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Statement Problem

Study the global and the non-cooperative optimal solution for the
routing problem among a large quantity of nodes.

Find a general optimization framework for handling minimum cost
paths in massively dense ad-hoc networks.
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Previous Works

Geometrical Optics
P. Jacquet studies the routing problem as a parallel to an optics
problem.
Drawback: It doesn’t consider interaction between each user’s
decision.

Electrostatics
S. Toumpis studies the problem of the optimal deployment of
wireless sensor networks.
Drawback: The local cost assumed is too particular (cost(f ) = |f |2

where f is the flow).
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Previous Works

Road Traffic
S. Dafermos studies the user-optimizing and the system-optimizing
pattern.
Beckmann (1956) studies the system-optimizing pattern.
Drawback: The present mathematical tools from Optimization and
Control Theory were not available.
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Figure: Minimum cost routes (cost = distance
2) where relay nodes are placed

according to a spatial Poisson process of density
λ(x , y) = a · (10−4x2 + 0.05) nodes/m2, for four increasing values of a.
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Let Ω be an open and bounded subset of R
2 with Lipschitz boundary

Γ = ∂Ω, densely covered by potential routers.
Messages flow from ΓS ⊆ Γ to ΓR ⊆ Γ (with ΓS ∩ ΓR = ∅).
On the rest ΓT of the boundary, no message should enter nor leave Ω.

sG rG

Figure: Description of the domain
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Figure: Description of domain with sensor networks
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Assumptions:

The intensity of message generation σ|ΓS
∈ L2(ΓS) is known.

The intensity of message reception σ|ΓR
is unknown.

The total flow of messages emitted and received are equal.
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Figure: The function f .

Let the vector field f = (f1(x), f2(x)) ∈ (H1(Ω))2 [bps/m] represent the
flow of messages, and φ(x) = ‖f (x)‖ be its intensity.
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Let Γ1 = ΓS ∪ ΓT .
Extend the function σ to Γ1 by σ(x) = 0 on ΓT .
We modelize the conditions on the boundary as

∀x ∈ Γ1 〈f (x), n(x)〉 = −σ(x)
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The Conservation Equation

Suppose there is no source nor sink of messages in Ω. Over a surface
Φ0 ⊆ Ω of arbitrary shape,

∮

∂Φ0

〈f (x), n(x)〉dΦ0 = 0,

where n is the unit normal vector.
Last equation holding for any smooth domain, then

∀x ∈ Ω divf (x) = 0.
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Let the congestion cost per packet c = c(x , φ) ∈ C1(Ω × R+, R+) be a
strictly positive function, increasing and convex in φ for each x .
The total cost of congestion will be taken as

G(f (·)) =

∫

Ω

c(x , ‖f (x)‖)‖f (x)‖ dx .

The path followed by a packet is specifed by its direction of travel
eθ = (cos θ, sin θ) along its path, according to ẋ = eθ. The cost incurred
by one packet travelling from x0 ∈ ΓS at time t0 to x1 ∈ ΓR reached at
time t1 is

J(eθ(·)) =

∫ x1

x0

c(x , ‖f (x)‖)
√

dx2
1 + dx2

2 =

∫ t1

t0

c(x(t), ‖f (x(t))‖)dt,
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Global Optimum

We seek here the vector field f ∗∈(L2(Ω))2 minimizing G(f ) under the
constraints:

∀x ∈ Γ1 〈f (x), n(x)〉 = −σ(x)

∀x ∈ Ω divf (x) = 0.

Let C (x, φ) = c(x, φ)φ. It is convex in φ and coercive (i.e. goes to
infinity with φ).
Then f (·) 7→ G(f (·)) is continuous, convex and coercive. Moreover, the
constraints are linear.
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We dualize only the constraint of the divergence and look for f satisfying
the other constraint.
Let therefore p(·) ∈ L2(Ω) be the dual variable, we let

L(f , p) =

∫

Ω

(

C (x , ‖f (x)‖) + p(x)divf (x)
)

dx .
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Kuhn-Tucker conditions implies that for f ∗(·) to be optimal, there must
exist a p(·) : Ω → R such that

∀x ∈ Ω : f ∗(x) 6= 0 , ∇p(x) = D2C (x , ‖f (x)⋆‖) 1
‖f ∗(x)‖ f ∗(x),

∀x ∈ Ω : f ∗(x) = 0 , ‖∇p(x)‖ ≤ D2C (x , 0),
∀x ∈ ΓR , p(x) = 0 .
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User Optimum

The optimization of the criterion

J(eθ(·)) =

∫ x1

x0

c(x , ‖f (x)‖)
√

dx2
1 + dx2

2 =

∫ t1

t0

c(x(t), ‖f (x(t))‖)dt,

via its Hamilton-Jacobi-Bellman equation:
Let V (x) be the return function, it must be a viscosity solution of

∀x ∈ Ω, minθ〈eθ,∇V (x)〉 + c(x , ‖f ∗(x)‖) = 0,
∀x ∈ R, V (x) = 0.
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Hence
∀x ∈ Ω , −‖∇V (x)‖ + c(x , ‖f ∗(x)‖) = 0 ,
∀x ∈ R, V (x) = 0 .

The optimal direction of travel is opposite to ∇V (x), i.e.
eθ = −∇V (x)/‖∇V (x)‖.
This is the same system of equations as previously, upon replacing p(x)
by −V (x), and D2C (x , φ) by c(x , φ).
Conclusion The Wardrop equilibrium can be obtained by solving the
globally optimal problem in which the cost density is replaced by
∫ φ

0
c(x , φ)dφ.
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Example : Linear Congestion Cost

If the cost of congestion is linear : c(x , φ) = 1
2c(x)φ, so that

C (x , φ) =
1

2
c(x)φ2 .

Then, L is differentiable everywhere, and the necessary condition of
optimality is just that there should exist p : Ω → R

2 such that
∇p(x) = c(x)f ∗(x).
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Placing this into the divergence equation and the boundary equation, we
see that we end up with a simple elliptic equation with mixed Dirichlet -
(non-homogeneous) Neuman boundary conditions :

∀x ∈ Ω, , div( 1
c(x)∇p(x)) = 0 ,

∀x ∈ Γ1,
∂p

∂n
(x) = c(x)σ(x),

∀x ∈ ΓR , p(x) = 0 ,











for which we get existence and uniqueness of the solution (Lax-Milgram
Theorem p ∈ H1

ΓR
).
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Conclusions

We study a setting to describe the network in terms of macroscopic
parameters rather than in terms of microscopic parameters.

We solve the routing problem for the affine cost per packet
obtaining existence and uniqueness of the solution.

Future Works

1 Numerical solution using Finite Element Method for the affine cost
per packet.

2 Investigate the quantity of nodes required so this approch to be a
good aproximation for the routing problem.
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Thank you !
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