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Abstract

Our goal is first to propose models of dynamics of a simplified
grassland ecosystem, then to develop simulation techniques for these
models and finally to establish their mathematical properties. The
ecosystem is a community of individuals (ramets) linked by connections
(rhizomes). This ecosystem relies on resources (nitrates) and can store
a portion of these resources. We propose different individual-based
models coupled with continuous models for the available resources and
the stored resources, in this case the individual is the ramet; or the
available resources only, in this case the individual is the ramet or the
rhizome.
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individuals (ramets)

connexions (rhizomes)

Figure 1: We consider a population of individuals (ramets) connected by
rhizomes. The term “individual” is not to be taken in the biological sense but
in the sense of individual-basede modeling, here it represents a ramet.

1 Introduction

Our goal is to describe, construct and analyze ecological individual-based
models of population dynamics of prairial ecosystems, in the fashion of mod-
els already proposed in [?, ?, ?, ?, ?, ?, ?, ?, ?, ?].

The specificities of prairial plants are the following:

• individuals are linked by rhizomes, thus forming a network;

• individuals may use information of other individuals of the network
they belong to in order to choose their reproduction rate and the po-
sition of the new individuals they are going to produce;

• when the environmental conditions are good, resources may be stored
and shared in rhizomes by the individuals in the network, for use when
the environmental conditions are bad.

2 Three levels of modeling

We are going to describe three levels of modeling, more and more precise.
The first one is deterministic and describes the dynamics of densities. The
second one is stochastic and individually based, it describes the dynamics
of each individuals. The last one is stochastic, it describes the dynamics of
each individual and each connection between individuals. We try to give the
motivation of our choices of parameters and give some simple examples.
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In all the models, we are going to assume that individuals are located in
a bounded domain X of Rd (typically, d = 2 for prairial dynamics).

2.1 First level: deterministic model

2.1.1 The model

The dynamics is describe by three nonnegative functions of time and space
on R+ ×X :

• the density of available resources I(t, x);

• the density of individuals n(t, x);

• the density of stored resources in rhizomes R(t, x).

All these quantities are expressed in term of resources unit.

We consider the system of PDEs:

∂tn(t, x) = −n(t, x)µ(t, x) +
∫
X
n(t, y)

[
I(t, y)λI(t, y) +R(t, y)λR(t, y)

]
× S(∇R(t, y), x− y) dy (1a)

∂tI(t, x) = σ(x) ∆I(t, x) + b(x) · ∇I(t, x) + n(t, x)µ(t, x)
− I(t, x)n(t, x) (λI(t, x) + λS(t, x)) (1b)

∂tR(t, x) = −n(t, x)R(t, x)λR(t, x) + I(t, x)n(t, x)λS(t, x) . (1c)

The boundary conditions are as follows: for all x ∈ X , I(0, x) = I0(x),
n(0, x) = n0(x), R(0, x) = R0(x) and for all x ∈ ∂X , ∇I(t, x) · n(x) =
D(t, x), where n(x) is the exterior normal to ∂X at x.

This system describe the dynamics of (I, n,R). The interpretation of the
parameters are the following:

• σ(x) is the diffusion coefficient of resources at x ∈ X ;

• b(x) is the drift on the resources density representing the effects of the
fields slope or of run-off (rain streaming);

• λI is the rate of birth of new individuals from non-stored ressources; a
typical dependence on (t, x) of λI can be

λI(t, x) = λI(MrI(t, x),Mr′R(t, x)). (2)
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• λR is the rate of birth of new individuals from stored ressources; typi-
cally,

λR(t, x) = λR(MrI(t, x),Mr′R(t, x)). (3)

• λS is the rate of storage of exterior resources in the network; typically,

λS(t, x) = λS(MrI(t, x),Mr′R(t, x),Mr′′n(t, x)). (4)

• µ is the rate of death in the population; we assume that the biomass of
dead individuals is instantaneously converted into exterior resources.
Typically,

µ(t, x) = µ(MrI(t, x),Mr′R(t, x),Mr′′n(t, x)). (5)

• S(u, v) dv is the dispersal probability distribution: a birth from an
individual at x occurs at position y = x + V , where V has the law
S(∇R(t, x), v) dv;

• Let
MrR(t, x) =

1
|B(x, r)|

∫
B(x,r)

R(t, z) dz

where B(x, r) is the ball centered at x ∈ X with radius r > 0; by
convention, if r = 0, MrR(t, x) = R(t, x). Note that we assumed here
a uniform dependence of the interactions in the ball. All the models
described here can easily be extended to situations where the inter-
actions decrease with distance, for example, by defining MrR(t, x) =∫
B(x,r) α(z − x)R(t, z) dz for some nonnegative interaction kernel α
of L1 norm 1. Below, we restrict to the uniform interaction case for
simplicity.

• D(t, x) requires the outward (signed) flow of resources exiting (or en-
tering) from the domain;

• r, r′, r′′ ≥ 0 are fixed parameters.

The interpretation of this model is the following: individuals in the pop-
ulation can use environmental resources either for reproduction (with rate
λI) or for storage in the network (with rate λS). Stored resources can also be
used for reproduction when the environmental conditions are bad, with rate
λR. Individuals may also dye with rate µ. Since every quantity is expressed
in resources concentration units, we have the conservation law

d

dt

∫
X

[
I(t, x) + n(t, x) +R(t, x)

]
dx =

∫
∂X

D(t, x) dx. (6)
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Figure 2: Dispersal probability distribution: a birth from an individual at x
occurs at position y = x+ V , where V has the law S(∇R(t, x), v) dv with S
given by (7), f by (8), and g a lognormal pdf.

The network structure of the model is contained in the quantity R(t, x),
which describes the density of stored resources. We also assume that the
environmental information used by an individual at x for reproduction is
summarized by the gradient ∇R(t, x) appearing in the jump distribution
S. We assume that no other information about the network is needed to
describe the population dynamics. We finally assume that birth and death
rates may depend on the local resources available and on the quantity of
resources available in the network in a neighborhood of the focal individual.
Death rates may also depend on the local density of population. Note also
that the increase or decrease of the resources densities I and R depends
locally of the density of individuals n(t, x).

2.1.2 An example

The typical parameters we have in mind are of the form:

• The dispersal probability distribution is of the form:

S(u, v) = f((u, v)) g(|v|) , (7)

where (u, v) denotes the angle between u and v in R3, where f is a func-
tion representing the distribution of the angle between the “optimal”
dispersal direction (the gradient of R) and the direction where the in-
dividual chooses to send the rhizome, and g represents the distribution
of the distance of dispersal. For example

f(θ) =
C

1 + θ2
, ∀θ ∈ [−π, π] (8)
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and g is the density of a log-normal distribution of given parameters
(cf. Figure 2).

• We may assume that the death rate has the form µ(a, b, c) = µ0 + α c,
where µ0 represents the death rate in the absence of competition, and
α represents the local competition strength between individuals.

• For λI , λR and λS , we may assume the following form, which models
the fact that birth and storage rates are bounded when I and R go to
infinity:

λI(t, x) =
c1

1 + c2 I(t, x)
,

λR(t, x) =
c3

1 + c4R(t, x)
,

λS(t, x) =
c5

1 + c6 I(t, x)
.

With such functions, the individual birth rate from non-stored re-
sources is c1 when there are few resources available and c1/c2 when
there are many resources (typically, c1 is much smaller than c1/c2).

2.1.3 Mathematical comments

The local dependence of S on ∇R may cause well-posedness problems for
the PDE we consider. Instead, the term S(∇R(t, x), x − y) in (1) may be
replaced by

S(Mρ∇R(t, x), x− y)

or

S

(
5
ρ2

∫
B(x,ρ)

(R(t, z)−R(t, x)) (z − x) dz , x− y

)
, (9)

where ρ is a positive constant parameter. The last possibility corresponds to
a local estimation of the gradient of R. The constant 5/ρ2 comes from the
fact that∫

B(x,ρ)
(R(t, z)−R(t, x))(z − x) dz ≈

∫
B(x,ρ)

(∇R(t, x) · (z − x)) (z − x) dz

and ∫
B(0,ρ)

(a · x)x dx =
ρ2

5
a, ∀a ∈ R2.

This model poses the following mathematical (analytical) questions:
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• Existence and uniqueness for (1);

• Non explosion of the solution when time goes to infinity.

2.2 Second level: individual-based approximation of the first
level

When the population size is small, the deterministic model (1) can differ
drastically from individual stochastic dynamics. In this case, an individual-
based version of the model must be constructed. Our first individual-based
model is directly derived from the deterministic model (1), and thus is not
based on an explicit network structure of the population. In Section 2.3, we
propose another model with explicit network structure.

2.2.1 The model

The population density n(t, x) will be replaced by an empirical measure of
a finite population, whose dynamics mimics the one of (1a). We choose to
keep the resources dynamics continuous and deterministic. This amounts to
implicitly assume that the ecological time scale and resources dynamics time
scale are separated.

In the previous model, the dependence of the resources dynamics on the
density n(t, x) is local. This poses a problem for the construction of the
individual-based model. As done in [?], a way to solve this problem is to
introduce a small parameter δ > 0, which represents the range of resources
absorption of a single individual. This amounts to replace the terms n(t, x)
in (1b) and (1c) by Mδn(t, x) and to do the corresponding modifications
in (1a). As suggested by the results of [?] (proved for a different model),
choosing δ small and the number of individuals big should give a good ap-
proximation of the original deterministic dynamics. Note that this technical
problem is inherent to the fact that we want to couple a deterministic density
dynamics with a stochastic discrete one.

At each time t, the population is composed of a finite (stochastic) number
Nt of individuals at spatial position x1, . . . , xNt . It is convenient to represent
the population state by the counting measure

νt =
Nt∑
i=1

δxi .

The dynamics of the population is the following: each individual at position
x ∈ X at time t
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• dies at (infinitesimal) rate Mδµ(t, x);

• gives birth to a new individual from non-stored resources with rate
Mδ(IλI)(t, x);

• gives birth to a new individual from stored resources with rateMδ(RλR)(t, x);

• at a birth event from this individual, the position of the newborn is
chosen as x+ z, where z has law S(∇R(t, x), z) dz.

It is biologically reasonable that individuals absorb resources continu-
ously during their lives, but for mathematical reasons, it is simpler to as-
sume that death events induce instantaneous jumps in the local resources
densities. This leads to the following dynamics for I and R, coupled with
the discrete stochastic birth and death events: between death events,

∂tI(t, x) = σ(x) ∆I(t, x) + b(x) · ∇I(t, x)

− I(t, x)
(
λI(t, x) + λS(t, x)

) νt(B(x, δ)
|B(x, δ)|

(10a)

∂tR(t, x) =
(
I(t, x)λS(t, x)−R(t, x)λR(t, x)

) νt(B(x, δ)
|B(x, δ)|

. (10b)

and at a death time t of an individual at position x,

I(t, y) = I(t−, y) + χ(y − x) and R(t, x) = R(t−, x),

where χ ≥ 0 represents the spatial dispersion of ressources in the environ-
ment after the death of an individual. Note that one should have

∫
χ(x) dx =

1 to be consistent with the definition of νt and the assumption of biomass
conservation.

The biological justification of the parameters is the same as for the pre-
vious model. Note that the size of the population is controlled by the com-
petitive pressure. More precisely, if

µ(t, x) = µ0 + α
νt(B(x, r′′)
|B(x, r′′)|

as in the example of Section 2.1.2, then 1/α controls the size of the population
(see Section 2.2.3 for more details).
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2.2.2 Simulation of the IBM

The algorithmic simulation of individual-based process has several advan-
tages:

• the discrete individual-based part of the model can be simulated ex-
actly (of course, some error will come from the discretization of the
PDEs (10)).

• it is easy to implement;

• it is quite efficient in the case of logistic competition (see the extensions
below).

It is based on an acceptance-rejection procedure, where potential jump times
are constructed using an upper bound of the total jump rate in the popula-
tion.

The algorithmic description of the model mimics its mathematical con-
struction as a stochastic differential equation driven by Poisson point pro-
cesses.

Our construction is based on the following assumptions:

(A1) λI , λR, λS and µ are given by (2)–(5), where λI , λR and λS are upper
bounded continuous functions, respectively by constants λ̄I , λ̄R, λ̄S ,
and µ(a, b, c) ≤ µ̄0 + µ̄1 |B(0, r′′)| c for some constants µ̄0 and µ̄1, i.e.
µ(t, x) ≤ µ̄0 + µ̄1Nt.

(A2) σ and b are uniformly Hölder-continuous in X .

(A3) For a complete construction of the process, assumptions on the form
of the jump measure S(·, ·) are needed, that we do not precise for the
moment1.

(A4) There exist positive constants C1 and C2 such that λS(a, b, c) ≤ C1/(C2+
c). We also assume that r′′ > δ.

A key property for the construction of the process is the computation
of a priori bounds for I and R. An upper bound for I can be obtained by
observing that the nonlinear terms in (10a) are negative and by applying the
maximum principle2. Then, the time derivative of the maximum of I(t, ·)
should be controlled by D(t, x).

1To complete.
2This point requires a full justification, with analytical tools that don’t know well. To

be checked.
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Using Assumption (A4) and the fact that νt(B(x, δ)) ≤ νt(B(x, r′′))

∂tR(t, x) ≤ C1

C2 + ν(B(x,δ))
|B(0,r′′)|

ν(B(x, δ))
|B(0, δ)|

which is upper bounded by a constant K > 0. Therefore

sup
x∈X

R(t, x) ≤ sup
x∈X

R0(x) +K t

for all t ≥ 0.
Let us describe the simulation algorithm on a finite time interval [0, T ].

We introduce Ī (resp. R̄) the upper bound for supt∈[0,T ], x∈X I(t, x) (resp.
supt∈[0,T ], x∈X R(t, x) ) computed above.

Given an initial condition (I0(x), R0(x), N0,X0), where X0 = (X1, . . . , XN0)
is the vector of initial positions,

1. Set k = 0 and T0 = 0;

2. Assume (Ik(x), Rk(x), Nk,Xk, Tk) given, where Xk = (X(k)
1 , . . . , X

(k)
Nk

) ∈
XNk . It can be easily checked that

Ck := Nk(µ̄0 + µ̄1Nk + Ī λ̄I + R̄ λ̄R)

is an upper bound for the total jump rate in the population. Let Tk+1 =
Tk +Ek, where Ek is an exponential random variable of parameter Ck
independent of all the previous random variables introduced in the
algorithm.

3. Set νt =
∑Nk

i=1 δX(k)
i

for all t ∈ [Tk, Tk+1].

4. Solve with your favorite discretization technique the PDEs (10a) and (10b)
on the time interval [Tk, Tk+1] with initial conditions Ik(x) and Rk(x),
respectively. Set Ik+1(x) = I(Tk+1, x) and Rk+1(x) = R(Tk+1, x).

5. Let θk be a random variable with uniform law on [0, Ck/Nk] indepen-
dent of all the previous random variable introduced in the algorithm.
Choose an individual i among the Nk living individuals uniformly at
random.

(a) If θk ≤Mδµ(Tk+1, X
(k)
i ) =: θ(k)

1 , then the individual i dies at time
Tk+1, i.e. Nk+1 = Nk − 1, and Xk+1 is the Nk+1-tuple equal to
Xk without the i-th component.
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(b) If θ(k)
1 < θ ≤ θ

(k)
1 + Mδ(IλI)(Tk+1, X

(k)
i ) =: θ(k)

2 , then the in-
dividual i gives birth to a new individual at time Tk+1, with
position X

(k+1)
Nk+1 = X

(k)
i + Z, where Z is a random variable of

law S(∇R(Tk+1, X
(k)
i ), z) dz, i.e. Nk+1 = Nk + 1, and Xk+1 =

(Xk, X
(k+1)
Nk+1).

(c) If θ(k)
2 < θ ≤ θ

(k)
2 + Mδ(RλR)(Tk+1, X

(k)
i ), then the individ-

ual i gives birth to a new individual at time Tk+1, with po-
sition X

(k+1)
Nk+1 = X

(k)
i + Z, where Z is a random variable of

law S(∇R(Tk+1, X
(k)
i ), z) dz, i.e. Nk+1 = Nk + 1, and Xk+1 =

(Xk, X
(k+1)
Nk+1).

(d) Otherwise, nothing happens, Nk+1 = Nk and Xk+1 = Xk.

6. Set k = k + 1 and if Tk+1 < T , go back to Step 2, otherwise, end.

This algorithm is the most general one. Several improvements are possi-
ble in practice.

• The upper bounds for I and R may be very bad, implying many ineffi-
cient rejections in the algorithm. This may be improved as follows: at
the k-th step of the algorithm, set Īk (resp. R̄k) as the maximal value
of I(Tk, ·) (resp. R(Tk, ·) ). Then replace Ī and R̄ in step k of the algo-
rithm by α Īk and α R̄k, respectively, for some fixed α > 1 .Then, due
to the Markov property for the IBM process, Step 4 may be replaced
by the following:

4. Solve with your favorite discretization technique the PDEs (10a)
and (10b) on the time interval [Tk, Tk+1] with initial conditions
Ik(x) and Rk(x), respectively. If supt∈[Tk,Tk+1] supx∈X I(t, x) ≤
α Īk and supt∈[Tk,Tk+1] supx∈X R(t, x) ≤ α R̄k, go to Step 5. Oth-
erwise, set TK+1 as the first time s ≥ Tk where there exists x
such that I(s, x) ≥ α Īk or R(s, x) ≥ α R̄k, set Nk+1 = Nk,
Xk+1 = Xk, Ik+1(x) = I(Tk+1, x) and Rk+1(x) = R(Tk+1, x),
and go back to Step 2.

• In the logistic competition case, where

µ(a, b, c) = µ0(a, b) + µ1(a, b) |B(0, r′′)| c (11)

for functions µ0 and µ1 bounded by µ̄0 and µ̄1, respectively, the algo-
rithm may be improved by replacing Step 5. (a) by the two following
steps
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5. (a) If θ ≤ Nkµ̄1 =: θ(k)
0 , let j ∈ {1, . . . , Nk} be such that (j−1)µ̄1 <

θk ≤ jµ̄1. Then, if

θk − (j − 1)µ̄1 ≤
1

|B(0, δ)|

∫
B(X

(k)
i ,δ)

µ1(Tk+1, y)1{|X(k)
j −y|≤r′′}

dy,

the individual i dies from competition with individual j at time
Tk+1, i.e. Nk+1 = Nk − 1, and Xk+1 is the Nk+1-tuple equal to
Xk without the i-th component.

5. (a’) If θ(k)
0 < θk ≤ θ

(k)
0 + Mδµ0(Tk+1, X

(k)
i ) =: θ(k)

1 , then the indi-
vidual i dies from oldness at time Tk+1, i.e. Nk+1 = Nk − 1, and
Xk+1 is the Nk+1-tuple equal to Xk without the i-th component.

This modification avoids to compute at each step of the algorithm the
quantity Mr′′νTk+1

(Tk+1, x), which is a sum over all the population, in
order to compute µ(t, x) in Step 5. (a) of the general algorithm.

2.2.3 Mathematical questions

Several mathematical questions must be solved for such models.

• First, the general theory for individual-based models is well-developed
in simpler situations, where the dynamics is not coupled with PDEs.
The construction of the stochastic process, its uniqueness in law and
the justification of the previous algorithm must be justified in this spe-
cific model. In particular, this requires good stability and regularizing
properties for the PDEs (10), which are not immediate because of the
nonlinearity. In particular, the maximum principle mentioned above
must be carefully checked in this case. Moreover, the dependence of
the individuals rates on ∇R will also cause problems. It would be cer-
tainly mathematically simpler to assume that the function S is of the
form (9).

• Another important question is the consistency property with determin-
istic approximations: one should recover the PDE (1) with a correct
large population and local interaction scaling of the parameters. Here
again, the general tools for such questions are well-developed, but have
never been used for individual-based models coupled with PDEs. The
way to do such a scaling is the following: assume that the interaction
in the death rate is of logistic type, as in (11), introduce a scaling pa-
rameter K for the size of the population (K is often referred to as the
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“system size” and is closely related to the notion of carrying capacity),
and let the parameter α depend on K as αK = α/K. Then, defining

νKt =
1
K
νt =

1
K

Nt∑
i=1

δxi

and assuming that νK0 converges in distribution for the weak topol-
ogy to a deterministic measure on X admitting a density ξ(x) dx, then
one expects the stochastic process νK to converge to the deterministic
measure whose solution solves the non-local version of (1) with local-
ization parameter δ > 0. Next, it remains to prove the convergence of
this solution to the solution of (1) when δ → 0 (see [?]).

2.3 Third level: explicit graph structure

We are now going to follow a different approach than previously, by con-
structing an network-explicit individual-based model of a prairial asexual
population, and then try to describe the corresponding deterministic ap-
proximation in the limit of large population. This approach is interesting
because it produces non-standard deterministic models that really describe
the relevant microscopic structure.

For simplicity of the model and of the mathematical study, we are only
going to model a single aspect of the network structure of prairial asexual
ecosystems, namely the capacity to choose ones reproduction strategy using
environmental information taken from the network. Our model will also
include the possibility of rupture of rhizomes between individuals through
time. It would be easy to model also the capacity of rhizomes to store
environmental resources for use by individuals in the network.

2.3.1 The model

The system state will be describe by the following three dynamical parame-
ters:

• A function I(t, x) which will describe as above the resources available.

• A finite set of living individuals at time t, of (random) size Nt, and with
(random) positions x1(t), . . . , xNt(t). As above, it will be convenient
to describe the population state by the counting measure

νt =
Nt∑
i=1

δxi(t).
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y
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l2(t)

l1(t)

x
t∼ y

Figure 3: At time t the population of ramets is defined by νt =
∑Nt

i=1 δxi(t)

— xi(t) is the location of the ith ramet; the population of rhizome is defined
by ηt =

∑Rt
j=1 δlj(t) — lj(t) is the jth rhizome, i.e. an element of the set of

unordered pairs with distinct elements in {x1(t), . . . , xNt(t)}. We note x ∼t y
whenever there exists j such that lj(t) = {x, y}.

• A finite set of rhizomes linking pairs of individuals at time t, of (ran-
dom) size Rt, and with (random) links l1(t), . . . , lRt(t) in the set of
unordered pair with distinct elements in {x1, . . . , xNt}. It will be con-
venient to describe the network state by the counting measure

ηt =
Rt∑
i=1

δli(t).

We will use the following notation:

• We write that x ∼t y if there exists j ∈ {1, . . . , Rt} such that lj(t) =
{x, y}.

• We write x ∈ l, where l is an unordered pair with distinct elements in
X , if x is one of the elements of l.

• For all x ∈ X and t ≥ 0, we define

J(t, x) = {i ∈ {1, . . . , Nt} : xi(t) ∼t x}.

The dynamics of the population and network states are as follows:

(e1) An individual at position x at time t can give birth to a new individual
at (infinitesimal) rateMδ(Iλ)(t, x), where λ(t, x) = λ

(
MrI(t, x), νt(B(x,r′))

|B(0,r′′)|

)
.
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x+ z

l = {x, x+ z}

rate π

rate µ

death of a ramet

death of a rhizome

(e1)

(e2)

(e3)

(νt, ηt) (νt + δx+z+, ηt + δ{x,x+z}

(νt, ηt) (νt − δx+, ηt −
∑

j∈J(t,x) δ{xi(t),x}

(νt, ηt) (νt+, ηt − δ{x,y}

rate λ

xx
birth
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Figure 4: The IBM gathers three type of discrete events: (e1) birth of a new
ramet and of the corresponding rhizome; (e2) death of a ramet and of all the
connected rhizome; (e3) death of a rhizome.

The new individual appear at the position x+z and the link {x, x+z}
is added to the network, where z has law

S

 2
|J(t, x)|

∑
i∈J(t,x)

(I(t, xi(t))− I(t, x))
xi(t)− x
|xi(t)− x|2

; x− y

 ,

where S has already been defined in the other algorithms. The choice
of the first variable in S is guided by the fact that it is an asymptotic
estimator of ∇I(t, x) when the number of neighbors goes to infinity
and with positions independent of each other. This event corresponds
to the transition

(νt, ηt)  
(
νt + δx+z, ηt + δ{x,x+z}

)
.

(e2) An individual at position x at time t can die at rate Mδµ(t, x), where
µ(t, x) = µ

(
MrI(t, x), νt(B(x,r′))

|B(0,r′′)|

)
. In this case, all the rhizomes linked

to this individual also disappear from the network. This event corre-
sponds to the transition

(νt, ηt)  

νt − δx, ηt − ∑
i∈J(t,x)

δ{xi(t),x}

 .
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(e3) A rhizome {x, y} at time t may die at rate

π(t, x, y) = π(MrI(t, x),MrI(t, y),Mr′n(t, x),Mr′n(t, y)).

This event corresponds to the transition

(νt, ηt)  
(
νt, ηt − δ{x,y}

)
.

Between to of these events, we assume that the resources satisfy a similar
dynamics as in the previous model:

∂tI(t, x) = σ(x)∆I(t, x) + b(x) · ∇I(t, x)− I(t, x)λ(t, x)
νt(B(x, δ)
|B(x, δ)|

, (12)

and at a death time t of an individual at position x,

I(t, y) = I(t−, y) + χ(y − x),

where χ has been defined in Section 2.2.1.

2.3.2 Simulation of the IBM

The algorithmic simulation of this model is very similar to the one already
described in Section 2.2.2. Let us omit its description.

2.3.3 Mathematical questions

Here again, questions of construction, existence, uniqueness and justification
of the discretization procedure may be asked. If we can prove this for Model
2, it should clearly also hold for this model.

More interestingly, the question of large population behavior of the model
is interesting both from the mathematical and the modeling points of views.
In particular, assuming a logistic death rate and doing the same scaling in
K as in Section 2.2.3, introducing

νKt =
1
K

Nt∑
i=1

δxi(t) and ηKt =
1
K

Rt∑
i=1

δli(t),

what is the corresponding limit? We have the following

Conjecture 2.1 Under sufficient regularity conditions of the coefficients
and assuming that the initial distributions of (νK0 , η

K
0 ) converge suitably

to the deterministic measures (ξ(x) dx, ζ(x, y) dλ(x, y)) admitting densities
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w.r.t. Lebesgue’s measures on X and X 2/flip, where flip(x, y) = (y, x) on
X 2, respectively. Then, (IK(t, ·), νKt , ηKt ) converges for the Skorohod topol-
ogy in D(R+, C(X )×M+(X )×M+(X 2/flip)) to the deterministic function
(I(t, x), ξ(t, x) dx, ζ(t, x, y) dλ(x, y)) unique solution to the PDE

∂tI(t, x) = σ(x) ∆I(t, x) + b(x) · ∇I(t, x)− I(t, x)λ(t, x)Mδξ(t, x)

+
∫
X
χ(x− z)µ(t, z)Mδξ(t, z) dz (13a)

∂tξ(t, x) =
∫
X
Mδ(Iλ)(t, z)S(∇I(t, z), x− z) ξ(t, z) dz

− ξ(t, x)Mδµ(t, x) (13b)

∂tζ(t, x, y) = Mδ(Iλ)(t, x)S(∇I(t, x), y − x)ξ(t, x)
+Mδ(Iλ)(t, y)S(∇I(t, y), x− y) ξ(t, y)

− π(t, x, y) ζ(t, x, y)−
∫
µ(t, x)ζ(t, x, z) dz

ξ(t, x)
. (13c)

This result is suggested by the analysis of the generator of the individual-
based model. However, due to the singularity of the corresponding limit,
existing methods do not apply to such a situation and a careful mathematical
study must be carried out.
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