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Abstract— The goal of this paper is to study pricing
of differentiated services and its impact on the choice
of service priority at equilibrium. We consider both
TCP connections as well as non controlled (real time)
connections. The performance measures (such as
throughput and loss rates) are determined according to
the operational parameters of a RED buffer management.
The latter is assumed to be able to give differentiated
services to the applications according to their choice of
service class. We consider a best effort type of service
differentiation where the QoS of connections is not
guaranteed, but by choosing a better (more expensive)
service class, the QoS parameters of a session can improve
(as long as the service class of other sessions are fixed).
The choice of a service class of an application will depend
both on the utility as well as on the cost it has to pay. We
first study the performance of the system as a function of
the connections’ parameters and their choice of service
classes. We then study the decision problem of how to
choose the service classes. We model the problem as
a noncooperative game. We establish conditions for an
equilibrium to exist and to be uniquely defined. We
further provide conditions for convergence to equilibrium
from non equilibria initial states. We finally study the
pricing problem of how to choose prices so that the
resulting equilibrium would maximize the network benefit.

Keywords: TCP, Buffer Management, RED/AQM,
Nash equilibrium, Pricing, Mathematical program-
ming/optimization, Economics

I. INTRODUCTION

We study in this paper the performance of com-
peting connections that share a bottleneck link. Both
TCP connections with controlled rate as well as CBR
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(Constant Bit Rate) connections are considered. A RED
buffer management is used for early drop of packets.
We allow for service differentiation between the con-
nections through the rejection probability (as a function
of the average queue size), which may depend on the
connection (or on the connection class). More specif-
ically, we consider a buffer management scheme that
uses a single averaged queue length to determine the
rejection probabilities (similar to the way it is done in
the RIO-C (coupled RIO) buffer management, see [9]);
for any given averaged queue size, packets belonging to
connections with higher priority have smaller probability
of being rejected than those belonging to lower priority
classes. To obtain this differentiation in loss probabilities,
we assume that the loss curve of RED is scaled by a
factor that represents the priority level of the application.
We obtain various performance measures of interest such
as the throughput, the average queue size and the average
drop probability.

We then address the question of the choice of pri-
orities. Given utilities that depend on the performance
measures on one hand and on the cost for a given priority
on the other hand, the sessions at the system are faced
with a non-cooperative game in which the choice of
priority of each session has an impact on the quality of
services of other sessions. For the case of CBR traffic,
we establish conditions for an equilibrium to exist. We
further provide conditions for convergence to equilibrium
from non equilibria initial states.

We shall finally study numerically the pricing problem
of how the network should choose prices so that the
resulting equilibrium would maximize its benefit.

We briefly mention some recent work in that area.
Reference [5] has considered a related problem where
the traffic generated by each session was modeled as a
Poisson process, and the service time was exponentially
distributed. The decision variables were the input rates
and the performance measure was the goodput (output
rates). The paper restricted itself to symmetric users
and symmetric equilibria and the pricing issue was not
considered. In this framework, with a common RED
buffer, it was shown that an equilibrium does not exist.
An equilibrium was obtained and characterized for an



2

alternative buffer management that was proposed, called
VLRED. We note that in contrast to [5], since we also
include in the utility of CBR traffic a penalty for losses
(which is supported by studies of voice quality in packet-
based telephony [6]), we do obtain an equilibrium when
using RED. For other related papers, see for instance [8]
(in which a priority game is considered for competing
connections sharing a drop-tail buffer), [1] as well as
the survey [2]. In [13], the authors present mechanisms
(e.g., AIMD of TCP) to control end-user transmission
rate into differentiated services Internet through poten-
tial functions and corresponding convergence to Nash
equilibrium.

The approach of our pricing problem is related to the
Stackelberg methodology for hierarchical optimization:
for a fixed pricing strategy one seeks the equilibrium
among the users (the optimization level corresponding
to the “follower”), and then the network (considered as
the “leader”) optimizes the pricing strategy. This type
of methodology has been used in other contexts of
networking in [3], [7].

The structure of this paper is as follows. In Section
II we describe the model of RED, then in Section III
we compute the throughputs and the loss probabilities of
TCP and of CBR connections for given priorities chosen
by the connections. In Section IV we introduce the model
for competition between connections at given prices. In
section V we focus on the game in the case of only
CBR connections or only TCP connections and provide
properties of the equilibrium: existence, uniqueness and
convergence. In section VI we provide an algorithm for
computing Nash equilibrium for symmetric case. The
optimal pricing is then discussed in Section VII. We
present numerical examples in sectionVIII to validate the
model.

II. THE MODEL

RED is based on the following idea: there are two
thresholds ������� and �����
	 such that the drop probability
is 0 if the average queue length � is less than ������� , 1
if it is above �����
	 , and 
����������������������
���������
	������������ if
it is � with �������! "�# $�����
	 ; the latter is the conges-
tion avoidance mode of operation. This is illustrated in
Figure 1.

We consider a set % containing & TCP flows (or
aggregate of flows) and a set ' containing ( real time
flows that can be differentiated by RED; they all share
a common buffer yet RED treats them differently1. We
assume that they all have common values of ������� and

1RED punishes aggressive flows more by dropping more packets
from those flows
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Fig. 1. Drop probability in RED as function )
�����
	 but each flow � may have a different value of 
������ ,
which is the value of the drop probability as the average
queue tends to �*���
	 (from the left). In other words, the
slope +
, of the linear part of the curve in Figure 1 depends
the flow � : + ,.- 
/����������
	��0�������

Denote 1 - ��+
,324�!56'#78%9� . We identify +
, as the
priority class of a connection. The service rate of the
bottleneck router is given by : .

III. COMPUTING THE THROUGHPUTS

We use the well-known relation for TCP rate:; , - <= , > ?
@, 2 �A5B%"2 (1)

where
= , and 
@, are TCP flow � ’s round trip time and

drop probability, respectively.
?

is typically taken as C��ED
(when the delayed ack option is disabled) or C��GF (when
it is enabled). We shall assume throughout the paper that
the queueing delay is negligible with respect to

= , for
the TCP connections.

In contrast, the rates
; , , for �H5B' , of real time flows

are not controlled and are assumed to be fixed. If % -I
we assume throughout the paper that J#K�L�M ; KON :

(unless otherwise specified), otherwise the RED buffer
is not a bottleneck. Similarly, if ' - I

we assume that
TCP senders are not limited by the receiver window.

In general, since the bottleneck queue is seen as a fluid
queue, we can writeP

K*L�MRQ�S ; K � < �!
 K � - :
If we operate in the linear part of the RED curve then
this leads to the system of equations:TU�V JWK�L�MRQ*S ; K � < �X
 K � - :
@, - +
,����Y�O���������42Z ��5B'[7\%
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with ( &��#(�� < ) unknowns: � (average queue length),
and 
 ,32\� 5O' 7 % , where

; , , � 5 % is given by (1).
Substituting (1) and


 , - +3,���� �0�������E� Z � 2 (2)

into the first equation of the above set, we obtain a single
equation for � :P

K�L�S
<= K > ?

+ K ���Y� ��� ,��@� � < ��+ K ���Y�0�������E� ���P
K*L�M ; K � < ��+ K ���Y�0� ����� � � - : (3)

If we write � -	� � �0������� , then (3) can be written as a
cubic equation in � :
 ��� � -���
 � 
 � ��� � � � ��� ��� ����-�� (4)

where��
�- P
K*L�M ; K + K 2 ��� -

P
K*L S

<= K � ? + K 2 ���H- :!� PK�L�M ; K 2
����- � P

K*L S
<= K > ?+ K��

Note that this equation has a unique positive solution if
there are only TCP or only real-time connections; in
either case, it becomes a quadratic equation.

Proposition 1: Fix the values of + K , �[5!'07 % . The
cubic equation (4) has a unique real positive solution.
Assume that the solution lies in the linear region of
RED. Then the average queue size is given as ���������8� �
where � is the unique positive solution of (4) and the loss
probability for session � is given by 
 , - +
,
��� �0�������E� .

Proof. Assume first that ' and % are both nonnempty.
Since the coefficients of the cubic equation are real, it
has either a single real solution and two other conjugate
complex solutions, or it has three real solutions [14].
Consider first the case in which all solutions are real.
Then since the product of solutions is positive (it equals� � � ), there are either one or three positive solutions.
But the latter is excluded since the sum of solutions is
positive (it equals � ��� ).

Next consider the case of a single real solution. Since
the two other solutions are conjugate, their product
is positive. Then since the product of all solutions is
positive (it equals � ��� ), the real solution is positive.

Note that, in the case of only real-time connections
(% - I

) operating in the linear region, we have

� - � ����� � J K*L�M ; K �O:J K�L�M ; K + K and (5)


@, - +
, J#K�L�M ; K �O:J K*L�M ; K + K � (6)

(Recall that, throughout the paper, when considering
this case we shall assume that JK*L�M ; K N : .)

In the case of only TCP connections (' - I
) operating

in the linear region, we have� - �������
�
� � :�� > : � � F ? JK*L S � �!#"%$ &'")( JK*L S � $ &'"! " (�* �

F ? � JK*L S $ &'"! " * �
and (7)


 , - +
,
� � :�� > : � � F ? JK*L S � �! "%$ & " ( JK*L S � $ & "!#" ( * �

F ? � JK*L S $ & "!+" * � �
(8)

IV. UTILITY, PRICING AND EQUILIBRIUM

We denote a strategy vector by t for all flows such
that � th entry is + K . By ( +
,
2�, 1�-/.@, ), we define a strategy
where flow � uses +�, and all other flows �10- � use + K
from vector , 1�- .@, .

We associate to flow � a utility 2�, . The utility will be
a function of the QoS parameters and the price payed
by flow � , and is determined by the actions of all flows.
More precisely, 2 ,���+3,�2�, 1�-/.@,3� is given by3 , ; , � < �!
���+3,
2�, 1�-/.@,3� ���54�, 
���+3,
2�, 1�-/.@,
���76@��+
,
�
where the first term stands for the utility for the goodput,
the second term stands for the dis-utility for the loss rate
and the last term corresponds to the price 6 ��+ ,
� to be paid
by flow � to the network.

In particular, we find it natural to assume that a TCP
flow � has 4�, -8� (as lost packets are retransmitted
anyhow, and their impact is already taken into account
in the throughput). Moreover, since

; , for TCP already
includes the loss term 
 , ��+ , 2�, 1�- .@, � , the utility function of
TCP is assumed to be2 ,
��+
,
2�, 1�- .:9 � - 3 , ; ,�� < �!
���+3,
2�, 1�-/.@,
� ���;6 ��+3,
� �
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We assume that the strategies or actions available to
session � are given by a compact set of the form:

+ , 5�� + ,�A, � 2 + ,������� 2 �A5\' 7\% �
Each flow of the network strives to find its best

strategy so as to maximize its own objective function.
Nevertheless its objective function depends upon its own
choice but also upon the choices of the other flows. In
this situation, the solution concept widely accepted is the
concept of Nash equilibrium.

Definition 1: A Nash equilibrium of the game is a
strategy profile 1 - ��+ � 2 + � 2 �'� 2 +	�8� where 
 - (��6&
from which no flow have any incentive to deviate. More
precisely the strategy profile, 1 is a Nash equilibrium, if
the following holds true for any �

+
,�5���
�� ������&�� L�� & �� ����� & ���� �"! 2�, �"#+
,32�, 1�- .:9 � �
+3, is the best flow � can do if the other flows choose

the strategies , 1�- .@, .
Note that the network income is given by J, L�MRQ*S 6@��+ , � .

Since the 
 ,3��+
,
2�, 1�-/.@, � ’s are functions of +�, and , 1�- .:9 , 6
can include pricing per volume of traffic successfully
transmitted. In particular, we allow for 6 to depend on
the uncontrolled arrival rates of real-time sessions (but
since these are constants, we do not make them appear
as an argument of the function 6 ).

We shall sometimes find it more convenient to rep-
resent the control action of connection � as $ , - < � +3,
instead of as +�, . Clearly, properties such as existence or
uniqueness of equilibrium in terms of + , directly imply
the corresponding properties with respect to $/, .

V. EQUILIBRIUM FOR ONLY REAL-TIME SESSIONS

OR ONLY TCP CONNECTIONS

We assume throughout that + ,���%�'& < �������(��� � ���A,��@�
for all connections. The bound for + ,�(��� is given so that
we have + ,���
	 �������
	 � �������E� & <

. From (2) we see that
@, & <
with equality obtained only for the case +4, -< ���������%� �0���A, � � . 2

In our analysis, we are interested mainly in the lin-
ear region. For only real-time sessions or only TCP
connections, we state the assumptions and describe the
conditions for linear region operations and we show the
existence of a Nash equilibrium.

2Note that if the assumption does not hold then for some value)*),+!)	-/."0 we would already have for some 13254�687:9 so one could
redefine ) -/.	0 to be ) ) . An important feature in our model is that the
queue length beyond which 4<;=7>9 should be the same for all ? .

Theorem 1: A sufficient condition for the system to
operate in linear region is that for all � :
1- For only real time connections :; N : and + ,����� N ; �O:; �������
	 �O��������� � (9)

2- For only TCP connections :

+ ,� ,�� N
@AA
B
��:�� > : � �WF ? � JK�L�S �! " � �F � ?=C � JK�L�S �!+"

DFEE
G
�

(10)

where
; - JK�L�M ; K and

C �IH - � ���%� �0��� ,�� .
Proof: The condition (9) (resp. (10)) will ensure that

the value of � obtained in the linear region (see (5)
(resp.(7))) is not larger that ���(��� . Indeed, for real time
connections, (9) implies thatP

K*L�M ; K + K N
; �O:�����%� �0���A, �

which implies together with (6) that �  �����%� .
Finally the fact that we are not below the lower

extreme of the linear region (i.e. 
 , N � for all � ) is
a direct consequence of

; N : .
The case of only TCP connections is proved in Ap-

pendix X-A.

The following result establishes the existence of Nash
equilibrium for only real time sessions or only TCP
connections.

Theorem 2: Assume that the functions 6 are convex
in $ ,=H - < � +
, . Then a Nash equilibrium exists.
Proof: See Appendix X-B.

A. Supermodular Games

In Theorem 3 (resp. Theorem 5) we present alterna-
tive conditions that provide sufficient conditions for a
supermodular structure for real-time connections (resp.
for only TCP connections). This implies in particular the
existence of an equilibrium. Another implication of su-
permodularity is that a simple, so-called tatônnement or
Round Robin scheme, for best responses converges to the
equilibrium. To describe it, we introduce the following
asynchronous dynamic greedy algorithm (GA).

Greedy Algorithm: Assume a given initial choice 1�J
for all flows. At some strictly increasing times K�L , M -< 2 D 2�C�2 �'�'� , flows update their actions; the actions + L, at
time K<L N � are obtained as follows. A single flow � at
time KNLPO�� updates its + LQO��, so as to optimize 2 , � � 2�, 1 L -/.@,3�
where , 1 L -/.@, is the vector of actions of the other flows� 0- � . We assume that each flow updates its actions



5

infinitely often. In particular, for the case of only real
time sessions, we update + LPO��, as follows:

+ LQO��, - ��
���� ���+
, 5 , + ,����� 2 + ,���
	 - 3 , ; ,�� < �!
@,3���54�, 
@, �;6@��+
,
� (11)

where 
 , in (11) is given by (6).
For the TCP-only case, we update + LQO��, as follows:

+ LQO��, - ��
%�������+
, 55, + ,����� 2 + ,���
	 - 3 ,= , > ?

@, � < �!
@,3�/�;6@��+
,
� (12)

where 
 , in (12) is given by (8).
Remark 1: For the case of real-time sessions, we

could obtain closed form solution for + LQO��K with specific
cost function 6 ��+
,
� such as

�& � which will lead to update
of + LQO��, as follows,� L, - �"��� ��� " &
	"� � � � � � O�
 ��� � �"���� � " .�� � � �"��� � � " & 	" � . � � $ � where

� L, is such

that ��� �� &������ & ������	� - � and 2�, corresponds to utility function

of real time session � . Then + LQO��, is given by :

+ LQO��, -
T����U ����V
+ ,����� if

� L,  � 2+ ,���
	 if
� L,  + ,����� 2 � L,! � 2+ ,����� if
� L, N + ,���
	 2 � L,  � 2� , otherwise

Theorem 3: For the case of only real-time connections
we assume that

Z � , ; ����� & ; K & ; ���
	 , and��( � < � ; ����� + �����  ; ���
	 + ���
	 2
where + �����Y- �#"%$ , L�M'& + ,�����)( and + ���
	 - ����� , L�M*& + ,���
	 ( .
Then there is smallest equilibrium + and largest equilib-
rium + , and the GA dynamic algorithm converges to 1
(resp. + 1 ) provided it starts with + K ����� for all � (resp. + K �����
for all � )
Proof: Both statements will follow by showing that
the game is super-modular, see [11], [12]. A sufficient
condition is that, � 2 ,, + , , + K - � � 3 , ; ,+� 4�, � , � 
@,, + , , + K  � �
We have, 
@,, +3, -

@B P K ; K �O: DG � <J K*L.- ; K + K � +
, ; ,� J#K�L/- ; K + K � � *
leading to

, � 
@,, +3, , +	L - ; L @B PK�L�M ; K �O:
DG �8J#K�L�M ; K + K �#D + , ; ,� J K*L�M ; K + K � 
 �

It is non-positive if and only if J K.0� , ; K + K  ; ,�+
, . A
sufficient condition is that ��(�� < � ; ������+
�����  ; ���
	�+
���
	 �

Thus the game is super-modular. The result then follows
from standard theory of super-modular games [11], [12].

Theorem 4: For the case of only real-time connec-
tions, we assume that

Z ��2 ; ����� & ; K & ; ���
	 , andD + 
����� ; ������ N + 
���
	 ; ����
	 . Under supermodular condition,
the Nash equilibrium is unique.

Proof See Appendix X-C

Theorem 5: For the case of only TCP connections,
assume that

Z ��2 + �A, � & + & + ����� and

��C �X
 ,�� , 
@,, +3, , 
@,, + K  D 
@, � 
@, � < � , � 
@,, +3, , + K Z � 2 ��2H� 0- � � (13)

Then the game is super-modular.
Proof: See Appendix X-D.

Remark 2: It would also be interesting to consider
a price per unit of received volume, i.e., of the form6@��+
,3� ; , � < �A
@,
� . However, looking at the super-modularity
of the utility function gives a condition depending on621���+
,3� , 6 ��+3,3� and the + K that does not seem tractable. On
the other hand, we can consider a pricing per unit of
sent volume, i.e., of the form 6@��+ , � ; , (since

; , is fixed),
Conditions of Theorems 2-3 then hold to provide a Nash
equilibrium.

VI. SYMMETRIC USERS

In this section, we assume that all flows have the same
utility function (for all � , 3 , - 3 , ; , - #; and 4�, - 4
for real-time sessions and 3 , - 3 and

= , - =
for TCP

connections) and the same intervals for strategies ( + ,����� -+
����� and + ,���
	 - +
���
	 ).
Algorithm for Symmetric Nash Equilibrium:
For symmetric Nash equilibrium, we are interested

in finding a symmetric equilibrium strategy 1 � -��+ � 2 + � 2 �'� 2 + � � such that for any flow � and any strategy+
, for that flow (real-time session or TCP connection),2\��1 � �  2\��+3,�2�, 1 � -/.@,
� � (14)

Next we show how to obtain an equilibrium strategy. We
first note that due to symmetry, to see whether 1 � is an
equilibrium it suffices to check (14) for a single flow. We
shall thus assume that there are 3 � < flows all together,
and that the first 3 flows use the strategy 1/4 - ��+�4G2 �'�'� 2 +54G�
and flow 3 � < use +76 O�� . Define the set8 6 O�� ��1:9R� - ��
�������� &�;=<.> L�� &%?)@ A � &%?)B�C !

� 2 ��+�6 O�� 2�, 1 9 - . � 6 O�� � � ( 2
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where 1 9 denotes (with some abuse of notation) the strat-
egy where all flows use + 4 , and where the maximization
is taken with respect to +76 O�� . Then 1 � is a symmetric
equilibrium if + � 5 8 6 O�� ��1 � � �

Theorem 6: Consider real time connections operating
in linear region. The symmetric equilibrium + � satisfies:

$ �
,��6@� $ �, $ ����� � � ���

- 3 ; � 4��( #; � � (15)

where $ � - < � + � and
�6 � $ � - 6@� �� � .

Proof: Recall that
; - ( #; . Then for real time

connections, we have2 - 3 #; � � 3 #; � 4�� � ; �O: �#; �:$ , JK.0� , #; �N$ K �
�6@� $ ,
� �

which gives when taking the derivative

, 2, $ , - � 3 #; � 4*� � ; �O: �/JK/0� , #; �N$ K� #; � $ , JK.0� , #; �N$ K � � �
,��6@� $ ,3�, $ ,

Equating ���� �N� - � we obtain (15).

VII. OPTIMAL PRICING

The goal here is to determine the pricing that maxi-
mizes the network’s benefit. Assume that we are in the
situation of this last remark. The goal is then to find out
a function

� ��1 � � - ��
��(����� � -P
, � � 6@��+ �, �42

where 1 � is a Nash equilibrium which can be obtained
when considering special classes function of 6 . For
instance, consider the set of functions 6@��+ � - 6 ���

&
.

We then obtain a system of equations that can be
solved numerically (to get the + � satisfying the Nash
equilibrium). Then a numerical optimization over the
parameter 6 can be obtained.

Nevertheless, an assumption of this optimization prob-
lem is that the network knows the number of flows and
the parameters 3 , , 4 , and

= , Z � .
A more likely situation is when the network only

knows the distribution of the number of players ( (now a
random variable) and the distribution of parameters 3 , , 4 ,
and

= , (assumed independent and independent between
flows for convenience). A numerical investigation of
optimal parameters can be realized as well.

VIII. NUMERICAL EXAMPLES

In the following simulations, we obtain a unique Nash
equilibrium for only real-time sessions or only TCP con-
nections without satisfying the conditions in Theorem 4.
Moreover, the GA algorithm converges without satisfy-
ing the conditions of supermodularity. All the conditions
of supermodular games (Theorem 3 and Theorem 5)
and uniqueness of Nash equilibrium (Theorem 2 and
Theorem 3) are only sufficient but not necessary as
shown in the numerical results.

The pricing function that we use for player � through-
out this section is 6��	�P��
���+�, � . We shall investigate how
the choice of the constant 6 will affect the revenue of
the network.3

A. Symmetric Real-Time flows

In the following numerical evaluations, we show the
variation of different metrics as function of 6 . Figs. 2,
3 and 4 correspond to a unique symmetric Nash equi-
librium case in which all the real time flows have

; , -D Mbps with +
����� -�� � � < 2 +3���
	 - < � � 2�' - D � 2�������� -< � 2������
	 - F � 24: - C � Mbps. Here we set the values of
parameters to ensure that the system operates in linear
region such as +������ N ���
 � < � ��" ��� � " � - � � � ��� C . The

bound on +
���
	 is needed only to limit the value of loss
probability to 1. The value of 6 which maximizes the
network revenue occurs at 6 - D�� � � � . All the flows
attain a loss rate of � � D�� . Note that for real time flows
symmetric case, 
 �, - � JK�L�M ; K �#: �
� JK*L�M ; K at the Nash

equilibrium is a constant. The average queue size, given
by � ����� �Y
 �, � + �, , is shown in Fig. 2. We observe the value
of + � at which maximum network income is achieved
is close to +
����� while the system operates in the linear
region of RED throughout.

We plot in Fig. 4 sample paths of a connection that
uses the Algorithm for symmetric users (Sec. VI) (the
evolution for all connections is the same). The figure
shows convergence to the same Nash equilibrium when+ � started from +
����� or +
���
	 . We plot it for 6 - F < � �ED�� . In
Figure 4(a), the value of + � is 3.6163, and in Figure 4(b),
it is 3.6162.

B. Non-symmetric real-time flows

In the next experiment, instead of having symmetric
case, the rates,

; , are drawn uniformly from , < 2 < � - Mbps

3We note that it is desirable to have a “nontrivial” parameterized
pricing function that leads to an optimal revenue for some parameter.
We also tested other pricing functions that did turned out to be
“trivial” in the sense that the benefit was always monotone in the
parameter; an example of such a function is ������������� 6 � and the
network optimizes with respect to � .
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Fig. 2. Symmetric Real Time flows: (a) queue size and (b) � � vs. �
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(b) network income vs. 6
Fig. 3. Symmetric Real Time flows: (a) utility and (b) network
income vs. �

with + ����� - < 2 + ���
	�- < � � 2�� ���
	 - F � 2�� ����� - < � 2�' -D � 24: - C � Mbps. Figures 5, 6 and 7 show how different
metrics vary with 6 at unique Nash equilibrium. To
ensure that the flows operate in linear region, we need+3����� N ���
  �� 
 � < � �� " � " � . We observe that 6 - D � � D �
maximizes the network revenue. Figure 5(b) shows that
values of + � for flows having higher rates increase slower
than that of flows having lower rates, i.e., higher rate
flows experience less loss rates. Figure 6(a) shows that
flows having different rates gains similarly in their utility
functions. We plot the average loss rate in Figure 7.
We confirm in these experiments about uniqueness of
Nash equilibrium, although the sample path of different
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Fig. 4. Symmetric Real Time flows: Convergence to Nash equilib-
rium

connections will depend on the connection rates.
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(b) + � vs. 6
Fig. 5. Non-symmetric Real Time flows: (a) queue size and (b) � �
vs. �

C. Symmetric TCP Connections

For symmetric TCP connections we have considered= , - = - D � ms for all connections with + � ,��0-�� � < ,+ ����� - < � � 24: - C � Mbps 24& - D � . Figures 8, 9, and
10 show the corresponding figures. The maximum value
of network revenue is found at 6 -8� � F � F � . In this
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Fig. 6. Non-symmetric Real Time flows: (a) utility and (b) network
income vs. �
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Fig. 7. Non-Symmetric Real Time flows: Average Loss Prob vs. �

symmetric case, the loss probability is given by


 � - = �C & � � : � � C & �= � �O: > : � ��� & �= ���- � � � � < �
To ensure that the symmetric TCP flows operate in

the linear region, we satisfy the condition on +4����� N@B .�� O � ��� O�� � �" �
	 >� " � �� $ � ��
 �" ��
 >� " DG � - F � � D � <���< � .�� .
We plot sample paths of a connection which show

convergence to Nash equilibrium when + � started from+3����� or +
���
	 . We plot it for 6 - C � � D < . In Figure 10(a),
the value of + � is 3.4480, and in Figure 10(b), it is 3.4481.

D. Non-symmetric TCP connections

We present a non-symmetric case in Figures 11,12 and
13 in which

= , s are drawn uniformly from , < 2 D � - ms with+3����� - < 2 +
���
	 - < � � 24: - C � Mbps 24& - D � . The value
of 6 at which network revenue is highest is 0.9321. We
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(a) TCP: queue Size vs. 6
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Fig. 8. Symmetric TCP flows: (a) queue size and (b) � � vs. �
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(b) TCP: network income vs. 6
Fig. 9. Symmetric TCP flows: (a) utility and (b) network income
vs. �

ensure that the non-symmetric connections operate in lin-

ear region by setting +������ N @B .�� O � � � O�� � �"���	 >� " � �� $ � ��
 �" �
	 >� " DG � -� � �GF � � .
E. Real-time connections and TCP flows

In this experiment, we combine both real-time and
TCP connections. We have ( - < � , & - < � , : -< C Mbps, RTT=10ms, +���� �������� - � 2 +���� ������
	 - <E< 2 + ���������� -
� 2 + ��������
	 - <E< 2 ; - <

Mbps 2�������� - < � 2������
	 -F � . The highest network revenue is achieved at 6 -F � � F � 2 + �
� ��� - � � ��� 2 + ����� - � . In the simulations, we
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Fig. 10. Symmetric TCP flows: Convergence to Nash equilibrium
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(a) TCP: queue Size vs. 6
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(b) TCP: + � vs. 6
Fig. 11. Non-Symmetric TCP: (a) queue size and (b) � � vs �

observe the values of �  �*���
	 and since there is atleast
one TCP flow � with throughput,

; , N � , it implies that
the flow has loss probability, 
 , N � and average queue
length, � N � ����� . We conclude that system operates in
linear region. Our objective in this set of experiments
is to show that there exists a Nash equilibrium for both
real-time and TCP connections.

IX. CONCLUSIONS AND FUTURE WORK

We have studied in this paper a fluid model of the
RED buffer management algorithm with different drop
probabilities applied to both UDP and TCP traffic. We
first computed the performance measures for fixed drop
policies. We then investigated how the drop policies are
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(b) TCP: network income vs. 6
Fig. 12. Non-Symmetric TCP: (a) utility and (b) network pricing
vs. �
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(a) Non-Symmetric TCP: Average Loss Prob. vs. 6
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(b) Non-Symmetric TCP: Throughput vs. 6
Fig. 13. Non-Symmetric TCP: Average Loss prob and throughputs
vs. �

determined. We modeled the decision process as a non-
cooperative game and obtained its equilibria. We showed
the existence of the equilibria under various conditions,
and provided ways for computing them (establishing
also convergence properties of best-response dynamics).
The equilibrium depends on the pricing strategy of the
network provider. We finally addressed the problem of
optimizing the revenue of the network provider.

Concerning the future work, we are working on de-
riving sufficient and necessary conditions for operating
at the linear region when there are both real time and
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Fig. 14. Real-time and TCP: (a) queue size and (b) � � vs �
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(b) network income vs. 6
Fig. 15. Real-time and TCP: (a) utility and network income vs. �
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Fig. 16. Real-time and TCP: Average Loss prob vs. �

TCP connections; these seem to be more involved than
the conditions we have obtained already. We will further
study the impact of buffer management schemes on the
performance and on the revenues of the network; in

particular, other versions of RED will be considered
(such as the gentle-RED variant). We will also examine
how well the fluid model is suitable for the packet-level
model that it approximates.
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X. APPENDIX

A. Proof of part 2 of Theorem 1

For only TCP connections, we have,� � �0������� & � �����
	 �O������� - � C �
(16)
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From equation (7), we get the following sufficient and
necessary condition for � & ���(��� :

� :���� : � �WF ? � J#K $ &'"! " ��� J#K �!+" $ &'" �D � ? � J K $ & "!+" � & � C �
or equivalently,���� : � � F ? � P K � + K= K ���

P
K

<= K � + K �
& :��#D � ? � P K � + K= K � � C �

which is equivalent to

: � �WF ? � P K � + K= K ���
P
K

<= K � + K � & : �
� F � ? :�� P K � + K= K � � C � �WF ?=C ��� P K � + K= K � �

or equivalently,? � P K
<= K � + K � & : � ? C � � ?=C ��� P K � + K= K � �

A sufficient condition for the latter isP
K*L S

<= K � + ����� & : � ?=C � � ?=C � PK�L�S � +
�����= K (17)

Solving the quadratic equation (17) for + ����� , we see
that this is implied by (10).

Finally the fact that we are not below the lower
extreme of the linear region (i.e. 
 , N � for all � ) is a
direct consequence of the fact that zero loss probability
would imply infinite throughput (see eq (1)), which is
impossible since the link capacity : is finite.

B. Proof of Theorem 2

We first show that the utility function is concave in
the case of only real time sessions. Replacing +4, by

< �N$ ,
in Equation (6), we obtain


@, - J#K�L�M ; K �O:; ,#� $ ,�J K.0� , ; K �N$ K 2
which is convex in $., . Hence 2 , are concave in $ , and
continuous in $ K . The existence then follows from [10].
For TCP connection, we have���	��
�
� �
���� 
�� ���	��
��� �
�������� 
 � �"! �#��
��� 
 � � 
��� 
 � �

 ��� � 
��� �
�$%� ���'&( � �#
)���� �


(18)

where
�6 � $ ,
� - 6 � < � +3,�� . On the other hand, (1) implies

, 
@,, $ , - � D ?= �, � � �� � �; 
, 2 and

, � 
 ,, $ �, - � D ?= �, ; �,+*
, � ; ,, $ �, ; , �0CR� , ; ,, $ , � �-,

Then (18) becomes���	� 
��� �
 �.� 
�� ���-� 
��� �
 ���0/ 12%�
 � �
 � �3� �#� 
���#
 � � ! 124�
 �
5 $ � ��� &( � � 
 ���� �

(19)

Since the function
�6 is convex in $ , , then form (19),

it suffices to show that the second derivative of
; , with

respect to $ , is non-positive. We have

; , - <= , > ?

 ,

-
� �! � � JK�L�S $ & "!+" *

� +3, � ��:�� > : � � F ? JK�L�S � �! " $ & " � JK*L S � $ & "! " � *
- � �!�� � $ & �!�� �76 � (� +3, � � :���� : � �WF ? � �! � $ & � �76 � ��� $ & �! � �76 � � (
- � �! � � $ , � �$ � � ! � �76 � (
� ��:���� : � �WF ? � $ � �! � �76 � ��� �$ �N� !�� �86 � � (

- $ � �� ! � � :���� : � �WF ? � $ � �! � �76 � ��� �$ � � ! � �76 � � (� $ �N�! � �76 � �
- <D = , * � $ , :� $ ���! � �76 � � �� $ ,9� : � �WF ? � $ � �!�� �86 � ��� �$ �N� !�� �76 � �� $ � �! � �76 � � ,
- <D = , *;: � � $ ,
� � : � � $ ,
� ,

where 6 �A- JK.0� , $ &'"! � and 6 � - JK/0� , �$ & " ! � . Now, we must

prove that the second derivative of the functions : � and: � are non-positive for all 6 �  � and 6 �  � . We
begin by taking the second derivative of : � . After some
simplification, we obtain

, � : � � $ , �, $ �, - � < �GF : = �, 6 � ��C � $ , �<6 � = , �� $ 
>= �, � � $ ,#�86 � = ,3� 
 �
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which is positive. For the second function : � , since the
function : � is positive, it suffices to show that the second
derivative of function , : � � $ ,3� - � is non-positive, we have

, � , : � � $ ,
� - �, $ �, - � = ,DN$ 
>= �, � � $ ,#�76 � = , � � � � $ , ? 6 � �
�
� $ , ? 6 �� = , �#D ? $ �, 6 � � � $ 
>= �, ? 6 � = , 6 � �� ? $ , = �, 6 � 6 �� �#D ? = �, 6 
� � C�$ ,�: � = �, 6 � �

which is non-positive.

C. Proof of Theorem 4

Under supermodular condition, to show the unique-
ness of Nash equilibrium, it suffices to show that [4],

� , � 2�,� , $ ,3� �  
P
K.0� ,

, � 2�,, $ , , $ K�� (20)

or equivalently,

, � 
@,� , $ ,
� � �
P
K.0� ,

, � 
@,, $ , , $ K  � � (21)

For the case of only real time sessions, 
 , -� � " .��� � O �N� �"��� �7� " >� " . We have ,

, 
@,, $ , - � � ; �O: � JL 0� , � 	� 	
� ; , � $ , JL 0� , � 	� 	 ( �

, � 
@,, $ �, - D�� ; �O: � � JL 0� , � 	� 	 * �� ; ,+� $ , JL 0� , � 	� 	 � 

, � 
@,, $ , , $ K - � ; �O: � ; K$ �K

; ,.�>$ ,/JL 0� , � 	� 	� ; , � $ ,/JL 0� , � 	� 	 * 


Therefore, in order to get the uniqueness, we need that

, � 
 ,, $ �, �
P
K.0� ,

, � 
 ,, $ , , $ K -
D�� ; ��: � � JL 0� , � 	� 	 * �� ; ,+� $ , JL 0� , � 	� 	 * 


�
� ; �O: �

; , �>$ , JL 0� , � 	� 	� ; ,+� $ , JL 0� , � 	� 	 * 

P
K.0� ,

; K$ �K
- � ; �O: �� ; , � $ ,/JL 0� , � 	� 	 * 


�� ; , P K/0� , ; K$ �K �

$ , @B P L 0� ,
; L$ L

DG @B P L 0� ,
; L$ �L

DG � D @B P L 0� ,
; L$ L

DG ����  �
This leads to the sufficient condition:; ��A, �$ ��A, � �>$����%� ; ��(��� ��( � < � �$ 
� ,�� � D ; �� ,��$ ��(���  �

D ; ��A,��$ ��(��� N $����%� ; ��(���$ 
�A,��DN$ 
�A, � ; �� ,�� N $ 
�(��� ; ������
D. Proof of Theorem 5

For supermodularity on TCP connections, we consider
the sufficient condition that � � � �� & � � & "  � . It follows that

2�, - 3 ,= , > ?

 , � < �X
@, �/�56@��+
,3�- 3 ,= , � ? � 
 . � = �, �X
 � = �, ���;6@��+
,3� �

Then, for � 0- � ,
, 2�,, + K - 3 , � ?= ,

� ��
 . 
>= �, D , 
@,, + K � 
 . � = �, D , 
 ,, + K *, � 2 ,, +
, , + K - 3 , � ?= ,
� � C 
 .�� = �, F � 
 . 
>= �, F � , 
 ,, +
, , 
 ,, + K

� � 
 . 
>= �, D � 
 . � = �, D � , � 
 ,, +
, , + K�� �
Thus a sufficient condition for supermodularity

( � � � �� &�� � &'"  � 2 Z � 2 ��2 � 0- � )is
��C �[
 , � , 
@,, +
, , 
@,, + K  D 
 ,
� 
@,#� < � , � 
@,, +3, , + K 2 Z �42 ��2 � 0- �


