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Abstract—BitTorrent is one of the Internet’s most efficient
content distribution protocols. It is known to perform very
well over the wired Internet where end-to-end performance is
almost guaranteed. However, in wireless ad hoc networks, many
constraints appear as the scarcity of resources and their shared
nature, which make running BitTorrent in such an environment
with its default configuration not lead to best performances. To
these constraints it adds the fact that peers are both routers
and end-users and that TCP-performance drops seriously with
the number of hops. We show in this work that the neighbor
selection mechanism in BitTorrent plays an important role in
determining the performance of the protocol when deployed over
a wireless ad hoc network. It is no longer efficient to choose and
treat with peers independently of their location. A first solution
is to limit the scope of the neighborhood. In this case, TCP
connections are fast but there is no more diversity of pieces in
the network: pieces propagate in a unique direction from the
seed to distant peers. This prohibits peers from reciprocating
data and leads to low sharing ratios and suboptimal utilization
of network resources. To recover from these impairments, we
propose BitHoc, an enhancement to BitTorrent, which aims to
minimize the time to download the content and at the same
time to enforce cooperation and fairness among peers. BitHoc
considers a restricted neighborhood to reduce routing overhead
and to improve throughput, while establishing few connections
to remote peers to improve diversity of pieces. To support this,
BitHoc modifies the choking algorithm and adds a new piece
selection strategy. With the help of extensive NS-2 simulations, we
show that these enhancements to BitTorrent significantly improve
the file completion time while fully profiting from the incentives
implemented in BitTorrent to enforce fair sharing.

I. INTRODUCTION

Wireless ad hoc networks and P2P file sharing applications
are two emerging technologies based on the same paradigm:
the P2P paradigm. This paradigm aims to establish large scale
distributed services without the need for any infrastructure.
Within this paradigm, users have symmetric roles. The global
service is ensured thanks to their collaboration. In the case of a
wireless ad hoc network, the network is a set of wireless nodes
with no central administration or base station. Nodes in such a
network operate both as routers and hosts. Multi-hop routing
approaches are used to ensure connection between distant
nodes. For P2P file sharing applications, peers collaborate in
downloading data and multimedia content. Each peer shares
some of its upload capacity by serving other peers. The global
capacity of the system grows then exponentially with the
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number of peers1. Gnutella [8], Freenet [9] and BitTorrent [1]
are examples of P2P content sharing applications in the
Internet.

Both P2P file sharing applications and wireless ad hoc
networks are mature fields of research. They have been studied
heavily but separately in the literature. Only few works try to
study how they perform together (e.g., [14] [15] [16]). These
works focus on the content lookup problem in wireless ad hoc
networks without studying the efficiency of the content sharing
itself. Studying the performance of file sharing applications
over wireless ad hoc networks is challenging because of the
importance of both areas from user and operator perspectives,
and the diverse constraints imposed by the use of wireless
channels. Indeed, as nodes are both routers and end-users,
the routing overhead must be taken into consideration. Fur-
thermore, the performance of transport protocols such as TCP
drops seriously when multi-hop paths are used. That is why
current topology-unaware P2P file sharing applications are not
expected to perform well when deployed over wireless ad hoc
networks. Designing efficient file sharing solutions for such
networks is an important area of research.

In this work, we investigate how well a P2P file sharing
solution developed for the wired Internet performs over a
wireless ad hoc network. Our aim is to come up with a solution
that minimizes the content download time while at the same
time improving collaboration by enforcing fair sharing among
peers. As efficient and fair content sharing is targeted, we
choose to adapt BitTorrent [1] as a file sharing protocol given
its large usage and its known close to optimal performances
in the wired Internet [17]. When data is distributed using
BitTorrent, interested peers supply pieces of the data to other
peers, reducing the burden on any individual peer, providing
redundancy in the network, and reducing dependency on the
original seed. In addition, BitTorrent implements incentives
that encourage peers to collaborate in downloading the content.

This paper considers the particular case when every ad hoc
node is interested in downloading the content. One can see it as
an extreme case where the load is maximal and the impact of
the underlying topology is more pronounced. We aim at well
understanding this case and proposing an efficient solution for
it before moving into less loaded scenarios in future work.
The performance evaluation is done through extensive NS-2
simulations using regular modules for the ad hoc routing and

1This capacity remains constant with the classical client-server model.
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wireless medium and our implementation of BitTorrent in NS-
22.

Our main contributions in this work can be summarized
as follows. BitTorrent with its default configuration is topol-
ogy unaware. It establishes TCP connections with neighbors
independently of their location in the network. This choice
of neighbors can lead to slow TCP connections due to long
multi-hop paths and routing overhead. Sharing can also be bad
when using large pieces since complete pieces can not be sent
too far to be reused later by other peers. A first solution is to
limit the scope of the neighborhood. In this case, we noticed
shorter download times but sharing is bad since there is no
diversity of pieces in the network. The pieces of the shared
file propagate in a unique direction from the seed to the farthest
nodes. To recover from these impairments, we propose BitHoc,
an enhanced variant of BitTorrent tuned to ad hoc networks.
BitHoc considers a restricted neighborhood to diminish routing
overhead and to improve throughput, while establishing few
connections to remote peers to improve diversity of pieces.
To implement this, BitHoc modifies the choking algorithm
and adds a new piece selection strategy. With the help of
simulations, we show that these enhancements to BitTorrent
considerably improves the file completion time while fully
benefiting from the incentives implemented in BitTorrent to
enforce fair sharing. In a practical scenario where wired
and wireless networks are merged together, BitHoc can run
over wireless interfaces connecting to ad hoc networks while
regular BitTorrent runs over all other network interfaces.

Section II of this paper presents an overview of the state
of the art in deploying P2P solutions over wireless ad hoc
networks. Section III describes briefly the BitTorrent protocol.
The framework of the study is discussed in Section IV. Section
V shows the importance of the piece size in determining the
performance of BitTorrent. Section VI studies the impact of the
scope of the neighborhood. Section VII presents our solution
BitHoc. Section VIII summarizes the work and gives some
ideas on our future work.

II. STATE OF THE ART

In this section, we present an overview of the state of
the art of P2P file sharing applications and their different
implementations in wireless ad hoc networks.

1) P2P applications in the Internet: There are several
design approaches for the construction of P2P overlays over
the Internet. One can distinguish between structured and
non-structured overlays. This classification is done from the
standpoint of resources lookup. In non-structured overlays
like Gnutella [8], there is no control on the structure of the
overlay. Peers discover each other by flooding the network
and by learning from previous sessions. The P2P application
in this case is not conscious of the topological location of the
other peers. In case of structured overlays, an overlay routing
algorithm is introduced to locate the content in the network.
Several structured overlay networks have been proposed like

2Simulation code and scripts will be available in the public domain.

CAN [10], Chord [11], Pastry [13] and Tapestry [12]. All
of them use Distributed Hash Tables (DHT) in their routing
of lookup requests. Such tables allow the lookup to scale
logarithmically with the number of nodes in the overlay. Again
most of these structured overlays are topology independent. On
the other hand, there is BitTorrent [1] that does not concentrate
on the information lookup since it uses a centralized tracker
to discover neighbors. However, it concentrates on optimal
utilization of the network capacity when sharing the file
between the different interested peers. Since we are mainly
concerned in this work by the data transfer plane, we adopt
BitTorrent and we extend it to wireless ad hoc networks. More
details on BitTorrent are presented in Section III.

2) P2P applications in MANET: MANET stands for mobile
ad hoc networks. Both structured and non-structured overlays
have been implemented in MANET. Since nodes are both
end-users and routers, some cross-layer design approaches
have been introduced. These approaches suppose that P2P
applications operate both at the network layer and at the
application layer. One can divide the design space into four
subspaces:

• Non-structured and layered design: Oliviera and al. study
in their work [14] the performance of Gnutella deployed
over three ad hoc routing protocols DSR [3], AODV [4]
and DSDV [2]. Their results show that the ratio of deliv-
ered packets is lower than those of unicast applications
deployed over MANET. This is due to the fact that
Gnutella chooses neighbors independently of their loca-
tions. The overlay construction is topology independent.

• Non-structured and cross-layer design: The work done
by Klemm and al. in [15] proposes to integrate the peer
lookup mechanism of a P2P application like Gnutella
in the network layer and compares this design to the
layered design proposed by Oliviera and Al. They pro-
pose ORION that establishes connections on demand
through the routing mechanism. The cross-layer lookup
implemented by ORION is shown to provide higher
successful transfers ratio than in the layered scenario.

• Structured and layered design: A proximity-conscious
DHT (Pastry) has been deployed over the DSR routing
protocol in [16]. As it is a layered design, there is no
interaction between the DHT and the routing protocol.
This leads to an overhead in maintaining routes for both
the application layer and the network routing layer.

• Structured and cross-layer design: This design is named
Ekta by Das and al in [16]. The functionalities of the
Pastery DHT are integrated within the routing protocol.
The main idea is the mapping of the peer identifiers in
the same namespace than the IP addresses. Their results
show that Ekta is better than the layered design in terms
of number of successfully delivered packets.

3) Former studies on BitTorrent over wireless ad hoc net-
works: Several works tried to adapt BitTorrent to wireless
ad hoc networks. [18] and [19] deploy BitTorrent on the
top of such networks. They only focus on the tuning of the
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peer discovery phase without addressing the efficiency of the
content sharing itself. Michiardi and Urvoy-Keller in their
work [7] study the performance of a cooperative mechanism
to distribute content from one source to a potentially large
number of destinations. They propose to deploy BitTorrent
with a minor change allowing neighbor discovery and traffic
locality. This is done by selecting only near neighbors as
effective neighbors. The result is a decrease in the total
download time and energy consumption. Their work is relevant
to ours; however we go one step further by focusing not only
on the download time but also on the sharing among peers.
Our proposed solution BitHoc performs better in both regards.

III. BITTORRENT: A CONTENT DISTRIBUTION PROTOCOL

BitTorrent (see e.g., [1], [17]) is a scalable P2P content
distribution protocol. Each client shares some of its upload
bandwidth with other peers interested in the same content in
order to increase the global system capacity. Peers cooperating
to download the same content form a torrent. A peer discovers
other peers by contacting a central rendezvous node called
tracker. The latter stores IP addresses of all peers in the
torrent and maintains statistics on uploads and downloads. To
facilitate the replication of the content in the network and
to ensure multi-sourcing, a file is subdivided into a set of
pieces. Each piece is also subdivided into blocks. A peer which
has all pieces of the file is called a seed. When the peer is
downloading pieces, it is called a leecher.

Each peer maintains a peer list. Neighbors are those of
this list with whom the peer can open a TCP-connection
to exchange data and information. Only four simultaneous
outgoing active TCP connections are allowed by the protocol.
The corresponding neighbors are called effective neighbors.
They are selected according to the choking algorithm of
BitTorrent. This algorithm is executed periodically. Once the
choking period expires, a peer chooses to unchoke the 3
peers uploading to him at the highest rate. It is a best slot
unchoking. This strategy, called tit-for-tat, ensures reciprocity
and enforces collaboration among peers. Now to discover new
upload capacities, a peer chooses randomly a fourth peer to
unchoke. This unchoking slot is called optimistic slot. All
other neighbors are left choked. When unchoked, a peer selects
a piece to download using a specific piece selection strategy.
This strategy is called local rarest first. Indeed, each peer
maintains a list of pieces owned by all its neighbors. When
selecting a piece, a peer chooses the piece with the least
redundancy in its neighborhood. In case of equality, one of
the rarest pieces is chosen randomly. Rarest first is supposed
to increase the entropy of pieces in the network. Here are
some performance metrics of BitTorrent that we will use in
our study:

• Uij : Total bytes uploaded by peer i to peer j.
• Dij : Total bytes downloaded by peer i from peer j. (Uij =

Dji)
• Rij : Ratio of sharing between peer i and peer j.

Rij =
min(Uij , Dij)
max(Uij , Dij)

(1)

It is easy to verify that Rij = Rji .
• Ni: Number of neighbors j of peer i such that Uij 6= 0

or Dij 6= 0.
• Ri : Sharing ratio for node i.

Ri =
1
Ni

.
∑

j| Uij 6=0 or Dij 6=0

Rij (2)

• Fi: The finish time of peer i. It is the time by which peer
i receives all pieces of the file.

As we are studying BitTorrent over wireless ad hoc networks
where topology matters, we consider some additional perfor-
mance metrics related to topological positions of peers. The
file is supposed to exist at one seed S at the beginning of the
session. Our metrics quantify the quality of service perceived
by peers as a function of their relative positions with respect
to the seed.

• Fh: Average finish time of peers (or nodes) located at h
hops from seed S.

Fh =
1
nh

.
∑

i| H(i)=h

Fi (3)

where nh is the number of peers located at h hops from
seed S and H(i) a function that gives the number of hops
between any node i and seed S.

• Rh: Average sharing ratio of peers (or nodes) located at
h hops from seed S.

Rh =
1
nh

.
∑

i| H(i)=h

Ri (4)

IV. FRAMEWORK OF THE STUDY

This section is organized as follows. First, we discuss our
choice of implicating all ad hoc nodes in downloading the
content. Then, we describe preliminary changes we made
to BitTorrent to allow peer discovery and the exchange of
signaling over wireless ad hoc networks. After that, we discuss
the stack of protocols we use in our deployment of BitTorrent.
The next part gives an idea about the NS-2 module designed
for the study. Finally, we introduce our main scenario for the
utilization of BitTorrent over wireless ad hoc networks. The
results shown in the following sections are those of simulations
run over this scenario.

A. All nodes are peers

We consider the case study where all nodes are peers
interested in the same content. In addition, nodes run ad-hoc
routing and relay the packets of each other at the routing layer.
In this case study, the underlying topology has a big impact
on the performance of BitTorrent. Indeed, any piece sent over
a suboptimal route will cause resource consumption in all
intermediate nodes. When all nodes are peers, this will affect
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all peers located on these nodes by stealing bandwidth from
them without being able to profit from this transmission since
it happens at the routing layer. However, if intermediate nodes
are not peers interested in the same content, this suboptimal
piece transmission will have less impact on the torrent itself
since it does not directly steal bandwidth from peers. The
interaction between peer selection and routing overhead is
consequently of less importance. Add to this the fact that
when all nodes are peers, the traffic generated by the torrent
is maximal and an optimization is more needed.

B. Trackerless BitTorrent

Wireless ad hoc networks are infrastructureless. One can
not rely on a centralized tracker when applying BitTorrent
to such networks. So, we opt in our study for a trackerless
approach. Since the most important role of a tracker in the
Internet is to provide peers with the identifiers of other
peers, we need to introduce a peer discovery mechanism.
In our evaluation framework, to discover new peers, a peer
floods periodically the network with a HELLO message. This
message is transmitted to wireless neighbors with some initial
TTL to control the scope of the flood. Receiving a HELLO
message, a peer decrements the TTL and forwards it to its
wireless neighbors, and so on. The message is dropped and
not forwarded when its TTL reaches zero. After receiving a
HELLO message, a peer answers in unicast to its initial source
with a HELLO REPLY message containing its identity and the
list of pieces in its possession. This list is important for the
piece selection strategy. Clearly, the initial TTL value of the
HELLO message decides of the scope of the neighborhood to
discover.

C. Stack of protocols and packets exchanged between peers

In BitTorrent, peers exchange two types of packets: Data
packets and control packets. We choose in our NS-2 imple-
mentation to send data packets via TCP connections because
reliability and congestion control are needed when transporting
blocks of file. However, control packets as for peer discovery
and piece updates contain small and urgent information that
is better to transport using UDP. Here are the different control
packets exchanged between peers:

• HELLO: see IV-B.
• HELLO REPLY: see IV-B.
• UPDATE PIECE LIST: when a peer receives a new

piece, it sends an UPDATE PIECE LIST to all its P2P
neighbours.

• PIECE OFFER REQUEST: when a peer i unchokes a
peer j, it sends a PIECE OFFER REQUEST packet to j.
This packet contains the list of pieces that i has already
downloaded.

• PIECE OFFER REPLY: receiving a PIECE OFFER
REQUEST, a peer answers with a PIECE OFFER REPLY
packet. After applying the piece selection strategy, it
decides whether to accept or to reject the offer. A flag
included in the PIECE OFFER REPLY packet indicates
this decision (ACCEPT or REJECT). In the case the offer

is accepted, the peer indicates the number of the requested
piece. During the choking period, many PIECE OFFER
REPLY packets can be sent the offering peer in order to
allow the transmission of several pieces.

D. The NS-2 module design

To run simulations in NS-2, we added a module containing
C++ code for different classes allowing BitTorrent to run at
the application layer of an ad hoc node. We call BitHoc this
variant of BitTorrent that contains all the modifications we
propose. All data structures and treatments have been added
to simulate the functionalities of BitTorrent. A TCL script is
used to initialize the parameters of the protocol. Here are some
of the important parameters:

• max upload num : The maximum number of active
upload connections per peer. It is also the number of
parallel choking slots.

• choking period : The period of the choking algorithm.
It is the interval of time during which a peer tries to offer
pieces to a set of effective neighbors.

• choking best neighbors num : The number of neigh-
bors chosen as effective neighbors during a choking
period because they are best uploaders.

• received bytes reset interval : In the choking algo-
rithm, each peer chooses its best neighbors with whom
to reciprocate data based on how many bytes they send
to it in some specific interval.

• flooding ttl : The maximum number of hops that will be
used while flooding the network with HELLO messages.

• piece num : The number of pieces in the file to be
shared.

• block num : The number of blocks in one piece.
• block size : The size of a block in bytes. The size of

the shared file is equal to piece num * block num *
block size .

E. The main scenario

Fig. 1. Topology for simulations

We consider a network of 40 nodes distributed in a plane
following a grid as shown in Figure 1. The distance between
two physical neighbors is set to 40 m for a range of wireless
transmissions equal to 50m. This ensures connectivity while
minimizing interference. At the beginning of simulations, node
0 located at the top left is the seed and the other nodes are
leechers. The file size is set equal to 10 Mbytes, which can
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be seen as a small video clip. All peers start downloading
the file at the same time t=1500s by first looking for each
other then sharing the pieces of the file according to the
BitHoc algorithms. This interval at the beginning gives the
network enough time to stabilize by calculating its routing
tables. BitTorrent parameters are set as indicated in table
I. Concerning the underlying layers, the nodes connect to
each other using the 802.11 MAC Layer with the RTS/CTS-
Data/ACK mechanism enabled. The data rate is set to 1 Mb/s.
For ad hoc routing, we use the DSDV proactive protocol [2]
that provides each node with the list of shortest path routes to
all other nodes in the network.

TABLE I
BITTORRENT PARAMETERS

Parameter Value
max upload num 4
choking period 40s

choking best neighbors num 3
received bytes reset interval 80s

flooding ttl depends on simulation
piece num depends on simulation
block num depends on simulation
block size 1KB

V. IMPACT OF PIECE SIZE

We start by evaluating regular BitTorrent where the overlay
is constructed without considering the underlying wireless
topology. We give a particular attention to the piece size and
to its impact on both the finish time of peers and their sharing
ratios. The reason to consider the piece size is that it decides
how far pieces can be sent over the network. The TTL of
HELLO messages is set to its maximum value so that all
peers are neighbors of each others. Two sizes of pieces are
used whereas the size of the file is left constant. The values
considered for the piece size are summarized in table II.

TABLE II
SMALL AND BIG SIZE OF PIECES

Small piece 100 blocks 1 file = 100 pieces
Large piece 1000 blocks 1 file = 10 pieces

Figure 2 plots the average finish time Fh as a function of
the number of hops h to the seed for both small and large
pieces. Each point in this figure is an average over multiple
simulations and over all nodes located at the same number
of hops from the seed. As expected, the finish time increases
as far as we move away from the source. One can notice
in the figure that for small pieces, remote peers have better
finish time than for large pieces. This is because the range
of transmission of small pieces is longer. A remote peer can
then receive more pieces in the choking period and share them
with others when pieces are small. The reusability of pieces
and network resources improve in this case. This is confirmed
in Figure 3 where we plot the average sharing ratio Rh as
a function of the number of hops to the seed. Each point in
this figure is also an average over multiple simulations and all

nodes located at the same number of hops from the seed. It is
clear that the sharing ratio for small pieces is more important
because distant nodes can now quickly get complete pieces
and replicate them in their neighborhood. Unfortunately, this
is not the case with large pieces. Large pieces cannot be sent
far in the choking period so they propagate in the network as
a wave resulting in an under-utilization of network capacities.
This is because only one area of the network is in activity at
the same time.

Fig. 2. Average finish time as a
function of the number of hops to seed

Fig. 3. Average sharing ratio as a
function of the number of hops to seed

To better illustrate the idea, we plot in Figures 4 and 5 the
sharing ratio for all nodes in the network for small and large
pieces. Nodes are ranked and numbered as a function of their
distance from the seed. We can see that for large pieces, no
sharing between distant nodes exists and that nodes wait for
pieces to arrive to their upstream nodes before obtaining them.
The use of small pieces make them spread over the network,
which reduces the finish time and makes the sharing incentives
implemented by BitTorrent work better in wireless ad-hoc
networks. Our solution BitHoc supports this modification.

Fig. 4. Per peer sharing ratio for big
size of pieces

Fig. 5. Per peer sharing ratio for small
pieces

VI. IMPACT OF THE SCOPE OF THE NEIGHBORHOOD

Another important factor in regular topology-unaware Bit-
Torrent is the scope of the neighborhood. In this section, we
study the impact of reducing this scope on both the finish
time and the sharing ratio. We run several simulations on the
topology described in IV-E changing each time the flooding
scope (TTL) of HELLO messages destined to peer discovery.
Figure 6 compares the finish time for TTL = maximum number
of hops, TTL =5, TLL=2 and TTL=1.

Interestingly, the finish time decreases when the neighbor-
hood scope is decreased. This is mainly due to better TCP
performance over short paths and to smaller routing over-
head. Control packets, namely PIECE UPDATE and HELLO
packets, are sent only in the restricted neighborhood. The
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Fig. 6. Average finish time as a function of number of hops to the seed for
different flooding scope TTL

case TTL=2 is better than the case TTL=1 because of the
interference between physical neighbors. Figure 7 plots the
average sharing ratio Rh as a function of the number of hops
to the seed for the different values of TTL. Pieces are small
in this figure. Results for large pieces are the same. They are
not included for sake of space. Unfortunately, we can see
that the improvement in the finish time when reducing the
neighborhood comes at the expense of a lower sharing ratio.
The diversity of pieces in the network decreases and the file
propagates more or less as a wave in a unique direction from
the seed to the farthest nodes. For small TTL, distant peers

Fig. 7. Average sharing ratio as a function of number of hops to the seed
for different flooding scope TTL (small pieces)

can not participate in the replication of pieces. They only wait
for pieces to arrive to their physical neighbors to obtain them.
Clearly, this is bad for cooperation among peers. An optimal
solution is a one that improves the finish time while preserving
large values for the sharing ratio.

VII. BITHOC: OUR SOLUTION

The main objective of BitHoc is to profit from the advan-
tages of the limited neighborhood, namely the good perfor-
mance of TCP on short paths, the reduced routing overhead,
and the reduced load of flooding control packets. At the same
time, BitHoc aims at improving the sharing ratio and the
reusability of network resources by creating diversity of pieces
in the network. This is done by creating few TCP connections
to distant peers. Pieces can then spread over the network and
propagate in different directions, which improves the sharing
and the download completion time. With BitHoc, several zones
of the network can be active simultaneously, which is not the
case of the wave generated by regular BitTorrent with limited
neighborhood. To this end, we tuned BitTorrent to support the
distinction between remote and close peers. The new choking
algorithm is aware of the location of peers. It distributes

optimistic unchokes between remote and close peers and adds
a specific neighbor selection mechanism to select a distant
peer. It also applies a new piece selection strategy when the
offering peer is distant.

Unlike BitTorrent with limited neighborhood, BitHoc needs
a global knowledge about the identifiers of nodes in the
network. The TTL of HELLO messages should be set to its
maximum value3. To distinguish between distant and close
peers, each peer maintains two neighbor tables: NEARBY
NEIGHBORS TABLE (NNT) and FAR NEIGHBORS TABLE
(FNT). When discovering new peers, neighbors whose number
of hops is less than or equal to 2 are added to NNT. Other
peers belong to FNT. Unlike the HELLO messages, the PIECE
UPDATE packets are sent only to neighbors in NNT. Peers do
not need to know about all pieces in the network as their piece
selection strategy operates only on their nearby neighbors
tables. In wireless networks, the replication of pieces is more
efficient when it is based on statistics in the close neighbor-
hood since this guarantees a fast local replication compared
to when statistics are based on a large neighborhood. As
in BitTorrent, when the choking algorithm is executed, three
best uploaders are selected as effective neighbors. These three
neighbors are chosen from both nearby and far neighbor tables.
The peer then serves these three neighbors during the next
choking period. But in addition to these effective neighbors,
the peer selects a fourth random neighbor from one of the
two tables (optimistic slot). The table from which it selects the
neighbor is decided by a round robin policy that guarantees an
optimal balance between the random unchokes locally and the
transmission of pieces to distant neighbors in order to improve
diversity. For a succession of optimistic unchokes, the peer
selects a peer one time from FNT, q times from NNT and so
on. The quantum q is a parameter of BitHoc. It is the ratio of
the number of time slots spent on serving nearby neighbors and
those for serving far neighbors. It is also the number of slots
that a peer should wait before unchoking a distant neighbor
again. Our simulations indicate that the choice of this quan-
tum is fundamental in deciding the performance of BitHoc.
Furthermore, the strategies of selecting pieces proposed by
distant neighbors and selecting effective neighbors from FNT
should differ from the ordinary strategies applied by BitTorrent
because the objective of BitHoc in unchoking far peers is
mainly to improve diversity. The next paragraphs explain the
different selection strategies we implement in BitHoc. The
following ones study the performance of BitHoc and discuss
the choice of the quantum q.

A. Selecting a far neighbor at random

When a regular BitTorrent client decides to optimistically
unchoke a peer, it selects it at random with a uniform prob-
ability. In wireless networks however, the gain we get from
optimistic unchoking in terms of diversity increases with the
number of hops. So a peer has more interest in unchoking a

3Note that this global knowledge can be obtained by a kind of gossiping
without the need to flood the network.



7

farther peer than another one closer to him. Thus, in BitHoc,
to select a far peer to unchoke from FNT, the peer starts by
selecting the number of hops with a probability that increases
linearly with the number of hops. Let hm be the maximum
number of hops seen by the peer. We suppose that FNT
contains only peers at hm and hm − 1 hops. These are the
farthest peers that if we send pieces to them, we are sure of
having the largest gain in terms of diversity and reutilization
of network resources. It follows that the number of hops is first
selected using a probability function p given by this formula:

p(h) =
{ h

hm+(hm−1) if h ≥ hm − 1
0 else

When the number of hops h is chosen, the peer then selects,
in a uniform random way, a node among those located at h
hops from him as the node to optimistically unchoke.

B. Selecting a nearby neighbor at random

When the peer needs to select a nearby neighbor, it chooses
a node from NNT in a uniform random way. The probability
to be chosen is then the same for all nodes. A nearby neighbor
is supposed to replicate the pieces it receives in its two-hop
limited neighborhood. This replication is fast since the TCP
protocol has a good throughput over short paths.

C. Piece selection strategy when the offering neighbor is far

When receiving a piece offer from a P2P neighbor, the
peer checks the number of hops to the offering neighbor. If
it is greater than 2, it considers that it is an offer from a
far node. In this case, a specific piece selection strategy is
applied in order to select the best piece to download from this
node. This strategy will be called the absent piece strategy.
The peer first computes the redundancy of the offered pieces
in its close neighbors table and in its piece pool. At the
opposite of BitTorrent, the candidate pieces will be those
with zero redundancy (no need to download a piece from a
distant node if it exists at less than two hops). So a piece
can be accepted only if neither the peer nor one of its near
neighbors has downloaded it before. In case of multiple absent
pieces, one piece among them is chosen in a uniform random
way. The absent piece can then be replicated quickly in the
near neighborhood. If no absent piece is noticed, the peer
sends a REJECT in the piece offer reply packet. In summary,
BitHoc supposes that it is better to download a piece existing
in the nearby neighborhood from a nearby neighbor. Only
absent pieces are taken from far neighbors so as to reduce
the routing overhead. This strategy is fundamental for getting
good performances with BitHoc.

D. Piece selection strategy when the offering neighbor is near

Local rarest first is used when the peer receives a piece offer
from one of its nearby neighbors. Pieces with the least number
of copies in the close neighborhood are selected by this
strategy. This is the normal behavior of the standard version
of BitTorrent but only applied in the two-hop neighborhood.
Here the throughput of TCP is good and the routing overhead
is almost inexistent so we can allow ourselves to apply the
rarest first policy that guarantees the fast replication of pieces.

E. Simulation results

To study the performance of BitHoc over the previously
described topology, we run several NS-2 simulations. We vary
statically the values of the quantum q and observe the behavior
of the download finish times of peers and their sharing ratios.
Figure 8 compares finish time of ordinary BitTorrent with
limited neighborhood (TTL = 2) with BitHoc using different
values of the quantum q (q=3, 2 and 1). Each curve presents
the average finish time Fh as a function of the number of hops
to the seed. Recall that the role of q is to balance optimistic
unchokes between close and remote peers. The larger the q is,
the smaller is the number of unchokes to remote peers.

Fig. 8. Average finish time for BitHoc compared to BitTorrent with limited
neighborhood

The finish time for BitHoc is better and more equally
distributed since far nodes can receive pieces from the be-
ginning of the session and can replicate them in their close
neighborhoods. Pieces are sent in an optimal way and in a
reduced number so as to keep limited the routing overhead.
This creates parallel areas of activity in the network. Far nodes
do not need to wait for pieces to arrive to their neighborhoods
to download them. Hence, pieces propagate in the network
in all directions. This observation is illustrated in Figure 9.
The figure compares sharing ratios of ordinary BitTorrent with
limited neighborhood (TTL=2) with BitHoc using different
values of the quantum (q=3, 2 and 1). Each curve presents the
average sharing ratio Rh as a function of number of hops to
the seed.

Fig. 9. Average sharing for BitHoc compared to BitTorrent with limited
neighborhood

Figure 9 shows that the BitHoc strategies increase consider-
ably the sharing ratios of all peers. This is due to the diversity
created by sending original pieces to distant nodes. Unlike the
case of limited neighborhood, pieces do not propagate in the
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network as a wave but nodes exchange pieces in all directions.
This is a major contribution of BitHoc. So, sharing incentives
work well in this context and the distribution is less vulnerable
to the selfishness of some nodes. The previous results show
that a quantum equal to 1 gives a better finish time and a better
sharing ratio. Clearly, the performance of BitHoc depends on
the value of the quantum q. It has so far been fixed statically
and uniformly for all peers. In real deployment of BitHoc,
peers should dynamically compute the best quantum to use.
The choice of the quantum q is treated in the next sections.

F. Optimal static choice of the quantum q
In this paragraph, we study the static choice of the parameter

q. We establish an empiric formula for q and then validate it
through simulations. Let N be the number of nodes in the
network. Let hm be the maximum length of a path between
two nodes. Let t be the number of pieces in the file and αi

be the number of pieces sent during a choking slot to a node
located at i hops. The objective of our balanced optimistic
unchoking strategy is to send a copy of each piece to the
end of the network and wait for it to return to the middle
of the network. Forward and backward pieces meet then in
the middle which guarantees the best gain. If there were only
one piece in the file, only one seed and only the farthest
node is downloading the content, the piece will take hm

2
slots to return to the middle of the network. Now when the
file contains several pieces, the node should wait αhm

α1
∗ hm

2
before unchoking the farthest node again. It is the number
of slots needed for the αhm

pieces to return to the middle
of the network hop by hop. Now, if all peers in the network
are interested in the content and if we assume nodes to be
uniformly distributed in the plane, N

2 nodes at maximum can
participate in sending pieces to the farthest node. So one needs
to increase the waiting time by a factor of N

2 . So, the static
formula for q will be:

q =
αhm

α1
∗ hm

2
∗ N

2
(5)

Let us first compute q for the scenario used in the previous
sections. In this scenario, N = 40, t = 100, hm = 12, αhm =
1 and α1 = 92. The values for α1 and αhm are obtained by
simulation. By applying 5, it follows that q = 1.3. This is
almost the best q recorded by our simulations, which consider
only rounded values for q. The same result can be seen in
Figure 10 that plots the average finish time as a function of the
quantum q. Now, we vary the number of nodes in the network
and observe how this impacts the optimal choice of q. We
plot optimal q as a function of the number of nodes N when t
= 100. Simulations are done on grid topologies of 20 to 100
nodes similar to the topology presented earlier in this paper
(10 nodes per row). Figure 11 plots both the computed and
simulation results. The values of αhm and α1 are taken from
simulations in both curves. Even though our expression for q is
empiric; there is a good match between the two curves. Figure
12 plots the average finish time over all nodes as a function of
the chosen quantum q. We do not include simulation results
for all values of the number of nodes for sake of space.

Fig. 10. Average finish time as a function of the chosen quantum

Fig. 11. Best quantum as a function of the number of nodes

Here simulation values of the best q are rounded integer
values. Again, the formula hm

2 ∗ αhm

α1
∗ N

2 describes well the
behavior of the optimal q when number of nodes varies. One of
the conclusions we can come to is that this quantum increases
with N, which means less pieces sent by each peer to remote
peers for larger networks.

Fig. 12. Finish time as a function of the quantum q

G. Dynamic choice of the quantum q

The topology of the network and its characteristics can
change frequently. For instance, αhm and α1 can vary. Nodes
also do not have the same view of the network. So, a
further optimization can be made by having q calculated in
a distributed and dynamic way by each node. We add this
feature to BitHoc. For this, q is initially taken equal to 1.
Each node should adapt its value of q as a function of the
current values of the parameters:

• hm is taken equal to the maximum value of the number of
hops to a far neighbor. This value changes dynamically.
If there is no far neighbor, q is set equal to infinity. (All
pieces sent locally)

• The factor N
2 in 5 is replaced by the number of neighbors

having a number of hops less than or equal to hm

2 . This
number is noted by Nhm

2
.
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• ᾱi: average αi over the previous qd + 1 choking periods.
α1 and αhm

2
are changed in the expression of q by

respectively ᾱ1 and ᾱhm
2

.
The new formula of q is:

qd =
hm

2
.Nhm

2
.
ᾱhm

2

ᾱ1
(6)

For large networks, a value of ᾱhm
equal to zero could be

noticed. In this case, one needs to reduce the scope of FNT to
only values of number of hops that give αhm ≥ 1. Otherwise,
the formula will lead to a concentration on far nodes and a big
waste of time. Verifying the values of αhm

is very important
to achieve the optimality.

Fig. 13. Finish time for dynamic choice and static choice of q

Fig. 14. Sharing ratio for dynamic choice and static choice of q

We rerun some of the previous simulations and we compare
the average finish time for static choice of the best quantum q
with those of dynamic choice of q. Figure 13 plots the average
finish time as a function of the number of nodes for both
choices of q. We can observe how far a dynamic setting of q,
nodes download the file in a shorter time. We also compare in
Figure 14 the sharing ratio for both static and dynamic choice
of the quantum. The sharing ratios for dynamic are better than
those for the dynamic choice. With this new optimization,
peers can find dynamically the best quantum to deploy and
adapt their behavior with the changes in network topology
and conditions.

VIII. CONCLUSIONS AND PERSPECTIVES

P2P data sharing applications in wireless ad hoc networks
should provide good quality of service to their users in
terms of finish time and sharing. There is a high potential
for these applications but unfortunately, the wireless nature
of the network imposes many constraints to be taken into

consideration before using regular applications tuned for the
wired Internet. Solutions that reduce neighborhood scope
allow better finish time than those with random graphs of
communications. Nevertheless, limiting the neighborhood is
shown, in this paper, to be dangerous in terms of reducing
sharing ratios between peers. A final solution must be a trade-
off between good finish time and good sharing opportunities.
The solution BitHoc that we propose in this paper finds a
good management of neighbor and piece selection that reduces
finish time and encourages sharing. A peer concentrates on
its nearby peers with some connections to far ones. When
far neighbors are selected, a special piece selection strategy
named absent piece strategy comes into effect. Simulation
results show a decrease in service time and a great improve
in sharing ratios. Our future work will be on applying our
solution to mobile ad hoc networks. High dynamicity of such
networks will lead to new interesting problems.
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