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1 Objectives

•Define a new continuous multi-type branching process with migration

•Relate to queueing systems

•Obtain first two moments of the state vector of the branching process for

correlated migration process

•Derive expected waiting times in polling systems with correlated vacations.
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Example 1: discrete branching with migration

Queue with Vacations, Gated Regime

•M/G/1/∞ queue,

•Arrival rate λ, i.i.d. service times {Dn} with first and second moments d, d(2).

•Sequence of vacations: Vn. Will be assumed stationary ergodic, with first and

second moments v, v(2).

•Gated regime: at the nth end of vacation, a gate is closed (nth polling instant).

Then the server goes on serving the customers present at the queue at that polling

instant:

Then the server leaves on vacation.
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•We denote:

• Bn:= the number of arrivals during the nth vacation.

• ξ
(i)
h := the number of arrivals during the service time of a customer

•Then:

Xn+1 =
Xn∑

i=1

ξ(i)
n + Bn, n ≥ n0.

Denote

An(x) =
x∑

i=1

ξ(i)
n

Then An are nonnegative and divisible:

An(x + y) = A(1)
n (x) + A(2)

n (y)

where A
(i)
n are i.i.d.
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Example 2: continuous branching with migration

Queue with Vacations, Gated Regime

•Define the time to serve N customers as:

τ(N) :=
N∑

i=1

Di

•Let N (T ) denote the number of arrivals during a random duration T , where the

arrival process is Poisson with rate λ, and is independent of T .

•Denote by Ân(Cn) = τ(N (Cn)), i.e. the sum of service times of all the arrivals

during Cn.

•We obtain

Cn+1 = Ân(Cn) + Vn+1. (1)
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Example 3: multitype discrete branching

Discrete time infinite server queue

•Service times are considered to be i.i.d. and independent of the arrival process.

•We represent the service time as the discrete time analogous of a phase type

distribution: there are N possible service phases.

•The initial phase k is chosen at random according to some probability p(k).

•If at the beginning of slot n a customer is in a service phase i then it will move at

the end of the slot to a service phase j with probability Pij .

•With probability 1−∑N
j=1 Pij it ends service and leaves the system at the end of

the time slot.

•P is a sub-stochastic matrix (it has nonnegative elements and it’s largest eigenvalue

is strictly smaller than 1), which means that services ends in finite time w.p.1. and

that (I − P ) is invertible.
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•Let ξ(k)(n), k = 1, 2, 3, ..., n = 1, 2, 3, ... be i.i.d. random matrices of size N ×N .

Each of its element can take values of 0 or 1, and the elements are all independent.

•The ijth element of ξ(k)(n) has the interpretation of the indicator that equals one

if at time n, the kth customer among those present at service phase i moved to

phase j.

•Obviously, E[ξ(k)
ij (n)] = Pij .

•Let Bn = (B1
n, ..., BN

n )T be a column vector for each integer n, where Bi
n is the

number of arrivals at the nth time slot that start their service at phase i.

•Bn is a stationary ergodic sequence and has finite expectation.

•Y i
n:= number of customers in phase i at time n. Satisfies

Yn+1 = An(Yn) + Bn

where the ith element of the column vector An(Yn) is given by

[An(Yn)]i =
N∑

j=1

Y j
n∑

k=1

ξ
(k)
ji (n) (2)
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Example 4: Polling systems with N queues are special cases!

•The server moves cyclically (fixed order) between the queues 1, ..., M .

It requires walking times (vacations) for moving from one queue to another.

•Upon arrival at a queue, some customers are served. The number to be served is

determined by the ”polling regime”:
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Globally Gated (GG) regime (Boxma, Levy, Yechiali 1992):

The cycle time satisfies a one dimensional recursion.

We obtained the first two moments of the cycle and the expected waiting

times at all queues.

Gated and Exhaustive regimes [see e.g. book by Takagi 1986]:

satisfy M -dimensional recursive equations.

No explicit expression for 2nd moments of buffer occupancy or cycle times.

No explicit expression for the expected waiting times.



E. Altman, D. Fiems: Branching Processes and polling 10

'

&

$

%

Introduction and Background on Lévy fields
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Introduction

•Consider the stochastic recursive equation:

Yn+1 = An(Yn) + Bn, n ≥ n0. (3)

•Yn is a vector in Rm
+

•{An}n are

- i.i.d., independent of Bn.

- Increasing in the arg for all n.

- nonnegative Additive Lévy field taking values in Rm
+

•{Bn} stationary ergodic taking values in Rm
+

(3) defines a Continuous Multitype Branching Process (BP) with Migration
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Background: Lévy processes

Lévy process taking values in R+:

• Example: Poisson Point Process with intensity λ,

• Expectation and variance are linear: E[A(t)] = tA and cov[A(t)] = tΓ.

• For random time τ independent of A,

E[A(τ)] = E[τ ]A , var[A(τ)] = E[τ ]Γ + var[τ ]A2 ,

• Divisibility: A(·) is divisible if the following holds.

For any k, there exist A(i)(·), i = 0, ..., k such that for any non-negative

xi, i = 0, ..., k,

A

(
k∑

i=0

xi

)
=

k∑

i=0

A(i) (xi) (4)

where {A(i)(·)}i=0,1,2,...,k are i.i.d. with the same distribution as A(·).
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Lévy process taking values in Rm
+ (subordinators):

• Example: Poisson arrival process where the nth arrival brings a batch

Bn = (B1
n, ..., Bm

n ). Bi
n customers go to queue i.

• For A(t) in Rm
+ , E[A(t)] = At where A is of dimension m.

• cov[A(t)] = Γt, where Γ is a matrix of dimension m×m.
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Example of Random fields

Random field taking values in R+

• Example: Black and white picture.

• The level of grey is a function of two parameters: x and y.

Random field taking values in Rd
+

• Example: color picture.

• The level of the green, red and blue as a function of the location x and y.
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Background: Additive Lévy Fields

Let A(1), ..., A(d) be d indep. Lévy proc. on Rm with scalar ”time” parameters.

Additive Lévy field: A(y) = A(1)(y1) + ... + A(d)(yd) , ∀y = (y1, ..., yd) ∈ Rd
+.

The expectation: E[A(y)] =
∑d

j=1 yjA(j) = Ay ,

A is a matrix whose jth column equals A(j),

A(j) = E[A(j)(1)],

The covariance matrix: cov[A(y)] =
∑d

j=1 yjΓ(j) ,

where Γ(j) = cov[A(j)(1)] is the corresponding covariance matrix of A(j)(1).

Composition: If An and An+1 are Additive Lévy processes in Rm
+ then their

composition is also an Additive Lévy process.
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Properties of Lévy Fields

•Expectation and Covariance are linear in y,

•Let τ be a non-negative random variable in Rd
+, independent of A and represented

as a column vector. Then

E[A(τ)] =
m∑

j=1

A(j)E[τj ] ,

and,

cov[A(τ)] =
d∑

j=1

E[τj ]Γ(j) +A cov[τ ]AT , (5)

where τj is the jth entry of the vector τ .
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Result 1: Steady State Probabilities of CBP
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Iterating Yn+1 = An(Yn) + Bn, we obtain from A1:

Y2 = A1(Y1) + B1

= A1(A0(Y0) + B0) + B1

= A
(0)
1 (A0(Y0)) + A

(1)
1 (B0) + B1

= A
(0)
1 A

(0)
0 (Y0) + A

(1)
1 (B0) + B1.

Y3 = A2(Y2) + B2

= A2(A1(Y1) + B1) + B2

= A2(A1(A0(Y0) + B0) + B1) + B2

= A
(0)
2 A

(0)
1 A

(0)
0 (Y0) + A

(1)
2 A

(1)
1 (B0) + A

(2)
2 (B1) + B2
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In general:

Yn =
n−1∑

j=0




n−1∏

i=n−j

A
(n−j)
i


 (Bn−j−1) +

(
n−1∏

i=0

A
(0)
i

)
(Y0), n > 0 (6)

(we understand
∏k

i=n Ai(x) = x whenever k < n, and
∏k

i=n Ai(x) = AkAk−1...An

whenever k > n).

Under fairly general assumptions, limn→∞
(∏n−1

i=0 A
(0)
i

)
(y) = 0, so Yn has a limit

as n →∞ distributed like

Y ∗
n =d

∞∑

j=0




n−1∏

i=n−j

A
(n−j)
i


 (Bn−j−1), n ∈ Z, (7)

where for each integer i, {A(j)
i (·)}j are independent of each other and have the

same distribution as Ai(·).
Sufficient condition: stationarity plus ||A|| < 1.
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Application: Expected waiting time
for a gated queue with vacations
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Consider an arbitrary customer. Upon arrival, it has to wait for

1. The residual cycle time Cres,

2. The service time of all the customers that arrived during Cpast which is the past

cycle time: d(λE[Cpast]) = ρE[Cpast]

We have from [Baccelli & Brémaud, 1994]

E[Cres] = E[Cpast] =
E[C2

0 ]
2E[C0]

.

Thus the expected waiting time of an arbitrary customer is given by

E[Wn] = (1 + ρ)
E[C2

0 ]
2E[C0]

,

The expected number of customers in queue in stationary regime (not including

service) is obtained using Little’s Theorem: λE[Wn].

Conclusion: we need to compute E[C0] and E[C2
0 ]!
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Computing E[C0] and E[C2
0 ]

•Dynamics: Cn+1 = Ân(Cn) + Vn+1.

•Ân(c) is the workload that arrives during duration [0, c).

•Introduce the correlation function: r(n) = E[V0Vn].

•The first and second moments of Cn in stationary regime are given by

E[Cn] =
v

1− ρ
,

E[C2
n] =

1
(1− ρ2)


λvd(2)

1− ρ
+ r(0) + 2

∞∑

j=1

ρjr(j)


 . (8)
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Proof of expressions for E[C2
0 ]

Useful relations: 2nd moment of workload arriving during T

•If N is a random variable independent of the sequence Dn, and τ(N) :=
∑N

i=1 Di

then

E[τ(N)2] = E[N2]d2 + E[N ](d(2) − d2). (9)

•Let N (T ) denote the number of arrivals during a random duration T , where the

arrival process is Poisson with rate λ, and is independent of T . Then

E[N (T )2] = λ2E[T 2] + λE[T ]. (10)

•If we take an arbitrary T and choose N = N (T ), then we get from (9)-(10)

E[(Â(T ))2] = E[τ(N (T ))2]

= d2(λ2E[T 2] + λE[T ]) + λE[T ](d(2) − d2)

= d2λ2E[T 2] + λE[T ]d(2). (11)

•Also, if we take T = τ(N), then

E[N (τ(N))]2 = λ2
[
E[N2]d2 + E[N ](d(2) − d2)

]
+ λdE[N ]. (12)
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•From Cn+1 = Ân(Cn) + Vn+1 we have

E[C2
n+1] = E[Ân(Cn)2] + v(2) + 2E[Ân(Cn)Vn+1]

=
(
ρ2E[C2

n] + λE[Cn]d(2)
)

+ v(2) + 2E[Ân(Cn)Vn+1].

•To compute the last term, we now use the explicit form of C0:

C0 =
∞∑

j=0




−1∏

i=−j

Â(−j)
i


 (V−j).

•We use the fact that the processes {Â(j)
i } are independent of {Vn}. We get:

E[Ân(Cn)Vn+1] = E[Â0(C0)V1] = E


Â0




∞∑

j=0




−1∏

i=−j

Â(−j)
i


 (V−j)


V1




= ρ
∞∑

j=0

ρjE[V−jV1] =
∞∑

j=1

ρjr(j).

Substituting this, we obtain the second moment.
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2nd order moments in continuous B.P.
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Notation: •Auto-correlations: B(k) =def E[B0(Bk)T ], where k is an integer

•B̂(k) =def B(k)− E[B0] E[B0]T . (Note: B̂(0) equals cov[B0].)

Assumptions: Consider Yn+1 = An(Yn) + Bn, n ≥ n0, where

• An are i.i.d. additive Lévy fields,

• An independent of {Bn},
• {Bn} are stationary ergodic,

• All eigenvalues of A are within the unit disk,

• the elements of B0 have finite second order moments.
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Theorem: Consider Yn+1 = An(Yn) + Bn in stationary regime. Then

(i) E[Y0] = (I − A)−1 E[B0] ,

(ii) cov(Y0) is the unique solution of the linear equations:

cov[Y0] =
m∑

j=1

E[Y j
0 ]Γ(j) +A cov[Y0]AT + cov[B0] +

∞∑

j=1

AjB̂(j) + (AjB̂(j))T ,

(13)

where E[Y j
0 ] denotes the jth element of E[Y0].

Proof for first moments:

Taking expectation in Yn+1 = An(Yn) + Bn we get

E[Y0] = AE[Y0] + E[B0],

Since the eigenvalues of A are within the unit disk, (I − A) is inverible.

Hence we obtain (i).
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Proof of uniqueness for the second moments

•Let Z1 and Z2 be two solutions of

cov[Y0] =
m∑

j=1

E[Y j
0 ]Γ(j) +A cov[Y0]AT + cov[B0] +

∞∑

j=1

AjB̂(j) + (AjB̂(j))T .

•Define Z = Z1 − Z2. Then Z satisfies Z = AT ZA.

•Iterating, we obtain,

Z = lim
n→∞

AnZ(AT )n = 0

where the last equality follows from the fact that all the eigenvalues of A are within

the unit disk.

•This implies uniqueness.
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Proof for expression of second moments

•Consider Yn+1 = An(Yn) + Bn.

• Multiply both sides by their transpose,

• take expectation and

• use the stationarity

we get:

E[Y0Y
T
0 ] = E[A0(Y0)AT

0 (Y0)] + E[B0B
T
0 ] + E[A0(Y0)BT

0 ] + E[B0A
T
0 (Y0)] .

The covariance matrix cov[Y0] therefore equals,

cov[Y0] = cov[A0(Y0)] + cov[B0] + E
[
A0(Y0)BT

0

]

−AE[Y0] E[B0]T + E
[
B0A0(Y0)T

]
− E[B0](AE[Y0])T . (14)

It remains to compute the red and the blue expressions.
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Red Expression: Using the convariance expression (5) of Additive Lévy processes at

random ”time”:

cov[A0(Y0)] =
m∑

j=1

E[Y j
0 ]Γ(j) +A cov[Y0]AT . (15)

Blue Expression: We use the explicit expression (7) for the stationary state process

to obtain

E[Y0B
T
0 ] =

∞∑

j=0

E





−1⊗

i=−j

A−j,i(B−j−1)BT
0





=
∞∑

j=0

E


E





−1⊗

i=−j

A−j,i(B−j−1)BT
0





∣∣∣∣∣∣
B−

0




=
∞∑

j=0

E
(
AjB−j−1B

T
0

)
=

∞∑

j=0

AjB(j + 1) , (16)

with B−
0 := (B0, B−1, B−2, ...).
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Substituting the last expression, we compute,

E[A0(Y0)BT
0 ] = E

[
E

[
A0(Y0)BT

0

∣∣ Y0, B0

]]
= AE

[
Y0B

T
0

]
=

∞∑

j=1

AjB(j) ,

or equivalently,

E[A0(Y0)BT
0 ] =

∞∑

j=1

AjB̂(j) +
∞∑

j=1

Aj E[B0] E[B0]T

=
∞∑

j=1

AjB̂(j) +A(I − A)−1 E[B0]T

=
∞∑

j=1

AjB̂(j) +AE[Y0] E[B0]T . (17)

Substitution of expressions RED and BLUE provides the covariance equation.
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2 Symmetric gated polling systems
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m gated queues.

Arrivals:

• Arrival processes ρi(t) to queue i are i.i.d. Levy processes, distributed as some

ρ(t), t ∈ R+.

• ρ = E[ρ(1)] and σ2 = var[ρ(1)] Itô decomposition: subordinator decomposes

into a Poisson

Walking times:

• {Vn}: Stationary ergodic series of walking times, v := E[V0].

• V(j) := E[V0Vj ] for some integer j and V̂(j) := E[V0Vj ]− v2.
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Notation:

• I(n):= the queue visited at the nth polling instant

• S(n):= nth polling instant (time at which the server arrives at the nth queue)

• Y i
n := S(n)− S(n− i), (i = 1, 2, ..., m) is the time between the (n− i)th and

the nth polling instant.

• In particular, Y m
n is the duration of the nth cycle.

• Let ρi
n be i.i.d. copies of the process ρi, n = 1, 2, 3, ....

The dynamics: Y 1
n+1 = S(n + 1)− S(n) = ρm

n (Y m
n ) + Vn , (18)

Y 2
n+1 = S(n + 1)− S(n− 1) = Y 1

n + ρm
n (Y m

n ) + Vn ,

Y 3
n+1 = S(n + 1)− S(n− 2) = Y 2

n + ρm
n (Y m

n ) + Vn ,

...

Y m
n+1 = S(n + 1)− S(n−m + 1) = Y m−1

n + ρm
n (Y m

n ) + Vn .

•(18) states that the time between S(n) and S(n + 1) is the sum of the busy period

at queue I(n) plus the nth vacation time;

•The busy period = the workload that arrived at queue I(n) during the nth cycle.
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Notation:

• I(n):= the queue visited at the nth polling instant

• S(n):= nth polling instant (time at which the server arrives at the nth queue)

• Y i
n := S(n)− S(n− i), (i = 1, 2, ..., m) is the time between the (n− i)th and

the nth polling instant.

• In particular, Y m
n is the duration of the nth cycle.

• Let ρi
n be i.i.d. copies of the process ρi, n = 1, 2, 3, ....

The dynamics: Y 1
n+1 = S(n + 1)− S(n) = ρm

n (Ym
n ) + Vn , (18)

Y 2
n+1 = S(n + 1)− S(n− 1) = Y 1

n + ρm
n (Y m

n ) + Vn ,

Y 3
n+1 = S(n + 1)− S(n− 2) = Y 2

n + ρm
n (Y m

n ) + Vn ,

...

Y m
n+1 = S(n + 1)− S(n−m + 1) = Y m−1

n + ρm
n (Y m

n ) + Vn .

•(18) states that the time between S(n) and S(n + 1) is the sum of the busy

period at queue I(n) plus the nth vacation time;

•The busy period = the workload that arrived at queue I(n) during the nth cycle.
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Notation:

• I(n):= the queue visited at the nth polling instant

• S(n):= nth polling instant (time at which the server arrives at the nth queue)

• Y i
n := S(n)− S(n− i), (i = 1, 2, ..., m) is the time between the (n− i)th and

the nth polling instant.

• In particular, Y m
n is the duration of the nth cycle.

• Let ρi
n be i.i.d. copies of the process ρi, n = 1, 2, 3, ....

The dynamics: Y 1
n+1 = S(n + 1)− S(n) = ρm

n (Y m
n ) + Vn , (18)

Y 2
n+1 = S(n + 1)− S(n− 1) = Y 1

n + ρm
n (Y m

n ) + Vn ,

Y 3
n+1 = S(n + 1)− S(n− 2) = Y 2

n + ρm
n (Y m

n ) + Vn ,

...

Y m
n+1 = S(n + 1)− S(n−m + 1) = Y m−1

n + ρm
n (Y m

n ) + Vn .

•(18) states that the time between S(n) and S(n + 1) is the sum of the busy period

at queue I(n) plus the nth vacation time;

•The busy period = the workload that arrived at queue I(n) during the nth cycle.
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Notation:

• I(n):= the queue visited at the nth polling instant

• S(n):= nth polling instant (time at which the server arrives at the nth queue)

• Y i
n := S(n)− S(n− i), (i = 1, 2, ..., m) is the time between the (n− i)th and

the nth polling instant.

• In particular, Y m
n is the duration of the nth cycle.

• Let ρi
n be i.i.d. copies of the process ρi, n = 1, 2, 3, ....

The dynamics: Y 1
n+1 = S(n + 1)− S(n) = ρm

n (Ym
n ) + Vn , (18)

Y 2
n+1 = S(n + 1)− S(n− 1) = Y 1

n + ρm
n (Y m

n ) + Vn ,

Y 3
n+1 = S(n + 1)− S(n− 2) = Y 2

n + ρm
n (Y m

n ) + Vn ,

...

Y m
n+1 = S(n + 1)− S(n−m + 1) = Y m−1

n + ρm
n (Y m

n ) + Vn .

•(18) states that the time between S(n) and S(n + 1) is the sum of the busy period

at queue I(n) plus the nth vacation time;

•The busy period = workload that arrived at queue I(n) during the nth cycle.
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Interpretation of the other equations:

For i > 0, we have

Y i+1
n+1 = S(n + 1)− S(n− i) = S(n + 1)− S(n) + S(n)− S(n− i)

where

•by definition, S(n)− S(n− i) = Y i
n, and

•S(n + 1)− S(n) = ρm
n (Y m

n ) + Vn (see previous slide).
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Vector notation:

Yn+1 = An(Yn) + Bn , with

Y 1
n+1 = S(n + 1)− S(n) = ρm

n (Y m
n ) + Vn ,

Y 2
n+1 = S(n + 1)− S(n− 1) = Y 1

n + ρm
n (Y m

n ) + Vn ,

Y 3
n+1 = S(n + 1)− S(n− 2) = Y 2

n + ρm
n (Y m

n ) + Vn ,
...

Y m
n+1 = S(n + 1)− S(n−m + 1) = Y m−1

n + ρm
n (Y m

n ) + Vn .
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Vector notation:

Yn+1 = An(Yn) + Bn , with

Y 1
n+1 = S(n + 1)− S(n) = ρm

n (Y m
n ) + Vn ,

Y 2
n+1 = S(n + 1)− S(n− 1) = Y 1

n + ρm
n (Y m

n ) + Vn ,

Y 3
n+1 = S(n + 1)− S(n− 2) = Y 2

n + ρm
n (Y m

n ) + Vn ,
...

Y m
n+1 = S(n + 1)− S(n−m + 1) = Y m−1

n + ρm
n (Y m

n ) + Vn .

where Yn+1 = (Y 1
n+1, ..., Y

m
n+1)

T ,
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Vector notation:

Yn+1 = An(Yn) + Bn , with

Y 1
n+1 = S(n + 1)− S(n) = ρm

n (Y m
n ) + Vn ,

Y 2
n+1 = S(n + 1)− S(n− 1) = Y 1

n + ρm
n (Y m

n ) + Vn ,

Y 3
n+1 = S(n + 1)− S(n− 2) = Y 2

n + ρm
n (Y m

n ) + Vn ,
...

Y m
n+1 = S(n + 1)− S(n−m + 1) = Y m−1

n + ρm
n (Y m

n ) + Vn .

where Bn = Vn(1, 1, 1, ..., 1)T ,

•in the special case that {Bn} is i.i.d. Yn is a Markov chain
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Vector notation:

Yn+1 = An(Yn) + Bn , with

Y 1
n+1 = S(n + 1)− S(n) = ρm

n (Y m
n ) + Vn ,

Y 2
n+1 = S(n + 1)− S(n− 1) = Y 1

n + ρm
n (Y m

n ) + Vn ,

Y 3
n+1 = S(n + 1)− S(n− 2) = Y 2

n + ρm
n (Y m

n ) + Vn ,
...

Y m
n+1 = S(n + 1)− S(n−m + 1) = Y m−1

n + ρm
n (Y m

n ) + Vn .
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Vector notation:

Yn+1 = An(Yn) + Bn , where

An(y) = A(1)
n (y1) + ... + A(m)

n (ym) , (19)

where y = (y1, ..., ym)T ∈ Rm
+ , t ∈ R+ and

A(1)
n (t) = (0, t, 0, 0, ..., 0)T , (20)

A(2)
n (t) = (0, 0, t, 0, ..., 0)T ,

...

A(m−1)
n (t) = (0, 0, 0, ..., 0, t)T ,

A(m)
n (t) = ρm

n (t)(1, 1, . . . , 1)T ,

•For each i, A
(i)
n is a Lévy process taking values in Rm

+ .

•An are Additive Lévy fields
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Checking the stability condnition

Taking expectation we get:

A =




0 0 0 0 . . . 0 ρ

1 0 0 0 . . . 0 ρ

0 1 0 0 . . . 0 ρ

0 0 1 0 . . . 0 ρ
...

...
...

. . .
...

...
...

0 0 0 0 . . . 0 ρ

0 0 0 0 . . . 1 ρ




. (21)

A is known as the Companion matrix.

Theorem: A sufficient and necessary condition for all eigenvalues of A to be in the

interior of the unit circle is

ρ <
1
m

.
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Conclusions and Discussion

•We use neither the ”buffer occupancy” nor the ”station times” approaches.

•Advantage: one component of the state is the cycle time;

its two first moments provide the expected waiting time.

•A very similar structure is obtained in the exhaustive case.
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Example 5: Discrete time infinite server queue

•Service times are geometrically distributed,

•The SRE becomes one dimensional. Yn denotes the number of customers in the

system.

•ξ(k)
n is the indicator that the kth customer present at the beginning of time-slot n

will still be there at the end of the time-slot.

•The probability that a customer in the system finishes its service within a time slot

is precisely p = 1− A = 1− E[ξn].

•We consider a Markov chain with two states {γ, δ} with transition probabilities

given by

P =


 1− εp εp

εq 1− εq
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•As an example, consider the following parameters: p = q = 1, at a given state there

is at most one arrival with prob. pγ = 1, pδ = 0.5. This gives:

var[Y ∗] =
1

(1− A2)

(
3
16

+
2A

1− A + 2εA
+

3
4
A

)
.

In Fig. 1 we plot the variance of the steady state number of customers, var[Y ∗],
while varying ε and A.
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Figure 1: var[Y ∗] as a function of ε and of A
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Other issues:

•No migration Yn+1 = An(Yn): We can show using Kingman’s subadditive ergodic

theory that the following limit exists P-a.s.:

lim
n→∞

log ||Yn||
n

= Λ

•The non contracting case: In example 2 we have ||An|| = 1 so that ||A|| = 1.

Still the results hold.
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•J. Neveu, A continuous-state branching process in relation with the GREM model

of spin glass theory, Rapport interne no 267, Ecole Polytechnique.
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