Modèles de populations spatialis'ees et/ou soumise à sélection et approximations diverses évolutif

Nicolas Champagnat (travaux en commun avec Régis Ferrière (ENS Ulm) et Sylvie Méléard (Ecole Polytechnique)

INRIA Sophia Antipolis, EPI TOSCA

Séminaire "Modèles de Population", INRA Avignon, 17/12/2007

Introduction

- Modèles individu-centrés stochastiques qui mettent l'accent sur les interactions écologiques (avec densité-dépendence) et reproduction clonale (asexuée)
- Suivant les objectifs, peut s'appliquer à l'étude de
 - l'évolution (mouvement spatial = mutations)
 - la dispersion spatiale (e.g. populations de plantes)
 - les deux
- A l'inverse de beaucoup de modèles de génétique des populations (Wright-Fisher, Moran, Flemming-Viot), la taille de la population n'est pas fixée, et il n'y a pas de fitness pré-définie

Dynamiques adaptatives

- A l'origine, ma motivation venait de l'étude de l'évolution des populations (dynamique adaptative, Hofbauer et Sigmund 1990, Metz et al. 1992, 1996, Dieckmann et Law 1996)
 - liens entre évolution et écologie
 - sélection résultant de lécologie
 - hérédité simplifiée dans un premier temps (asexuée)
- Hypothèses simplificatrices
 - Grande population
 - Mutations de petite amplitude et/ou rares
- Le même formalisme peut aussi s'appliquer à des populations spatialement structurées avec des hypothèses similaires sur le mouvement spatial.

ロ 日 日 り ク

	Le Modèle ●000000000000000000000000000000000000	Large population scalings	
The model			

A general birth-and-death process with competition and mutation (already studied in Bolker and Pacala 1997, Dieckmann and Law 2000, Fournier and Méléard 2004,...)

- Spatially structured population and/or evolution of a finite number of quantitative phenotypic traits (individual size, age at maturity,...)
- State space = physical space + trait space: $\mathcal{X} \subset \mathbb{R}^d$, closed
- A population composed of I(t) individuals holding positions and/or traits $x_1, \ldots, x_{I(t)} \in \mathcal{X}$ is represented by the counting

measure $\nu_t = \sum_{i=1} \delta_{x_i}$

State space:
$$\mathcal{M} = \left\{ \sum_{i=1}^{n} \delta_{x_i} : n \ge 0, x_i \in \mathcal{X} \right\}$$

	Le Modèle ●000000000000000000000000000000000000	Large population scalings	
The model			

A general birth-and-death process with competition and mutation (already studied in Bolker and Pacala 1997, Dieckmann and Law 2000, Fournier and Méléard 2004,...)

- Spatially structured population and/or evolution of a finite number of quantitative phenotypic traits (individual size, age at maturity,...)
- State space = physical space + trait space: $\mathcal{X} \subset \mathbb{R}^d$, closed
- A population composed of I(t) individuals holding positions and/or traits $x_1, \ldots, x_{I(t)} \in \mathcal{X}$ is represented by the counting I(t)

measure $\nu_t = \sum_{i=1}^{t} \delta_{x_i}$

State space:
$$\mathcal{M} = \left\{ \sum_{i=1}^{n} \delta_{x_i} : n \ge 0, x_i \in \mathcal{X} \right\}$$

ロ 日 ー ー ー ー ー ー ー ー の へ の

	Le Modèle ●000000000000000000000000000000000000	Large population scalings	
The model			

A general birth-and-death process with competition and mutation (already studied in Bolker and Pacala 1997, Dieckmann and Law 2000, Fournier and Méléard 2004,...)

- Spatially structured population and/or evolution of a finite number of quantitative phenotypic traits (individual size, age at maturity,...)
- State space = physical space + trait space: $\mathcal{X} \subset \mathbb{R}^d$, closed
- A population composed of I(t) individuals holding positions and/or traits $x_1, \ldots, x_{I(t)} \in \mathcal{X}$ is represented by the counting I(t)

measure $\nu_t = \sum_{i=1}^{N} \delta_{x_i}$

State space:
$$\mathcal{M} = \left\{ \sum_{i=1}^{n} \delta_{x_i} : n \ge 0, x_i \in \mathcal{X} \right\}$$

	Le Modèle ●000000000000000000000000000000000000	Large population scalings	
The model			

A general birth-and-death process with competition and mutation (already studied in Bolker and Pacala 1997, Dieckmann and Law 2000, Fournier and Méléard 2004,...)

- Spatially structured population and/or evolution of a finite number of quantitative phenotypic traits (individual size, age at maturity,...)
- State space = physical space + trait space: $\mathcal{X} \subset \mathbb{R}^d$, closed
- A population composed of I(t) individuals holding positions and/or traits $x_1, \ldots, x_{I(t)} \in \mathcal{X}$ is represented by the counting $\nu_t = \sum^{I(t)} \delta_{x_i}$

nac

measure

• State space:
$$\mathcal{M} = \left\{ \sum_{i=1}^{n} \delta_{x_i} : n \ge 0, x_i \in \mathcal{X} \right\}$$

	Le Modèle		
	0000000000		
The model			

For an individual with trait $x \in \mathcal{X}$ in the population ν_t :

- Reproduction with rate b(x)
- Mutation and/or dispersal with probability $\mu(x)$

• Death with rate
$$d(x) + \sum_{i=1}^{N_t} \alpha(x, x_i) = d(x) + \int_{\mathcal{X}} \alpha(x, y) \nu_t(dy)$$

	Le Modèle	Large population scalings	
The model			

For an individual with trait $x \in \mathcal{X}$ in the population ν_t :

- Reproduction with rate b(x)
- Mutation and/or dispersal with probability $\mu(x)$

• Death with rate
$$d(x) + \sum_{i=1}^{N_t} \alpha(x, x_i) = d(x) + \int_{\mathcal{X}} \alpha(x, y) \nu_t(dy)$$

	Le Modèle		
	000000000000000000000000000000000000000		
The model			

For an individual with trait $x \in \mathcal{X}$ in the population ν_t :

- Reproduction with rate b(x)
- Mutation and/or dispersal with probability $\mu(x)$

• Death with rate
$$d(x) + \sum_{i=1}^{N_t} \alpha(x, x_i) = d(x) + \int_{\mathcal{X}} \alpha(x, y) \nu_t(dy)$$

7 -

	Le Modèle	Large population scalings	
	000000000000000000000000000000000000000		
The model			

For an individual with trait $x \in \mathcal{X}$ in the population ν_t :

- Reproduction with rate b(x)
- Mutation and/or dispersal with probability $\mu(x)$ the mutant trait and/or new position is chosen as x + z, with $z \sim M(x, z) dz$

• Death with rate
$$d(x) + \sum_{i=1}^{N_t} \alpha(x, x_i) = d(x) + \int_{\mathcal{X}} \alpha(x, y) \nu_t(dy)$$

	Le Modèle	Large population scalings	
	000000000000000000000000000000000000000		
The model			

For an individual with trait $x \in \mathcal{X}$ in the population ν_t :

- Reproduction with rate b(x)
- Mutation and/or dispersal with probability $\mu(x)$ the mutant trait and/or new position is chosen as x + z, with $z \sim M(x, z) dz$

• Death with rate $d(x) + \sum_{i=1}^{N_t} \alpha(x, x_i) = d(x) + \int_{\mathcal{X}} \alpha(x, y) \nu_t(dy)$

	Le Modèle		
	000000000000000000000000000000000000000		
The model			

For an individual with trait $x \in \mathcal{X}$ in the population ν_t :

- Reproduction with rate b(x)
- Mutation and/or dispersal with probability $\mu(x)$ the mutant trait and/or new position is chosen as x + z, with $z \sim M(x, z) dz$
- Death with rate $d(x) + \sum_{i=1}^{N_t} \alpha(x, x_i) = d(x) + \int_{\mathcal{X}} \alpha(x, y) \nu_t(dy)$

 $\rightsquigarrow \alpha$ is the competition kernel

	Le Modèle		
	000000000000000000000000000000000000000		
The model			

For an individual with trait $x \in \mathcal{X}$ in the population ν_t :

- Reproduction with rate b(x)
- Mutation and/or dispersal with probability $\mu(x)$ the mutant trait and/or new position is chosen as x + z, with $z \sim M(x, z) dz$

• Death with rate
$$d(x) + \sum_{i=1}^{N_t} \alpha(x, x_i) = d(x) + \int_{\mathcal{X}} \alpha(x, y) \nu_t(dy)$$

 $\Rightarrow \alpha$ is the competition kernel

500

 \rightsquigarrow Markov \mathcal{M} -valued jump Process ($\nu_t, t \geq 0$) with generator

$$L\phi(\nu) = \int_{\mathcal{X}} [\phi(\nu + \delta_x) - \phi(\nu)](1 - \mu(x))b(x)\nu(dx)$$

	Le Modèle	Large population scalings	
	000000000000000000000000000000000000000		
The model			

For an individual with trait $x \in \mathcal{X}$ in the population ν_t :

- Reproduction with rate b(x)
- Mutation and/or dispersal with probability $\mu(x)$ the mutant trait and/or new position is chosen as x + z, with $z \sim M(x, z) dz$

• Death with rate
$$d(x) + \sum_{i=1}^{N_t} \alpha(x, x_i) = d(x) + \int_{\mathcal{X}} \alpha(x, y) \nu_t(dy)$$

 $\Rightarrow \alpha$ is the competition kernel

 \rightsquigarrow Markov \mathcal{M} -valued jump Process ($\nu_t, t \geq 0$) with generator

$$L\phi(\nu) = \int_{\mathcal{X}} [\phi(\nu + \delta_x) - \phi(\nu)](1 - \mu(x))b(x)\nu(dx) + \int_{\mathcal{X}} \int_{\mathbb{R}^d} [\phi(\nu + \delta_{x+z}) - \phi(\nu)]\mu(x)b(x)M(x,z)dz\,\nu(dx)$$

	Le Modèle	Large population scalings	
	000000000000000000000000000000000000000		
The model			

For an individual with trait $x \in \mathcal{X}$ in the population ν_t :

- Reproduction with rate b(x)
- Mutation and/or dispersal with probability $\mu(x)$ the mutant trait and/or new position is chosen as x + z, with $z \sim M(x, z) dz$

• Death with rate
$$d(x) + \sum_{i=1}^{N_t} \alpha(x, x_i) = d(x) + \int_{\mathcal{X}} \alpha(x, y) \nu_t(dy)$$

 $\Rightarrow \alpha$ is the competition kernel

 \rightsquigarrow Markov \mathcal{M} -valued jump Process ($\nu_t, t \geq 0$) with generator

$$\begin{split} L\phi(\nu) &= \int_{\mathcal{X}} [\phi(\nu+\delta_x) - \phi(\nu)](1-\mu(x))b(x)\nu(dx) \\ &+ \int_{\mathcal{X}} \int_{\mathbb{R}^d} [\phi(\nu+\delta_{x+z}) - \phi(\nu)]\mu(x)b(x)M(x,z)dz\,\nu(dx) \\ &+ \int_{\mathcal{X}} [\phi(\nu-\delta_x) - \phi(\nu)]\left(d(x) + \int_{\mathcal{X}} \alpha(x,y)\nu(dy)\right)\nu(dx) \end{split}$$

	Le Modèle	Large population scalings	
Biological comments			

Comments

- Logistic interaction = competition Easy generalization to more general interactions (N.C., R. Ferrière, S. Méléard, 2006)
 - birth rate $b(x, U * \nu_t(x))$
 - death rate $d(x, V * \nu_t(x))$
- Multispecific (prey-predator, host-parasite, ressource exploitation, mutulistic community,...) generalization
 - Spatial interpretation: mutation = dispersion can also be replaced by other motions such as diffusions (Bolker, Pacala, 1997, Dieckmann, Law, 2000, Desvillette, Ferrière, Prévost, 2006, C., Méléard, JMB 2007)

	Le Modèle	Large population scalings	
Biological comments			

Comments

- Logistic interaction = competition Easy generalization to more general interactions (N.C., R. Ferrière, S. Méléard, 2006)
 - birth rate $b(x, U * \nu_t(x))$
 - death rate $d(x, V * \nu_t(x))$
- Multispecific (prey-predator, host-parasite, ressource exploitation, mutulistic community,...) generalization

Spatial interpretation: mutation = dispersion can also be replaced by other motions such as diffusions (Bolker, Pacala, 1997, Dieckmann, Law, 2000, Desvillette, Ferrière, Prévost, 2006, C., Méléard, JMB 2007)

	Le Modèle	Large population scalings	
Biological comments			

Comments

- Logistic interaction = competition Easy generalization to more general interactions (N.C., R. Ferrière, S. Méléard, 2006)
 - birth rate $b(x, U * \nu_t(x))$
 - death rate $d(x, V * \nu_t(x))$
- Multispecific (prey-predator, host-parasite, ressource exploitation, mutulistic community,...) generalization
- Spatial interpretation: mutation = dispersion can also be replaced by other motions such as diffusions (Bolker, Pacala, 1997, Dieckmann, Law, 2000, Desvillette, Ferrière, Prévost, 2006, C., Méléard, JMB 2007)

	Le Modèle ○○○●○○○○○○○○○○	Large population scalings	
Biological comments			

Assumptions

$(\mathbf{H}) \quad 0 \le b(x) \le \bar{b}$

	Le Modèle ○○O●○○○○○○○○○○	Large population scalings	
Biological comments			

(H)
$$0 \le b(x) \le \overline{b}$$

 $0 \le d(x) \le \overline{d}$

	Le Modèle ○○O●○○○○○○○○○○	Large population scalings	
Biological comments			

$$\begin{array}{ll} (\mathbf{H}) & 0 \leq b(x) \leq \bar{b} \\ & 0 \leq d(x) \leq \bar{d} \\ & 0 < \underline{\alpha} \leq \alpha(\cdot, \cdot) \leq \bar{\alpha} < +\infty \end{array}$$

ロ 日 ー ー ー ー ー ー ー の へ へ

	Le Modèle ○○O●○○○○○○○○○○	Large population scalings	
Biological comments			

$$\begin{array}{ll} (\mathrm{H}) & 0 \leq b(x) \leq \bar{b} \\ & 0 \leq d(x) \leq \bar{d} \\ & 0 < \underline{\alpha} \leq \alpha(\cdot, \cdot) \leq \bar{\alpha} < +\infty \\ & b(x) - d(x) > 0 \end{array}$$

	Le Modèle ○○O●○○○○○○○○○○	Large population scalings	
Biological comments			

$$\begin{array}{ll} (\mathrm{H}) & 0 \leq b(x) \leq \bar{b} \\ & 0 \leq d(x) \leq \bar{d} \\ & 0 < \underline{\alpha} \leq \alpha(\cdot, \cdot) \leq \bar{\alpha} < +\infty \\ & b(x) - d(x) > 0 \\ & M(x,z) \leq C\bar{M}(z) \text{ with } \bar{M} \text{ a probability density} \end{array}$$

ロ 日 ー ー ー ー ー の へ へ

	Le Modèle ○○O●○○○○○○○○○○	Large population scalings	
Biological comments			

$$\begin{array}{ll} (\mathrm{H}) & 0 \leq b(x) \leq \bar{b} \\ & 0 \leq d(x) \leq \bar{d} \\ & 0 < \underline{\alpha} \leq \alpha(\cdot, \cdot) \leq \bar{\alpha} < +\infty \\ & b(x) - d(x) > 0 \\ & M(x,z) \leq C\bar{M}(z) \text{ with } \bar{M} \text{ a probability density} \end{array}$$

 \leadsto Existence et uniqueness in law of ν (Fournier and Méléard 2004)

	Le Modèle ○○O●○○○○○○○○○○	Large population scalings	
Biological comments			

$$\begin{array}{ll} (\mathrm{H}) & 0 \leq b(x) \leq \bar{b} \\ & 0 \leq d(x) \leq \bar{d} \\ & 0 < \underline{\alpha} \leq \alpha(\cdot, \cdot) \leq \bar{\alpha} < +\infty \\ & b(x) - d(x) > 0 \\ & M(x,z) \leq C\bar{M}(z) \text{ with } \bar{M} \text{ a probability density} \end{array}$$

 \rightsquigarrow Existence et uniqueness in law of ν (Fournier and Méléard 2004) Total jump rate per individual $\leq \bar{C}(1 + \langle \nu_t, \mathbf{1} \rangle)$ Total population jump rate $\leq \bar{C} \langle \nu_t, \mathbf{1} \rangle (1 + \langle \nu_t, \mathbf{1} \rangle)$

Introduction Le Modè	Le Modèle	Large population scalings	
	00000000000		
Algorithmic construction			

Initial state: N_0 individuals, with traits $\mathbf{X}_0 = (X_0^i)_{1 \le i \le N_0}$. $\mathbf{X}_t = \text{trait vector at time } t$.

- $(\tau_k)_k$ exponential r.v. with parameter $1 \rightsquigarrow$ time steps $(\theta_k)_k$ uniform r.v. on $[0,1] \rightsquigarrow$ to decide which kind of event happens
- $(\alpha_k)_k$ uniform r.v. on $[0, \bar{\alpha}] \rightsquigarrow$ for the logistic competition
- $(Z_k)_k$ with law $\overline{M}(z)dz \rightsquigarrow$ in the case of mutation

$$T_{0} = 0, N_{0}, \mathbf{X}_{0}$$

Given $(T_{k-1}, N_{k-1}, \mathbf{X}_{T_{k-1}}),$
 $T_{k} = T_{k-1} + \frac{\tau_{k}}{N_{k-1}(\bar{b} + \bar{d} + \bar{\alpha}(N_{k-1} - 1))}$

	Le Modèle	Large population scalings	
	000000000000		
Algorithmic construction			

Initial state: N_0 individuals, with traits $\mathbf{X}_0 = (X_0^i)_{1 \le i \le N_0}$. $\mathbf{X}_t = \text{trait vector at time } t$.

- $(\tau_k)_k$ exponential r.v. with parameter 1 \rightsquigarrow time steps
- $(\theta_k)_k$ uniform r.v. on $[0,1] \rightarrow$ to decide which kind of event happens
- $(\alpha_k)_k$ uniform r.v. on $[0, \bar{\alpha}] \rightsquigarrow$ for the logistic competition
- $(Z_k)_k$ with law $\overline{M}(z)dz \rightsquigarrow$ in the case of mutation

$$T_{0} = 0, N_{0}, \mathbf{X}_{0}$$

Given $(T_{k-1}, N_{k-1}, \mathbf{X}_{T_{k-1}}),$
 $T_{k} = T_{k-1} + \frac{\tau_{k}}{N_{k-1}(\bar{b} + \bar{d} + \bar{\alpha}(N_{k-1} - 1))}$

	Le Modèle	Large population scalings	
	000000000000000000000000000000000000000		
Algorithmic construction			

Initial state: N_0 individuals, with traits $\mathbf{X}_0 = (X_0^i)_{1 \le i \le N_0}$. $\mathbf{X}_t = \text{trait vector at time } t$.

- $(\tau_k)_k$ exponential r.v. with parameter 1 \rightsquigarrow time steps
- $(\theta_k)_k$ uniform r.v. on $[0,1] \rightsquigarrow$ to decide which kind of event happens
- $(\alpha_k)_k$ uniform r.v. on $[0, \bar{\alpha}] \rightsquigarrow$ for the logistic competition
- $(Z_k)_k$ with law $\overline{M}(z)dz \rightsquigarrow$ in the case of mutation

$$T_0 = 0, N_0, \mathbf{X}_0$$

Given $(T_{k-1}, N_{k-1}, \mathbf{X}_{T_{k-1}}),$
 $T_k = T_{k-1} + \frac{\tau_k}{N_{k-1}(\bar{b} + \bar{d} + \bar{\alpha}(N_{k-1} - 1))}$

	Le Modèle	Large population scalings	
Algorithmic construction			

Initial state: N_0 individuals, with traits $\mathbf{X}_0 = (X_0^i)_{1 \le i \le N_0}$. $\mathbf{X}_t = \text{trait vector at time } t$.

- $(\tau_k)_k$ exponential r.v. with parameter 1 \rightsquigarrow time steps
- $(\theta_k)_k$ uniform r.v. on $[0,1] \rightsquigarrow$ to decide which kind of event happens
- $(\alpha_k)_k$ uniform r.v. on $[0, \bar{\alpha}] \rightsquigarrow$ for the logistic competition
- $(Z_k)_k$ with law $\overline{M}(z)dz \rightsquigarrow$ in the case of mutation

$$T_{0} = 0, N_{0}, \mathbf{X}_{0}$$

Given $(T_{k-1}, N_{k-1}, \mathbf{X}_{T_{k-1}}),$
 $T_{k} = T_{k-1} + \frac{\tau_{k}}{N_{k-1}(\bar{b} + \bar{d} + \bar{\alpha}(N_{k-1} - 1))}$

	Le Modèle	Large population scalings	
Algorithmic construction			

Initial state: N_0 individuals, with traits $\mathbf{X}_0 = (X_0^i)_{1 \le i \le N_0}$. $\mathbf{X}_t = \text{trait vector at time } t$.

- $(\tau_k)_k$ exponential r.v. with parameter 1 \rightsquigarrow time steps
- $(\theta_k)_k$ uniform r.v. on $[0,1] \rightsquigarrow$ to decide which kind of event happens
- $(\alpha_k)_k$ uniform r.v. on $[0, \bar{\alpha}] \rightsquigarrow$ for the logistic competition
- $(Z_k)_k$ with law $\overline{M}(z)dz \rightsquigarrow$ in the case of mutation

$$T_{0} = 0, N_{0}, \mathbf{X}_{0}$$

Given $(T_{k-1}, N_{k-1}, \mathbf{X}_{T_{k-1}}),$
 $T_{k} = T_{k-1} + \frac{\tau_{k}}{N_{k-1}(\bar{b} + \bar{d} + \bar{\alpha}(N_{k-1} - 1))}$

	Le Modèle	Large population scalings	
Algorithmic construction			

Initial state: N_0 individuals, with traits $\mathbf{X}_0 = (X_0^i)_{1 \le i \le N_0}$. $\mathbf{X}_t = \text{trait vector at time } t$.

- $(\tau_k)_k$ exponential r.v. with parameter 1 \rightsquigarrow time steps
- $(\theta_k)_k$ uniform r.v. on $[0,1] \rightsquigarrow$ to decide which kind of event happens
- $(\alpha_k)_k$ uniform r.v. on $[0, \bar{\alpha}] \rightsquigarrow$ for the logistic competition

• $(Z_k)_k$ with law $\overline{M}(z)dz \rightsquigarrow$ in the case of mutation

Iteration on k

- $T_0 = 0, N_0, \mathbf{X}_0$
 - Given $(T_{k-1}, N_{k-1}, \mathbf{X}_{T_{k-1}}),$ $T_k = T_{k-1} + \frac{\tau_k}{N_{k-1}(\bar{b} + \bar{d} + \bar{\alpha}(N_{k-1} - 1))}$

	Le Modèle	Large population scalings	
Algorithmic construction			

Initial state: N_0 individuals, with traits $\mathbf{X}_0 = (X_0^i)_{1 \le i \le N_0}$. $\mathbf{X}_t = \text{trait vector at time } t$.

- $(\tau_k)_k$ exponential r.v. with parameter 1 \rightsquigarrow time steps
- $(\theta_k)_k$ uniform r.v. on $[0,1] \rightsquigarrow$ to decide which kind of event happens
- $(\alpha_k)_k$ uniform r.v. on $[0, \bar{\alpha}] \rightsquigarrow$ for the logistic competition
- $(Z_k)_k$ with law $\overline{M}(z)dz \rightsquigarrow$ in the case of mutation

Iteration on k

- $T_0 = 0, N_0, \mathbf{X}_0$
- Given $(T_{k-1}, N_{k-1}, \mathbf{X}_{T_{k-1}}),$

$$T_k = T_{k-1} + \frac{T_k}{N_{k-1}(\bar{b} + \bar{d} + \bar{\alpha}(N_{k-1} - 1))}$$

	Le Modèle ○○○○○●○○○○○○○○○	Large population scalings	
Algorithmic construction			

Algorithm

At time T_k choose an individual *i* uniformly among the N_{k-1} .

- If $\theta_k < U_1 := \frac{(N_{k-1}-1)\bar{\alpha}}{\bar{b}+\bar{d}+\bar{\alpha}(N_{k-1}-1)}$, choose another individual $j \neq i$ at random. If $\alpha_k < \alpha(X^i_{T_{k-1}}, X^j_{T_{k-1}}) \rightsquigarrow j$ kills i
- If $U_1 \leq \theta_k < U_2 := U_1 + \frac{b(X^*_{T_{k-1}})(1-\mu(X^*_{T_{k-1}}))}{\overline{b}+\overline{d}+\overline{\alpha}(N_{k-1}-1)} \rightsquigarrow$ birth of a clone of i
- If $U_2 \leq \theta_k < U_3 := U_2 + \frac{b(X_{T_{k-1}}^i)\mu(X_{T_{k-1}}^i)M(X_{T_{k-1}}^i,Z_k)}{M(Z_k)(\bar{b}+\bar{d}+\bar{\alpha}(N_{k-1}-1))} \rightsquigarrow$ birth of a mutant with trait $X_{T_{k-1}}^i + Z_k$
- If $U_3 \leq \theta_k < U_4 := U_3 + \frac{d(X_{T_{k-1}}^i)}{\overline{b+d+\overline{\alpha}(N_{k-1}-1)}} \rightsquigarrow$ (natural) death of i
- If $\theta_k \geq U_4 \rightsquigarrow$ nothing happens

	Le Modèle ○○○○○●○○○○○○○○○	Large population scalings	
Algorithmic construction			

Algorithm

At time T_k choose an individual *i* uniformly among the N_{k-1} .

- If $\theta_k < U_1 := \frac{(N_{k-1}-1)\bar{\alpha}}{\bar{b}+\bar{d}+\bar{\alpha}(N_{k-1}-1)}$, choose another individual $j \neq i$ at random. If $\alpha_k < \alpha(X^i_{T_{k-1}}, X^j_{T_{k-1}}) \rightsquigarrow j$ kills i
- If $U_1 \leq \theta_k < U_2 := U_1 + \frac{b(X^i_{T_{k-1}})(1-\mu(X^i_{T_{k-1}}))}{\overline{b}+\overline{d}+\overline{\alpha}(N_{k-1}-1)} \rightsquigarrow$ birth of a clone of i
- If $U_2 \leq \theta_k < U_3 := U_2 + \frac{b(X_{T_{k-1}}^i)\mu(X_{T_{k-1}}^i)M(X_{T_{k-1}}^i,Z_k)}{\bar{M}(Z_k)(\bar{b}+\bar{d}+\bar{\alpha}(N_{k-1}-1))} \rightsquigarrow$ birth of a mutant with trait $X_{T_{k-1}}^i + Z_k$
- If $U_3 \leq \theta_k < U_4 := U_3 + \frac{d(X_{T_{k-1}}^i)}{\overline{b+d+\bar{\alpha}(N_{k-1}-1)}} \rightsquigarrow \text{(natural) death of } i$
- If $\theta_k \geq U_4 \rightsquigarrow$ nothing happens

	Le Modèle ○○○○○●○○○○○○○○○	Large population scalings	
Algorithmic construction			

Algorithm

At time T_k choose an individual *i* uniformly among the N_{k-1} .

- If $\theta_k < U_1 := \frac{(N_{k-1}-1)\bar{\alpha}}{\bar{b}+\bar{d}+\bar{\alpha}(N_{k-1}-1)}$, choose another individual $j \neq i$ at random. If $\alpha_k < \alpha(X^i_{T_{k-1}}, X^j_{T_{k-1}}) \rightsquigarrow j$ kills i
- If $U_1 \le \theta_k < U_2 := U_1 + \frac{b(X_{T_{k-1}}^i)(1-\mu(X_{T_{k-1}}^i))}{\tilde{b}+d+\bar{\alpha}(N_{k-1}-1)} \rightsquigarrow$ birth of a clone of i
- If $U_2 \leq \theta_k < U_3 := U_2 + \frac{b(X_{T_{k-1}}^i)\mu(X_{T_{k-1}}^i)M(X_{T_{k-1}}^i,Z_k)}{M(Z_k)(\bar{b}+\bar{d}+\bar{\alpha}(N_{k-1}-1))} \rightsquigarrow$ birth of a mutant with trait $X_{T_{k-1}}^i + Z_k$

If
$$U_3 \leq \theta_k < U_4 := U_3 + \frac{d(X_{T_{k-1}})}{\overline{b} + \overline{d} + \overline{\alpha}(N_{k-1} - 1)} \rightsquigarrow \text{(natural) death of } i$$

If $\theta_k \geq U_4 \rightsquigarrow$ nothing happens
	Le Modèle ○○○○○●○○○○○○○○	Large population scalings	
Algorithmic construction			

Algorithm

At time T_k choose an individual *i* uniformly among the N_{k-1} .

- If $\theta_k < U_1 := \frac{(N_{k-1}-1)\bar{\alpha}}{\bar{b}+\bar{d}+\bar{\alpha}(N_{k-1}-1)}$, choose another individual $j \neq i$ at random. If $\alpha_k < \alpha(X^i_{T_{k-1}}, X^j_{T_{k-1}}) \rightsquigarrow j$ kills i
- If $U_1 \leq \theta_k < U_2 := U_1 + \frac{b(X_{T_{k-1}}^i)(1-\mu(X_{T_{k-1}}^i))}{\tilde{b}+d+\bar{\alpha}(N_{k-1}-1)} \rightsquigarrow$ birth of a clone of i
- If $U_2 \leq \theta_k < U_3 := U_2 + \frac{b(X_{T_{k-1}}^i)\mu(X_{T_{k-1}}^i)M(X_{T_{k-1}}^i,Z_k)}{\overline{M}(Z_k)(\overline{b} + \overline{d} + \overline{\alpha}(N_{k-1} 1))} \rightsquigarrow$ birth of a mutant with trait $X_{T_{k-1}}^i + Z_k$
- If $U_3 \leq \theta_k < U_4 := U_3 + \frac{d(X_{T_{k-1}}^i)}{b+d+\bar{\alpha}(N_{k-1}-1)} \rightsquigarrow$ (natural) death of i
- If $\theta_k \geq U_4 \rightsquigarrow$ nothing happens

	Le Modèle ○○○○○●○○○○○○○○	Large population scalings	
Algorithmic construction			

Algorithm

At time T_k choose an individual *i* uniformly among the N_{k-1} .

- If $\theta_k < U_1 := \frac{(N_{k-1}-1)\bar{\alpha}}{\bar{b}+\bar{d}+\bar{\alpha}(N_{k-1}-1)}$, choose another individual $j \neq i$ at random. If $\alpha_k < \alpha(X^i_{T_{k-1}}, X^j_{T_{k-1}}) \rightsquigarrow j$ kills i
- If $U_1 \leq \theta_k < U_2 := U_1 + \frac{b(X_{T_{k-1}}^i)(1-\mu(X_{T_{k-1}}^i))}{\tilde{b}+d+\bar{\alpha}(N_{k-1}-1)} \rightsquigarrow$ birth of a clone of i
- If $U_2 \leq \theta_k < U_3 := U_2 + \frac{b(X_{T_{k-1}}^i)\mu(X_{T_{k-1}}^i)M(X_{T_{k-1}}^i,Z_k)}{\overline{M}(Z_k)(\overline{b} + \overline{d} + \overline{\alpha}(N_{k-1} 1))} \rightsquigarrow$ birth of a mutant with trait $X_{T_{k-1}}^i + Z_k$

• If
$$U_3 \leq \theta_k < U_4 := U_3 + \frac{d(X_{T_{k-1}}^i)}{\overline{b+d}+\overline{\alpha}(N_{k-1}-1)} \rightsquigarrow$$
(natural) death of i

• If $\theta_k \geq U_4 \rightsquigarrow$ nothing happens

	Le Modèle ○○○○○●○○○○○○○	Large population scalings	
Examples			

Parameters from Kisdi (1999)

$$\mathcal{X} = [0,4] \quad d(x) \equiv 0 \quad \mu(x) \equiv \mu$$

	Le Modèle	Large population scalings	
Examples			

Parameters from Kisdi (1999)

$$\mathcal{X} = \begin{bmatrix} 0, 4 \end{bmatrix} \quad d(x) \equiv 0 \quad \mu(x) \equiv \mu$$
$$m(x, h) dh = \mathcal{N}(0, \sigma^2)$$
(conditioned on $x + h \in \mathcal{X}$)

	Le Modèle	Large population scalings	
Examples			

Parameters from Kisdi (1999)

$$\begin{aligned} \mathcal{X} &= [0,4] \quad d(x) \equiv 0 \quad \mu(x) \equiv \mu \\ m(x,h) dh &= \mathcal{N}(0,\sigma^2) \\ (\text{conditioned on } x+h \in \mathcal{X}) \\ b(x) &= 4-x \end{aligned}$$

	Le Modèle	Large population scalings	
Examples			

Parameters from Kisdi (1999)

	Le Modèle	Large population scalings	
Examples			

Parameters from Kisdi (1999)

Asymetric competition

- arm-race competition
- evolution of the cell size at division

ロ 日 ー ー ー ミ へ へ

	Le Modèle		
	000000000000000000000000000000000000000		
Examples			

Simulations

$$\mu = 0.1 \quad \sigma = 0.05$$
$$\alpha_{\rm max} = 0.02$$

 $\begin{array}{l} \mu = 0.1 \quad \sigma = 0.03 \\ \alpha_{\max} = 0.001 \end{array}$

	Le Modèle		
	000000000000000000000000000000000000000		
Examples			

Simulations

$$\mu = 0.1 \quad \sigma = 0.03$$
$$\alpha_{\rm max} = 0.02$$

ð

590

 $\begin{array}{l} \mu=0.1 \quad \sigma=0.03 \\ \alpha_{\max}=0.001 \end{array}$

	Le Modèle ○○○○○○○●○○○○○	Large population scalings O 000000000	
Examples			
Example 2			

$$\mathcal{X} = \begin{bmatrix} -2, 2 \end{bmatrix} \quad d(x) \equiv 0 \quad \mu(x) \equiv \mu$$
$$m(x, h)dh = \mathcal{N}(0, \sigma^2)$$
(conditioned on $x + h \in \mathcal{X}$)

	Le Modèle ○○○○○○○●○○○○○	Large population scalings O 000000000	
Examples			
Example 2			

$$\mathcal{X} = [-2, 2] \quad d(x) \equiv 0 \quad \mu(x) \equiv \mu$$
$$m(x, h)dh = \mathcal{N}(0, \sigma^2)$$
(conditioned on $x + h \in \mathcal{X}$)
$$b(x) = \exp(-x^2/2\sigma_b^2)$$

	ð	
	Ξ	
	Ξ	
	Ē	
5	۹	C

	Le Modèle ○○○○○○○●○○○○○○	Large population scalings O 000000000	
Examples			
Example 2			

$$\mathcal{X} = [-2, 2] \quad d(x) \equiv 0 \quad \mu(x) \equiv \mu$$
$$m(x, h)dh = \mathcal{N}(0, \sigma^2)$$
$$(\text{conditioned on } x + h \in \mathcal{X})$$
$$b(x) = \exp(-x^2/2\sigma_b^2)$$
$$\alpha(x, y) = \alpha(x - y) = \frac{1}{K}\exp(-(x - y)^2/2\sigma_\alpha^2)$$

	ð	
	Ξ	
	Ξ	
	E	
5	α	C

	Le Modèle ○○○○○○○●○○○○○○	Large population scalings • • • • • • • • • • • • • • • • • • •	
Examples			
Example 2			

$$\mathcal{X} = \begin{bmatrix} -2, 2 \end{bmatrix} \quad d(x) \equiv 0 \quad \mu(x) \equiv \mu$$
$$m(x, h) dh = \mathcal{N}(0, \sigma^2)$$
$$(\text{conditioned on } x + h \in \mathcal{X})$$
$$b(x) = \exp(-x^2/2\sigma_b^2)$$
$$\alpha(x, y) = \alpha(x - y) = \frac{1}{K}\exp(-(x - y)^2/2\sigma_\alpha^2)$$

ि = = = = = = = = (~

Symetric competition (competition for ressources)

	Le Modèle		
	000000000000000000000000000000000000000	000000000	
Examples			

Simulations

 $\begin{array}{l} \mu = 0.05, \ K = 1000, \ \sigma = \\ 0.01, \ \sigma_{\alpha} = 0.5, \ \sigma_{b} = 0.9 \end{array}$

 $\mu = 0.05, \ K = 1000, \ \sigma = 0.01, \ \sigma_{\alpha} = 0.9, \ \sigma_{b} = 0.9$

	Le Modèle	Large population scalings	
	000000000000000000000000000000000000000		
Examples			

Simulations

 $\mu = 0.05, \ K = 1000, \ \sigma = 0.01, \ \sigma_{\alpha} = 0.9, \ \sigma_{b} = 0.9$

ロ 一 ー ー ー ー ー ー ー ー ー

		Le Modèle ○○○○○○○○○○○	Large population		Brancl		
Examples							
		15	Simul/DDmatr2d018.txt* matrix			"Simul/DDmatr	2d025.txt* matrix
	200		· · · · ·	200		, , , , , , , , , , , , , , , , , , , 	
	180 -			600 180	_		
	160 -			500 160	-		
	140 -			400 140	-		
	120 -			300 120	_	N	
	100 -	*	- []	200 100	-		
	80 -			0 80	- *		

0 20

40 60 80 100

t = 36000

t = 50000

"Simul/DDmatr2d499.txt" matrix

120 140 160 180 200

120 140 160 180 200

t = 164000

t = 1000000

	Le Modèle	Large population scalings		
Examples				
	200 100 100 140 140 140 140 140 1	"Simul O Dmatr.2d1018.bt" matrix	"Simul O Dinat/26025.54" matix	500 - 500 - 400 - 300 - 200 - 100 0
	t = 36000		t = 50000	
	200 - 180 - 160 -	"Simul D Dmatr21082.1xt" matrix	"Simul DDinatr2499.bd" matrix	600 - 500
	140 -	- 400 - 300 - 200	140	- 400 - 300 - 200

40 60 80 100

t = 164000

t = 1000000

140 160

	n Le Modèle	Large population scalings		
Examples	000000000			
	200 1100 140 140 140 140 140 140	"SimuLODmatr24018.bt" matrix	"SimuLODmair28025.bt" m	abix
	t = 36000)	t = 50000	
	200	"Simul/DDmatr2d082.bd" matrix	"Simul/DDmatr28499.txt" m	iatrix
	180 - 160 - 140 - 120 -	- 600 500 400 300 200	180	600 500 400 300 200

t = 164000

t = 1000000

- 100

	Le Modèle			
	000000000000000000000000000000000000000	0000 000000000	000000000000000	
Examples				
		"Simul/DDmatr2d018.txt" matrix	"Simul/DDmatr2d025.txt* matri	ix
200			200	
180 -			180	
100		600	100	600 E00
180 -		400	100	400
140 -		300	140	300
120 -		- 200	120 -	- 200
100 -	*	100	100	- 100
- 08		- 💻 o	80 - * - 1	— 。
60 -		-	60	
40 -		-	40	
20 -		-	20	
0				
0	20 40 60 80 100 120	140 160 180 200	0 20 40 60 80 100 120 140 160 180 200	
	t = 36000		t = 50000	
		"Simul/DDmatr2d082.txt" matrix	"Simul/DDmatr2d499.bxt" matri	ix
200			200	
180 -		- 699	180	600
160 -		500	160	500
140 -	æ	400	140	400
120		300	120	300
120		200	a .	200
100 -		100	100	100
80 -			80	o

t = 164000

t = 1000000

	Le Modèle	Large population scalings	
Examples			

ð -

naa

•
$$\mathcal{X} = \mathcal{U} = [0, 1]$$

 $m(x, u) = m$
 $b(x, u) = 2 - 20(x - u)^2$ if $|x - u| \le 1/\sqrt{10}$
 $b(x, u) = 0$ if not
 $d(x, u, r) = 1 + \frac{r}{K}$; $W(v) = 1$
 $I^{\delta}(y) = A_{\delta} 1_{\{|y| \le \delta\}}$; $M(x, u, v) dv = 0.1N(u, s^2)$
 $\nu_0 = K \delta_{(0.5, 0.5)}$.

	Le Modèle	Large population scalings	
Examples			

•
$$\mathcal{X} = \mathcal{U} = [0, 1]$$

•
$$m(x, u) = m$$

• $b(x, u) = 2 - 20(x - u)^2$ if $|x - u| \le 1/\sqrt{10}$
• $b(x, u) = 0$ if not
• $d(x, u, r) = 1 + \frac{r}{K}$; $W(v) = 1$
• $I^{\delta}(y) = A_{\delta} \mathbb{1}_{\{|y| \le \delta\}}$; $M(x, u, v) dv = 0.1N(u, s^2)$
• $\nu_0 = K \delta_{(0.5, 0.5)}$.

	Le Modèle ○○○○○○○○○○○○○○○○○○	Large population scalings	
Examples			

•
$$\mathcal{X} = \mathcal{U} = [0, 1]$$

•
$$m(x,u) = m$$

•
$$b(x, u) = 2 - 20(x - u)^2$$
 if $|\mathbf{x} - \mathbf{u}| \le 1/\sqrt{10}$

•
$$b(x, u) = 0$$
 if not

•
$$d(x, u, r) = 1 + \frac{r}{K}$$
; $W(v) = 1$

$$I^{\delta}(y) = A_{\delta} \mathbb{1}_{\{|y| \le \delta\}} ; M(x, u, v) dv = 0.1 N(u, s^2)$$

$$\nu_0 = K \delta_{(0.5, 0.5)}.$$

	Le Modèle ○○○○○○○○○○○○○○○○○○	Large population scalings	
Examples			

•
$$\mathcal{X} = \mathcal{U} = [0, 1]$$

•
$$m(x,u) = m$$

•
$$b(x, u) = 2 - 20(x - u)^2$$
 if $|\mathbf{x} - \mathbf{u}| \le 1/\sqrt{10}$

•
$$b(x, u) = 0$$
 if not

•
$$d(x, u, r) = 1 + \frac{r}{K}; W(v) = 1$$

• $I^{\delta}(y) = A_{\delta} \mathbb{1}_{\{|y| \le \delta\}}; M(x, u, v) dv = 0.1 N(u, s^2)$
• $\nu_0 = K \delta_{(0.5, 0.5)}.$

	Le Modèle	Large population scalings	
Examples			

•
$$\mathcal{X} = \mathcal{U} = [0, 1]$$

•
$$m(x,u) = m$$

•
$$b(x, u) = 2 - 20(x - u)^2$$
 if $|\mathbf{x} - \mathbf{u}| \le 1/\sqrt{10}$

•
$$b(x, u) = 0$$
 if not

•
$$d(x, u, r) = 1 + \frac{r}{K}$$
; $W(v) = 1$
• $I^{\delta}(y) = A_{\delta} \mathbb{1}_{\{|y| \le \delta\}}$; $M(x, u, v) dv = 0.1N(u, s^2)$
• $\nu_0 = K \delta_{(0.5, 0.5)}$.

Balance between 4 parameters: m, s, δ, K .

	Le Modèle	Large population scalings	
Examples			

•
$$\mathcal{X} = \mathcal{U} = [0, 1]$$

•
$$m(x,u) = m$$

•
$$b(x, u) = 2 - 20(x - u)^2$$
 if $|\mathbf{x} - \mathbf{u}| \le 1/\sqrt{10}$

•
$$b(x, u) = 0$$
 if not

•
$$d(x, u, r) = 1 + \frac{r}{K}$$
; $W(v) = 1$

•
$$I^{\delta}(y) = A_{\delta} \mathbb{1}_{\{|y| \le \delta\}}$$
; $M(x, u, v) dv = 0.1 N(u, s^2)$
• $\nu_0 = K \delta_{(0.5, 0.5)}$.

Balance between 4 parameters: m, s, δ, K .

ロ 日 三 三 三 シ へへ

	Le Modèle	Large population scalings	
Examples			

•
$$\mathcal{X} = \mathcal{U} = [0, 1]$$

•
$$m(x,u) = m$$

•
$$b(x, u) = 2 - 20(x - u)^2$$
 if $|\mathbf{x} - \mathbf{u}| \le 1/\sqrt{10}$

•
$$b(x, u) = 0$$
 if not

•
$$d(x, u, r) = 1 + \frac{r}{K}$$
; $W(v) = 1$

•
$$I^{\delta}(y) = A_{\delta} \mathbb{1}_{\{|y| \le \delta\}}$$
; $M(x, u, v) dv = 0.1 N(u, s^2)$

•
$$\nu_0 = K \delta_{(0.5, 0.5)}.$$

	Le Modèle	Large population scalings	
Examples			

• Invasion of space along the diagonal

- Speciation and spatial clustering
- Number of clusters decreasing with δ
- Balance between the parameters.

	Le Modèle	Large population scalings	
Examples			

- Invasion of space along the diagonal
- Speciation and spatial clustering
- Number of clusters decreasing with δ
- Balance between the parameters.

	Le Modèle	Large population scalings	
Examples			

- Invasion of space along the diagonal
- Speciation and spatial clustering
- Number of clusters decreasing with δ
- Balance between the parameters.

	Le Modèle	Large population scalings	
Examples			

- Invasion of space along the diagonal
- Speciation and spatial clustering
- Number of clusters decreasing with δ
- Balance between the parameters.

	Le Modèle	Large population scalings	
Examples			

Australia (Nature 2006), Phillips et al.: the annual rate of progress of the toad invasion front has increased. The toads with longer legs are the first to arrive in new areas, but also those at the invasion front have longer legs than toads in older populations.

•
$$\mathcal{X} = [-1, 1], \mathcal{U} = [0, 3]$$

• $m(x, u) = m(u + 0.1)$
• $b(x, u) = 1$
• $d(x, u, r) = 1 + \frac{r}{K}$; $W(v) = \exp(-10v^2)$
• $I^{\delta}(y) = A_{\delta} \mathbb{1}_{\{|y| \le \delta\}}$; $M(x, u, v) dv = 0.1N(u, s^2)$

Triangular invasion pattern: invasion front composed of faster individuals.

ロ 日 ー ー ー ー ー ー ー のへの

	Le Modèle	Large population scalings	
Examples			

Australia (Nature 2006), Phillips et al.: the annual rate of progress of the toad invasion front has increased. The toads with longer legs are the first to arrive in new areas, but also those at the invasion front have longer legs than toads in older populations.

•
$$\mathcal{X} = [-1, 1], \, \mathcal{U} = [0, 3]$$

•
$$m(x, u) = m(u + 0.1)$$

$$b(x,u) = 1$$

$$d(x, u, r) = 1 + \frac{r}{K}; W(v) = \exp(-10v^2)$$

$$I^{\delta}(y) = A_{\delta} \mathbb{1}_{\{|y| \le \delta\}} \ ; \ M(x, u, v) dv = 0.1 N(u, s^2)$$

Triangular invasion pattern: invasion front composed of faster individuals.

	Le Modèle	Large population scalings	
Examples			

Australia (Nature 2006), Phillips et al.: the annual rate of progress of the toad invasion front has increased. The toads with longer legs are the first to arrive in new areas, but also those at the invasion front have longer legs than toads in older populations.

•
$$\mathcal{X} = [-1, 1], \, \mathcal{U} = [0, 3]$$

•
$$m(x, u) = m(u + 0.1)$$

•
$$b(x,u) = 1$$

$$d(x, u, r) = 1 + \frac{r}{K}; W(v) = \exp(-10v^2)$$

$$I^{\delta}(y) = A_{\delta} \mathbb{1}_{\{|y| \le \delta\}} \; ; \; M(x, u, v) dv = 0.1 N(u, s^2)$$

Triangular invasion pattern: invasion front composed of faster individuals.

ロ 日 ー ー ー ー ー ー ー ー のへへ

	Le Modèle	Large population scalings	
Examples			

Australia (Nature 2006), Phillips et al.: the annual rate of progress of the toad invasion front has increased. The toads with longer legs are the first to arrive in new areas, but also those at the invasion front have longer legs than toads in older populations.

•
$$\mathcal{X} = [-1, 1], \, \mathcal{U} = [0, 3]$$

•
$$m(x, u) = m(u + 0.1)$$

•
$$b(x, u) = 1$$

•
$$d(x, u, r) = 1 + \frac{r}{K}$$
; $W(v) = \exp(-10v^2)$
• $I^{\delta}(y) = A_{\delta} \mathbb{1}_{\{|y| \le \delta\}}$; $M(x, u, v) dv = 0.1N(u, s^2)$

Triangular invasion pattern: invasion front composed of faster individuals.
	Le Modèle	Large population scalings	
Examples			

Example: Invasion and Evolution of Migration Speed Cane toads in

Australia (Nature 2006), Phillips et al.: the annual rate of progress of the toad invasion front has increased. The toads with longer legs are the first to arrive in new areas, but also those at the invasion front have longer legs than toads in older populations.

•
$$\mathcal{X} = [-1, 1], \ \mathcal{U} = [0, 3]$$

• $m(x, u) = m(u + 0.1)$
• $b(x, u) = 1$
• $d(x, u, r) = 1 + \frac{r}{K}; \ W(v) = \exp(-10v^2)$
• $I^{\delta}(y) = A_{\delta} \mathbb{1}_{\{|y| \le \delta\}}; \ M(x, u, v) dv = 0.1 N(u, s^2)$

Triangular invasion pattern: invasion front composed of faster individuals.

ロ - 1 - 1 - 1 - 1 - 0 へへ

Parameter K: b_K , d_K , μ_K , M_K and

	Large population scalings	
	00000000	
Preliminaries		

Parameter K: b_K , d_K , μ_K , M_K and $\alpha_K(x, y) = \frac{\alpha(x, y)}{K}$

Parameter K: b_K , d_K , μ_K , M_K and $\alpha_K(x, y) = \frac{\alpha(x, y)}{K}$ Biological interpretations: K scales the amount of ressources available (carrying capacity, or "system size"), or the size of individuals (w.r.t. their competitive pressure).

$$X_t^K = \frac{1}{K} \sum_{i=1}^{I(t)} \delta_{x_t^i} = \frac{\nu_t^K}{K}$$

$$X_t^K = \frac{1}{K} \sum_{i=1}^{I(t)} \delta_{x_t^i} = \frac{\nu_t^K}{K}$$

$$\begin{split} L \quad \phi(\nu) &= \int_{\mathcal{X}} [\phi(\nu + \delta_x) - \phi(\nu)] (1 - \mu \quad (x)) b \quad (x)\nu(dx) \\ &+ \int_{\mathcal{X}} \int_{\mathbb{R}^d} [\phi(\nu + \delta_{x+z}) - \phi(\nu)] \mu \quad (x) b \quad (x) M \quad (x, z) dz\nu(dx) \\ &+ \int_{\mathcal{X}} [\phi(\nu - \delta_x) - \phi(\nu)] \left(d \quad (x) + \int_{\mathcal{X}} \alpha(x, y)(\nu(dy) - \delta_x(dy)) \right) \nu(dx) \end{split}$$

$$X_t^K = \frac{1}{K} \sum_{i=1}^{I(t)} \delta_{x_t^i} = \frac{\nu_t^K}{K}$$

$$\begin{split} L^{K}\phi(\nu) &= \int_{\mathcal{X}} [\phi(\nu+\delta_{x}) - \phi(\nu)](1 - \mu_{K}(x))b_{K}(x)\nu(dx) \\ &+ \int_{\mathcal{X}} \int_{\mathbb{R}^{d}} [\phi(\nu+\delta_{x+z}) - \phi(\nu)]\mu_{K}(x)b_{K}(x)M_{K}(x,z)dz\nu(dx) \\ &+ \int_{\mathcal{X}} [\phi(\nu-\delta_{x}) - \phi(\nu)]\left(d_{K}(x) + \int_{\mathcal{X}} \alpha(x,y)(\nu(dy) - \delta_{x}(dy))\right)\nu(dx) \end{split}$$

$$X_t^K = \frac{1}{K} \sum_{i=1}^{I(t)} \delta_{x_t^i} = \frac{\nu_t^K}{K}$$

$$\begin{split} L^{K}\phi(X) &= \int_{\mathcal{X}} [\phi(X + \frac{\delta_{x}}{K}) - \phi(X)](1 - \mu_{K}(x))b_{K}(x)\nu(dx) \\ &+ \int_{\mathcal{X}} \int_{\mathbb{R}^{d}} [\phi(X + \frac{\delta_{x+z}}{K}) - \phi(X)]\mu_{K}(x)b_{K}(x)M_{K}(x,z)dz\nu(dx) \\ &+ \int_{\mathcal{X}} [\phi(X - \frac{\delta_{x}}{K}) - \phi(X)]\left(d_{K}(x) + \int_{\mathcal{X}} \frac{\alpha(x,y)}{K}(\nu(dy) - \delta_{x}(dy))\right)\nu(dx) \overset{\Box}{\underset{\sum}{\longrightarrow}} \end{split}$$

$$X_t^K = \frac{1}{K} \sum_{i=1}^{I(t)} \delta_{x_t^i} = \frac{\nu_t^K}{K}$$

$$L^{K}\phi(X) = \int_{\mathcal{X}} [\phi(X + \frac{\delta_{x}}{K}) - \phi(X)](1 - \mu_{K}(x))b_{K}(x)KX(dx) + \int_{\mathcal{X}} \int_{\mathbb{R}^{d}} [\phi(X + \frac{\delta_{x+z}}{K}) - \phi(X)]\mu_{K}(x)b_{K}(x)M_{K}(x,z)dzKX(dx) + \int_{\mathcal{X}} [\phi(X - \frac{\delta_{x}}{K}) - \phi(X)]\left(d_{K}(x) + \int_{\mathcal{X}} \frac{\alpha(x,y)}{K}(KX(dy) - \delta_{x}(dy))\right)KX(\frac{\alpha}{2})$$

	Large population scalings	
	0000000	
First limit		

First large population limit

 $b_K = b, d_K = d, \mu_K = \mu, M_K = M.$ Only the competitive kernel is modified: limit of large population size.

> ð -

	Large population scalings	
	0000000	
Eiset limit		

First large population limit

 $b_K = b, d_K = d, \mu_K = \mu, M_K = M.$ Only the competitive kernel is modified: limit of large population size.

7

500

Theorem

Assume that $X_0^K \Rightarrow \xi_0$, $\sup_K \mathbf{E}[\langle X_0^K, \mathbf{1} \rangle^3] < +\infty$ and the regularity of the parameters.

	Large population scalings	
	0000000	
Final limit		

First large population limit

 $b_K = b, d_K = d, \mu_K = \mu, M_K = M.$ Only the competitive kernel is modified: limit of large population size.

Theorem

Assume that
$$X_0^K \Rightarrow \xi_0$$
, $\sup_K \mathbf{E}[\langle X_0^K, \mathbf{1} \rangle^3] < +\infty$
and the regularity of the parameters.

Then $X^K \Rightarrow \xi \in \mathcal{C}([0, T], M_F(\mathcal{X}))$ deterministic, where

$$\langle \xi_t, f \rangle = \langle \xi_0, f \rangle$$

$$+ \int_0^t \int_{\mathcal{X}} \left\{ \left[(1 - \mu(x)) b(x) - d(x) - \int_{\mathcal{X}} \alpha(x, y) \xi_s(dy) \right] f(x) \right.$$

$$+ b(x) \mu(x) \int f(x + z) M(x, z) dz \left\{ \xi_s(dx) ds. \right.$$

	Large population scalings	
First limit		

Remarks

• If $\xi_0(dx) = u_0(x)dx$, then $\xi_t(dx) = u(t,x)dx$, $\forall t > 0$ and u(t,x) is weak solution to

$$\partial_t u = [(1 - \mu(x))b(x) - d(x) - \int \alpha(x, y)u(t, y)dy]u(t, x)$$
$$+ \int \mu(y)b(y)M(y, x - y)u(t, y)dy$$

Monomorphic case: if $\mu \equiv 0$ and $X_0^K = n_0^K \delta_x$ with $n_0^K \to n_0$ when $K \to \infty$, then $X_t^K \to n(t)\delta_x$, with

$$\dot{n} = (b(x) - d(x) - \alpha(x, x)n)n, \quad n(0) = n_0$$

Dimorphic case: if $\mu \equiv 0$ and $\nu_0^K = n_0^K \delta_x + m_0^K \delta_y$, then $\nu_t^K \to n(t)\delta_x + m(t)\delta_y$, with

$$\left\{ \begin{array}{l} \dot{n} = (b(x) - d(x) - \alpha(x, x)n - \alpha(x, y)m)n \\ \dot{m} = (b(y) - d(y) - \alpha(y, x)n - \alpha(y, y)m)m \end{array} \right.$$

	Large population scalings	
First limit		

Remarks

• If $\xi_0(dx) = u_0(x)dx$, then $\xi_t(dx) = u(t,x)dx$, $\forall t > 0$ and u(t,x) is weak solution to

$$\partial_t u = [(1 - \mu(x))b(x) - d(x) - \int \alpha(x, y)u(t, y)dy]u(t, x)$$
$$+ \int \mu(y)b(y)M(y, x - y)u(t, y)dy$$

• Monomorphic case: if $\mu \equiv 0$ and $X_0^K = n_0^K \delta_x$ with $n_0^K \to n_0$ when $K \to \infty$, then $X_t^K \to n(t)\delta_x$, with

$$\dot{n} = (b(x) - d(x) - \alpha(x, x)n)n, \quad n(0) = n_0$$

Dimorphic case: if $\mu \equiv 0$ and $\nu_0^K = n_0^K \delta_x + m_0^K \delta_y$, then $\nu_t^K \to n(t)\delta_x + m(t)\delta_y$, with

$$\begin{cases} \dot{n} = (b(x) - d(x) - \alpha(x, x)n - \alpha(x, y)m)n\\ \dot{m} = (b(y) - d(y) - \alpha(y, x)n - \alpha(y, y)m)m \end{cases}$$

	Large population scalings	
First limit		

Remarks

• If $\xi_0(dx) = u_0(x)dx$, then $\xi_t(dx) = u(t,x)dx$, $\forall t > 0$ and u(t,x) is weak solution to

$$\partial_t u = [(1 - \mu(x))b(x) - d(x) - \int \alpha(x, y)u(t, y)dy]u(t, x)$$
$$+ \int \mu(y)b(y)M(y, x - y)u(t, y)dy$$

• Monomorphic case: if $\mu \equiv 0$ and $X_0^K = n_0^K \delta_x$ with $n_0^K \to n_0$ when $K \to \infty$, then $X_t^K \to n(t)\delta_x$, with

$$\dot{n} = (b(x) - d(x) - \alpha(x, x)n)n, \quad n(0) = n_0$$

• Dimorphic case: if $\mu \equiv 0$ and $\nu_0^K = n_0^K \delta_x + m_0^K \delta_y$, then $\nu_t^K \to n(t)\delta_x + m(t)\delta_y$, with

$$\begin{cases} n = (b(x) - a(x) - \alpha(x, x)n - \alpha(x, y)m)n\\ \dot{m} = (b(y) - d(y) - \alpha(y, x)n - \alpha(y, y)m)m \end{cases}$$

	Large population scalings	
	00000 0 00 00000	

First limit

Simulation of example 1

Accelerated births and deaths

Large population limit with accelerated births and deaths

Here, the limit of large system size is combined with an acceleration of births and deaths $\mathcal{X} = \mathbb{R}^d$, $\alpha_K(x, y) = \alpha(x, y)/K$,

Accelerated births and deaths

Large population limit with accelerated births and deaths

Here, the limit of large system size is combined with an acceleration of births and deaths $\mathcal{X} = \mathbb{R}^d$, $\alpha_K(x, y) = \alpha(x, y)/K$,

 $b_K(x) = K^{\eta}r(x) + b(x), \quad d_K(x) = K^{\eta}r(x) + d(x), \quad \eta \in (0, 1].$

Biological interpretation: being slow and living fast but slow demography

 \leadsto relevant for microorganisms in colonies

Accelerated births and deaths

Large population limit with accelerated births and deaths

Here, the limit of large system size is combined with an acceleration of births and deaths $\mathcal{X} = \mathbb{R}^d$, $\alpha_K(x, y) = \alpha(x, y)/K$,

$$b_K(x) = K^{\eta}r(x) + b(x), \quad d_K(x) = K^{\eta}r(x) + d(x), \quad \eta \in (0, 1].$$

Biological interpretation: being slow and living fast but slow demography

 \leadsto relevant for microorganisms in colonies

Since births are accelerated, the effect of mutation (either the mutation probability or the mutation amplitude) must be rescaled accordingly: $\mu_K = \mu$, $M_K(x, z)dz \sim \mathcal{N}(0, \sigma^2(x)\mathrm{Id}/K^{\eta})$.

	Large population scalings	
	000000000	
Accelerated births and death		

Small mutation step

Case
$$\eta < 1$$

• $X^K \Rightarrow \xi \in \mathcal{C}([0, T], M_F)$ where
 $\langle \xi_t, f \rangle = \langle \xi_0, f \rangle$
 $+ \int_0^t \int_{\mathcal{X}} \left\{ (b(x) - d(x) - \int_{\mathcal{X}} \alpha(x, y)\xi_s(dy)) f(x) + \frac{1}{2}r(x)\mu(x)\sigma^2(x)\Delta f(x) \right\} \xi_s(dx) ds.$

Small mutation step

Case
$$\eta < 1$$

• $X^K \Rightarrow \xi \in \mathcal{C}([0, T], M_F)$ where
 $\langle \xi_t, f \rangle = \langle \xi_0, f \rangle$
 $+ \int_0^t \int_{\mathcal{X}} \left\{ (b(x) - d(x) - \int_{\mathcal{X}} \alpha(x, y) \xi_s(dy)) f(x) + \frac{1}{2} r(x) \mu(x) \sigma^2(x) \Delta f(x) \right\} \xi_s(dx) ds.$

 \leadsto Generalization of Fisher's models in ecology (reaction-diffusion equation)

	Le Modèle	Large population scalings	Branchement évolutif	Conclusion
		00000 0000 0000 0		
Accelerated births and o	deaths			
Case $\eta =$				

$$\begin{split} X^K &\Rightarrow Z \in \mathcal{C}([0, T], M_F) \text{ where } Z \text{ is defined by the 3 conditions:} \\ & \sup_{t \leq T} \mathbf{E}[\langle Z_t, \mathbf{1} \rangle^3] < \infty \\ & \langle Z_t, f \rangle = \langle Z_0, f \rangle + \bar{M}_t^f \\ & + \int_0^t \int_{\mathbb{R}^d} \Big\{ (b(x) - d(x) - \int_{\mathcal{X}} \alpha(x, y) Z_s(dy)) f(x) \\ & + \frac{1}{2} r(x) \mu(x) \sigma^2(x) \Delta f(x) \Big\} Z_s(dx) ds \\ & \quad \langle \bar{M}^f \rangle_t = 2 \int_0^t \int_{\mathbb{R}^d} r(x) f^2(x) Z_s(dx) ds. \end{split}$$

ロ 日 ー ー ー ー ー の へ へ

	Le Modèle	Large population scalings	Branchement évolutif	Conclusion
Accelerated births and deaths				
Case $\eta = 1$				
$X^K \Rightarrow Z \in$	$\mathcal{C}([0, T], M_F)$	where Z is defined by	the 3 conditions:	

•
$$\sup_{t \leq T} \mathbf{E}[\langle Z_t, \mathbf{1} \rangle^3] < \infty$$

• $\sup_{t \leq T} \mathbf{E}[\langle Z_t, \mathbf{1} \rangle^3] < \infty$
• $\langle Z_t, f \rangle = \langle Z_0, f \rangle + \bar{M}_t^f$
 $+ \int_0^t \int_{\mathbb{R}^d} \left\{ (b(x) - d(x) - \int_{\mathcal{X}} \alpha(x, y) Z_s(dy)) f(x) + \frac{1}{2} r(x) \mu(x) \sigma^2(x) \Delta f(x) \right\} Z_s(dx) ds$
• $\langle \bar{M}^f \rangle_t = 2 \int_0^t \int_{\mathbb{R}^d} r(x) f^2(x) Z_s(dx) ds.$

	Le Modèle	Large population scalings	Branchement évolutif	Conclusion
Accelerated births and deaths				
Case $\eta = 1$				

$$\begin{split} X^{K} &\Rightarrow Z \in \mathcal{C}([0, T], M_{F}) \text{ where } Z \text{ is defined by the 3 conditions:} \\ \bullet \sup_{t \leq T} \mathbf{E}[\langle Z_{t}, \mathbf{1} \rangle^{3}] < \infty \\ \bullet \ \langle Z_{t}, f \rangle &= \langle Z_{0}, f \rangle + \overline{M}_{t}^{f} \\ &+ \int_{0}^{t} \int_{\mathbb{R}^{d}} \Big\{ (b(x) - d(x) - \int_{\mathcal{X}} \alpha(x, y) Z_{s}(dy)) f(x) \\ &+ \frac{1}{2} r(x) \mu(x) \sigma^{2}(x) \Delta f(x) \Big\} Z_{s}(dx) ds \\ \bullet \ \langle \overline{M}^{f} \rangle_{t} = 2 \int_{0}^{t} \int_{\mathbb{R}^{d}} r(x) f^{2}(x) Z_{s}(dx) ds. \end{split}$$

Introduction	Le Modèle	Large population scalings	Branchement évolutif	Conclusion		
		0 0000 000 00				
Accelerated births and deaths						
Case $\eta = 1$						

$$\begin{split} X^{K} &\Rightarrow Z \in \mathcal{C}([0, T], M_{F}) \text{ where } Z \text{ is defined by the 3 conditions:} \\ \bullet \sup_{t \leq T} \mathbf{E}[\langle Z_{t}, \mathbf{1} \rangle^{3}] < \infty \\ \bullet \langle Z_{t}, f \rangle &= \langle Z_{0}, f \rangle + \bar{M}_{t}^{f} \\ &+ \int_{0}^{t} \int_{\mathbb{R}^{d}} \Big\{ (b(x) - d(x) - \int_{\mathcal{X}} \alpha(x, y) Z_{s}(dy)) f(x) \\ &+ \frac{1}{2} r(x) \mu(x) \sigma^{2}(x) \Delta f(x) \Big\} Z_{s}(dx) ds \\ \bullet \langle \bar{M}^{f} \rangle_{t} &= 2 \int_{0}^{t} \int_{\mathbb{R}^{d}} r(x) f^{2}(x) Z_{s}(dx) ds. \end{split}$$

ロ 日 ー ー ー ー ー ー の へ へ

Introduction
 Le Modèle
 Large population scalings
 Branchement évolutif
 Conclusion

 Accelerated births and deaths
 Case

$$\eta = 1$$

$$\begin{split} & \mathcal{K}^{K} \Rightarrow Z \in \mathcal{C}([0,T],M_{F}) \text{ where } Z \text{ is defined by the 3 conditions:} \\ & \text{sup}_{t \leq T} \mathbf{E}[\langle Z_{t}, \mathbf{1} \rangle^{3}] < \infty \\ & \text{ } \langle Z_{t}, f \rangle = \langle Z_{0}, f \rangle + \bar{M}_{t}^{f} \\ & \quad + \int_{0}^{t} \int_{\mathbb{R}^{d}} \Big\{ (b(x) - d(x) - \int_{\mathcal{X}} \alpha(x,y) Z_{s}(dy)) f(x) \\ & \quad + \frac{1}{2} r(x) \mu(x) \sigma^{2}(x) \Delta f(x) \Big\} Z_{s}(dx) ds \\ & \text{ } \langle \bar{M}^{f} \rangle_{t} = 2 \int_{0}^{t} \int_{\mathbb{R}^{d}} r(x) f^{2}(x) Z_{s}(dx) ds. \end{split}$$

 \rightsquigarrow Microscopic justification of superprocesses with density-dependent interaction, recently proposed and studied in population genetics (Etheridge 04)

- birth and death stochasticity reflected on the demographic time-scale
- diversification vs extinction

TrV

....

Branchement évolutif

Accelerated births and deaths

Simulations of example 1

Branchement évolutif

Accelerated births and deaths

Simulations of example 1

	Large population scalings	
Discussion		

Discussion

- Mathematical justification of several (old and new) macroscopic evolutionary models
- Precising the biological assumptions and scales underlying each macroscopic model (large ressources, different scales for individual births and deaths and for demography,...)

ð

Sac

• Unifying these models from the same microscopic model

	Large population scalings	
Discussion		

Discussion

- Mathematical justification of several (old and new) macroscopic evolutionary models
- Precising the biological assumptions and scales underlying each macroscopic model (large ressources, different scales for individual births and deaths and for demography,...)
- Unifying these models from the same microscopic model

	Large population scalings	
Discussion		

Discussion

- Mathematical justification of several (old and new) macroscopic evolutionary models
- Precising the biological assumptions and scales underlying each macroscopic model (large ressources, different scales for individual births and deaths and for demography,...)
- Unifying these models from the same microscopic model

An interpretation of evolutionary branching

- The theory of adaptive dynamics (Metz et al. 1996) proposes an interpretation of evolutionary branching based on the assumptions of rare and small mutations, using an approximate model called the "trait substitution sequence".
- These assumptions are restrictive. However, the branching criterion obtained this way is very robust in simulations.

Branchement évolutif

Large population and very rare mutations

Large population and very rare mutations: timescales separation

Biological heuristics

The selection process has sufficient time between two mutations to eliminate disadvantaged traits (time scale separation):

- Minimal number of coexisting traits
- Succession of phases of mutant invasion, and phases of competition between traits

Large population and very rare mutations: timescales separation

Biological heuristics

The selection process has sufficient time between two mutations to eliminate disadvantaged traits (time scale separation):

- Minimal number of coexisting traits
- Succession of phases of mutant invasion, and phases of competition between traits

Large population and very rare mutations: timescales separation

Biological heuristics

The selection process has sufficient time between two mutations to eliminate disadvantaged traits (time scale separation):

- Minimal number of coexisting traits
- Succession of phases of mutant invasion, and phases of competition between traits

Large population and very rare mutations: timescales separation

Biological heuristics

The selection process has sufficient time between two mutations to eliminate disadvantaged traits (time scale separation):

- Minimal number of coexisting traits
- Succession of phases of mutant invasion, and phases of competition between traits

The assumption of large populations allows to assume a deterministic population dynamics, so that one can predict the outcome of competition between two traits (or more).

		Branchement évolutif	
		0000000 00000000	
Houristics			

Renormalization

- Large population: $\alpha_K(x, y) = \alpha(x, y)/K$, $b_K = b$, $d_K = d$, $M_K = M$
- Rare mutations: $\mu_K(x) = u_K \mu(x)$ where $u_K \to 0$ when $K \to +\infty$

		Branchement évolutif	
		0000000 00000000	
Houristics			

Renormalization

- Large population: $\alpha_K(x, y) = \alpha(x, y)/K$, $b_K = b$, $d_K = d$, $M_K = M$
- Rare mutations: $\mu_K(x) = u_K \mu(x)$ where $u_K \to 0$ when $K \to +\infty$

Logistic equations $(\mu \equiv 0)$

- Monomorphic case: $\dot{n} = (b(x) d(x) \alpha(x, x)n)n$
- Dimorphic case: the logistic system

$$\begin{cases} \dot{n} = (b(x) - d(x) - \alpha(x, x)n - \alpha(x, y)m)n\\ \dot{m} = (b(y) - d(y) - \alpha(y, x)n - \alpha(y, y)m)m \end{cases}$$

has a single stable steady state, $(\bar{n}_x, 0)$ or $(0, \bar{n}_y)$

Logistic equations $(\mu\equiv 0)$

- Monomorphic case: $\dot{n} = (b(x) d(x) \alpha(x, x)n)n$ has a single stable steady state $\bar{n}_x = \frac{b(x) - d(x)}{\alpha(x, x)}$
- Dimorphic case: the logistic system

$$\begin{cases} \dot{n} = (b(x) - d(x) - \alpha(x, x)n - \alpha(x, y)m)n\\ \dot{m} = (b(y) - d(y) - \alpha(y, x)n - \alpha(y, y)m)m \end{cases}$$

has a single stable steady state, $(\bar{n}_x, 0)$ or $(0, \bar{n}_y)$

Logistic equations $(\mu\equiv 0)$

- Monomorphic case: $\dot{n} = (b(x) d(x) \alpha(x, x)n)n$ has a single stable steady state $\bar{n}_x = \frac{b(x) - d(x)}{\alpha(x, x)}$
- Dimorphic case: the logistic system

$$\begin{cases} \dot{n} = (b(x) - d(x) - \alpha(x, x)n - \alpha(x, y)m)n\\ \dot{m} = (b(y) - d(y) - \alpha(y, x)n - \alpha(y, y)m)m \end{cases}$$

has a single stable steady state, $(\bar{n}_x, 0)$ or $(0, \bar{n}_y)$

Heuristics

Logistic equations $(\mu \equiv 0)$

- Monomorphic case: $\dot{n} = (b(x) d(x) \alpha(x, x)n)n$ has a single stable steady state $\bar{n}_x = \frac{b(x) - d(x)}{\alpha(x, x)}$
- Dimorphic case: the logistic system

$$\begin{cases} \dot{n} = (b(x) - d(x) - \alpha(x, x)n - \alpha(x, y)m)n\\ \dot{m} = (b(y) - d(y) - \alpha(y, x)n - \alpha(y, y)m)m \end{cases}$$

has a single stable steady state, $(\bar{n}_x, 0)$ or $(0, \bar{n}_y)$ under the assumption

(H') For any
$$x \neq y \in \mathcal{X}$$
, $f(x, y)f(y, x) < 0$, where

$$f(y,x) = b(y) - d(y) - \alpha(y,x)\bar{n}_x$$

	Large population scalings	Branchement évolutif ○○○○○●○○○○○○○○○	
Heuristics			

Assume (H), (H') and

$$\forall C > 0, \quad \log K \ll \frac{1}{Ku_K} \ll \exp(CK)$$

and $X_0^K = (\gamma_K/K)\delta_x$ with $\gamma_K/K \to \gamma > 0$,

	Large population scalings	Branchement évolutif ○○○○○●○○○○○○○○○	
Heuristics			

Assume (H), (H') and

$$\forall C > 0, \quad \log K \ll \frac{1}{Ku_K} \ll \exp(CK)$$

and $X_0^K = (\gamma_K/K)\delta_x$ with $\gamma_K/K \to \gamma > 0$, then, the process $(X_{t/Ku_K}^K, t \ge 0)$ converges to

	Large population scalings	Branchement évolutif 00000●0000000000	
Heuristics			

Assume (H), (H') and

$$\forall C > 0, \quad \log K \ll \frac{1}{Ku_K} \ll \exp(CK)$$

and $X_0^K = (\gamma_K/K)\delta_x$ with $\gamma_K/K \to \gamma > 0$, then, the process $(X_{t/Ku_K}^K, t \ge 0)$ converges to

$$Z_t = \begin{cases} \gamma \delta_x & si \ t = 0\\ \bar{n}_{Y_t} \delta_{Y_t} & si \ t > 0 \end{cases}$$

7 -

nac

for finite dimensional distributions,

	Large population scalings	Branchement évolutif	
Heuristics			

Assume (H), (H') and

$$\forall C>0, \quad \log K \ll \frac{1}{Ku_K} \ll \exp(CK)$$

and $X_0^K = (\gamma_K/K)\delta_x$ with $\gamma_K/K \to \gamma > 0$, then, the process $(X_{t/Ku_K}^K, t \ge 0)$ converges to

$$Z_t = \begin{cases} \gamma \delta_x & si \ t = 0\\ \bar{n}_{Y_t} \delta_{Y_t} & si \ t > 0 \end{cases}$$

for finite dimensional distributions, where the Markov process $(Y_t, t \ge 0)$ satisfies $Y_0 = x$ and has as infinitesimal generator:

$$A\varphi(x) = \int_{\mathbb{R}^d} (\varphi(x+z) - \varphi(x))\mu(x)b(x)\bar{n}_x \frac{[f(x+z,x)]_+}{b(x+z)} M(x,dz).$$

ð

- t/Ku_K is the time scale of mutations.
- Because of the discontinuity of Z at t = 0+, we cannot hope to obtain a "functional" convergence.
- If assumption (H') is not satisfied, this result can be extended to polymorphic populations.
- f(x, y) is a fitness function which depends on the resident and mutant trait, which is rigorously defined from the ecological parameters of the model.

- t/Ku_K is the time scale of mutations.
- Because of the discontinuity of Z at t = 0+, we cannot hope to obtain a "functional" convergence.
- If assumption (H') is not satisfied, this result can be extended to polymorphic populations.
- f(x, y) is a fitness function which depends on the resident and mutant trait, which is rigorously defined from the ecological parameters of the model.

- t/Ku_K is the time scale of mutations.
- Because of the discontinuity of Z at t = 0+, we cannot hope to obtain a "functional" convergence.
- If assumption (H') is not satisfied, this result can be extended to polymorphic populations.
- f(x, y) is a fitness function which depends on the resident and mutant trait, which is rigorously defined from the ecological parameters of the model.

□ □ = = = = =

	Large population scalings	Branchement évolutif	
Heuristics			

- t/Ku_K is the time scale of mutations.
- Because of the discontinuity of Z at t = 0+, we cannot hope to obtain a "functional" convergence.
- If assumption (H') is not satisfied, this result can be extended to polymorphic populations.
- f(x, y) is a fitness function which depends on the resident and mutant trait, which is rigorously defined from the ecological parameters of the model.

ð

	Large population scalings	Branchement évolutif	
Heuristics			

Consequences

Under the additional assumption of small mutations

- the TSS can be approximated by an ODE called the "canonical equation of adaptive dynamics" (Dieckmann and Law 1996) driven by the fitness gradient
- when the evolution arrives at an equilibirum of this ODE, the analysis of the TSS at this points allows to determine if branching can occur. It is possible to mathematically justify (Bénaïm, C., Méléard, in prep.) the branching criterion:
 - if $\partial_1 f(x^*, x^*) = 0$, there is branching at x^* if and only if

 $\partial_{22}f(x^*, x^*) < \partial_{11}f(x^*, x^*) \text{ and } \partial_{11}f(x^*, x^*) > 0.$

• It is also possible to compute the (asymptotic) branching time

	Large population scalings	Branchement évolutif	
An example			

An example

	Large population scalings	Branchement évolutif	
An example			

	Large population scalings	Branchement évolutif	
An example			

Le Modèle	Large population scalings	Branchement évolutif	
000000000000000000000000000000000000000	00000000	000000000000000000000000000000000000000	

日 - 1 三 三 シへへ

		Large population scalings	Branchement évolutif	
			000000000000000000000000000000000000000	
An ovampla				

	Large population scalings	Branchement évolutif	
An oxample			

	Large population scalings	Branchement évolutif	
An example			

		Large population scalings	Branchement évolutif	
	000000000000000000000000000000000000000		000000000000000000000000000000000000000	
An oxomplo				

ا ا ا ا ا ا ا

Conclusion

Nous avons

- présenté un modèle simple stochastique spatial avec interactions, facile à simuler, pouvant s'appliquer à de nombreuses situations
- expliqué ses liens avec d'autres modèles plus ou moins classiques, pouvant tous se déduire du même modèle microscopique
- expliqué le phénomène de branchement évolutif, qui peut aussi s'interpréter comme clustering spatial, ou invasions par colonies de populations (métapopulations) ; favorisé par
 - petite portée d'interaction spatiale (par rapport aux variations environementales)
 - petite portée moyenne de dispersion
 - peut également apparaître dans un milieu très homogène
 - le critère de branchement est obtenu dans une asymptotique particulière, mais est assez robuste d'après les simulations
- spécifié les hypothèses précises sur les paramètres nécessaires pour chacun de ces modèles