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1 Objectives

eDefine a new continuous multi-type branching process with migration
eRelate to queueing systems

eObtain first two moments of the state vector of the branching process for
correlated migration process

eDerive expected waiting times in polling systems with correlated vacations.
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Example 1: discrete branching with migration

Queue with Vacations, Gated Regime
oM /G /1/00 queue,
eArrival rate ), i.i.d. service times {D,,} with first and second moments d, d(?.

eSequence of vacations: V,,. Will be assumed stationary ergodic, with first and

second moments v, v(2).

eGated regime: at the nth end of vacation, a gate is closed (nth polling instant).
Then the server goes on serving the customers present at the queue at that polling

instant:
Then the server leaves on vacation.

N
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e\\Ve denote:
e B, := the number of arrivals during the nth vacation.

° f}(f):: the number of arrivals during the service time of a customer

o[ hen:
Xn
Xop1 =) &4 B,,  n>ne
i=1
Denote

An(z) =) &)
i=1
Then A,, are nonnegative and divisible:
An(z +y) = AP () + AP (y)

where Ag) are i.1.d.

N
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Queue with Vacations, Gated Regime

~

xample 2: continuous branching with migration

eDefine the time to serve N customers as:

elLet NV (T) denote the number of arrivals during a random duration T', where the
arrival process is Poisson with rate A, and is independent of T.

eDenote by A, (C,) = 7(N(C,)), i.e. the sum of service times of all the arrivals
during C,.

eo\\Ve obtain

N

Cn+1 — An(Cn) + Vn+1~ (1)
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/Example 3: multitype discrete branching

Discrete time infinite server queue
eService times are considered to be i.i.d. and independent of the arrival process.

e\We represent the service time as the discrete time analogous of a phase type
distribution: there are N possible service phases.

e The initial phase k is chosen at random according to some probability p(k).

elf at the beginning of slot n a customer is in a service phase ¢ then it will move at
the end of the slot to a service phase j with probability P;;.

e\With probability 1 — Zj\;l P;; it ends service and leaves the system at the end of
the time slot.

e P is a sub-stochastic matrix (it has nonnegative elements and it's largest eigenvalue
is strictly smaller than 1), which means that services ends in finite time w.p.1. and

\that (I — P) is invertible. /
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olet €M (n), k=1,2,3,... n=1,2,3,... beiid. random matrices of size N x N.
Each of its element can take values of 0 or 1, and the elements are all independent.

eThe ijth element of £(F)(n) has the interpretation of the indicator that equals one
if at time n, the kth customer among those present at service phase ¢ moved to
phase j.

eObviously, E[fz(f)(n)] = P;;.

elet B, = (B}, ..., B¥)T be a column vector for each integer n, where B! is the
number of arrivals at the nth time slot that start their service at phase 7.

e 3, is a stationary ergodic sequence and has finite expectation.

oY !:= number of customers in phase i at time n. Satisfies
Yn—l—l — An(Yn) + Bn

where the ith element of the column vector A, (Y,,) is given by

N YJ

n

A (V)i = 33 W (n) (2)

j=1k=1

N /
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e The server moves cyclically (fixed order) between the queues 1, ..., M.

Example 4: Polling systems with N queues are special cases!

It requires walking times (vacations) for moving from one queue to another.

eUpon arrival at a queue, some customers are served. The number to be served is
determined by the " polling regime”:

N
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Globally Gated (GG) regime (Boxma, Levy, Yechiali 1992):
The cycle time satisfies a one dimensional recursion.
We obtained the first two moments of the cycle and the expected waiting

times at all queues.

Gated and Exhaustive regimes [see e.g. book by Takagi 1986]:

satisfy M-dimensional recursive equations.
No explicit expression for 2nd moments of buffer occupancy or cycle times.

No explicit expression for the expected waiting times.

N
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Introduction and Background on Lévy fields

10
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Introduction

eConsider the stochastic recursive equation:

Yn+1 — An(Yn) + Bna n = ng.

oY), is a vector in R

o{A,}, are

- i.i.d., independent of B,,.

- Increasing in the arg for all n.

- nonnegative Additive Lévy field taking values in R"

o{B,} stationary ergodic taking values in R’

(3) defines a Continuous Multitype Branching Process (BP) with Migration

N

(3)

/
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Background: Lévy processes

Lévy process taking values in R :

e Example: Poisson Point Process with intensity A,

e For random time 7 independent of A,
E[A(T)] = E[T]A, var[A(T)] = E[r]T" + var[r].A?,

e Divisibility: A(:) is divisible if the following holds.
For any k, there exist A(i)(-), t = 0, ..., k such that for any non-negative

sz',?: — 0, ceey ]f,
k k
A2n) = 240
1=0 1=0

where {AW ()}, 12, % are i.i.d. with the same distribution as A(-).

e Expectation and variance are linear: E[A(t)] =tA and cov[A(t)] = tI.

12
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Lévy process taking values in R’ (subordinators):

e Example: Poisson arrival process where the nth arrival brings a batch
B, = (B}, ...,B™). B! customers go to queue 1.

e For A(t) in R, F[A(t)] = At where A is of dimension m.

e cov|A(t)] = I't, where I' is a matrix of dimension m x m.

13
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N

Example of Random fields

Random field taking values in R,

e Example: Black and white picture.

e The level of grey is a function of two parameters: x and y.

Random field taking values in R%

e Example: color picture.

e The level of the green, red and blue as a function of the location x and y.

14
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Background: Additive Lévy Fields

Let A ..., A be d indep. Lévy proc. on R™ with scalar "time” parameters.
Additive Lévy field: A(y) = AV (y1) + ... + AD(yy), Yy = (y1,...,y4) € RL.
The expectation: E[A(y)] = Z;.l:l yjA(j? = Ay,

A is a matrix whose jth column equals AU,

AW = E[AU) (1)),

The covariance matrix: cov][A(y)] = Z;-l:l y, [0,

where I'¥) = cov[AU)(1)] is the corresponding covariance matrix of AU)(1).

Composition: If A,, and A, are Additive Lévy processes in R'" then their
composition is also an Additive Lévy process.

N
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Properties of Lévy Fields

eExpectation and Covariance are linear in v,

as a column vector. Then

m

E[A(T)] = ZA(”E[Tj] :
and,
d .
cov[A(T)] = Z E[r;]T'Y) + Acov[r]AT

where 7; is the jth entry of the vector 7.

N

eLet 7 be a non-negative random variable in R%, independent of A and represented

16
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Result 1: Steady State Probabilities of CBP

17
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lterating Y,,+1 = A, (Y,) + B, we obtain from Al:

Yo = A(Y1)+ B
= A1(Ao(Yo) + Bo) + B1
= AP (4(%0)) + ATV (Bo) + By
= A940 ) + AN (By) + B,

Y = As(Ys)+ B
= As(A1(Y1)+ By1) + Bo
= Ax(A1(A0(Yo) + Bo) + Bi1) + B2
= AP AD A (vy) + AP AP (By) + AP (By) + Bs

18
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In general:

Y, = nz_: n]:[ A" (B + (ﬁ A§0>> (Yy), n>0 (6)

i=0 \i=n—j i=0

(we understand Hf:n A;(x) = x whenever k < n, and Hf:n Ai(x) = AgAk_1... Ay
whenever k > n).

(3

Under fairly general assumptions, lim,, .o (H?:_Ol A(-O)) (y) =0, so Y, has a limit

as n — oo distributed like

o0 n—1
Yi=a> | [ A" | (Baojo1), nez (7)
§=0

t=n—j

where for each integer 1, {Ag‘j)(-)}j are independent of each other and have the
same distribution as A;(-).

Sufficient condition: stationarity plus ||A| < 1.

N /
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Application: Expected waiting time

for a gated queue with vacations

20
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Consider an arbitrary customer. Upon arrival, it has to wait for

1. The residual cycle time C,..5,

2. The service time of all the customers that arrived during C,,s+ which is the past
cycle time: d(AE[Cpast]) = pE[Cpast]

We have from [Baccelli & Brémaud, 1994]

E[Cg]
2E[Co]

E[Cres] — E[Cpast] —

Thus the expected waiting time of an arbitrary customer is given by

E|[C]
2E[Co]’

B[W,) = (1+9)

The expected number of customers in queue in stationary regime (not including
service) is obtained using Little's Theorem: AE[W,,].

Conclusion: we need to compute E[Cj] and E[C{]!

N /
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Computing E[Cy] and E[C{]

A

eDynamics: C11 = A, (Cr) + Vi,
oA, (c) is the workload that arrives during duration [0, ¢).

eIntroduce the correlation function: r(n) = E[V,V,,].

eThe first and second moments of C,, in stationary regime are given by

v
B —
1 Avd ) -

22
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Useful relations: 2nd moment of workload arriving during T°

elf N is a random variable independent of the sequence D,,, and 7(NN) := Zfil D;
then
E[r(N)?] = E[N?d* + E[N](d® — d?). (9)

eLet N(T') denote the number of arrivals during a random duration T', where the
arrival process is Poisson with rate A, and is independent of T'. Then

E[N(T)?] = NE[T?] + AE[T]. (10)

elf we take an arbitrary T and choose N = N (T'), then we get from (9)-(10)

E[(A(T))?] = EFWN(T))
= dP(\2E[T? + \E[T]) + AE[T](d® — d?)
= PN2E[T?] + AE[T)d?. (11)

eAlso, if we take T'= 7(NN), then

EIN(r(N))]2 = A2 [E[N2]d2 + E[N](d® — d?)| + AdE[N]. (12)

N /
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eFrom ()11 = fln(C’n) + Vi1 we have

E[C’,%_H] = E[-’Zln(cn)Q] +0® + QE[An(Cn)Vn+1]
_ (p2E[0§] + )\E[Cn]d(Q)) + 0@ 4 2E[A, (C)Visa].

e To compute the last term, we now use the explicit form of Cy:

00 —1

Co = Z H Aq(;_j) (V=)

j=0 \i=—j

eWe use the fact that the processes {A?)} are independent of {V,,}. We get:

o0 —1
E[An(Co)Var1] = ElACoVil=E | A [ S| T] A7 | (voy) | v
j=0 \i=—j
= pY PEV_ Vil=) o).
Jj=0 j=1

Substituting this, we obtain the second moment.

N

24
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2nd order moments in continuous B.P.

25
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Notation: eAuto-correlations: B(k) =45 E[Bo(Bx)"], where k is an integer
oB(k) =4es B(k) — E[Bo) E[Bo]”. (Note: B(0) equals cov[By].)

Assumptions: Consider Y,, 11 = A, (Y,,) + B,, n > ng, where
e A, arei.i.d. additive Lévy fields,
e A, independent of {B,},
e {B,} are stationary ergodic,

e All eigenvalues of A are within the unit disk,

the elements of By have finite second order moments.

26
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Theorem: Consider Y,, 11 = A, (Y,) + B,, in stationary regime. Then
(i) E[Yo] = (Z - A" E[B],

(ii) cov(Yp) is the unique solution of the linear equations:

cov|[Yo] = f: E[Y] 1Y 4+ Acov[Yo] AT + cov[By] + i AB(§) + (ATB())

where E[Y{/] denotes the jth element of E[Yp).

Proof for first moments:
Taking expectation in Y,,11 = A, (Y,,) + B, we get

E[Yo] = AE[Yo] + E[Bo],

Since the eigenvalues of A are within the unit disk, (Z — A) is inverible.

Hence we obtain (i).

N

)T7

(13)

27
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Proof of uniqueness for the second moments

elet Z; and Z5 be two solutions of

cov[Yy] = f: E[Y7 T + Acov[Yo] AT + cov[By] + f: AIB(j) + (ATB())T .

J=1 J=1

eDefine Z = Zy — Z,. Then Z satisfies Z = AT Z A.

elterating, we obtain,
Z = lim A"Z(AT)" =0

n—o
where the last equality follows from the fact that all the eigenvalues of A are within
the unit disk.

e T his implies uniqueness.

N /
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Proof for expression of second moments

eConsider Y, 11 = A,(Y,) + By,.

e Multiply both sides by their transpose,
e take expectation and
e use the stationarity

we get:
E[YoYy' | = E[Ao(Yo)Ap (Yo)] + E[BoBg | + E[Ao(Yo) By | + E[BoAg (Yo)] -
The covariance matrix cov|[Y| therefore equals,
cov[Yo] = cov|Ao(Yo)] + cov[Bo] + E [AO(YO)BOT]
_AE[Y,|E[Bo]T + E [BOAO(YO)T} CE[BJ(AE[Y)T. (14)

It remains to compute the red and the blue expressions.

N /
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random "time":

m

=1

to obtain

E[Y,Bl]l =

with Ba = (BQ,B_l,B_Q, )

N

cov[Ap(Yp)] = Y E[YJITW + Acov[Yy] AT .

~

Red Expression: Using the convariance expression (5) of Additive Lévy processes at

(15)

Blue Expression: We use the explicit expression (7) for the stationary state process

30
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Substituting the last expression, we compute,
E[Ao(Yo) Bl = E [E [ Ao(Yo)BL | Yo, Bo]] = AE [YoB{] ZA-?B

or equivalently,

(© @]

E[Ao(Yo)BI] = > AB(j +ZA~7 [Bo] E[Bo]”

J=1

= ZAJB )+ A(Z — A" E[B)”

7=1

= Z B(j) + AE[Y] E[Bo]"

N

Substitution of expressions RED and BLUE provides the covariance equation.

(17)

31
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2 Symmetric gated polling systems

32
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m gated queues.

Arrivals:

e Arrival processes p'(t) to queue 7 are i.i.d. Levy processes, distributed as some
p(t), t e R+.

e p=E|[p(1)] and 62 = var[p(1)] It6 decomposition: subordinator decomposes
into a Poisson

Walking times:
e {V, }: Stationary ergodic series of walking times, v := E[V}].

e V(j) := E[V,V}] for some integer j and V(j) := E[V,V;] — v2.

N
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/Notation: \

e /(n):= the queue visited at the nth polling instant

e S(n):= nth polling instant (time at which the server arrives at the nth queue)

e V':=5n)-Sn—1i), (i=1,2,...,m) isthe time between the (n —4)th and
the nth polling instant.

e In particular, Y" is the duration of the nth cycle.

o Let p! be i.i.d. copies of the process p', n =1,2,3, ...

The dynamics: Y, ., = S(n+1)—Sn)=pr ")+ Va, (18)
Yo = Stn+1)=Sh-1)=Y, +p (V") +V,,
Yoo = Stn+1)=Sn—2)=Y7+ 0 (Y") +V,,
ai = S+ 1) =Sh-—m+1)=Y,""" 4+ o (V") + Vi

¢(18) states that the time between S(n) and S(n + 1) is the sum of the busy period
at queue I(n) plus the nth vacation time;

\oThe busy period = the workload that arrived at queue I(n) during the nth cycle. /

34
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Interpretation of the other equations:

For : > 0, we have
Vit =Sn+1)—Sn—i)=Sn+1)—Sn)+Sn)—S(n—1i)
where
eby definition, S(n) — S(n —1i) =Y, and
eS(n+1)—S(n)=p™(Y™) +V, (see previous slide).

N

38



E. Altman, D. Fiems: Branching Processes and polling

-

Vector notation:
Y1 = An(Y,) + B, , with

Vi =8Sn+1)—-5Sn) = P (Y + Vo,
Vi, =8Sn+1)—-Snh-1)= Y+ (Y7) 4+ Vi,
Yo, =S(n+1)-Snh-2)= Y7+ o (Ya") + Vi,

Y, =S+1)—-Sh-m+1)= Y+ p(Y;") + Va.
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Vector notation:
Y1 = An(Yy,) + B, , with

Vi, =8mn+1)—-5Sn)= pr(Y) + Vi,
Vi, =8n+1)-Snh-1)= Y+l (Yo) + Vo,
Vi, =8n+1)—Snh-2)= Y2+ pm(Y ™) +V,,

Vi, =Sm+1)-Sh-m+1)= Y"1+ (") + V.

_ 1 T
where Y, 11 = (Y, 1, Y0 )

n 1

N
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Vector notation:
Yoo = An(Yyn) + By, with

Vi, =8Sn+1)—Sn) = pm(Y) + Vi,
Vi, =8Sn+1)-Snh-1)= Y4+ (Vo) + Vi
Vi, =Sn+1)-Snh-2) = Y2+ o (Yom) + Vi,

where Bn — Vn(17 17 17 e 1)T'

ein the special case that {B,,} is i.i.d. Y}, is a Markov chain

N

Yo, =Stn+1)-Sh-m+1)= Y+ (V") + Vi

41
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Vector notation:
Yn+1 — An(Yn> + By ) with

Vi =8Sn+1)—-5Sn) = pr(Y) + Vo,
Vi, =Sn+1)-Snh-1)= Y+ (Y) 4 Vi,
Vi, =8Sn+1)-Snh-2) = Y2+ (Y) 4 Vi,
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Vector notation:
Y1 = An(Yy,) + B, where

An(y) = AV (1) + - + AT (ym)
where y = (y1, ..., ym)? € R, t € R4 and

AD@) = (0,t,0,0,...,0)T,
AP () = (0,0,t,0,...,0)7,
Am=b@y = (0,0,0,...,0,t)T,
AlM) = pr()(L, ..., )T,

eFor each 1, Aq(f) is a Lévy process taking values in R".

e A, are Additive Lévy fields

N

(19)

(20)
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Taking expectation we get:

[0 0
10
0 1
A=| o0 0
0 0

\ 0 0

A is known as the Companion matrix.

interior of the unit circle is

N

_ o O O

0
0

D <

Checking the stability condnition

0 0
0 0
0 0
0 0
0 ... 0
0 1

1
-

R o o B o

D

(21)

Theorem: A sufficient and necessary condition for all eigenvalues of A to be in the

/
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Conclusions and Discussion

eAdvantage: one component of the state is the cycle time;
its two first moments provide the expected waiting time.

oA very similar structure is obtained in the exhaustive case.

N

e\We use neither the "buffer occupancy” nor the "station times” approaches.
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system.

given by

N

Example 5: Discrete time infinite server queue

eService times are geometrically distributed,

eThe SRE becomes one dimensional. Y,, denotes the number of customers in the

offzk) is the indicator that the kth customer present at the beginning of time-slot n
will still be there at the end of the time-slot.

e The probability that a customer in the system finishes its service within a time slot

is precisely p=1—A =1 — E[§,].

eWe consider a Markov chain with two states {,§} with transition probabilities

1 —ep Ep
€q 1 —e€q

P =

46
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eAs an example, consider the following parameters: p = ¢ = 1, at a given state there
is at most one arrival with prob. p, = 1,ps = 0.5. This gives:

1 3 2 3
v =—"_ (2 °A).
var(Y”] (1—A2)<16+1—A—|—26A+4 )

In Fig. 1 we plot the variance of the steady state number of customers, var[Y ™|,
while varying € and A.

4 N

47



E. Altman, D. Fiems: Branching Processes and polling

48

-
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Figure 1: var|[Y x| as a function of € and of A




E. Altman, D. Fiems: Branching Processes and polling

4 N

Other issues:

eNo migration Y, = A,,(V},,): We can show using Kingman's subadditive ergodic
theory that the following limit exists P-a.s.:

log || Y,
i o8 lYal _

n— 00 n

A

eThe non contracting case: In example 2 we have ||A,| = 1 so that ||A|| = 1.
Still the results hold.
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