \ldots, x_{j}} \lambda_{x_{1}, \ldots, x_{j}}=b\binom{k}{j}
$$

\rightarrow minimizing the sum of squares when all elements are "almost equal".

Balanced families

A design \mathcal{B} is j-balanced if the $\lambda_{x_{1}, \ldots, x_{j}}$ are all equal or almost equal, that is, if for any two j-element subsets $\left\{x_{1}, \ldots, x_{j}\right\}$ and $\left\{y_{1}, \ldots, y_{j}\right\},\left|\lambda_{x_{1}, \ldots, x_{j}}-\lambda_{y_{1}, \ldots, y_{j}}\right| \leq 1$.
A design \mathcal{B} is well balanced if it is j-balanced for $1 \leq j \leq k$.

Well-balanced families

Well-Balanced
Designs
Jean-Marie,
Baert
Boudet,
Roche

Introduction
The Model
Optimal
Placement
Availability
MinVar
Solution
$k=3$
Random Designs
Bibliography

Well balanced theorem
If \mathcal{B}^{*} is well balanced, then \mathcal{B}^{*} is optimal, that is, $P\left(\mathcal{B}^{*}, \gamma\right) \leq P(\mathcal{B}, \gamma)$ for any \mathcal{B} and any $\gamma \geq 1$.

The MinVar conjecture holds for well-balanced families.
But: are there well-balanced families for all v, b, k ?

Solutions

Well-Balanced
Designs
Jean-Marie,
Baert,
Boudet,
Roche

Introduction
The Model
Optimal
Placement
Availability

MinVar

Solution
$k=3$
Random Designs
Bibliography

Solutions can be constructed:

- systematically for $k=2$:

- for $k=3$
- for Tactical Configurations
- for Steiner systems

Steiner Systems

Definition

A a t-Steiner system (or (v, k, λ) t-design) is a family of blocks such that each t-element subset appears in exactly λ blocks.

In that case it is well-known that also, for $1 \leq j \leq t$ each j-element subset appears in exactly λ_{j} blocks, where
$\lambda_{j}=\lambda \frac{\binom{v-j}{t-j}}{\binom{k-j}{t-j}}$. Therefore:

Property

A t-design is j-balanced for all $j, 1 \leq j \leq t$.
In particular, if $t=k-1$ and the blocks are repeated the same or almost the same number of times, then a k-Steiner System is also well balanced.

Steiner Systems, ctd.

Well-Balanced
Designs
Jean-Marie, Baert,
Boudet,
Roche

Introduction
The Model

Optimal

Placement

Availability

MinVar
Solution
$k=3$
Random Designs
Bibliography

Example: the Fano plane is a 2-(7,3,1)-design

$$
\lambda_{x}=3 \quad \lambda_{x y}=1 \quad \lambda_{x y z}=0 \text { or } 1
$$

Tactical Configurations

Well-Balanced
Designs
Jean-Marie,
Baert,
Boudet,
Roche

Introduction
The Model
Optimal
Placement
Availability
MinVar
Solution
$k=3$
Random Designs

Definition (Configuration and Quasi-Configuration Graphs)

A Configuration is a design \mathcal{B} such that:

1) $\forall B \in \mathcal{B},|B|=k$;
2) $\forall x, \lambda_{x}=r$;
3) $\forall B \neq B^{\prime} \in \mathcal{B},\left|B \cap B^{\prime}\right| \leq 1$.

A Quasi-Configuration is defined with 1), 3) and 2^{\prime}): $\forall x, \lambda_{x} \in\{r, r+1\}$.

Optimality

Configurations and Quasi-Configurations are optimal.

The case $k=3$

Well-Balanced
Designs

Jean-Marie,
Baert,
Boudet,
Roche

Introduction

The Model
Optimal
Placement
Availability
MinVar
Solution
$k=3$
Random Designs
Bibliography

Well-balanced families do not always exist for $k=3$.
Proposition: Non-existence, $k=3$
There does not exist a $\operatorname{WBF}(v, b)$ whenever v is even, λ odd and $\lambda \frac{v(v-1)}{2}-\frac{v}{2}<3 b<\lambda \frac{v(v-1)}{2}+\frac{v}{2}$.
If $\lambda \frac{v(v-1)}{6}$ is not an integer, then there does not exist a well balanced family for $b=\left\lfloor\lambda \frac{v(v-1)}{6}\right\rfloor$ and $b^{\prime}=\left\lceil\lambda \frac{v(v-1)}{6}\right\rceil$.

$k=3$, the general solution

Well-Balanced
Designs
Jean-Marie,
Baert,
Boudet,
Roche

Theorem

There exists a WBF for all cases not excluded by the previous proposition.

Solution brought by Wei, Ge, and Colbourn:

- the balancing lemma
- families of 2-balanced 3-designs

Lemma (balancing lemma)

From every 2- and 3-balanced 3-design, it is possible to construct a design with the same number of blocks, which is 1-, 2- and 3-balanced

The case $k=3$, direct constructions

Well-Balanced
Designs
Jean-Marie,
Baert,
Boudet,
Roche

Introduction
The Model
Optimal

Placement

Availability
MinVar
Solution
$k=3$
Random Designs
Bibliography

Two disjoint Kirkman Triple Systems for $v=9$:

$$
\begin{array}{llll}
\{0,7,8\} & \{0,2,5\} & \{0,3,4\} & \{0,1,6\} \\
\{1,2,4\} & \{1,3,8\} & \{1,5,7\} & \{2,3,7\} \\
\{3,5,6\} & \{4,6,7\} & \{2,6,8\} & \{4,5,8\} \\
& & & \\
\{1,7,8\} & \{1,3,6\} & \{1,4,5\} & \{1,2,0\} \\
\{2,3,5\} & \{2,4,8\} & \{2,6,7\} & \{3,4,7\} \\
\{4,6,0\} & \{5,0,7\} & \{3,0,8\} & \{5,6,8\}
\end{array}
$$

These are 3-Steiner systems. Each one has $\lambda_{x}=9, \lambda_{x y}=1$.
\rightarrow constructions for $v=6 t+3$
\rightarrow constructions for $v=6 t+4$

Random Designs

Well-Balanced
Designs
Jean-Marie,
Baert,
Boudet,
Roche

Introduction
The Model
Optimal
Placement
Availability
MinVar
Solution
$k=3$
Random Designs
Bibliography

Random Algorithm

Choose eack block uniformly at random over $\binom{[1 . . v]}{k}$.

Define the function

$$
\pi(\gamma)=\binom{v}{k}^{-1} \sum_{j=0}^{k}\binom{k}{j}\binom{v-k}{k-j} \gamma^{j}
$$

It is the generating function of $X_{B B^{\prime}}=\left|B \cap B^{\prime}\right|$, where B and B^{\prime} are two uniformly chosen random blocks.

Theorem

If \mathcal{B} is a design generated by the Random Algorithm, then

$$
\begin{aligned}
\mathbb{E}(J(\mathcal{B}, \gamma)) & =b(b-1) \pi(\gamma) \\
\mathbb{V}(J(\mathcal{B}, \gamma)) & =2 b(b-1)\left(\pi\left(\gamma^{2}\right)-\pi^{2}(\gamma)\right)
\end{aligned}
$$

Bibliography

Well-Balanced Designs

Jean-Marie,
Baert,
Boudet,
Roche

Introduction
The Model
Optimal
Placement
Availability MinVar Solution $k=3$
Random Designs
Bibliography

A-E. Baert, V. Boudet, A. Jean-Marie, and X. Roche. Minimization of download time variance in a distributed VoD system. Scalable Computing Practice and experience , 10(1):75-86, 2009.
囯 A-E. Baert, V. Boudet, A. Jean-Marie, and X. Roche. Combinatorial Designs and Availability. INRIA Research report RR 7119, December 2009.

- Jean-Claude Bermond, Alain Jean-Marie, Dorian Mazauric and Joseph Yu. Well balanced designs for data placement. Journal of Combinatorial Designs, pp. 55-76, feb. 2016. doi:10.1002/jcd.21506
E Hengjia Wei, Gennian Ge and Charles J. Colbourn. The Existence of Well-Balanced Triple Systems Journal of Combinatorial Designs, pp. 77-100, feb. 2016. doi:10.1002/jcd.21508

