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Abstract

We study an interacting particle system whose dynamics depends on an interacting
random environment. As the number of particles grows large, the transition rate of the
particles slows down (perhaps because they share a common resource of fixed capacity). The
transition rate of a particle is determined by its state, by the empirical distribution of all
the particles and by a rapidly varying environment. The transitions of the environment are
determined by the empirical distribution of the particles. We prove the propagation of chaos
on the path space of the particles and establish that the limiting trajectory of the empirical
measure of the states of the particles satisfies a deterministic differential equation. This
deterministic differential equation involves the time averages of the environment process.

We apply our results to analyze the performance of communication networks where users
access some resources using random distributed multi-access algorithms. For these networks,
we show that the environment process corresponds to a process describing the number of
clients in a certain loss network, which allows us provide simple and explicit expressions of
the network performance.
AMS classification : primary 60K35 ; secondary 60K37,90B18.

1 Introduction and motivation

In this paper we are interested in the mean field limit of a fairly general stochastic particle
system whose dynamics depends on an environment. A first key feature of the model is that the
particle system is interacting: the evolution of each particle depends the empirical distribution
of all the particles and also depends on an environment variable. Secondly, the environment is
interacting with the particle system: its dynamics depends on the evolution of the particles and
is given by a Markov transition kernel which depends on the actual state of the particle system.
A last key feature is that the environment is rapidly varying: it evolves at rate 1 whereas the
particles evolve at rate 1/N , where N is the total number of particles.

We analyze this particle system when N , the number of particles, goes to infinity. The
limiting system is known as the mean field limit of the particle system. We use a method
developed by Sznitman [25] to prove a path space convergence of the trajectory of the empirical
measures of the states of the particles. For exchangeable systems, this convergence turns out
to be equivalent to the particle system being chaotic.

∗University of California at Berkeley, United States.
†University of Ottawa, Canada.
‡KTH, Sweden.
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The initial motivation for this model comes from the analysis of the way users communicate
in wired and wireless Local Area Networks (LANs). LANs are computer networks covering a
local area such as a home, an office, or a group of buildings. In such networks, users share
a common resource, the channel, in a distributed manner using random multiple access algo-
rithms, such as Aloha [3] and the exponential back-off algorithm used in all LANs today [1, 2].
A particle is a user of a communication channel shared between N users so each user accesses
the channel roughly one in N time slots. At each time slot, a user tries to access the common
channel with a certain probability if the channel is available; i.e. no user is currently transmit-
ting a packet. When the channel is available two users may attempt to grab the channel at the
same time. This will produce a collision detected by both users. Both users will then back-off
by reducing their access probabilities. Therefore probability of accessing the channel of each
user evolves according to its past collisions and successful attempts and will necessarily settle
around 1/N ; i.e. they slow down as N increases.

It may happen that some users are hidden from others: two users hidden from each other can
successfully access the channel simultaneously. This phenomenon is frequent in wireless LANs
where users interact through interference depending on their relative positions. To model this
we assume each user has a class determined by the region in the network where it is located.
The state of a user is its class and its probability to access the channel. Users interact depending
on their class: users in the same region or in two adjacent regions are not able to successfully
access the channel at the same time, whereas users located in two non-adjacent regions may
access the channel simultaneously. An environment variable indicates whether the channel is
available or not for users in each class. This variable depends on whether or not an interacting
user is currently transmitting successfully. The environment variable varies from time slot to
time slot; i.e. it is quickly varying.

Mean field models have been used in statistical physics for some time; see [11] for example.
An extensive literature exists on the mean fields analysis of stochastic genetic models. A
particle is an individual and its state represents its genetic types and its position. The most
important related model is the Fleming-Viot process; see for [12] for example. This new model
could also help to analyze genetics models. The environment variable may represent available
resources at each location. The environment evolves according to the empirical distribution of
the individuals and individuals interact with each other and their environment.

Another potential field of application is microscopic models in economic theory and stochas-
tic market evolution, also known as ”econophysics”, see for example the work by Karatzas [19]
or Cordier [10]. In a simple market economy or in a financial market, a particle is an economic
agent and its states represents its goods and its savings. The environment is the prices of
the various available goods. Agents may exchange, borrow or lend money. Both prices and
the purchase decisions of agents are interacting. In some markets, like financial markets, the
prices are fluctuating roughly N times faster than decisions of each individual agent; i.e. this
framework is consistent with our model.

The remainder of the paper is organized as follows. In Section 2.1, we define rigourously
the stochastic particle system and in Section 2.2 we state our main results. The proofs are
in Section 3. In Section 4, we discuss the assumptions of the models and define a convenient
sufficient condition for checking most of them. Lastly, in Section 5, we apply our results to the
analysis of random multiple access algorithms.

Notations Let Y be a separable, complete metric space, P(Y) denotes the space of probability
measures on Y. L(X) is the law of the Y-valued random variable X. D(R+,Y) the space of
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right-continuous functions with left-handed limits, with the Skorohod topology associated with
the metric d0

∞, see [7] p 168. With this metric, D(R+,Y) is complete and separable. We extend
a discrete time trajectory (X(k)), k ∈ N, in D(N,Y) in a continuous time trajectory inD(R+,Y)
by setting for t ∈ R

+, X(t) = X([t]), where [·] denotes the integer part. (Ft), t ∈ R
+ or N, will

denote the natural filtration with respect to the processes considered. ‖ · ‖ denotes the norm in
total variation of measures. Finally, for any measure Q ∈ P(Y) and any measurable function f
on Y, 〈f,Q〉 = Q(f) =

∫

fdQ denotes the usual duality brackets.
We recall that a sequence of random variables (XN

i )i∈{1,...,N} ∈ YN is exchangeable if

L((XN
i )i∈{1,...,N}) = L((XN

σ(i))i∈{1,...,N}) where σ is any permutation of {1, . . . , N}. Moreover

the sequence is Q-chaotic if for all subsets I ⊂ N of finite cardinal |I|,

lim
N→∞

L
(

(XN
i )i∈I

)

= Q⊗|I| weakly in P(Y |I|). (1)

2 An interacting particle system in a varying environment

In this section, we first provide a precise description of the interacting particle system under
consideration. We then state the main results, giving the system behavior in the mean field
limit when the number of particles grows to infinity. The proofs of these results are postponed
to subsequent sections.

2.1 Model description

The particles We consider N particles evolving in a countable state space X at discrete time
slots k ∈ N. For simplicity we assume the particles are exchangeable. At time k, the state of
the i-th particle is XN

i (k) ∈ X . The state of the system at time k is described by the empirical
measure νN (k) ∈ P(X ) while the entire history of the process is described by the empirical
measure νN on path space P(D(N,X )):

νN (k) =
1

N

N
∑

i=1

δXN
i (k) and νN =

1

N

N
∑

i=1

δXN
i
.

The interacting environment In the system considered, the evolution of the particles
depends not only on the state of the particle system but also on a background Markovian
process ZN ∈ D(N,Z), where Z is an at most countable state space. This process evolves as
follows:

P(ZN (k + 1) = z|Fk) = KN
νN (k)(Z

N (k), z),

where KN
µ is a transition kernel on Z depending on a probability measure µ on P(X ), and

where Fk = σ((νN (0), ZN (0)), · · · , (νN (k), ZN (k))). The latter filtration depends on N , but
as pointed out above, without possible confusion, Fk will always denote the underlying natural
filtration of the processes. In words, ZN is a Markov chain whose transition kernel evolves with
the empirical measure of the state of the particle system.

Evolution of the particles We represent the possible transitions for a particle by a countable
set S of mappings from X to X . A s-transition for a particle in state x leads this particle to
the state s(x). In each time slot the state of a particle has a transition with probability 1/N
independently of everything else. If a transition occurs, this transition is a s-transition with
probability FNs (x, ν, z), where x, ν, and z are respectively the state of the particle, the empirical
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measure, and the state of the background process before the transition. Hence, in this state, a
s-transition occurs with probability:

1

N
FNs (x, ν, z). (2)

with
∑

s∈S F
N
s (x, α, z) = 1 for all (x, α, z) ∈ X ×P(X )×Z. Note that, due to (2), the process

ZN evolves quickly while the empirical measure νN (k) evolves slowly. Also note that the s-
transitions of the various particles may be correlated. Finally the process ZN may depend on
the transitions of the particles. The particle system is thus in interaction with its environment.

We make the following additional assumptions on the system evolution.

Assumptions

A1. Uniform convergence of FNs to Fs:
limN→∞ sup(x,α,z)∈X×P(X )×Z

∑

s∈S |FNs (x, α, z) − Fs(x, α, z)| = 0.

A2. The functions Fs is uniformly Lipschitz:
sup(x,z)∈X×Z

∑

s∈S |Fs(x, α, z) − Fs(x, β, z)| ≤ C‖α− β‖.

A3. Uniform convergence in total variation of KN
α to Kα:

limN→∞ sup(α,z)∈P(X )×Z ‖KN
α (z, ·) −Kα(z, ·)‖ = 0.

A4. The mapping α 7→ Kα is uniformly Lipschitz:
supz∈Z ‖Kα(z, ·) −Kβ(z, ·)‖ ≤ C‖α− β‖.

A5. The Markov chains with kernels Kα are ergodic uniformly in α, i.e., they are ergodic and,
limn→∞ supα∈P(X ) ‖P

n
α (z0, ·)−πα‖ = 0, for some fixed z0 ∈ Z, where πα is the stationary

probability of Kα and Pnα (z, ·) = (Kα)n(z, ·).

A6. We define τN (t) = inf{k ≥ 0 : ZN (t + k) = z0}, where z0 has been defined in A5. For
all ZN(0) and νN (0), uniformly in t and N , there exists C = C(ZN (0), νN (0)) such that
E[τN (t)] ≤ C.

A7. For all α, β in P(X ): ‖πα − πβ‖ ≤ C supz∈Z ‖Kα(z, ·) −Kβ(z, ·)‖.

A8. For all For all α, β in P(X ): ‖πα − πβ‖ ≤ C supz∈Z ‖Kα(z, ·) −Kβ(z, ·)‖.

We discuss in Section 4 how the above assumptions may be checked.

2.2 Main Results

The main result of this paper is to provide a mean field analysis of the system described above,
i.e, to characterize the evolution of the system when the number of particles grows. According
to (2), as N → ∞, the chains XN

i (t) slow down hence to derive a limiting behavior we define:

qNi (t) = XN
i ([Nt]) and µN =

1

N

N
∑

i=1

δqN
i
∈ P(D(R+,X )).
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2.2.1 Transient regimes

The following theorem provides the limiting behavior of the system in transient regimes.

Theorem 1 Assume that the Assumptions A1-A7 hold, that L(qN1 (·)) is tight in P(D(R+,X )),
and that the initial values qNi (0), i = 1, . . . , N , are exchangeable and such that their empirical
measure µN0 converges in distribution to a deterministic limit Q0 ∈ P(X ). There exists a
probability measure Q on D(R+,X ) such that the processes (qNi (.), i ∈ {1, . . . , N}) are Q-
chaotic.

In [25], Sznitman proved that if qNi (0), i = 1, . . . , N , are exchangeable, their empirical
measure µN0 converges in distribution to a deterministic limit Q0 ∈ P(X ) if and only if qNi (0),
i = 1, . . . , N , are Q0-chaotic. Then, the above theorem states that if the particles are initially
asymptotically independent, then they remain asymptotically independent. This phenomenon
is also known as the propagation of chaos.

In most applications, the tightness of L(qN1 (·)) in P(D(R+,X )) should not be a major issue.
Indeed, note that the inter-arrival times between two transitions of qN1 (.) are independent Bi-
nomial (N, 1/N) variables (which converges to exponential (1) variables). Hence, if for example
the state space X or the set of transitions S is finite, we may apply the tightness criterion
Theorem 7.2 in Ethier-Kurtz [14] p.128.

The independence allows us to derive an explicit expression for the system state evolution.
As explained earlier, intuitively, when N is large, the evolution of the background process is
very fast compared to that of the particle system. The particles then see a time average of the
background process. The following theorem formalizes this observation. For α ∈ P(X ), let πα
denote the stationary distribution of the Markov chain with transition kernel Kα. We define
the average transition rates for a particle in state x by

F s(x, α) =
∑

z∈Z

Fs(x, α, z)πα(z). (3)

Define Qn(t) = Q(t)({xn}) where X = {xn, n ∈ N}. Qn(t) is the limiting (when N → ∞)
proportion of particles in state xn at time t.

Theorem 2 Under the assumptions of Theorem 1, the limiting proportions Qn(t) of the parti-
cles in the various states satisfy: Qn(0) = Q0({xn}) and for all time t > 0, for all n ∈ N,

dQn

dt
=

∑

s∈S

∑

m:s(xm)=xn

Qm(t)F s(xm, Q(t)) −Qn(t)F s(xn, Q(t)), (4)

The differential equations (4) have the following interpretation: if s(xm) = xn thenQm(t)F s(xm, Q(t))
is a mean flow of particles from state xm to xn.
Hence,

∑

s∈S

∑

m:s(xm)=xn
Qm(t)F s(xm, Q(t)), is the total mean incoming flow of particle to xn

and
∑

s∈S Q
n(t)F s(xn, Q(t)) is the mean outgoing flow from xn.

2.3 Stationary regime

We now characterize the stationary behavior of the system in the mean field limit. To do so,
we make two additional assumptions:

A8. For all N , the Markov chain ((XN
i (k), ZN (k))k∈N is positive recurrent. The set of the

stationary distributions of the empirical measures Lst(µ
N ) is tight.
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A9. The dynamical system (4) is globally stable: there exists a measure Qst = (Qnst) ∈ P(X )
satisfying for all n:

∑

s∈S

∑

m:s(xm)=xn

QmstF s(xm, Qst) = Qnst
∑

s∈S

F s(xn, Qst), (5)

and such that for all Q ∈ P(D(R+,X )) satisfying (4), for all n, limt→+∞Qn(t) = Qnst.

Then the asymptotic independence of the particles also holds in the stationary regime:

Theorem 3 Under Assumptions A1-A9, for all subsets I ⊂ N of finite cardinal |I|,

lim
N→∞

Lst

(

(qNi (.))i∈I
)

= Q
⊗|I|
st weakly in P(D(R+,X )|I|).

3 Proof of Theorems 1, 2 and 3

In the following, we extensively use the notation:

AN,si (k) = {s-transition occurs for the particle i between k and k + 1}. (6)

By definition, we have:

P(AN,si (k)|Fk) =
1

N
FNs

(

qNi (
k

N
), µN (

k

N
), Z(k)

)

.

We also define:

ANi (k) = {a transition occurs for particle i between times k and k + 1}. (7)

We have: ANi (k) = ∪s∈SA
N,s
i (k).

3.1 Proof of Theorems 1 and 2

By Proposition 2.2. in Sznitman [25], Theorem 1 is equivalent to

lim
N→∞

L(µN ) = δQ weakly in P(P(D(R+,X ))). (8)

To establish (8), we first prove the tightness of the sequence L(µN ). We then show that any
accumulation point of the previous sequence is the unique solution of a martingale problem.
We finally prove the desired convergence.

3.1.1 Step 1 : Tightness

First we check that the sequence L(µN ) is tight in P(P(D(R+,B))). Thanks again to Sznitman
[25] Proposition 2.2, this a consequence of the tightness of L(qN1 (.)) in P(D(R+,X )).
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3.1.2 Step 2 : Convergence to the solution of a martingale problem

We will follow the Step 2 in Graham [18]. We show that any accumulation point of L(µN )
satisfies a certain martingale problem. For f ∈ L∞(X ), the bounded and forcibly measurable
functions of X → R. For each s ∈ S, we define

f s(x) = f(s(x)) − f(x).

Now, for f ∈ L∞(X ) and T ≥ 0,

f(qNi (T )) − f(qNi (0)) =

[NT ]−1
∑

k=0

(f(qNi (
(k + 1)

N
− f(qNi (

k

N
))

=
∑

s∈S

[NT ]−1
∑

k=0

f s(qNi (
k

N
))

(

1(AN,si (k)) − P(AN,si (k)|Fk)
)

+
∑

s∈S

[NT ]−1
∑

k=0

f s(qNi (
k

N
))P(AN,si (k)|Fk). (9)

Then we define Mf,N
i (t) =

∑

s∈S M
f,N,s
i (t) with

Mf,N,s
i (t) =

[Nt]−1
∑

k=0

f s(qNi (
k

N
))

(

1(AN,si (k)) − P(AN,si (k)|Fk)
)

(10)

and

GN,si f(k) = f s(qNi (
k

N
))FNs

(

qNi (
k

N
), µN (

k

N
), Z(k)

)

.

So that, we may rewrite Equation (9) as

f(qNi (T )) − f(qNi (0)) = Mf,N
i (T ) +

1

N

[NT ]−1
∑

k=0

∑

s∈S

GN,si f(k) (11)

The proofs of the two following lemmas are given at the end of this section.

Lemma 1 Mf,N
i (t) defined at (10) is a square-integrable martingale. There exists a C > 0

such that the Doob-Meyer brackets 〈Mf,N
i ,Mf,N

j 〉t ≤ Ct‖f‖2
∞/N uniformly in i, j with i 6= j.

The next lemma is main technical contribution of the proof.

Lemma 2 The martingale Mf,N
i (t) defined at (10) satisfies

Mf,N
i (T ) = f(qNi (T )) − f(qNi (0)) −

∫ T

0
Gf(qNi (t), µN (t))dt + εf,Ni (T ), (12)

where

Gf(x, α) =
∑

s∈S

f s(x)F s(x, α), (13)

and where, for all T , E|εf,Ni (T )| ≤ ǫNT‖f‖∞ and limN→∞ ǫN = 0.
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Remind that F s(x, α) was defined by Equation (3).
Now assume that Lemmas 1 and 2 hold, and let Q ∈ P(D(R+,X )) be an arbitrary distri-

bution in the support of an accumulation point Π∞ of the sequence L(µN ).

Lemma 3 Q satisfies a non-linear martingale problem starting at Q0. Specifically, for all
f ∈ L∞(X ),

Mf (T ) = f(X(T )) − f(X(0)) −

∫ T

0
Gf(X(t), Q(t))dt (14)

is a Q-martingale, where X = (X(t))t≥0 denotes a canonical trajectory in D(R+,X ), and
Q(0) = Q0, Π∞-a.s..

Proof. The proof is similar to Step 2 of Theorem 3.4 of Graham [18] or of Theorem 4.5 of
Graham and Méléard [17]. However, here our assumptions are weaker so we detail the proof.

From Lemma 7.1 in Ethier and Kurtz [14], the projection map X 7→ X(t) is Q-a.s. con-
tinuous for all t except perhaps in at most a countable subset DQ of R+. Further it is shown
easily that D = {t ∈ R+ : Π∞({Q : t ∈ DQ}) > 0} is at most countable (see the argument in
the proof of Theorem 4.5 of Graham and Méléard [17]).

Take 0 ≤ t1 < t2 < · · · tk ≤ t < T outside D and g ∈ L∞(X k). Take f ∈ L∞(X ). The map
G : P(D(R+,X )) → R defined by

R 7→ 〈

(

f(X(T )) − f(X(t)) −

∫ T

t
Gf(R(u),X(u))du

)

g(X(t1), . . . ,X(tk)), R〉

is Π∞-a.s. continuous. We will prove that

Π∞-a.s, G(Q) = 0. (15)

Now assume (15) holds for arbitrary 0 ≤ t1 < t2 < · · · tk ≤ t < T outside a countable set D
and g ∈ Cb(X

k). It implies that for all A ⊂ Ft, 〈M
f (T )1A, Q〉 = 〈Mf (t)1A, Q〉. Therefore, by

definition, Mf (t) is a Q-martingale and Q satisfies the non-linear martingale problem (14).
It remains to prove (15). Let ΠN be the law of µN = 1/N

∑N
i=1 δqN

i
, we write :

〈|G|,ΠN 〉 = E|G(
1

N

N
∑

i=1

δqN
i

)|

= E
∣

∣

∣

1

N

N
∑

i=1

(

f(qNi (T )) − f(qNi (t)) −

∫ T

t
Gf(µN (u), qNi (u))du

)

×g(qNi (t1), . . . , q
N
i (tk))

∣

∣

∣

= E
∣

∣

∣

1

N

N
∑

i=1

(

Mf,N
i (T ) −Mf,N

i (t) − (εf,Ni (T ) − εf,Ni (t))
)

×g(qNi (t1), . . . , q
N
i (tk))

∣

∣

∣

≤ E
∣

∣

∣

1

N

N
∑

i=1

(Mf,N
i (T ) −Mf,N

i (t))gNi

∣

∣

∣

+E
∣

∣

∣

1

N

N
∑

i=1

(εf,Ni (T ) − εf,Ni (t))gNi

∣

∣

∣

≤ I + II, (16)
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where gNi = g(qNi (t1), . . . , q
N
i (tk)).

Using exchangeability and the Cauchy-Schwartz inequality, we obtain:

I2 ≤
‖g‖2

∞

N
E

(

Mf,N
1 (T ) −Mf,N

1 (t)
)2

+
N − 1

N
E

(

(Mf,N
1 (T ) −Mf,N

1 (t))gN1 (Mf,N
2 (T ) −Mf,N

2 (t))gN2

)

.

Lemma 1 implies that I tends to 0. Similarly, we have:

II ≤ ‖g‖∞E|εf,N1 (T ) − εf,N1 (t)|

Lemma 2 implies that II tends to 0. Hence, from (16) and Fatou’s Lemma, 〈|G|,Π∞〉 ≤
limN 〈|G|,Π

N 〉 = 0 and thus Π∞-a.s, G(Q) = 0, (15) is proved.
To conclude the proof of Lemma 3, note that the continuity ofX → X(0) implies Q(0) = Q0,

Π∞-a.s.. 2

3.1.3 Step 3 : Uniqueness of the solution of martingale problem

We now show the solution to (14) is unique. Here, we will use Proposition 2.3 in Graham [18]
(which is an extension of Lemma 2.3 in Shiga and Tanaka [24]) to show uniqueness. We remark
that Gf(x, α) =

∫

X (f(y) − f(x))Jx,α(dy) where

Jx,α =
∑

s∈S

F s(x, α)δs(x).

Next, ‖Jx,α‖ =
∑

s∈S F s(x, α) = 1 and ‖Jx,α − Jx,β‖ = sup
∫

X ϕ(y)Jx,α(dy) −
∫

X ϕ(y)Jx,β(dy)
where the supremum is over the functions ϕ ∈ L∞(X ) with ‖ϕ‖∞ ≤ 1.

|Jx,α(ϕ) − Jx,β(ϕ)| =
∣

∣

∣

∑

s∈S

ϕ(s(x))
(

F s(x, α) − F s(x, β)
)∣

∣

∣

=
∣

∣

∣

∑

s∈S

ϕ(s(x))
(

∫

Z
Fs(x, α, z)πα(dz) −

∫

Z
Fs(x, β, z)πβ(dz)

)∣

∣

∣

≤
∣

∣

∣

∑

s∈S

ϕ(s(x))
(

∫

Z
Fs(x, α, z)πα(dz) −

∫

Z
Fs(x, α, z)πβ(dz)

)∣

∣

∣

+
∣

∣

∣

∑

s∈S

ϕ(s(x))
(

∫

Z
Fs(x, α, z)πβ(dz) −

∫

Z
Fs(x, β, z)πβ(dz)

)∣

∣

∣

≤ I + II.

By Fubini’s Theorem,

I =
∣

∣

∣

∫

Z

∑

s∈S

ϕ(s(x))Fs(x, α, z)πα(dz) −

∫

Z

∑

s∈S

ϕ(s(x))Fs(x, α, z)πβ(dz)
∣

∣

∣

≤ ‖
∑

s∈S

ϕ(s(x))Fs(x, α, ·)‖∞‖πα − πβ‖.

Since |ϕ(s(x))| ≤ 1, Fs(x, α, z) ≥ 0 and
∑

s∈S Fs(x, α, z) = 1,

‖
∑

s∈S

ϕ(s(x))Fs(x, α, ·)‖∞ ≤ 1.
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Thus applying Assumptions A4-A7, we deduce:

I ≤ ‖πα − πβ‖ ≤ C‖α− β‖.

Using Assumption A2,

II ≤

∫

Z

∑

s∈S

|Fs(x, α, z) − Fs(x, β, z)|πβ(dz)

≤ C‖α− β‖.

So finally, we have checked that:

‖Jx,α − Jx,β‖ ≤ C‖α− β‖.

We then use Proposition 2.3 in Graham [18] to establish the solution to the martingale problem
(14) is unique.

3.1.4 Step 4 : Weak convergence and Evolution equation

In the three first steps we have proved that L(µN ) converges weakly to δQ, where Q is the
unique solution of the martingale problem (14) starting at Q0.

We can now identify the evolution equation satisfied by Q. Since Q satisfies the martin-
gale problem then (Q(t))t≥0 solves the non-linear Kolmogorov equation derived by taking the
expectations in (14):

〈f,Q(T )〉 − 〈f,Q(0)〉 =

∫ T

0
〈Gf(·, Q(t)), Q(t)〉dt. (17)

Applying (17) to f = 1xn for all n, we get the set of differential equations (4).

3.1.5 Proof of Lemma 1

First, Mf,N
i (t) is a square-integrable martingale by the Dynkin formula. Recall that AN,si (k) is

defined in Equation (6) and that ANi (k) = ∪s∈SA
N,s
i (k). Since at time k, at most one transition

occurs:
1AN

i (k) =
∑

s∈S

1
AN,s

i (k)
. (18)

Hence, note in particular for i 6= j,

P(ANi (k)ANj (k)) =
1

N2
. (19)

In the sequel, EF(k)[.] will denote E[.|Fk].
With this notation, EF(k)[1AN

i (k)] = 1/N , and we can rewrite Equation (10) as:

Mf,N
i (t) =

[Nt]−1
∑

k=0

∑

s∈S

f s(qNi (
k

N
))

(

1
AN,s

i (k)
− EF(k)1AN,s

i (k)

)

.

10



To prove Lemma 1, we need to compute E[Mf,N
1 (t)Mf,N

2 (t)].

Since (Mf,N
i (t))t∈R+ is a martingale this product is equal to:

E[Mf,N
1 (t)Mf,N

2 (t)] =

[Nt]−1
∑

k=0

∑

s,s′∈S

Ef s(qN1 (
k

N
))

(

1
AN,s

1 (k)
− EF(k)1AN,s

1 (k)

)

×f s
′

(qN2 (
k

N
))

(

1
AN,s′

2 (k)
− EF(k)1AN,s′

2 (k)

)

.

Now, let

INk =
∣

∣

∣

∑

s,s′∈S

E

[

f s(qN1 (
k

N
))(1

AN,s
1 (k)

− EF(k)1AN,s
1 (k)

)

× f s
′

(qN2 (
k

N
))(1

AN,s′

2 (k)
− EF(k)1AN,s′

2 (k)
)

]

∣

∣

∣
.

We have:

INk ≤ 4‖f‖2
∞

(

∑

s,s′∈S

E1
AN,s

1 (k)
1
AN,s′

2 (k)
+ 2

∑

s,s′∈S

E1
AN,s

1 (k)
EFk

1
AN,s′

2 (k)

+
∑

s,s′∈S

E[EFk
1
AN,s

1 (k)
EFk

1
AN,s′

2 (k)
]
)

= 16‖f‖2
∞E1AN

1 (k)1AN
1 (k),

where we have used (18) and the independence of ANi (k) with respect to Fk. Then, using (19),
we get INk ≤ C‖f‖2

∞/N
2 and the lemma follows. 2

3.1.6 Proof of Lemma 2

Let
κN = sup

(α,z)
‖KN

α (z, ·) −Kα(z, ·)‖. (20)

By Assumption A3, κN tends to 0 as N → ∞.
In the sequel nN will denote a sequence of integers satisfying:

lim
N→∞

nN = ∞ , lim
N→∞

nNκN = 0 and lim
N→∞

n2
N

N
= 0.

We start by proving additional intermediary lemmas.

Lemma 4

E

[

sup
0≤t≤ n

N

‖µN (t) − µN (0)‖

]

≤
n

N
. (21)

Proof. The total variation distance between µN (t) and µN (0) is upper bounded by the total
number of transitions between time 0 and tN , hence,

sup
0≤t≤ n

N

‖µN (t) − µN (0)‖ ≤
1

N

N
∑

i=1

n−1
∑

k=0

1AN
i (k).

Since P(ANi (k)) = 1/N , we get (21). 2

11



Lemma 5 Let ϕ be a bounded measurable function from X × P(X ) × Z to R such that there
exists C such that for all x, z, α, β:

|ϕ(x, α, z) − ϕ(x, β, z)| ≤ C‖α− β‖.

Further, let ϕN (x, α, z) be a sequence of measurable functions from X × P(X ) × Z to R

such that for all x, α, z, |ϕN (x, α, z) − ϕ(x, α, z)| ≤ δN with limN δN = 0, then uniformly
in (µN (0), qNi (0)),

lim
N→∞

E
∣

∣

∣

1

nN

nN−1
∑

k=0

(

ϕN (qNi (
k

N
), µN (

k

N
), Z(k)) − ϕ(qNi (0), µN (0), Z(k))

)

∣

∣

∣
= 0.

Proof. If no transition occurs for the particle i between time 0 and time n, then

n−1
∑

k=0

ϕ(qNi (k/N), µN (k/N), Z(k)) =

n−1
∑

k=0

ϕ(qNi (0), µN (k/N), Z(k)),

otherwise the difference is bounded by 2n‖ϕ‖∞. Note also that

|
1

n

n−1
∑

k=0

ϕ(qNi (0), µN (k/N), Z(k)) −
1

n

n−1
∑

k=0

ϕN (qi(0), µ
N (0), Z(k))|

≤ C sup
0≤t≤n/N

‖µN (t) − µN (0)‖.

Thus we obtain that for all n,

∣

∣

∣

1

n

n−1
∑

k=0

ϕN (qNi (
k

N
), µN (

k

N
), Z(k)) −

1

n

n−1
∑

k=0

ϕ(qNi (0), µN (0), Z(k))
∣

∣

∣

≤ δN+
∣

∣

∣

1

n

n−1
∑

k=0

ϕ(qNi (
k

N
), µN (

k

N
), Z(k)) −

1

n

n−1
∑

k=0

ϕ(qi(0), µ
N (0), Z(k))

∣

∣

∣

≤ δN + 2‖ϕ‖∞(1 −
n−1
∏

k=0

(1 − 1AN
i (k))) + C sup

0≤t≤ n
N

‖µN (t) − µN (0)‖

≤ δN + 2‖ϕ‖∞

n−1
∑

k=0

1AN
i (k) + C sup

0≤t≤ n
N

‖µN (t) − µN (0)‖.

It is easy to compute this last expression. First,

E|
n−1
∑

k=0

1AN
i (k)| =

n

N
.

Secondly, by Lemma 4, the total variation distance between µN (t) and µN (0) is bounded:
E[sup0≤t≤n/N ‖µN (t) − µN (0)‖] ≤ n/N. Since nN/N goes to 0 as N goes large, the lemma
follows. 2

The next Lemma is the cornerstone of the proof Lemma 2: it states that the process ZN

averages at rate n−1
N , faster than N−1.
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Lemma 6 Assume that ZN (0) = z0. Then the following uniform convergence in (µN (0), ψ) ∈
P(X ) × L∞(Z) holds:

lim
N→∞

sup
µN (0),‖ψ‖∞≤1

E
∣

∣

∣

1

nN

nN−1
∑

k=0

ψ(ZN (k)) − πµN (0)(ψ)
∣

∣

∣
= 0.

Proof. The first step consists in coupling ZN with a Markov chain Z̃ with kernel KµN (0) on the
interval [0, nN ].

So consider a Markov chain Z̃ having kernel transition KµN (0) and starting at Z̃(0) =

ZN (0) = z0. The chain Z̃ is coupled with ZN by forcing (Z̃, ZN ) to make identical transitions
when they are in a common state Z̃(k) = ZN(k) = z1 with probability

∑

z∈Z

min
(

KN
µN ( k

N
)
(z1, z),KµN (0)(z1, z)

)

= 1 −
1

2

∑

z∈Z

∣

∣ KN
µN ( k

N
)
(z1, z) −KµN (0)(z1, z)|

∣

∣

≥ 1 −
κN
2

−
C

2
‖µN (

k

N
) − µN (0)‖,

(where in the last inequality we have used Assumption A4 and κN was defined in Equation
(20)). Consequently, if ZN [0, n] = (ZN (1), · · · , ZN (n)), we have,

P(ZN [0, n] 6= Z̃[0, n]) ≤
n

∑

k=1

P(ZN (k) 6= Z̃(k);ZN (k − 1) = Z̃(k − 1))

≤

n
∑

k=1

κN
2

+ E
C

2
‖µN (

k

N
) − µN (0)‖

≤
n

2

(

κN + CE sup
0≤t≤ n

N

‖µN (t) − µN (0)‖
)

.

We deduce that, by Lemma 4,

E
∣

∣

∣

1

nN

nN−1
∑

k=0

ψ(ZN (k)) −
1

nN

nN−1
∑

k=0

ψ(Z̃(k))
∣

∣

∣

≤ 2‖ψ‖∞P(ZN [0, nN ] 6= Z̃[0, nN ])

≤ nN‖ψ‖∞
(

κN + CE sup
0≤t≤

nN
N

‖µN (t) − µN (0)‖
)

≤ ‖ψ‖∞
(

nNκN + C
n2
N

N

)

For our particular choice of nN , we obtain, uniformly in µN (0) and ZN (0),

lim
N→∞

E
∣

∣

∣

1

nN

nN−1
∑

k=0

ψ(ZN (k)) −
1

nN

nN−1
∑

k=0

ψ(Z̃(k))
∣

∣

∣= 0. (22)

This last equation concludes the first step of the proof. The second step consists in proving
that uniformly in µN (0) and ψ ∈ L∞, ‖ψ‖∞ ≤ 1:

lim
N→∞

E
∣

∣

∣

1

nN

nN−1
∑

k=0

ψ(Z̃(k)) − πµN (0)(ψ)
∣

∣

∣
= 0. (23)
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Indeed Equations (22) and (23) implies the statement of the lemma. Now (23) follows from the
ergodicity of the Markov chains with kernel Kα, i.e. Assumption A5. Indeed,

E|
1

n

n−1
∑

k=0

ψ(Z̃(k)) − πµN (0)(ψ)| ≤
1

n

n−1
∑

k=0

E|ψ(Z̃(k)) − πµN (0)(ψ)|

≤ ‖ψ‖∞
1

n

n−1
∑

k=0

‖P kµN (0)(z0, ·) − πµN (0)‖.

By Assumption A5, supα∈P(X ) ‖P
k
α (z0, ·) − πα‖ converges to 0 as k tends to infinity. We thus

deduce (23). 2

Now, having proved these preliminary lemmas, we are ready to prove Lemma 2.
Proof of Lemma 2. By definition,

εf,Ni (T ) =
1

N

[NT ]−1
∑

k=0

∑

s∈S

GN,si f(k) −

∫ T

0
Gf(qNi (t), µN (t))dt. (24)

Since T is fixed, we may suppose without loss of generality that nN is chosen so that
[NT ]/nN ∈ N. We divide the interval [0, [NT ] − 1] into [NT ]/nN equal parts, we first prove

the convergence of a Riemann approximation of the integral term in the expression of εN,fi (T ).
Specifically we prove that there exists C such that:

E
∣

∣

∣

∫ T

0
Gf(qNi (t), µN (t))dt −

nN
N

[NT ]
nN

−1
∑

u=0

Gf(qNi (
unN
N

), µN (
unN
N

))
∣

∣

∣
≤ CT‖f‖∞

nN
N
. (25)

Indeed, we have:

∫ T

0
Gf(qNi (t), µN (t))dt =

[NT ]
nN

−1
∑

u=0

∫ (u+1)
nN
N

u
nN
N

Gf(qNi (t), µN (t))dt

+

∫ T

[NT ]
N

Gf(qNi (t), µN (t))dt

=
nN
N

[NT ]
nN

−1
∑

u=0

∫ u+1

u
Gf(qNi (

tnN
N

), µN (
tnN
N

)dt

+

∫ T

[NT ]
N

Gf(qNi (t), µN (t))dt.
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Since
∑

s∈S F s(q, α) = 1, the second term is upper bounded by 2‖f‖∞(T − [NT ]/N) ≤
2‖f‖∞/N . Note also that if t ∈ [u, u+ 1], arguing as in the proof of Lemma 5,

∣

∣

∣
Gf(qNi (

tnN
N

), µN (
tnN
N

) − Gf(qNi (
unN
N

), µN (
unN
N

)
∣

∣

∣

≤ 2‖f‖∞

(

nN
∑

k=0

1AN
i (unm+k)

+
∑

s∈S

|Fs(q
N
i (
unN
N

), µN (
tnN
N

) − Fs(q
N
i (
unN
N

), µN (
unN
N

)|
)

≤ 2‖f‖∞

(

nN
∑

k=0

1AN
i (unm+k) + C‖µN (

tnN
N

) − µN (
unN
N

)|
)

,

and by Lemma 4,

E
∣

∣

∣
Gf(qNi (

tnN
N

), µN (
tnN
N

) − Gf(qNi (
unN
N

), µN (
unN
N

)
∣

∣

∣
≤ C‖f‖∞

nN
N
,

(for a different constant C). We proceed the proof by decomposing the sum in (24) into parts
of length nN ,

1

N

[NT ]−1
∑

k=0

∑

s∈S

GN,si f(k) =
nN
N

[NT ]
nN

−1
∑

u=0

1

nN

nN−1
∑

k=0

∑

s∈S

GN,si f(unN + k).

By Assumptions A1-A2, we may apply the Lemma 5 to ϕ(x, α, z) =
∑

s∈S f
s(x)Fs(x, α, z)

and ϕN (x, α, z) =
∑

s∈S f
s(x)FNs (x, α, z), we obtain:

E
∣

∣

∣

1

N

[NT ]−1
∑

k=0

∑

s∈S

GN,si f(k)

−
nN
N

[NT ]
nN

−1
∑

u=0

1

nN

nN−1
∑

k=0

ϕ(qNi (
unN
N

), µN (
unN
N

), ZN (unN + k))
∣

∣

∣

≤ T‖f‖∞δN , (26)

for some sequence (δN ), N ∈ N, with limN δN = 0.
Let ψNu (z) = ϕ(qNi (unN

N ), µN (unN

N ), z)/‖f‖∞. By Equations (24), (25), (26), it remains to
prove that:

lim
N→∞

E
∣

∣

∣

nN
NT

[NT ]
nN

−1
∑

u=0

( 1

nN

nN−1
∑

k=0

ψNu (ZN (unN + k)) − πµN (
unN

N
)(ψ

N
u )

)∣

∣

∣= 0. (27)
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Using the notation of Assumption A6 and defining
TN (u) = min(τN (unN ), nN ), we write:

nN−1
∑

k=0

ψNu (ZN (unN + k)) =

TN (u)−1
∑

k=0

ψNu (ZN (unN + k))

+

nN+TN (u)−1
∑

k=TN (u)

ψNu (ZN (unN + k))

−

nN+TN (u)−1
∑

k=nN

ψNu (ZN (unN + k)). (28)

By Lemma 6 and the Markov property:

E|
1

nN

nN+TN (u)−1
∑

k=TN (u)

ψNu (ZN (unN + k)) − π
µN (

unN +TN (u)

N
)
| ≤ δN . (29)

for some sequence (δN ), N ∈ N, with limN δN = 0 not depending on u. Hence, using Equations
(28) and (29), we deduce that:

E
∣

∣

∣

1

nN

nN−1
∑

k=0

ψNu (ZN (unN + k)) − πµN (
unN

N
)(ψ

N
u )

∣

∣

∣

≤ 2‖ψ‖∞
ETN (u)

nN
+ δN + E‖π

µN (
unN +TN (u)

N
)
(ψ) − πµN (

unN
N

)(ψ)‖

≤ 4
ETN (u)

nN
+ 2δN + E sup

0≤t≤
nN
N

‖πµN (
unN

N
+t) − πµN (

unN
N

)‖,

where for the last term, we have used the fact that TN(u) ≤ nN and ‖ψ‖∞ ≤ 2 . Now by
Assumption A7 and Lemma 4,

E sup
0≤t≤

nN
N

‖πµN (
unN

N
+t) − πµN (

unN
N

)‖ ≤ C
nN
N
.

By Assumption A6, ETN (u) ≤ EτN (unN ) ≤ C. It follows that for some constant C

E
∣

∣

∣

1

nN

nN−1
∑

k=0

ψNu (ZN (unN + k)) − πµN (
unN

N
)(ψ

N
u )

∣

∣

∣≤ C(
1

nN
+ δN +

nN
N

).

Summing this last equation over all 0 ≤ u ≤ [NT ]/nN − 1, we obtain Equation (27). This
concludes the proof of Lemma 2. 2

3.2 Proof of Theorem 3

Assume that ((qNi (0))i, Z
N ) represents the system of N particles in stationary regime. Then

by symmetry, (qNi (0))i is exchangeable. Define ΠN = L(1/N
∑N

i=1 q
N
i ). By Assumption A8,

(ΠN (0), ZN (0)) is tight, so we may consider an accumulation point (Π∞(0), Z∞(0)). If z1 ∈ Z
is in the support of Z∞(0), (ΠN (0)) is also tight conditioned on the event ZN (0) = z1 for N
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large enough. So in the sequel of proof we will assume that ZN (0) = z1 for N large enough.
We cannot apply directly Theorem 1 since we do not know whether the subsequence of ΠN (0)
converges weakly toward a deterministic limit.

We now circumvent this difficulty. As in Step 1 in the proof of Theorem 1, we deduce from
Sznitman [25] Proposition 2.2, that ΠN is tight in P(P(D(R+,X ))). Let Q in P(D(R+,X ))
be in the support of Π∞, an accumulation point of ΠN . We can prove similarly that Lemma 3
still holds for Q.

By Step 3 of Theorem 1, the solution of the martingale problem is unique andQ solves it with
initial condition Q(0). The stationarity implies that ΠN (t) and ΠN (0) are equal. Note also that
outside a countable set D, the mapping X 7→ X(t) is continuous. So if t /∈ D, Π∞(t) = Π∞(0)
and we may write Π∞(0) = ∩t/∈DΠ∞(t). However, by Assumption A9, limt→+∞Q(t) = Qst.
Therefore, ∩t≥0Π

∞(t) = δQst , so Π∞(0) = δQst and Q(0) = Qst.
Theorem 3 is then a consequence of Theorem 1.

4 A uniform domination criterion

In this section we discuss the Assumptions A1-A9 made on the particle system. Assumptions
A1-A4 are natural and can be checked directly. However Assumptions A5-A7 are of a somewhat
different nature since they involve finer Markov chain theory concepts: A5 corresponds to
uniform rate of convergence for ergodicity, A6 to bounded mean overshoot, and A7 to the
continuity of the stationary distribution with respect to the transition kernel. For Assumptions
A5 and A7, a huge literature exists, see for example Fill [16] and the review paper Cho and
Meyer [9]. Assumption A6 is specific to our model. The additional assumptions A8 and A9
needed to derive the mean field limit in the stationary regime may be difficult to check: A8 is a
tightness assumption on the stationary measures and A9 is the global stability of a differential
equation.

In this section we present a new set of assumptions, based on uniform domination of the
transition kernel of the background process, that is provably sufficient to ensure that Assump-
tions A5-A8. The new assumptions are defined as follows:

A10 For all α ∈ P(X ) and N , the Markov chains with transition kernels KN
α and Kα are

irreducible and aperiodic.

A11 There exists a transition kernel K on Z which dominates the kernels KN
α . Specifically,

let � be a partial order on Z, with a minimal point z0. There exists K such that for all
N , z, α,

KN
α (z, ·) �st K(z, ·),

where �st is the stochastic order relation: P �st P
′ if for all z1 ∈ Z:

∑

z�z1
P (z) ≤

∑

z�z1
P ′(z).

A12 The kernel K is monotonic in the sense that for all z1 � z2,

K(z1, ·) �st K(z2, ·).

A13 If Z(t) denotes a Markov chain with transition kernel K and τ = inf{t ≥ 1 : Z(t) = z0},

Ez0τ
2 <∞,

where Ez0 denotes the expectation conditioned on the event Z(0) = z0.
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Lemma 7 Under Assumptions A10-A13, A5 holds. Moreover the same result holds for the
chains KN

α .

Proof. Let Z̃ be a Markov chain with transition kernel Kα (or KN
α ). Let τ̃ = inf{k ≥ 1 : Z̃(k) =

z0}. Since Kα(z, ·) �st K(z, ·) and K(z1, ·) �st K(z2, ·) for all z1 � z2, from Theorem 5.2.11
in [23] and Strassen’s Theorem, we deduce that there exists a Markov Chain Z with transition
kernel K such that, Z(0) = Z̃(0) and Z̃(t) � Z(t) for all t ≥ 0. In particular, this implies that
τ̃ ≤ τ , hence by assumption:

Ez0 τ̃ ≤ Ez0τ = C.

Since Kα is aperiodic and irreducible, we deduce immediately that Z̃ is an ergodic Markov
chain (see for example Theorem 13.0.1 in Meyn and Tweedie [22]). Uniformity is granted by
the fact that C does not depend on α (or N). 2

Lemma 8 Under Assumptions A10-A13, A6 holds.

Proof. Since KN
α (z, ·) �st K and K(z1, ·) �st K(z2, ·) for all z1 � z2, from Strassen’s Theorem,

there exists a Markov Chain Z with transition kernel K such that, Z(0) = ZN (0) = z1 and
ZN (k) � Z(k) for all k ≥ 0. Let

τ(t) = inf{k ≥ 0 : Z(t+ k) = z0}.

ZN (k) � Z(k) implies that τN (t) ≤ τ(t), indeed, z0 is the minimal element of � so that
Z(k) = z0 implies ZN (k) = z0. The Renewal Theorem and the assumption Ez0τ

2 <∞, implies
classically (see Feller [15]) uniformly in t.

Eτ(t) <∞,

indeed, limt→∞ Eτ(t) = Ez0τ(τ + 1)/2Ez0τ. 2

The next lemma establishes the continuity of the mapping α 7→ πα.

Lemma 9 Let ‖Kα −Kβ‖1 = supz∈Z ‖Kα(z, ·)−Kβ(z, ·)‖. Under Assumptions A10-A13, A7
holds:

‖πα − πβ‖ ≤
Ez0τ

2

Ez0τ
‖Kα −Kβ‖1. (30)

Proof. Let Zα be a Markov chain with transition kernel Kα with initial condition Zα(0) = z0.
We consider a Markov chain Zβ having kernel transition Kβ and starting at Zβ(0) = Zα(0) = z0.
The chain Zβ is coupled with Zα by forcing (Zα, Zβ) to make identical transitions when they
are in a common state Zα(k) = Zβ(k) = z1 with probability

∑

z∈Z

min
(

Kα(z1, z),Kβ(z1, z)
)

= 1 −
1

2

∑

z∈Z

∣

∣ Kα(z1, z) −Kβ(z1, z)
∣

∣

≥ 1 − ‖Kα −Kβ‖1,

Consequently, if Let Zα[0, n] = (Zα(0), · · · , Zα(n)), we have,

P(Zα[0, n] 6= Zβ[0, n]) ≤

n
∑

k=1

P(Zα(k) 6= Zβ(k);Zα(k − 1) = Zβ(k − 1))

≤
n

∑

k=1

‖Kα −Kβ‖1

≤ n‖Kα −Kβ‖1, (31)
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Now, since Kα(z, ·) �st K (resp. Kβ(z, ·) �st K) and K(z1, ·) �st K(z2, ·) for all z1 � z2,
from Strassen’s Theorem, there exists a Markov Chain Z with transition kernel K such that,
Z(0) = z0, Zα(k) � Z(k) for all k ≥ 0 (resp. Zβ(k) � Z(k)). If τ = inf{k ≥ 1 : Z(k) = z0},
since Zα(τ) = Zβ(τ) = z0, we have:

πα(z) =
Ez0

∑τ
k=1 1Zα(k)=z

Ez0τ
,

and respectively for β. Hence:

‖πα − πβ‖ =
1

2

∑

z

|πα(z) − πβ(z)|

≤
1

2Ez0τ
Ez0

τ
∑

k=1

∑

z

|1Zα(k)=z − 1Zβ(k)=z|

≤
1

Ez0τ
Ez0

τ
∑

k=1

1Zα(k)6=Zβ(k)

≤
1

Ez0τ
Ez0τ1Zα[0,τ ] 6=Zβ[0,τ ].

Then we may now use (31) to n = τ (indeed the bound n‖Kα −Kβ‖1 does not depend of the
actual states visited by the chains). We thus obtain (30). 2

5 Application to random multi-access protocols

We now apply the previous analytical results to model communication networks where N users
compete for the use of a common resource, a channel, to transmit data packets. We assume
that users are saturated in the sense that they always have packets to transmit. They interact
through interference: if two interfering users attempt to use the channel simultaneously, there
is a collision, none of the transmissions is successful and the corresponding packets need to be
retransmitted.

Users are assumed to share the channel in a distributed manner, meaning that they do not
know when the other users may attempt to use the channel, and actually do not know that they
have to share the channel with some other interfering users. This distributed architecture has
played a very crucial role in the development of Local Area Networks, and has then allowed the
rapid growth of the Internet. Indeed, this simplicity has ensured the scalability of networks,
meaning that a new user can join the network without the need of explicitly advertising his
presence. Today this distributed architecture is used in all wired and wireless LANs.

To comply with this architecture, each user has to decide when to attempt to use the
channel independently of the behavior of other users. Various random multi-access algorithms
were developed to achieve this. The first was Abramson’s Aloha algorithm [3]. More recent
algorithms are used in the IEEE802.3 Ethernet-based wired LANs [1] and in the IEEE802.11-
based wireless LANs [2]. In these systems, time is divided into slots, whose duration will be
taken as the unit of time in the following. For simplicity, the durations of transmissions of
all packets are geometrically distributed with average equal to L slots. This assumption is
not crucial, but simplifies the exposition of our theoretical model. Similarly the durations of
collisions are geometrically distributed with average equal to Lc slots. The duration of collisions
may be much smaller than that of successful transmissions. This is for example the case when
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an explicit signaling procedure allows users to determine before the end of the transmission
whether the latter will be successful or not.

Usual multi-access protocols are based on back-off algorithms: when a user has a packet to
transmit, it randomly chooses a back-off timer expressed in slots. The back-off timer is then
decremented at the end of each slot when the user observes an idle channel, until the back-off
timer reaches 0, at which time, the user attempts to send the packet. To simplify the notation,
we assume that all timers are geometrically distributed, so that we can represent the state
of a user by the probability it attempts to use the channel at the end of an idle slot. This
probability p takes values in an at most countable set B, and evolves as follows. In case of
successful transmission, it becomes S(p), and in case of collision C(p), where S : B → B (resp.
C : B → B) is an increasing (resp. decreasing) function. In the following we denote by p0 the
supremum of B.

The performance of networks where users run random back-off algorithms is largely un-
known. This is due to the fact that the inherent interactions between users have proven to be
extremely difficult to analyze. A very popular approach to circumvent this difficulty consists in
decoupling the users, i.e., assuming that the (re)-transmission processes of the various users are
mutually independent. This approach has been used by Bianchi [6] to capture the performance
of wireless LANs with full interaction, i.e., where all users interfere with each other. In the
remainder of this section we aim at justifying this approach theoretically and at explaining how
to extend it to the case of networks with partial interaction, i.e., where users do not interfere
with all the other users. To do so, we will apply the mean field analysis derived in the first
part of the paper. In case of full interaction, the network can be modeled as a simple system of
particles with no randomly varying environment [8]. However, to analyze a network with partial
interactions, the introduction of this varying environment is necessary. As we will observe, the
environment is going to represent the spatial macroscopic state of the network and have similar
dynamics as those of loss networks analyzed by Kelly [21].

The remainder of this section is organized as follows. We first classify various types of
random multi-access algorithms. We then present the network model and the performance
metrics we are interested in. We give the performance of networks where users run non-adaptive
multi-access algorithms. To analyze these networks, we do not need to represent the system
as a particle system. However this analysis is useful to build and understand the behavior
of the randomly varying environment, which will be useful in the performance evaluation of
networks where users run adaptive multi-access algorithms. Finally we give a numerical example
illustrating the problem of fairness arising in networks with partial interactions.

5.1 Random multi-access algorithms

Random multi-access algorithms are usually categorized according to their ability to adapt to
the number of sources competing for the use of the channel.

• Non-adaptive algorithms. The first random multi-access algorithm, Aloha, was introduced
by Abramson [3]. It is a non-adaptive algorithm where basically, each user transmits with
a constant probability. In other words, in the above model, S and C are identical and
constant functions. The problem with such an algorithm is that it does not adapt to the
population of users, and as the latter grows large, the network throughput decreases and
ultimately reaches 0.

• Adaptive algorithms. Adaptive random algorithms are more suited to the case where the
environment of a user may change, which is basically always the case in practical networks.
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These algorithms are designed so that a user can discover its environment, i.e., the number
of active users competing for the use of its channel. In fact, all implemented multi-
access algorithms are adaptive. They are often based on the so-called exponential back-off
algorithm, where the transmission probability becomes p0 after a successful transmission
and divided by a factor 2 in case of collision: S(p) = p0 and C(p) = p/2. In that case,
B = {p02

−n, n ∈ N}. The Ethernet (in wired LANs) and the IEEE802.11 DCF (in wireless
LANs) protocols implement this algorithm.

5.2 Interference model and performance metrics

5.2.1 Interference model

The N users interact through interference depending on their geographical locations. The
interference model is kept simple here: we assume that no transmission initiated by user i can
be successful if one of the interfering users is transmitting at the same time (this model is
often referred to as the exclusion model in the literature). Without loss of generality, users are
classified according to their interference properties, i.e., two users belong to the same class if
they interfere with (resp. are interfered with and by) the same set of users. Denote by C the
set of user classes, and by µc the proportion of users of class c. i ∈ c denotes the fact that user
i is of class c. Interference between classes is characterized by the matrix A such that Acd = 1
if class-c users interfere class-d links, and Acd = 0 otherwise. Note that the matrix A is not
necessarily symmetric as illustrated in example 2 below.

The above model is very general. It may be used to model mesh or ad-hoc networks.
However, it may also be very useful to represent wireless LANs with access points.

Example 1: Networks with access points and overlapping cells.
Consider the uplink of a wireless LANs with two access points (APs) sharing the same channel
(which means that transmissions go from users to the access points and users attach to different
access points). The network is divided into 3 geographical zones: Zones 1 and 3 where users
can only transmit to a single AP and do not interfere with each other; Zone 2 where users
may transmit to both APs and interfere any other transmission. The network is illustrated in
Figure 1(a). Links are from users to the APs. The class of a link is just the zone where the
corresponding user is located. The network is clearly symmetric here.

Example 2: A simple asymmetric mesh network.
Multi-hop wireless networks are naturally asymmetric. An example is presented in Figure 1(b).
Here a user is identified by the corresponding link, i.e., the corresponding transmitter and
receiver. As illustrated, the receiver of link 1 is in the range of the transmitter of link 3 so link
3 interferes with link 1. However, the receiver of link 3 is not in the range of the transmitter of
link 1, i.e., link 1 does not interfere with link 3.

In the following, we restrict our attention to symmetric networks although the analysis can
be readily generalized to the case of asymmetric networks. We denote by Vc = {d ∈ C : Acd = 1}
the set of classes of links interfering with class-c links.

5.2.2 Performance metrics

The performance of the system is measured in terms of the long-term throughputs realized by
the various users. The aim of our analysis is to quantify these throughputs. Since users of the
same class experience the same performance, we will only compute the global throughput of
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AP1 AP2

Zone 1 Zone 2 Zone 3

(a) (b)

link 1 link 2

link 3

link 4

Figure 1: (a) A symmetric cellular network, two overlapping cells; (b) An asymmetric multi-hop
network.

users of the different classes. We denote by γc the throughput of class-c links. It is by definition
the proportion of time users of class c transmit successfully.

The system considered here may have natural spatial heterogeneity as some users may suffer
interference from more users than others. This may create substantial unfairness in terms of
user throughput. We will then be interested in quantifying the basic trade-off between the total
network throughput and fairness realized by the random access algorithms considered.

5.3 Performance analysis of non-adaptive algorithms

In this section, we analyze the performance of networks under a non-adaptive multi-access
algorithm. The analysis is simple since the system can be modeled as a Kelly loss network
[20, 21] for which the stationary distribution is explicit. Kelly’s model has been recently revisited
by Durvy-Thiran [13] and applied in the context of wireless networks with partial interaction.
In the following, we basically quote the results of [13], but give a different presentation that
will be useful when evaluating the performance of adaptive algorithms. The user i attempts
to use the channel at the end of an empty slot with constant probability pi. To simplify, we
assume that the average durations of transmission and collisions are identical (L = Lc); this
assumption can be readily removed.

To partially capture the network dynamics, we define a process Z = {Z(k), k ≥ 0} repre-
senting the classes for which there exists at least one transmitting user during slot k: Z(k) ∈
Z = {0, 1}|C|, where Zc(k) = 0 if and only if there is no transmitting user of class c. Note that
if d ∈ Vc and Zc(k) = 1 = Zd(k), there is necessarily a collision between users of classes c, d.
Given that Zc(k) = 1, and that for all d ∈ Vc, Zd(k) = 0, there is either a successful transmis-
sion or a collision involving users of class c only. We also introduce the clear-to-send functions
Cc as follows. If Z(k) = z, a class-c link is clear to send at the end of slot k if Cc(z) = 1 where
Cc(z) = 1 if zd = 0 for d ∈ Vc, otherwise Cc(z) = 0.

The evolution of Z is driven by a process describing the number of clients in a certain
loss network. The loss network considered is composed of a set R of routes, where a route
r can be any set of consecutive classes. Two classes c, d are said to be consecutive if the
corresponding users interfere, i.e., Acd = 1. We also introduce the process n = {n(k), k ≥ 0},
where n(k) = (nr(k), r ∈ R) and nr(k) is the number of clients on route r during slot k. This
number can be 0 or 1, and the possible states of the loss network are included in

Y = {n : ∀c ∈ C,
∑

r:c∈r

nr ≤ 1}.
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The relationship between the processes Z and n is that for all c ∈ C, Zc(k) =
∑

r:c∈r nr(k).
More precisely, for all z there exists a unique corresponding state nz for the process n: for c ∈ C,
if zc = 1, then nzr = 1 if r denotes the largest set of consecutive classes containing c. Recall
that we assume that the durations of the transmissions and of the collisions are geometrically
distributed. Then the process n is a Markov chain with the following transition rates. Assume
the network is in state n (or equivalently that the process Z is in state z):

• Arrivals: a connection on route r is generated with probability λr at time k if for all c ∈ r
and all d ∈ Vc,

∑

r:d∈r nr(k) = 0 (or equivalently if Cc(z) = 1), where:

λr =
∏

c∈r

(1 −
∏

i∈c

(1 − pi)). (32)

• Departures: a connection on route r leaves the network with probability 1/L at the end
of each slot.

As a consequence, the process n is reversible [20], and its stationary distribution depends on the
distributions of the durations of transmissions/collisions. This insensitivity allows us to relax
the assumptions that these durations are geometrically distributed. The respective stationary
distributions of processes n and Z are given by:

ξ(n) =

∏

r∈R(λrL)nr

∑

m∈Y

∏

r∈R(λrL)mr
, π(z) = ξ(nz).

From the latter distribution, we can deduce the mean throughput γc obtained by users of
class c. Consider the point process of returns to the set A = {z : Cc(z) = 1}. Let T1 denote
the first return time after time zero. By the cycle formula (see (1.3.2) in [5]) we may express
the steady state probability of a user in c successfully transmitting a packet by the mean time
spent in the transmission state per cycle divided by the mean cycle length. The expectation is
calculated with respect to the Palm measure of the point process of returns to A but in this
Markovian case this just means starting on A with probability πA which is π renormalized to
be a probability on A.

A user in c can only go into a successful transmission state once per cycle; i.e. no other user
in c transmits and other users in Vc are either blocked or remain silent. Hence the mean time
per cycle spent in a transmission state is

∑

z∈A π
A(z)Lg(z) where

g(z) =
∑

i∈c

pi
∏

j∈c,j 6=i

(1 − pj)
∏

d∈Vc,d6=c

(Cd(z)(
∏

j∈d

(1 − pj) − 1) + 1).

Moreover,
∑

z∈A π
A(z)Ez [T1] = 1

π(A) ; i.e. the intensity of the point process of visits to A.
Finally the throughput is given by:

γc =
∑

z:Cc(z)=1

π(z)L





∑

i∈c

pi
1 − pi

∏

d∈Vc



Cd(z)(
∏

j∈d

(1 − pj) − 1) + 1







 . (33)

5.4 Performance analysis of adaptive algorithms

We now extend the results to networks where users run adaptive multi-access algorithm. We
analyze the system at the beginning of each slot. Denote by pNi (k)/N the probability user
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i becomes active at the end of the k-th slot, if idle (note that we already renormalized this
probability by 1/N to be able to conduct the asymptotic analysis when N grows large). For
all i, k,N , pNi (k) ∈ B. For simplicity, we assume L = Lc (this assumption can be relaxed by
extending the state space of the process ZN ).

5.4.1 Model Analysis

We first show how to model the network as a set of interacting particles as described in Section
2.

• The particles: the i-th user corresponds to the i-th particle with state describing the class
of the user and the transmission probability at the end of the next idle slot XN

i (k) =
(ci, p

N
i (k)) ∈ X = C × B.

• The background process: it represents the classes for which there exists at least one active
user: ZN (k) ∈ Z = {0, 1}|C|, where ZNc (k) = 0 if and only if there is no active user of
class c. As in case of non-adaptive multi-access algorithms (see Section 5.3), we introduce
the loss network process nN(k), and the clear to send functions Cc.

Particle transitions We first compute the transition probabilities for the various particles.
The set S of possible transitions is composed by two functions, the first one representing a
successful transmission p 7→ S(p) and the other one collisions p 7→ C(p). Note that the class of
a particle / user does not change. Let νNc (k) = 1

N

∑N
i=1 δpN

i (k)1c(i)=c and νN (k) = (νNc (k))c∈C .
Assume that at some slot k, the system is in state

((cNi (k), pNi (k))i=1,...N , ν
N (k), ZN (k))) = ((ci, pi)i=1,...,N , α, z).

A class-c user i may have a transition at the end of slot k only if Cc(z) = 1. In this case it can
either initiate a successful transmission or experience a collision. If Cc(z) = 1, the event that
none of the users in c transmits at the end of slot k is given by DN

c =
∏

i∈c 1(NUi>pi), where
the Ui’s are i.i.d. r.v. uniformly distributed on [0, 1]. The event that user i ∈ c accesses the
channel with success at the end of slot k is given by the indicator:

1NUi≤pi
Cc(z)

∏

j∈c,j 6=i

(

1NUj>pj

)

∏

d∈Vc,d6=c

(

1Cd(z)=1D
N
d + 1Cd(z)=0

)

.

Averaging the above quantity gives the transition probability FNS ((c, pi), α, z)/N corresponding
to a successful transmission. For all α ∈ P(B) and all f B-valued function, define 〈f, α〉 =
∑

p f(p)α(p). Moreover let αc denote the restriction of α to users of class c. Let I denote the
identity function. One can readily see that we have:

FNS ((c, pi), α, z) =
pi

1 − pi/N
Cc(z)

∏

d∈Vc

(

Cd(z)(e
〈N log(1− I

N
),αd〉 − 1) + 1

)

(34)

Similarly, the event that user i ∈ c experiences a collision at the end of slot k is given by
the indicator:

1NUi≤pi
Cc(z)



1 −
∏

j∈c,j 6=i

(

1NUj>pj

)

∏

d∈Vc,d6=c

(

1Cd(z)=1D
N
d + 1Cd(z)=0

)



 ,
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and the transition probability FNC ((c, pi), α, z)/N corresponding to a collision reads:

FNC ((c, pi), α, z) = piCc(z)



1 −
1

1 − pi/N

∏

d∈Vc

(

Cd(z)(e
〈N log(1− I

N
),αd〉 − 1) + 1

)



 . (35)

In order to fit into the scheme to the particle system of Section 2, we need to introduce a
virtual transition from (c, p) to (c, p) with transition rate FN∅ ((c, pi), α, z) = 1− piCc(z). With
this virtual transition the sum of the transition rates sums to 1. Since N log(1−x/N) converges
to −x, we obtain the following expressions for the asymptotic transition rates, F∅((c, pi), α, z) =
1 − piCc(z),

FS((c, pi), α, z) = piCc(z)
∏

d∈Vc

(

Cd(z)(e
−〈I,αd〉 − 1) + 1

)

, (36)

FC((c, pi), α, z) = piCc(z)



1 −
∏

d∈Vc

(

Cd(z)(e
−〈I,αd〉 − 1) + 1

)



 . (37)

The convergence of FNS (resp. FNC ) to Fs (resp. FC)is uniform in α and z, so that Assumption
A1 is satisfied.It is also easy to check that the functions FS and FC are uniformly Lipschitz,
which ensures Assumption A2.

Transitions of the background process The kernel of process ZN is determined by that
of the process nN . The latter is then obtained precisely as in Section 5.3. Assume that the
system is in state ((ci, pi)i=1,...N , α, z). An arrival on route r may occur only if Cd(z) = 1, for
all d ∈ Vc, in which case it occurs with probability:

λNr (α, z) =
∏

c∈r

Cc(z)(1 −
∏

i∈c

(1 −
pi
N

)) =
∏

c∈r

Cc(z)(1 − e〈N log(1− I
N

),αc〉).

A connection on route r leaves the network with probability 1/L at the end of each slot. The
limit kernel of ZN is obtained considering the limit kernel of nN , defined as follows. The limit
arrival rate on route r is:

λr(α, z) =
∏

c∈r

Cc(z)(1 − e−〈I,αc〉).

The Assumptions A3 and A4 can then be easily verified.

Mean field asymptotics We now verify that Assumptions A10-A13 are satisfied, implying
that Assumptions A5-A7 also hold. A10 is straightforward. Now let us build a transition kernel
K, corresponding to a process Z with values in Z = {0, 1}|C|. When equal to 0, a component
of Z almost surely becomes 1 at the next slot, and whatever the state of the system is. The
transition probabilities from 1 to 0 of the various components are those corresponding to the
kernel KN

α . The kernel K then corresponds to a system where there are always users of each
class attempting to use the channel at each slot. One can easily verify that Assumption A11-
A13 are satisfied for this kernel K, for the usual partial order � on Z and for z0 = 0. For
instance, A13 holds because there is a positive probability that all the components of Z jump to
zero simultaneously; i.e. the probability of jumping to z0 is bounded away from zero uniformly
over all states. The return time to z0 is therefore exponential and consequentially has a finite
second moment.
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We rescale time and define qNi (t) = pNi ([Nt]). Since the set of transitions is finite, the
tightness of L(qN1 (·)) follows easily from Theorem 7.2 in Ethier-Kurtz [14] p 128. (see the
comment after Theorem 1). It follows that Theorem 1 applies. Assume that the class of the
particle i is a r.v. fixed at the time 0 such that the vector (c1, · · · , cN ) is an exchangeable
random vector (for example the ci’s may be i.i.d. and equal to c with probability µc). Theorem
1 asserts that as N → ∞, the qNi ’s become independent and evolve according to a measure
Q = (Q(t))t∈R+ .

5.4.2 Stationary throughputs

Assume that Assumptions A8-A9 hold, so that Theorem 3 applies. These assumptions will be
partly justified below for the case of the exponential back-off algorithm. We are interested in
deriving the stationary throughputs achieved by users of various classes. To do so, we derive the
stationary distribution Qst and πQst of the particles and the background process. To simplify
the notation we write Qst = Q and πQ = π. Also denote Qpc = Q({c, p}) the stationary
proportion of users of class c transmitting with probability p.

Following the same reasoning leading to (33) in Section 5.3, the total throughput of the
users of class c is

γc =
∑

z:Cc(z)=1

π(z)Lρc
∏

d∈Vc

(

Cd(z)(e
−ρd − 1) + 1

)

, (38)

where
ρc =

∑

p∈B

pQpc , (39)

which can be interpreted as the probability that a user of class c attempts to use the channel at
the end of an empty slot. We now evaluate Q and π. Note that π depends on Q through the ρc’s
only, because the limit kernel of process n or Z involves terms like λr(Q, z) =

∏

c∈r Cc(z)(1 −
e−ρc). π is given by: for all z ∈ Z,

π(z) = π(0)Lr(z)
∏

c∈C

(1 − e−ρc)zc , (40)

where r(z) denotes the number of active routes for the loss process n in state nz.
Now define Gc, Hc and Ic as follows:

Gc =
∑

z

π(z)Cc(z)
∏

d∈Vc

(

Cd(z)(e
−ρd − 1) + 1

)

, (41)

Hc =
∑

z

π(z)Cc(z)



1 −
∏

d∈Vc

(

Cd(z)(e
−ρd − 1) + 1

)



 , (42)

Ic = Gc +Hc =
∑

z

π(z)Cc(z). (43)

Gc,HC , Ic depend on Q through the ρc’s only. We have for all c, p: pGc = FS((c, p), Q),
pHc = FC((p, c), Q). The marginals Qpc satisfy the balance equations (5), i.e., for all c, p,

Gc





∑

p′∈B:S(p′)=p

p′Qp
′

c − pQpc



 +Hc





∑

p′∈B:C(p′)=p

p′Qp
′

c − pQpc



 = 0. (44)
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They also satisfy:

∀c ∈ C,
∑

p∈B

Qpc = µc. (45)

Summarizing the above analysis, we have:

Theorem 4 The stationary distribution Q is characterized by the set of equations (39), (40),
(41), (42), (44), (45).

5.4.3 The exponential back-off algorithm

We now examine the specific case of the exponential back-off algorithm. We first justify As-
sumption A8.

Lemma 10 In case of the exponential back-off algorithm, there exists a p∗ > 0, such that for
any 0 < p0 < p∗, the Markov process (XN

i (k), ZN (k))k∈N is positive recurrent for all N and the
family of stationary distributions Lst(X

N
1 (0)) is tight.

Deriving a tight bound for p∗ would involve technical details which are beyond the scope
of this paper. We will only sketch the main idea and prove p∗ > 0. Along the proof of Lemma
10, we may check that the statement of Lemma 10 holds for p∗ = ln 2

Lµ , where µ = maxc∈C µc
and µc =

∑

d∈Vc
µd is the mean proportion of particles which are in interaction with particles

of class c.
Proof. To prove the recurrence we introduce a fictive system which stochastically bounds pN1 (k).

In the fictive system, the states of the particles i ≥ 2 are independent, a particle i ≥ 2 has
two states: active or inactive. If the particle i ≥ 2, is active, it remains active for the next
slot with probability 1 − 1/L, if it is inactive, it becomes active with probability p0/N . The
stationary probability that the particle i is active is L/(L+N/p0) and the stationary probability
that at least one is active is aN = 1− (1−L/(L+N/p0))

N−1 which converges to a = 1− e−Lp0 .
The particle 1 tries to become active at slot k with probability pN1 (k)/N . If it remains

inactive, pN1 (k) = pN1 (k + 1). If it is active and if another particle is also active, then the
particle 1 encounters a collision and pN1 (k + 1) = pN1 (k)/2. Otherwise pN1 (k + 1) = p0.

Clearly, this virtual system is stochastically less than or equal to pN1 (k) in the exponential
back-off case.

Let bN (k) = p0/p
N
1 (k), bN (k) ∈ {2n}n∈N, the lemma will follow if we prove that for p0 small

enough,
sup
N,k

E[bN (k) | bN (0) = 1] <∞. (46)

In the remaining part of the proof, using elements of queueing theory, we justify (46).
We first analyze the sequence of slots such that none of the particles i ≥ 2 is active. If the

particle i ≥ 2 is active at time k, let li(k) be the number of slots the particle remains active.
li(k) is a geometric distribution with parameter 1/L. Now, let

WN (k) = max
2≤i≤N

1(i active)li(k).

If WN (k) = 0 none of the particles i ≥ 2 is active at time k. WN satisfies the recursion:

WN(k + 1) = max
(

WN (k) − 1, max
2≤i≤N

1(i active at k + 1, inactive at k)li(k + 1)
)

.
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WN is thus the workload in a G/G/∞ queue with inter-arrival time 1 and service time require-
ment σN (k+1) = maxi≥2 1(i active at k + 1, inactive at k)li(k+1). Independently of the past,
σN (k + 1) is easily bounded stochastically; indeed, let 0 < s < lnL,

Eesσ
N (k+1) ≤ 1 +

N
∑

i=2

E1(i active at k + 1, inactive at k)esli(k+1)

≤ 1 + (N − 1)
p0

N
Eesli(k+1)

≤ 1 + p0
es/L

1 − (1/L)es

Note that this last bound is uniform in N and k. Let θ0 = 0, θn+1 = inf{k > θn : WN (k) = 0},
and ΘN = {θn}n∈N. Classically, there exists C > 0 such that for all N :

E[eC(θn+1−θn) |WN (0) = 0] <∞,

see for example Appendix A.4 in [4]. By the renewal theorem, we deduce, uniformly in N ,
limk→∞ P(k ∈ ΘN ) = 1

Eθ1
= 1−aN . Moreover, the monotonicity of WN (k) with respect to the

initial condition implies easily that P(k ∈ ΘN |WN (0) = 0) ≥ limk→∞ P(k ∈ ΘN ) = 1 − aN .
Since 1 − aN converges to e−Lp0, it follows that

lim
p0→0

inf
k,N

P(k ∈ ΘN |WN (0) = 0) = 1. (47)

We now turn back to the process bN and prove (46). Let U(k) be a sequence of independent
and uniformly distributed variables on [0, 1]. We may write

bN (k + 1) = bN (k)1U(k+1)>
p0

bN (k)N

+ 2bN (k)1U(k+1)≤
p0

bN (k)N

1k/∈ΘN + 1U(k+1)≤
p0

bN (k)N

1k∈ΘN

In particular

bN (k + 1)1bN (k)≥2 ≤ bN (k)1U(k+1)>
p0

bN (k)N
+ 2bN (k)1U(k+1)≤

p0
bN (k)N

1k/∈ΘN + 1U(k+1)≤
p0
2N

1k∈ΘN

Taking expectation, we obtain

EbN (k + 1)1bN (k)≥2 ≤ EbN (k) −
p0

N
+ 2

p0

N
P(k /∈ ΘN) +

p0

2N
P(k ∈ ΘN )

≤ EbN (k) −
p0

N
(
3

2
P(k ∈ ΘN ) − 1).

Similarly, since bN (k + 1)1bN (k)=1 ≤ 2, we have:

EbN (k + 1) ≤ max
(

2,EbN (k) −
p0

N
(
3

2
P(k ∈ ΘN ) − 1)

)

.

From (47), for p0 small enough, for all N and k ≥ 0, P(k ∈ ΘN ) > 2/3. We deduce by recursion
that E[bN (k)|bN (0) = 1] ≤ 2 and (46) holds. 2

Now Lemma 10 implies that Assumption A8 holds. It remains to check Assumption A9.
We only provide a characterization of the equilibrium point of the dynamical system (4). We
leave the study of its global stability for future work.
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So let us assume that an equilibrium point exists, and denote by Q this point. Further
define Qnc = Q({c, p02

−n}) for all n ∈ N. Then we have:

Qn−1
c FC((p02

−n+1, c), Q) = Qnc (F S((p02
−n, c), Q) + FC((p02

−n, c), Q)),

or equivalently
2Qn−1

c Hc = Qnc Ic, (48)

and
∑

n≥0

QncFS((p02
−n, c), Q) = Q0

cFC((p0, c), Q)),

or equivalently
ρcGc = Q0

cHc. (49)

Solving (48) and (49) leads to a solution of the form Qnc = βc(2Hc/Ic)
n. Since

∑

nQ
n
c = µc,

we have βc = Q0
c = µc(1−2Hc/Ic) = µc(Gc−Hc)/Ic. We require that Hc < Gc or equivalently,

Gc/Ic > 1/2. Gc/Ic may be interpreted as the probability in steady state that no user of class
in Vc tries to access the channel given that no user of class in Vc are currently sending. Next,
ρc =

∑

n≥0 p02
−nQnc , which implies that:

ρc = p0µc
Gc −Hc

Gc
. (50)

Now the following corollary summarizes the above analysis and then it characterizes the system
behavior in steady state and in case of exponential back-off algorithms.

Corollary 1 The stationary distribution Q is given by: for all c ∈ C,

Qnc = µc
Gc −Hc

Gc +Hc

(

2Hc

Gc +Hc

)n

,

where the G′
cs, Hs’s, and ρc’s are the unique solutions of the system of equations (40), (41),

(42), (50).

5.5 A numerical example

We now illustrate our analytical results on the simple network of Example 1. Here the state
space of the background process is Z = {0, 1}3 and its stationary distribution is given by:

π(100) = π0L(1 − e−ρ1), π(010) = π0L(1 − e−ρ2), π(001) = π0L(1 − e−ρ3),
π(110) = π0L(1 − e−ρ1)(1 − e−ρ2), π(101) = π0L

2(1 − e−ρ1)(1 − e−ρ3),
π(011) = π0L(1 − e−ρ2)(1 − e−ρ3), π(111) = π0L(1 − e−ρ1)(1 − e−ρ2)(1 − e−ρ3).

π0 = π(000) is the normalization constant. The terms Gc and Hc are:

G1 = π0e
−ρ1(e−ρ2 + 1 − e−ρ3), G2 = π0e

−ρ1e−ρ2e−ρ3 ,
H1 = π0((1 − e−ρ1e−ρ2) + (1 − e−ρ1)(1 − e−ρ3)), H2 = π0(1 − e−ρ1e−ρ2e−ρ3).

The terms G3, H3 are obtained by symmetry. Now solving the above equations together with
(50), we may compute the throughputs of the users of various classes. Applying (38):

γ1 = Lρ1e
−ρ1

(

π0e
−ρ2 + π(001)

)

,
γ2 = Lρ2e

−ρ2e−ρ1e−ρ3π0,
γ3 = Lρ3e

−ρ3
(

π0e
−ρ2 + π(100)

)

,
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In Figure 2, the throughputs of the various user classes are presented assuming that the propor-
tions of users of class 1 and 3 are identical, µ1 = µ3. On the left side we give the throughputs
as a function a the proportion of users of class 2 - Here the packet duration is fixed and equal to
L = 100 slots, which roughly corresponds to the case of packets of size 1000 bytes transmitted
in a IEEE802.11g-based network (this duration depends of course on the physical transmission
rate). The total network throughput decreases when the proportion of class-2 users increases,
which illustrates the loss of efficiency due to the network spatial heterogeneity. On the left side
of Figure 2, we assume a uniform user distribution among the 3 classes, µ1 = µ2 = µ3, and we
give the throughputs as a function of the packet duration L. First note that whatever the value
of L, the network is highly unfair: for example when L = 100 slots, the throughput of a user of
class 1 is almost 5 times greater than that of a user of class 2. This unfairness increases with
L and ultimately when L is very large, users of class 2 never access the channel successfully.
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Figure 2: Throughputs of users, (left) as a function of µ2, L = 100 slots - (right) as a function
of L, when µ1 = µ2 = µ3.
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