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Abstract

We review some classical definitions and results concerning Evolutionar-
ily Stable Strategies (E.S.S.) with special emphasis with their link to Wardrop
equilibrium and on the nonlinear case where the fitness accrued by an indi-
vidual depends nonlinearly on the state of the population. On our way, we
provide a simple criterion to check that a linear finite dimensional Wardrop
equilibrium satisfies the second order E.S.S. condition. We also investigate
a bifurcation phenomenon in the replicator equation associated to a popula-
tion game. Finally we give two non trivial examples of Wardrop equilibria in
problems where the strategies are controls in a dynamic system.

1 Introduction

Wardrop equilibrium, E.S.S. and related concepts form the game theoretic basis of
the investigation of population dynamics under evolution or learning behaviors as
depicted by the replicator equation or more generally adaptive dynamics.

Pioneered by John Glenn Wardrop in the context of road traffic as far back
as 1952, [20] these concepts have been been given a new impetus after their re-
discovery and extension by John Maynard-Smith and co-workers in the mid seven-
ties, [11, 9] in the context of theoretical biology and evolution theory. The intoduc-
tion by Taylor and Jonker [16] of the replicator equation gave its solid mathematical
grounds to the intuition of stability present from the inception. Since then a large
body of literature has appeared under the generic name of evolutionary game the-
ory. See e.g. [21, 8, 6, 17]. Nowadays, routing problems have become a hot topic
again with the advent of the INTERNET and, more recently, ad hoc networks, to-
gether with learning in populations. Old topics such as optimal transportation [3]
have been renewed by these new problems. All share the characteristic that they
invetsigate the collective effect of rational, usually selfish, behaviour of individual
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agents on a large population of similar ones. We actally witness the emergence
of a new population dynamics paradygm, where games are one of the underlying
fundamental tools.

The aim of this paper is to better disseminate those ideas in the traditional Dy-
namic Games community, sressing among other things the links with transportation
theory, and may be offering some new results on our way.

2 Wardrop equilibrium and E.S.S.

Let us recall the foundations of Evolutionary Stable Equilibrium theory, and in that
process define our notation.

2.1 Generating function and fitness function

2.1.1 Population and strategy distribution

A large population of identical agents interact with each other. Each has the choice
of several strategies x ∈ X chosen in a set X . The nature of the set X is an
important feature of the theory. In the first part of this article, we consider the
cases X = {x1, x2, . . . , xn} finite or X ⊂ Rn a compact subset of Rn. The
notation dx will mean the Lebesgue measure if X is continuous and the discrete
measure if it is finite, so that in the later case,∫

X
f(x)dx =

n∑
i=1

f(xi) .

In the last part, we shall consider infinite dimensional X spaces.
We are interested in the share or proportion of agents using each stategy, say

p(x). Technically, p is a positive measure of mass one over X , and can therefore be
viewed as a probability measure. We let ∆(X) denote the set of such probability
measures over X . It is finite dimensional if and only if X is finite. The measure
p(A) =

∫
A p(dx) of a subset A ⊂ X is the probability that an agent picked “at

random” with uniform probability over the population use a strategy of the subset
A of stategies. Then the mean value of a function f is

Epf = 〈p, f〉 =
∫

X
f(x)p(dx) .

If X is finite, we shall let p(xi) =: pi, we identify the measure p with the
vector of Rn with components pi, and any scalar function f over X as the vector
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with components fi = f(xi). Then p belongs to the simplex Σn ⊂ Rn identified
with ∆(X), and

Epf = 〈p, f〉 =
n∑

i=1

pif(xi).

In evolutionary biology, the various “strategies” correspond to differences in
behaviours, or “phenotypes”, generated by differences in the genotypes.

The biological literature contains interesting discussions of the difference be-
tween the set up we just described, considered a genetic polymorphism, and a
population, say with a finite set X of possible behaviours, where all agents have
the same genotype, dictating a probabilistic —or mixed— choice of behaviour, so
that they all have the same probabilities pi of behaving according to “strategy” xi,
for i = 1, 2, . . . , n. As a result, due to the law of large numbers, in such a genet-
ically monomorphic population, the proportion of animals adopting the behaviour
xi at each instant of time will be pi, although the individuals using each xi may
vary over time.

While these discussions are highly significant in terms of biologic understand-
ing —e.g. some mixtures might be impossible to produce with a genetically mono-
morphic population, or the transmission of the behaviour over generations may be
different in both cases, the more so if sexual reproduction is involved— we shall
not be concerned with them. The populations are statistically the same in both
cases. As a consequence, their dynamics will be considered the same.1

2.1.2 Fitness and the generating function

The various possible strategies induce various benefits to their users. It is assumed
all along that

(i). There exists a scalar, real, measure of reward for each participant. In evo-
lutionary biology, this measure, called “fitness”, may be reproductive effi-
ciency —the excess of the number of birth over the number of death per
animal per time unit. In the example of road tafic, it will be the opposite of
the time spent to reach its destination, etc.

(ii). This reward is a function of the stategy used by the particular agent and the
state of the population, the later entering only through the proportions, the
measure p.

1A Difference in the stability analysis mentioned by [10] is due to a questionable choice of dy-
namics in the discrete time case which we will not follow.
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Hence, an agent using strategy x in a population characterized by a distribution of
strategies p has a reward —a fitness— G(x, p). We call G the generating function.
It is assumed measurable in x, uniformly bounded and and weakly continuous in
p. We shall also use the notation G(p) to mean the function x 7→ G(x, p), hence in
the finite case, the vector with components Gi(p) = G(xi, p), i = 1, . . . , n.

A special case of interest is the linear case where p 7→ G(x, p) is linear. This
is the case if, say, there is a reward H(x, y) to an agent of type x meeting an agent
of type y, and “meeting” happens at random with uniform probability, so that the
avarage fitness of an agent of type x is

G(x, p) =
∫

X
H(x, y)p(dy) . (1)

An individual with a mixed strategy q, or equivalently a sub-population with a
strategy distibution q, in a population of overall distribution p will get an avarage
fitness

F (q, p) = 〈q, G(p)〉 =
∫

X
G(x, p)q(dx) .

It follows from this definition that F is always linear with respect to its first
argument, but not necessarily with respect to the second one. We shall refer to the
linear case to mean linearity of G w.r.t. p, hence of F w.r.t. its second argument.

2.2 Stable population states

2.2.1 Wardrop equilibrium

Consider a population with distribution p. Assume that in that population, some
individuals mutate, creating a small sub-population of total relative mass ε and of
distibution q. The overall population now has a distribution

qε = εq + (1− ε)p . (2)

We say that the sub-population invades the original population if 2 F (q, qε) ≥
F (p, qε). The original population will be considered evolutionarily stable if it is
protected against invasion by any (single 3) mutation. We therefore state:

Definition 1 A distribution p is an Evolutionarily Stable Strategy (E.S.S.) if

∀q ∈ ∆(X) ,∃ε0 : ∀ε ≤ ε0, F (q, qε) < F (p, qε) . (3)
2As mathematicians, we take this as our axiomatic definition of invading. The relationship to the

biological concept as well as the choice of a large inequality here is a discussion left to the biologists.
Our convention here is that of the biological literature [10]

3The case of simultaneous mutations is more complex.
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It follows from the dominated convergence theorem that the fitness function F
inherits the continuity of G with respect to its second argument. Therefore, letting
ε go to zero, one immediately sees that a necessary condition for p to be an E.S.S.
is that

∀q ∈ ∆(X), F (q, p) ≤ F (p, p) . (4)

J-G. Wardrop [20] was considering a road network and a population of drivers
in a road network. Their strategy is the choice of a route in the network. The
time of travel is a function of the occupation of the route chosen. And if the total
population is fixed, this is a function of the proportion qi of that population that
uses the route considered. We quote from [20]:

Consider the case of a given flow of traffic Q which has the choice of
D alternative routes from a given origin to a given destination, num-
bered 1, 2, . . . D. [. . . ] Consider two alternative criteria based on these
journey times which can be used to determine the distribution on the
routes, as follows

(i). The journey times on all routes actually used are equal, and less
than those which would be experienced by a single vehicle on
any unused route.

(ii). The average journey time is minimum.

The first criterion is quite a likely one in practice, since it might be
assumed that traffic will tend to settle down into an equilibrium situa-
tion in which no driver can reduce his journey time by choosing a new
route.[. . . ]

Notice that the argument developed is one of stability. It should be further noticed
that his “generating function”, the travel time on a route, is nonlinear, of the form
ti = bi/(1− qi/pi) for constants bi and pi that depend on the network and the rest
of its usage.4

Extending Wardrop’s definition to an infinite set X , we end up with the Wardrop
condition, which is equivalent to, condition (4):

∀x ∈ X , G(x, p) ≤ F (p, p) ,
Let Z(p) = {x | G(x, p) < F (p, p)} , then p(Z(p)) = 0 .

(5)

4Alain Haurie has pointed out that the phrase “Wardrop equilibrium” now means the state of a
transportation network where the traffic flow satisfies this condition for all pairs origin-destination ac-
tually served. Wardrop explicitly considers a single pair origin-destination. However, it is clear that,
on the one hand, he meant it to hold for all, and on the other hand, a simple dynamic programming
type of reasoning shows that if a flow is in such an equilibrium for one pair of origin-destination, it
is in equlibrium for any such pair served by that flow.

5



In recognition of Wardrop’s anteriority, and following the standard terminology in
routing theory, we let

Definition 2 A distribution p satisfying (4), or equivalently (5), is called a Wardrop
equilibrium.

Link with Nash equilibrium One may notice that (4) is equivalent to stating that
(p, p) is a (symmetric) Nash equilibrium of the two player-game where the rewards
J1 and J2 of the players are J1(q1, q2) = F (q1, q2), J2(q1, q2) = F (q2, q1).
As a consequence most of the literature on evolutionary games uses the phrase
“Nash equilibrim” where we follow the usage of the transportation literature with
“Wardrop equilibrium”. Recognizing a Nash equlibrium makes the equivalence of
(4) and (5) a trivial extension of Von Neumann’s equalization theorem [18, 19],
although in the biology literature, it is sometimes attributed to ([5]).

2.2.2 Second order E.S.S. condition

Not all Wardrop equilibria are E.S.S., because (4), or equivalently (5), is only a
necessary condition for (3) to hold. Let the best response map B(·) be defined as

B(q) = {r ∈ ∆(X) | F (r, q) = max
r∈∆(X)

F (r, q)} .

Notice that B(p) is precisely the set of distributions q that satisfy q(Z(p)) = 0.

Proposition 1 In the linear case, a Wardrop equilibrium p is an E.S.S. if and only
if

∀q ∈ B(p) , F (p, q) > F (q, q) . (6)

or equivalently
∀q ∈ B(p) , F (q − p, q − p) < 0 . (7)

proof If q /∈ B(p), then by definition (3) is satisfied. If q ∈ B(p), in the inequal-
ity

F (q, qε)− F (p, qε) < 0 ,

write either F (r, qε) = (1−ε)F (r, p)+εF (r, q) or F (r, q) = F (r, p)+εF (r, q−p)
with both r = q and r = p, and use the linearity of F and the fact that F (q, p) =
F (p, p) to get the form (6) or (7) respectively.

Notice that F (r, r) is a quadratic form. Therefore this last condition clearly
shows that the second E.S.S. condition (6) is in fact a second order condition.

We stay for the time being with the linear case. Let a Wardrop equilibrium
p be fixed, and X1(p) = X − Z(p), the set of measure one for distributions in
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B(p). Let H1 be the restriction of H to X1(p)×X1(p), and F1 the corresponding
bi-linear function for measures (not necessarily positive) over X1(p). Let also 1l be
the constant function equal to one over X (or over X1(p)); and notice that p − q
in (7) is orthogonal to 1l in the space M(X1) of measures over X1. Let also X2

be the support of p. From Wardrop’s condition, it follows that X2 ⊂ X1. Define
similarily the restriction H2 of H to X2 ×X2 and M(X2). We therefore have5:

Theorem 1 In the linear case, a Wardrop equilirium p is an E.S.S.

(i). if the restriction of the quadratic form F1(r, r) to measures r ∈ ∆(X1(p))
orthogonal to 1l in M(X1) is negative definite,

(ii). only if the restriction of the quadratic form F2(r, r) to measures orthogonal
to 1l in M(X2) is non-positive definite.

Proof The sufficient condition derives trivially from the proposition. The restric-
tion to X2 in the necessary condition insures that p be in the relative interior of
∆(X2), hence making it possible to violate the inequality in (3) if the quadratic
form is not non-negative definite.

Concerning the nonlinear case, we need to introduce the following notation:6

define H(x, p) = D2G(x, p) the derivative of G with respect to p, and its re-
striction H2 to X2 × ∆(X2). It follows from the proof of theorem 3 below the
following:

Theorem 2 a necessary condition for a Wardrop equilibrium p to be an E.S.S. is
that the restriction of the quadratic form 〈r, H2(p)r〉 to r ∈ 1l⊥ ⊂ M(X2) be
nonpositive definite.

Proof Introduce the (negative) score function7

E(ε, q) = F (q, qε)− F (p, qε) ,

and notice that B(p) = {q | E(0, q) = 0}. Because F is always linear w.r.t. its first
argument, it follows that D1E(0, q) = 〈q − p, H(p)(q − p)〉. The result follows as
above.

5It would suffice that negativity be required of the quadratic form 〈q1 − p1, H1(q1 − p1)〉 for all
q1 ∈ ∆(X1), which is less demanding. However, we offer no simple check of that property, it is
why we sticked with the definition given here.

6There is a slight overload of notation for H w.r.t. the linear case. It is resolved if we accept that
D2G(x, q)r = H(x, q)r =

R
X

H(x, y, q)r(dy).
7We borrow this name to [21]
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We may give a somewhat more explicit condition, but it is not clear that it be
more useful. Let µ be the Lebesgue measure and µ1 = µ(X1). Given any measure
r over X1, the measure r̂ = r − (r(X1)/µ1)µ is orthogonal to 1l. So that the first
condition of our first theorem, e.g., reads

∀r 6= αµ ∈ ∆(X1) for some α ∈ R ,

F1(r, r)− r(X1)
µ1

(F1(r, µ) + F1(µ, r)) + r(X1)2

µ2
1

F1(µ, µ) < 0 .

This is again a quadratic form over ∆(X1). It could be translated in terms of H .
This does not seem very useful. It is not so in the finite linear case.

2.2.3 Finite linear case

Assume now that X = {x1, x2, . . . , xn} and that G(p) is linear in p. We identify
the function H of (1) with the matrix with elements Hij = H(xi, xj). We now
have G(p) = Hp, and F (q, p) = 〈q, Hp〉 = qtHp. (In general the marix H is not
symmetric.)

A distribution p ∈ Σn is a Wardrop equilibrium if and only if, up to a reordering
of the coordinates (hence of the xi), it can be written as a composite vector

p =
(

p1

0

)
with p1 ∈ Σn1 ⊂ Rn1 , with furthermore

H

(
p1

0

)
=

(
f1l
z

)
for the same decomposition, with f ∈ R and zj < f for every coordinate zj of z.
Here, Z(p) is the set {xn1+1, . . . , xn}, B(p) is the set of all q ∈ Σn which share
the same decomposition (q1, 0) as p, and F (p, p) = f .

To investigate the second order condition, we partition H according to the same
decomposition in

H =
(

H11 H10

H01 H00

)
,

and we identify H11 with the restriction H1 of H to X1 ×X1.
The sufficient condition of theorem 1 is now that the restriction of the quadratic

form 〈r1,H1r1〉 to vectors r1 orthogonal to the vector 1l of Rn1 be negative definite.
Furthermore, call p2 the sub-vector of the strictly positive coordinates of p1. The
necessary condition of theorem 1 is that the corresponding sub-matrix H2 generate
a non-positive definite restriction of the quadratic form 〈r2,H2r2〉 to vectors r2

orthogonal to 1l (with appropriate dimension).
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We now give a practical means of checking these conditions. Let first A be a
2× 2 matrix

A =
(

a b
c d

)
.

We note σ(A) the symmetric difference of the four numbers:

σ(A) = a− b− c + d .

Then, given a m×m matrix A, define σ(A) as the m− 1×m− 1 matrix obtained
by replacing each block of four adjacent entries in A by their symmetric difference.

Lemma 1 The resriction of the quadratic form 〈r, Ar〉 to the vectors r orthogonal
to 1l is negative definite (resp. non-positive definite) if and only if σ(A) + σ(A)t is
negative definite (resp. non-positive definite).

Proof σ(A) = P tAP where P is the m×m− 1 injective matrix

P =



1 0 · · · 0
−1 1 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · −1


whose range space is the vector sub-space orthogonal to the vector 1l.

2.3 Further stability concepts

Many variations of the concept of E.S.S. have been proposed. The only one we
mention here is sometimes called Evolutionary Robust Strategy or E.R.S.8 It is as
follows:

Definition 3 A strategy distribution p is called an E.R.S. if there exists a weak
neighborhood N of p such that

∀q 6= p ∈ N , F (p, q) > F (q, q) .

Hence, in effect, for an E.R.S., the dominance inequality of (6) is requested of all
q in a neighborhood and not only of the best response q’s.

Concerning the relationship of this concept with E.S.S., we recall the notation
H(x, p) = D2G(x, p) the derivative of G with respect to p, and its restrictions H1

to X1 ×M(X1) and H2 to X2 ×M(X2). We state:
8It is closely related to J. Apaloo’s concept of Neighborhood Invader Strategies [2]
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Definition 4 A Wardrop equilibrium p is said regular if there exists a ∆(X1)-
neighborhood of p such that over that neighborhood q 7→ H1(x, q) is Lipshitz
continuous for all x ∈ X 9 and the restriction of the quadrtic form 〈r, H1(q)r〉 to
measures r orthogonal to 1l in M(X1) is negative definite, both uniformly in q.

we have the following

Theorem 3

(i). All E.R.S. are E.S.S.

(ii). In the finite case, all regular Wardrop equilibria, and all E.S.S. in the linear
case, are E.R.S.

The proof of (i) is elementary: applying the E.R.S. condition to qε = p + ε(q − p)
and using the linearity of F w.r.t. its first argument, we get condion (3). The proof
of (ii) is classical for the finite linear case (see [8]). We extend it to the nonlinear
regular case in the appendix.

The importance of the concept of E.R.S. for us lies in the fact that it is a (local)
Lyapunov asymptotically stable point of the replicator dynamics.

2.4 Clutch size determination and Braess’paradox

The transportation literature is familiar with Braess’paradox, seldom quoted in the
E.S.S., biologically-inspired, literature. This generically refers to situations where
improving the quality of the resource decreases the fitness of every individuals in
the population. The following is such an example.

A species of paraitoids lays its eggs in its hosts, say the eggs of another species.
This is a gregarious parasitoid, meaning that several offspring can be born from
a single host. Yet, the probability that the parasitizing succeed, actually giving
parasitoid newborns, decreases with the number of eggs in the host. Eiher all eggs
layed in a any host succeed or all fail. The population of parasitoids is such that,
as a first approximation, it may be assumed that every host will be superparasitized
once, meaning that exactly two parasitoids will lay some eggs in each host. We are
interested in the number of eggs, or clutch size, x that the female parasitoids lay.

We consider a very simple case where only three parasitoids can be born from
a single host. We assume that if only two parasitoid eggs are laid in a single host,
they will survive (with probability one). If three are laid, the survival probability is
π, and we assume π > 1/3. The only two sensible (pure) stategies are laying one or

9We shall use this definition in the finite case only, it is why we need not assume any regularity
w.r.t. x.
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two eggs, since at least one more will be present in the host due to superparasitism.
The game matrix of this problem is as follows:

G =
(

1 π
2π 0

)
The Wardrop equilibrium is p({x = 1}) = π/(3π − 1). It is an E.S.S., since
σ(G) = 1− 3π < 0. The collective fitness at equilibrium is

F (p, p) =
2π2

3π − 1
.

For π = 1/2, this leads to F (p, p) = 1, while improving the survival probability
of a group of three eggs to π = 2/3, we obtain p = 2/3 and F (p, p) = 8/9 < 1.

3 Replicator dynamics

We shall consider only the finite case. The infinite case is far less well known.
Some results concerning it, both old an new, can be found in [15].

3.1 Evolutionary dynamics

Assume that “fitness” Gi(p) measures the excess of the number of birth over the
number of death (may be negative) per individuals using the strategy xi (with phe-
notype xi) in a population of strategy distribution p. Let ni(t) be the number of
individuals using xi at time t. We also have for the strategy distribution

qi(t) =
ni(t)∑
k nk(t)

If generations are discrete, with a time step h, —say a population reproducing once
a year— this yields

ni(t + h) = [1 + hGi(q(t))]ni(t) ,

which, together with the definition of qi(t) gives10

qi(t + h) = qi(t)
1 + hGi(q(t))

1 + hF (q(t), q(t))
. (8)

10The the classical theory summarized here departs from the discrete time dynamics of [10]
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Looking at these dynamics over a very large time horizon, i.e. taking a larger
and larger time unit, is equivalent to letting h go to zero. And the above equation
converges to the replicator dynamics

q̇i = qi[Gi(q)− F (q, q)] . (9)

We summarize here the classical invariance and asymptotic properties of these
equations:

Theorem 4

(i). They leave each face of Σn invariant,

(ii). All limit points of trajectories of the replicator dynamics are Wardrop equi-
libria.

(iii). In finite dimension, all E.R.S. are locally asymptotically stable.

Proof

(i). Any qi(0) = 0 is preserved. And the defect D(q) := 1 −
∑

i qi satisfies
Ḋ(q) = −D(q)F (q, q) and therefore leaves 0 invariant.

(ii). If p is not Wardrop, for some i, Gi(p) − F (p, p) > 0, and by continuiy,
Gi(q)− F (q, q) > 0 for q in a neighborhood of p. Noticing that

qi(t) = qi(t0) exp
(∫ t

t0

[Gi(q(s))− F (q(s), q(s))]ds

)
,

we have a clear contradiction with convergence to p.

(iii). Let p be en E.R.S. Use as a Lyapunov function the relative entropy of q with
respect to p:

V (q) =
∑
i∈X1

pi ln
(

pi

qi

)
.

It is straightforward to check that it is decreasing along any trajectory, and
continuous with respect to any topology on ∆(X) —and is therefore a valid
Lyapunov function, which does not hold in infinite dimension.

This equation has been extensively used as a simple model of population dynamics
under evolution [10, 21, 8] and also as a Nash equilibrium selection device [13].
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3.2 Population games

3.2.1 Population game dynamics

The ideas embedded into the derivation of the replicator dynamics may be extended
to situations where several different populations are interfering, in effect, to Nash
equilibria of classical games as opposed to Wardrop equilibria. These have been
called “Population games” by W. Sandholm [14].

Let N populations interact. We denote the population number with upper in-
dices K, L = 1, 2, . . . , N . Individuals of population K have nK possible strategies
(phenotypes). As previously, we let nK

i be the number of individuals of population
K using the strategy i, qK

i be the proportion of such individuals in population K,
and qK be the nK-dimensional vector of the qK

i , i = 1, 2, . . . , nK . We shall also
make (parcimonious) use of the classical notation q−K to mean the set of all qL for
L 6= K, and let q be the set of all qK’s. It is assumed that the fitness of an individ-
ual of population K using strategy i is a function GK

i (q−K), so that the collective
fitness of population K is FK(q) = FK(qK , q−K) = 〈qK , GK(q−K)〉.

W. Sandholm has investigated several mechanisms by which the individual may
update their choices of strategies. Several of the most natural schemes lead to the
dynamics

ṅK
i = nK

i GK
i (q−K) .

This yields
q̇K
i = qK

i [GK
i (qK)− FK(q)] .

3.2.2 Wolves and Lynxes

We restrict now our attention to linear two-population games with two strategies
available in each population. This is the simplest possible case, and it already
exhibits interesting features.

Let therefore G1 and G2 be two 2× 2 matrices,

GK =
(

aK bK

cK dK

)
so that the payoffs are GK(qL) = GKqL with transparent abuses of notations. The
underlying two-player game is defined by the bi-matrix

x1\x2 1 2
a2 c2

1 a1 b1

b2 d2

2 c1 d1
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Furthermore, the vectors qK , K = 1, 2, will be represented by their first compo-
nent, i.e. again with a transparent abuse of notation

qK =
(

qK

1− qK

)
.

We let σK be the symmetric difference aK−bK−cK +dK , and whenever σL 6= 0,
define pK = (dL − bL)/σL, L 6= K.

We are here interested in the case where both pK exist and lie in (0, 1). They
constitute a mixed Nash equilibrium. It is a simle matter to see that if both σK have
the same sign, there are in addition two pure nash equilibria, diagonally opposite
in the square [0, 1]× [0, 1], while if they are of opposite sign, this is the only Nash
equilibrium.

The replicator dynamics read

q̇K = σLqK(1− qK)(qL − pL) , L = 3−K .

Their behavior is characterized in part by the following result (see [8, 4] for a more
detailed analysis)

Theorem 5 If σ1σ2 < 0, the point (p1, p2) is a center of the replicator dynamics,
and all trajectories are periodical. If σ1σ2 > 0, the point (p1, p2) is a saddle, and
the two pure Nash equilibria are asymptotically stable.

Proof Consider the relative entropies:

UK(qK) = pK ln
pK

qK
+ (1− pK) ln

1− pK

1− qK

and the function
V (q1, q2) = σ2U1(q1)− σ1U2(q2) .

A straightforward computation shows that its Lagrangian derivative is null. The
U i’s are convex, and go to infinity as pK approaches 0 or 1. If σ1σ2 < 0, V is
either convex or concave, diverging to plus or minus infinity as (q1, q2) approaches
the boundary of the domain of definition. The tajectories are level curves of V ,
which in that case are the boundaries of convex level sets contained in the domain.
If σ1σ2 > 0, the curve V (q1, q2) = 0 separates the attraction basins of the two
pure Nash equilibria.

We provide an example in a “hawk and doves” type of games, but between
two populations sharing the same preys, say wolves and lynxes hunting deer, but
where contests occur only between individual of different species. Each have two
possible behaviours, H for “hawkish” and D for “Dovish”.
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In that model, Lynxes are at a trophic level above that of wolves. In particular,
if two agressive individuals meet, the lynx is hurt, but the wolf is killed. We also
assume that against a pacific (coward) wolf, an agressive lynx gets less than 1 (the
full benefit of the prey), because it has spent unnecessary time and effort chasing a
competitor who would have left anyhow.

The result is the following bi-matrix of rewards:

L\W D H
1− λ 1

D λ 0
0 −θ

H 1− µ 1− ν

with λ + µ > 1 > ν > 0 and θ > 0. In that game, we have σ1 = λ + µ − ν and
σ2 = −λ− θ, and the Nash strategies p1 = θ/(λ + θ), p2 = (1− ν)/(λ + µ− ν).
Figure 1 shows a typical trajectory, computed in the case λ = ν = 1/2, θ = 2µ =
1.5, and intial state (0.2, 0.2).

3.2.3 Joint interest and bifurcation

Maynard-Smith [10] considers the case where both populations share a joint foe,
say Man. Then, there is a benefit for each population in maintaining the other one,
as it contributes to keep that foe away. This is in effect an equivalent in population
games of the concept of inclusive fitness in E.S.S. See [7] and the references there
in. We address a side-topic on these lines, staying with our simple Wolves and
Lynxes game.

Several ways of taking into account that joint interest have been proposed in
the literature, depending on the detailed mechanisms at work. One possibility is by
saying that each population K has a fitness FK

α (q) = (1−α)FK(q)+αFL(q) for
some coefficient α ∈ [0, 1/2]. Then, we get

FK
α (q) = (1− α)〈qK , GKqL〉+ α〈qL, GLqK〉 = 〈qK , GK

α qL〉

with GK
α = (1− α)GK + α(GL)t.

Now, the behaviour of the replicator equation obviously depends on the coef-
ficient α measuring the amount of joint interest. As an example, we work out the
Wolves and Lynxes problem with λ = ν = 1/2, θ = 2µ = 3/2. For α < 1/6,
the dynamics are qualitatively similar to the case of figure 1: we have periodical
trajectories revolving clockwise around the mixed Nash equilibrium (p1, p2). As
α increases, p2 decreases, so that the band of trajectories going leftward at the bot-
tom of the square [0, 1]× [0, 1] shrinks. Simultaneously, the speed of the dynamics

15



Figure 1: Population dynamics for Wolves and Lynxes, λ = ν = 1/2, θ = 2µ =
1.5, time span : 40 units.

to the left decreases. At α = 1/6, p2 reaches 0. At that precise value, the lower
trajectories going left have disappeared, giving way to a line of rest points on the
q1 axis. These equilibria are unstable for q1 < p1 = 29/37, with trajectories leav-
ing “upward” from them, and stable (or at least the line of equilibria is stable) for
q1 > 29/37.

For larger values of α up to 1/2, the only Nash equilibrium is (1, 0). All tra-
jectories of the replicator dynamics converge to that point, including the trajectory
q2 = 0 where the velocity has been reversed and now points to the right. This is
pictured in figure ??

The conclusion is that a small variation in the parameter r may cause a dram-
matic difference in the qualitative behaviour of the dynamics. That parameter is,
at best, difficult to estimate. But a reverse use of this theory can be made, deriving
from the observed behaviour bounds for possible values of α if this model is to be
used.
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Figure 2: The bifurcation as the joint interest raises, left to right and top to bottom,
from 0 to 1/2

Notice that in the last case, α large, there is a single Nash equilibrum at (1, 0).
We are no longer in the case where p2 ∈ (0, 1) where pure Nash equilibria came in
pairs.

4 Dynamic generating function

We now venture with two examples in the realm of Wardrop equilibria with infinite
dimensional trait spaces. Many examples can be found in the literature, see e.g.
[7]. These are two different examples which lead to tractable Wardrop equilibria
computations.
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4.1 The tragedy of the commons

In this example, remotely inspired by [12], individuals of a population may use two
strategies, say x ∈ {0, 1}. However, they have to make that choice at each instant
of time t ∈ [0, T ] over a fixed horizon T , say the breeding season. So that the
strategy set is the set of (measurable) functions x(·) : [0, T ] → {0, 1}. As usual,
we shall let q(t) be the proportion of individuals in the population using x = 1 at
time t, and denote p(·) a Wardrop equilibrium.

Their collective behaviour has an influence on the “state of the world”, say
environmental quantities such as amount of resources that they may be depleting,
habitat quality, etc. This is modelized as a vector dynamical system in Rm:

ẏ = f(y, q) , y(0) = y0 ,

where f is assumed of class C1, and is such that this differential equation has a
solution over [0, T ] for all measurable q(·) (q(t) ∈ [0, 1]).

The time rate of fitness acquisition by an individual using x = 1 is a scalar
function g(y), also of class C1, while individuals using x = 0 gather no fitness.11

As a result, the cumulative fitness at the end of the season is

G(x(·), q(·)) =
∫ T

0
x(t)g(y(t)) dt .

To ease the calculations, we let

A(y, q) := D1f(y, q) =
∂f

∂y
, b(y, q) := D2f(y, q) =

∂f

∂q
.

Having a resource depletion problem in mind, we assume that

• If all individuals use the available resources, the quality of the environment,
as measured by g(y), decreases, and if none does, the environment regener-
ates, and g increases:

Dg(y)f(y, 1) < 0 , Dg(y)f(y, 0) > 0 , (10)

• for all y such that g(y) = 0,

Dg(y)b(y, q) < 0 . (11)

11Or g is the increase of fitness provided by x = 1.
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As long as g(y(t)) > 0, the clear optimum for every individuals is to use
x = 1, so that a Wardrop equilibrium, and a fortiori an E.S.S., must have q(t) = 1.
Conversely, as long as g(y(t)) < 0, we end up with q(t) = 0. The only possible
mixed Wardrop equilibrium is therefore with g(y) = 0, hence at pairs (y(·), q(·))
satisfying

Dg(y)f(y, q) = 0 (12)

Thanks to hypotheses (10) and (11), equation (12) defines a unique smooth implicit
function q = ϕ0(y) ∈ (0, 1). Altogether, this defines a closed loop Wardrop
equilibrium p(t) = ϕ(y(t)) with

ϕ(y) =


1 if g(y) > 0 ,
ϕ0(y) if g(y) = 0
0 if g(y) < 0 .

This will cause the y trajectory to reach {g(y) = 0} at a time t0 with p = 1 if
g(y0) > 0, and with p = 0 if g(y0) < 0, and then to follow a path in the manifold
g(y) = 0. We denote by z(·) that trajectory. The ensuing collective fitness is

F (p, p) =
∫ t0

0
[g(z(t))]+ dt .

We now investigate the second order condition to check whether that Wardrop
equilibrium is also an E.S.S. Since using a mixed strategy while g(y) 6= 0 is
clearly non optimal, we shall only consider the time interval [t0, T ] during which
g(z(t)) = 0. In order to apply theorem 2, introduce the transition matrix Φ(t, s) of
the matrix A(z(t), p(t)). We have

〈r, H2(p)r〉 =
∫∫
T
r(t)Dg(z(t))Φ(t, s)b(z(s), p(s))r(s) dsdt ,

where T is the triangle t0 ≤ s ≤ t ≤ T . Let therefore the scalar function h(·, ·) be
defined as

h(t, s) = Dg(z(t))Φ(t, s)b(z(s), p(s)) ,

the second order E.S.S. condition reads∫∫
T
(q(t)− p(t))h(t, s)(q(s)− p(s)) dsdt < 0 . (13)

Theorem 6 A necessary condition for the Wardrop equilibrium described above
to be an E.S.S. is that, for any pair s < t ∈ [t0, T ], h(t, t)−2h(t, s)+h(s, s) ≤ 0.
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Proof Select a small time interval η, and α 6= 0 such that, for τ ∈ (s, s + η),
p(τ) + α ∈ (0, 1) and for τ ∈ (t− η, t), p(τ)− α ∈ (0, 1). Choose

q(τ) =


p(τ)− α for τ ∈ [s, s + η] ,
p(τ) + α for τ ∈ [t− η, t] ,
p(τ) otherwise .

Placing this q in (13), we see that (2/αη)〈p− q, H2(p− q)〉 → h(t, t)−2h(t, s)+
h(s, s) as η goes to zero.

We leave it to the reader to check the conjecture that a sufficient condition is
that h(t, t)− 2h(t, s) + h(s, s) < 0 for all s < t ∈ [t0, T ].

A simple example is the following dynamic form of the famous “Tragedy of the
Commons” game, of which we provide two variants. Here y is scalar and measures
the amount of the common resource available, say the pasture shared by shepherds.

In the first variant, we use a simple malthusian dynamics:

ẏ = ay + bq + c

with a > 0, a rate of natural regeneration, b < 0, the depletion rate if all the local
flocks graze in that same common pasture, and c > 0, a zero-resource regeneration
rate.12 The efficiency of sheep grazing is g(y) = y − γ for some fixed level
γ < −(b + c)/a. The equilibrium state is z = γ, and the equilibrium strategy
distribution p = (aγ + c)/(−b). We get h(t, s) = b exp[a(t− s)]. Hence, we find
that h(t, t)−2h(t, s)+h(s, s) = −2b(exp[a(t−s)]−1) > 0 failing the necessary
condition. Therefore the Wardrop equilibrium is not an E.S.S.

In a second variant, we replace the linear growth by a more realistic logistic
growth:

ẏ = α
(
1− y

K

)
y + bq + c ,

with b < −αK/4, leaving g unchanged. Now, A(z, p) = α(1 − 2γ/K) = a. If
γ ∈ (K/2,K), a < 0 and the conclusion is reversed : we have indeed an E.S.S. If
γ is thought of as a tax for using the common resource, this may provide a hint at
how to choose it.

We do not know the full implication of these comparative results, and in par-
ticular whether the replicator equation converges to the equilibrium in the second
case, say.

12We need to restrict y(0) to be less than −(b + c)/a to insure hypothesis (10).
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4.2 Routing in a dense network

We consider now a problem close to transportation theory, where the Wardrop
equilibrium originated, posed by Eitan Altmann and investigated in more detail
in [1].

There is given an open region Ω of the plane with a smooth boundary Γ. We
shall let y ∈ R2 represent the coordinates of a point in Ω. At each y ∈ Γ we
denote n(y) the outward normal. An ad-hoc communication network covers Ω.
The routers are so numerous that we modelize the situation as a continuum of
routers. The boundary Γ of Ω is divided into two disjoint parts: Γ = Q∪R. OnQ,
a density σ(y) ≥ 0 of messages enter Ω. Part of Q may have σ(y) = 0, meaning
that no message should either enter or leave through that part. A density ρ(y) ≥ 0
of messages is generated at each point y ∈ Ω. All messages must leave through R.

A strategy is the choice of a vector field x(·) : Ω → R2 representing the flow
of messsages at each point. The intensity of the flow is ‖x‖. To be admissible,
such a vector field must satisfy

∀y ∈ Q , 〈n(y), x(y)〉 = −σ(y) ,
∀y ∈ Ω , div x(y) = ρ(y) .

(14)

There is a congestion cost in terms of transmission delay. The average time to
transmit one message by the router y is τ(y), so that the delay encountered by one
message going through the router y is τ(y)‖x(y)‖.

We consider a lone message whose path does not change the overall field. It is
generated at y0 which may belong to Ω ∪ Q, follows a path y(s), s its curvilinear
abscissa along the path, and leaves Ω at y1 ∈ R. Let f be the unit vector giving its
direction of travel. The total time of travel will be given by the line integral

G =
∫ y1

y0

τ(y)‖x(y)‖ds

with
dy(s)
ds

= f(s) .

A field of messages flow will be considered a Wardrop equilibrium if given the
congestion it produces, the fastest path for any message originating in Ω ∪ Q is to
follow that field.

We investigate that last optimization problem via its Hamilton Jacobi Bellman
equation. Let V (y0) be the minimum time from y0 to R. It is a viscosity solution
of the P.D.E.

∀y ∈ Ω , min
‖f‖=1

〈f,∇V (y)〉+ τ(y)‖x(y)‖ = 0 ,

∀y ∈ R , V (y) = 0 .
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The obvious optimum is f = −∇V/‖∇V ‖ and ‖∇V (y)‖ = τ(y)‖x(y)‖.
Therefore, x(·) is a Wardrop equilibrium if

x(y) = −(1/τ(y))∇V (y) (15)

Using furthermore the admissibility conditions (14), it comes

∀y ∈ Q , 〈n(y),∇V (y)〉 = −σ(y)τ(y) ,
∀y ∈ R , V (y) = 0 ,

∀y ∈ Ω , div
(

1
τ(y)∇V (y)

)
= ρ(y) .

This is a classical elliptic problem with mixed Neumann-Dirichlet boundary con-
ditions. For any particular case, it can be efficiently solved numerically. It provides
the Wardrop equilibrium field via equation (15). As long as∇V is nowhere zero in
Ω, which will always be the case if e.g. ρ itself is everywhere positive, it is a pure
strict Wardrop equilibrium, and thus an E.S.S.

5 Conclusion

We have opened this leisurely walk through Wardrop equilibria, E.S.S. and repli-
cator equations by Wardrop’s invention in road engineering and ended it by an
example in a modern routing problem. This is as a tribute to its origins, and to
stress the many domains where these concepts are used. But theoretical biology is
the field that has brought more research into evolutionary games lately and made it
a full fledged theory in itself.

As far as we know, the question of convergence of the replicator equations to-
wards an E.R.S. in the infinite case is not settled at this time. This is only one of the
open questions left. But our feeling is that many interesting problems lie in partic-
ular applications, whether finite or infinite, possibly even with infinite dimensional
strategy space as in the last two examples we provided.
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A E.S.S. and E.R.S.

We recall the definition

Definition 4 A Wardrop equilibrium p is said regular if there exists a ∆(X1)-
neighborhood of p such that over that neighborhood q 7→ H1(x, q) is Lipshitz
continuous for all x ∈ X and the restriction of the quadrtic form 〈r, H1(q)r〉 to
measures r orthogonal to 1l in M(X1) is negative definite, both uniformly in q.

We prove here the theorem

Theorem 3

(i). All E.R.S. are E.S.S.

(ii). In the finite case, all regular Wardrop equilibria13 are E.R.S.

Proof

(i). Applying the E.R.S. condition to qε = p + ε(q − p) and using the linearity
of F in its first argument, we get condion (3).

(ii). The proof of this point requires that there exist a compact set K ⊂ ∆(X)
such that, for any positive ε̄, the set {qε = p + ε(q − p) , q ∈ K , ε ≤ ε̄} be
a neighborhood of p. (In particular, p /∈ K.) It is why it is restricted to the
finite case, where ∆(X) is isomorphic to the finite dimensional simplex.

Let p be an E.S.S., B(p) ∈ ∆(X) the set of best responses q to p, i.e.
such that F (q, p) = F (p, p), X1 ⊂ X its support, G1 the restriction of G
to X1 × ∆(X1). Let also qε and K be as just said above. We recall the
definition of the negative score function E(ε, q) = F (q − p, qε) and that
B(p) = {q | E(0, q) = 0}, and that the derivative of E w.r.t. ε is

D1E(ε, q) = 〈q − p, DG(qε)(q − p)〉.

Consider first the case where q ∈ B(p). Then E(0, q) = 0. Notice that

D1E(ε, q) = 〈q − p, DG1(qε)(q − p)〉

where p and q are in ∆(X1) = Σn1 , and the scalar product is accordingly
that of Rn1 . As a consequence of the hypothesis of regularity, this derivative
is negative forall q ∈ K1 := K ∩ B(p). Since K is compact, and therefore

13and all E.S.S. in the linear case, but this is proved in [8, Theorem 6.4.1]
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also K1, D1E(0, q) is uniformly bounded away from 0 on K1. Because the
derivative is locally Lipshitz continuous w.r.t. ε, it follows that there exists
a ε̂ > 0 such that E(ε, q) < 0 for all ε ∈ (0, ε̂), and because the Lipshitz
constant is assumed to be uniform, this same ε̂ is valid for every q ∈ K1. Let
us summarize :

∃ε̂ > 0 : ∀ε ∈ (0, ε̂), ∀q ∈ K ∩B(p) , E(ε, q) < 0 . (16)

This can be stated with the help of the following concept:

Definition 5 Define the invasion barrier ε0(q) as

ε0(q) = sup{ε1 ∈ [0, 1] | ∀ε ∈ (0, ε1) , E(ε, q) < 0} .

Then (16) reads ∀q ∈ K1, ε0(q) ≥ ε̂ > 0.

We claim the following:

Lemma 2 The function min{ε̂, ε0(·)} is lower semi-continuous over K.

Proof of the lemma Let δ ∈ (0, ε0(q)) be given. We want to prove that
for every q ∈ K, there exists a neighborhood N (q) such that for q′ ∈ N (q),
ε0(q′) ≥ min{ε̂, ε0(q)} − δ, hence that

∀q′ ∈ N (q) , ∀ε ∈ (0,min{ε̂, ε0(q)} − δ), E(ε, q′) < 0 . (17)

Assume first that q and q′ are in B(p). We are in the situation above, ε0(q′) ≥
ε̂, which proves the inequality.

If q′ /∈ B(p), which is always possible if q /∈ K1, then E(0, q′) < 0, and by
continuity and compacity, ∃ε1 > 0 such that ∀ε ∈ [0, ε1], E(ε, q′) < 0. Also,
∃η > 0: ∀ε ∈ [ε1, ε0(q) − δ], E(ε, q) < −η. Then, by continuity of E w.r.t.
q, uniform w.r.t. ε, for N (q) small enough and q′ ∈ N (q), E(ε, q′) < 0.
Hence we get the deisred result (17).

As a consequence of the lemma, ε0(q) has a positive minimum, say ε̄ over
K. It follows that

∀ε < ε̄ , ∀q ∈ K , F (q, qε) < F (p, qε) .

and hence by linearity of F w.r.t. its first argument

∀ε ∈ (0, ε̄) , ∀q ∈ K , F (qε, qε)−F (p, qε) = ε[F (q, qε)−F (p, qε)] < 0 .

By definition of K, this set of qε’s is a neighborhood of p.

This proves the theorem.
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