Improving TCP Fairness with MarkMax Policy

Natalia Osipova joint work with Alberto Blanc and Konstantin Avrachenkov

Problem

- link capacity shearing:
 - TCP with different RTTs share a bottleneck link: TCP with smaller RTTs take a larger share of bandwidth
- share of the link capacity is proportional to

 $RTT^{lpha}, \; 1 < lpha < 2$ [Laksman and Madhow, 1997]

 $RTT^{0.85}$ [E. Altman, C. Barakat, E. Laborde, P. Brown, and D. Collange, 2000]

Solutions

- standard DropTail policy not fair
- RED policy more fair distribution of the capacity
- CHOKe, MLC(I), BLUE, GREEN, etc...
- based on: drop a packet with a certain probability that is a function of the state of the queue
- no differentiation between flows

MarkMax

flow-aware AQM packet dropping scheme

main idea:

which connection should reduce its sending rate instead of common: which packet should be dropped.

MarkMax

- flow differentiation
- give priority to short flows
- concentrate on long flows with the largest backlog (heavy-hitter counters, hash tables)
- ECN flag instead of packets drop

MarkMax – questions

- when to send a congestion signal?
- which connection to cut?
 according to the sending rate
- how to detect the sending rate at the bottleneck?
 - highly correlated with the backlog

MarkMax algorithm

- queue size reaches threshold
 - one selected connection is cut
 - biggest backlog
 - packet is marked with ECN flag
- three threshold scheme
 - packet model with non-zero propagation and queueing delays

MarkMax algorithm

A new packet arrives

- cut one selected connection and wait until reach zone 🔴 , 🔵
- select and cut connection every time a new packet arrives

MarkMax – thresholds selection

- high θ_h
- slow system
 reaction long
 waiting time
- low θ_l
- not reached system behaves as DropTail

MarkMax – thresholds selection

- low θ_h
- high $heta_l$
- provide multiple cuts

MarkMax – thresholds selection

- θ_h not reached
- $lacksymbol{ heta}_l$ is reached
- one cut is enough every time
- experimental results:
 - $\theta_l=0.85~\theta,$
 - $\theta_h = 1.15 \ \theta$

Fluid model

- simplify calculations
- cut flow with the biggest sending rate
- biggest backlog -> biggest average sending rate
- fluid model simulations :

theshold is reasonably small, then results for biggest sending rate and biggest backlog are nearly the same

Fluid model

- \blacksquare N TCP connections flows
- \blacksquare RTT_i constants,

$$\lambda_i(t) = \lambda_{0,i} + \alpha_i t, \quad (\alpha_i = 1/(RTT_i)^2), - \text{sending rate of i-th flow}$$
$$\lambda(t) = \sum_i \lambda_i(t), - \text{total sending rate}$$

 μ – rate with which data leaves the buffer

Fluid model – MarkMax

- MarkMax modeling:
 - when $x(\lambda) = \theta$ $\lambda^+ = \sum_{j \neq i} \lambda_j^- + \beta \lambda_i^-,$

 $\lambda^+ < \mu - \text{stop cutting}$

- cut: rate is multiplied by fixed parameter β, 0 < β < 1
- source reacts immediately
- one threshold
 - no oscillations
 - □ sending rate known exact

Fluid model

Mathematical results: threshold selection

• if
$$\theta < \frac{\mu^2}{2\alpha} \frac{(1-\beta)^2}{(N-1+\beta)^2}$$
, then $\lambda^+ < \mu$ after a single cut,
• if $\theta > \frac{\mu^2}{2\alpha} \left(1 - \frac{\beta\mu}{\mu + \sqrt{2\alpha\theta}}\right)^2$, then $x(\lambda) > 0$,
positive backlog and full link utilization

Obtained theoretical results confirmed by the NS2 simulations

NS2 simulations

- NS2 simulator
- TCP NewReno
- MarkMax realization
- MarkMax and DropTail comparison

NS2 simulations – metrics and parameters

Metrics:

 $\rho~-$ bottleneck link utilization

 \bar{T} – average queueing delay

$$J = \frac{\left(\sum_{i=1}^{N} g_i\right)^2}{N \sum_{i=1}^{N} g_i^2}, \quad \text{Jain's index}, \quad g_i - \text{goodputs}$$

Parameters:

$$\delta_i$$
 - propagation and queue delays,
 $\frac{\delta_2}{\delta_1} = 3; 7; 10; 20; 50$

NS2 simulations – results scheme1

Parameters:

 $\mu = 70 \text{ Mbit/s}, \quad \mu_1 = \mu_2 = 300 \text{ Mbit/s},$

 $\delta_1 = 12 \text{ ms},$

 $\delta_2/\delta_1 = 3; 7; 10; 20,$

MarkMax: $\theta = 240$ MSS, $\theta_{l} = 200$ MSS, $\theta_{h} = 280$ MSS,

DropTail: $\theta_{\rm DT} = 240$ MSS.

	DT			MM		
$\frac{\delta_2}{\delta_1}$	J	ρ	$ar{T}$ ms	J	ρ	$ar{T}$ ms
3	0.9893	0.9751	8.9	0.9853	0.9999	9.9
7	0.7540	0.9720	8.5	0.9625	0.9999	9.3
10	0.5361	0.9563	7.9	0.9494	0.9999	9.1
20	0.5484	0.9993	7.8	0.9561	0.9994	8.4

NS2 simulations – results scheme2

Parameters:

 $\mu = 70 \text{ Mbit/s}, \quad \mu_1 = \mu_2 = 300 \text{ Mbit/s},$

 $\delta_1 = 12 \text{ ms}, \ \delta_3 = \delta_2$

 $\delta_2/\delta_1 = 7; 10; 20; 50,$

MarkMax: $\theta = 240$ MSS, $\theta_{l} = 200$ MSS, $\theta_{h} = 280$ MSS,

DropTail: $\theta_{\rm DT} = 240$ MSS.

	DT			MM		
$\frac{\delta_2}{\delta_1}$	J	ρ	$\bar{T}/~\mathrm{ms}$	J	ρ	$ar{T}/\mathrm{ms}$
7	0.8561	0.9338	3.9	0.9637	0.9600	4.7
10	0.7769	0.9497	3.6	0.9632	0.9510	4.5
20	0.6910	0.9146	3.2	0.9228	0.9702	4.7
50	0.5244	0.9262	3.3	0.8572	0.9937	5.7

NS2 simulations – results comparison

Congestion window: MarkMax and DropTail

$\delta_2/\delta_1 = 7$

NS2 simulations – results comparison

Congestion window: MarkMax and DropTail

$\delta_2/\delta_1 = 10$

Conclusion and future work

- New AQM algorithm
- Fluid model theoretical results
- NS2 simulations confirm theoretical results
- Future work:
 - Multiple connections cut several connections at a time
 - □ More complex network topology

Thank you for your attention!

Questions?