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1 Background

eMost queueing Theory is Markovian

eSome results are insensitive to correlations, only depend on the the first moment.
Example: MG1 PS queue.

eObjective: Develop tools for handling non Markovian queues.

eExamples of tools: Stochastic linear difference equations, branching processes.
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/Background on Branching

e19th centuty: concern among Victorians about possible extinction of aristocratic
surnames.

eGalton posed this question in the Educational Times of 1873. The Reverand
Watson replied with a solution. Joint publication of the solution in 1874.

eThe G-W process: X, 11 = ZX” W,

1=1 5N

eThe G-W process with immigratioon: X,, 11 = Zfi”l 7({5) + B,,.

eMultitype: Y, is a vector, Y, 11 = A, (Y,) + By, where

N Y]

j=1k=1

N
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Example 1: discrete branching with migration

Queue with Vacations, Gated Regime
oM /G /1/00 queue,
eArrival rate ), i.i.d. service times {D,,} with first and second moments d, d(?.

eSequence of vacations: V,,. Will be assumed stationary ergodic, with first and

second moments v, v(2).

eGated regime: at the nth end of vacation, a gate is closed (nth polling instant).
Then the server goes on serving the customers present at the queue at that polling

instant:
Then the server leaves on vacation.

N
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e\\e denote:
e B, := the number of arrivals during the nth vacation.

° g,(f):: the number of arrivals during the service time of a customer

o[ hen:
Xn
X1 =D &0+ B, nZzmnp.
i=1

eDivisibility property: Denote
An(z) =) &
i=1
Then A,, are nonnegative and divisible:

An(e +y) = AV (@) + AP (y)

where Ag) are i.i.d.

N
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Queue with Vacations, Gated Regime

~

xample 2: continuous branching with migration

eDefine the time to serve N customers as:

elLet NV (T) denote the number of arrivals during a random duration T', where the
arrival process is Poisson with rate A, and is independent of T.

eDenote by A, (C,) = 7(N(C,)), i.e. the sum of service times of all the arrivals
during C,.

eo\\Ve obtain

N

Cn+1 — An(Cn) + Vn+1~ (1)
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/Example 3: multitype discrete branching

Discrete time infinite server queue
eService times are considered to be i.i.d. and independent of the arrival process.

e\We represent the service time as the discrete time analogous of a phase type
distribution: there are N possible service phases.

eThe initial phase k is chosen at random according to some probability p(k).

elf at the beginning of slot n a customer is in a service phase ¢ then it will move at
the end of the slot to a service phase j with probability P;;.

e\With probability 1 — Zjvzl P;; it ends service and leaves the system at the end of
the time slot.

e P is a sub-stochastic matrix (it has nonnegative elements and it's largest eigenvalue
is strictly smaller than 1), which means that services ends in finite time w.p.1. and

\that (I — P) is invertible. /
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olet €M (n), k=1,2,3,... n=1,2,3,... beiid. random matrices of size N x N.
Each of its element can take values of 0 or 1, and the elements are all independent.

eThe ijth element of £(F)(n) has the interpretation of the indicator that equals one
if at time n, the kth customer among those present at service phase ¢ moved to
phase j.

eObviously, E[fz(f)(n)] = P;;.

elet B, = (B}, ..., B¥)T be a column vector for each integer n, where B! is the
number of arrivals at the nth time slot that start their service at phase 7.

e 3, is a stationary ergodic sequence and has finite expectation.

oY !:= number of customers in phase i at time n. Satisfies
Yn—l—l — An(Yn) + Bn

where the ith element of the column vector A, (Y,,) is given by

N YJ

n

A (V)i = 33 W (n) (2)

j=1k=1

N /
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e The server moves cyclically (fixed order) between the queues 1, ..., M.

Example 4: Polling systems with N queues are special cases!

It requires walking times (vacations) for moving from one queue to another.

eUpon arrival at a queue, some customers are served. The number to be served is
determined by the " polling regime”:

N
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Globally Gated (GG) regime (Boxma, Levy, Yechiali 1992):
The cycle time satisfies a one dimensional recursion.
We obtained the first two moments of the cycle and the expected waiting

times at all queues.

Gated and Exhaustive regimes [see e.g. book by Takagi 1986]:

satisfy M-dimensional recursive equations.
No explicit expression for 2nd moments of buffer occupancy or cycle times.

No explicit expression for the expected waiting times.

N
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2

Introduction and Background on Lévy fields

11
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Introduction

eConsider the stochastic recursive equation:

Yn+1 — An(Yn) + Bna n = ng.

oY), is a vector in R

o{A,}, are

- i.i.d., independent of B,,.

- Increasing in the arg for all n.

- nonnegative Additive Lévy field taking values in R"

o{B,} stationary ergodic taking values in R’

(3) defines a Continuous Multitype Branching Process (BP) with Migration

N

(3)

/
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Background: Lévy processes

Lévy process taking values in R :

e Example: Poisson Point Process with intensity A,

e For random time 7 independent of A,
E[A(T)] = E[T]A, var[A(T)] = E[r]T" + var[r].A?,

e Divisibility: A(:) is divisible if the following holds.
For any k, there exist A(i)(-), t = 0, ..., k such that for any non-negative

sz',?: — 0, ceey ]f,
k k
A2n) = 240
1=0 1=0

where {AW ()}, 12, % are i.i.d. with the same distribution as A(-).

e Expectation and variance are linear: E[A(t)] =tA and cov[A(t)] = tI.

13
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Lévy process taking values in R’ (subordinators):

e Example: Poisson arrival process where the nth arrival brings a batch
B, = (B}, ...,B™). B! customers go to queue 1.

e For A(t) in R, F[A(t)] = At where A is of dimension m.

e cov|A(t)] = I't, where I' is a matrix of dimension m x m.

14
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N

Example of Random fields

Random field taking values in R,

e Example: Black and white picture.

e The level of grey is a function of two parameters: x and y.

Random field taking values in R%

e Example: color picture.

e The level of the green, red and blue as a function of the location x and y.

15
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Background: Additive Lévy Fields

Let A ..., A be d indep. Lévy proc. on R™ with scalar "time” parameters.
Additive Lévy field: A(y) = AV (y1) + ... + AD(yy), Yy = (y1,...,y4) € RL.
The expectation: E[A(y)] = Z;.l:l yjA(j? = Ay,

A is a matrix whose jth column equals AU,

AW = E[AU) (1)),

The covariance matrix: cov][A(y)] = Z;-l:l y, [0,

where I'¥) = cov[AU)(1)] is the corresponding covariance matrix of AU)(1).

Composition: If A,, and A, are Additive Lévy processes in R'" then their
composition is also an Additive Lévy process.

N
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Properties of Lévy Fields

eExpectation and Covariance are linear in v,

as a column vector. Then

m

E[A(T)] = ZA(”E[Tj] :
and,
d .
cov[A(T)] = Z E[r;]T'Y) + Acov[r]AT

where 7; is the jth entry of the vector 7.

N

eLet 7 be a non-negative random variable in R%, independent of A and represented

17



E. Altman: Branching Processes with Non-Markov Migration

-

Result 1: Steady State Probabilities of CBP

18
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/Iterating Y1 = An(Yy,) + By, we obtain from Al:

Yo = A1)+ B
= A1(Ao(Yo) + Bo) + By
= AP (4 (%0)) + ATV (Bo) + By
= AV AP (v5) + ATV (Bo) + By

Y3 = Ay(Ys)+ B
= Ay(A (Y1) + B1) + B
= As(A1(Ao(Yo) + Bo) + B1) + B2
= AP AP A0 vy + AV AW (By) + AP (B)) + B,

n—1 n—1 n—1
Y, — IT A" | (Baojo1) + (H A§O)> (Yo), n>0

1=0

\whenever k> n).

(6)

(we understand Hf:n A;(z) = x whenever k < n, and Hf:n Ai(z) = ApAg_1...Ap

/
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1=0 7

as n — oo distributed like

00 n—1
Vi=a) [ ]I A (Buejon), n ez,
5=0

t=n—j

where for each integer i, {Agj)(-)}j have the same distribution as A;(-).

eSufficient condition: stationarity plus ||A|| < 1.
eBranching processes: {Af;j)(-)}j are i.i.d.

eStochastic differential equations: they are equal.

N

eUnder fairly general assumptions, lim,,_, - (Hn_l A(-O)> (y) =0, so Y, has a limit

e The representation holds for general dependence: Semi linear processes.

~

(7)

20
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Application: Expected waiting time

for a gated queue with vacations

21
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Consider an arbitrary customer. Upon arrival, it has to wait for

1. The residual cycle time C,..5,

2. The service time of all the customers that arrived during C,,s+ which is the past
cycle time: d(AE[Cpast]) = pE[Cpast]

We have from [Baccelli & Brémaud, 1994]

E1CF]

E[Cres] — E[Cpast] — QE[C()] .

Thus the expected waiting time of an arbitrary customer is given by

B3]

BIWa) = (14 p) g

The expected number of customers in queue in stationary regime (not including
service) is obtained using Little's Theorem: AE[W,,].

Conclusion: we need to compute E[Cj] and E[C7]!

N /
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Computing E[Cy] and E[C{]

A

eDynamics: C11 = A, (Cr) + Vi,
oA, (c) is the workload that arrives during duration [0, ¢).

eIntroduce the correlation function: r(n) = E[V,V,,].

eThe first and second moments of C,, in stationary regime are given by

v
B —
1 Avd ) -

23
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/ Proof of expressions for E[CZ] \

Useful relations: 2nd moment of workload arriving during T°

elf N is a random variable independent of the sequence D,,, and 7(NN) := Zfil D;
then
E[r(N)?] = E[N?d* + E[N](d® — d?). (9)

eLet N(T') denote the number of arrivals during a random duration T', where the
arrival process is Poisson with rate A, and is independent of T'. Then

E[N(T)?] = NE[T?] + AE[T]. (10)

elf we take an arbitrary T and choose N = N (T'), then we get from (9)-(10)

E[(A(T))?] = EFWN(T))
= dP(\2E[T? + \E[T]) + AE[T](d® — d?)
= PN2E[T?] + AE[T)d?. (11)

eAlso, if we take T'= 7(NN), then

EIN(r(N))]2 = A2 [E[N2]d2 + E[N](d® — d?)| + AdE[N]. (12)

N /
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eFrom ()11 = fln(C’n) + Vi1 we have

E[C’,%_H] = E[-’Zln(cn)Q] +0® + QE[An(Cn)Vn+1]
_ (p2E[0§] + )\E[Cn]d(Q)) + 0@ 4 2E[A, (C)Visa].

e To compute the last term, we now use the explicit form of Cy:

00 —1

Co = Z H Aq(;_j) (V=)

j=0 \i=—j

eWe use the fact that the processes {A?)} are independent of {V,,}. We get:

o0 —1
E[An(Co)Var1] = ElACoVil=E | A [ S| T] A7 | (voy) | v
j=0 \i=—j
= pY PEV_ Vil=) o).
Jj=0 j=1

Substituting this, we obtain the second moment.

N
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3 2nd order moments in continuous B.P.

Joint work with Dieter Fiems

26
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Notation: eAuto-correlations: B(k) =45 E[Bo(Bx)"], where k is an integer
oB(k) =4es B(k) — E[Bo) E[Bo]”. (Note: B(0) equals cov[By].)

Assumptions: Consider Y,, 11 = A, (Y,,) + B,, n > ng, where
e A, arei.i.d. additive Lévy fields,
e A, independent of {B,},
e {B,} are stationary ergodic,

e All eigenvalues of A are within the unit disk,

the elements of By have finite second order moments.

27
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Theorem: Consider Y,, 11 = A, (Y,) + B,, in stationary regime. Then
(i) E[Yo] = (Z - A" E[B],

(ii) cov(Yp) is the unique solution of the linear equations:

cov|[Yo] = f: E[Y] 1Y 4+ Acov[Yo] AT + cov[By] + i AB(§) + (ATB())

where E[Y{/] denotes the jth element of E[Yp).

Proof for first moments:
Taking expectation in Y,,11 = A, (Y,,) + B, we get

E[Yo] = AE[Yo] + E[Bo],

Since the eigenvalues of A are within the unit disk, (Z — A) is inverible.

Hence we obtain (i).

N

)T7

(13)

28
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Proof of uniqueness for the second moments

elet Z; and Z5 be two solutions of

cov[Yy] = f: E[Y7 T + Acov[Yo] AT + cov[By] + f: AIB(j) + (ATB())T .

J=1 J=1

eDefine Z = Zy — Z,. Then Z satisfies Z = AT Z A.

elterating, we obtain,
Z = lim A"Z(AT)" =0

n—o
where the last equality follows from the fact that all the eigenvalues of A are within
the unit disk.

e T his implies uniqueness.

N /
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Proof for expression of second moments

eConsider Y, 11 = A,(Y,) + By,.

e Multiply both sides by their transpose,
e take expectation and
e use the stationarity

we get:
E[YoYy' | = E[Ao(Yo)Ap (Yo)] + E[BoBg | + E[Ao(Yo) By | + E[BoAg (Yo)] -
The covariance matrix cov|[Y| therefore equals,
cov[Yo] = cov|Ao(Yo)] + cov[Bo] + E [AO(YO)BOT]
_AE[Y,|E[Bo]T + E [BOAO(YO)T} CE[BJ(AE[Y)T. (14)

It remains to compute the red and the blue expressions.

N /
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random "time":

m

=1

to obtain

E[Y,Bl]l =

with Ba = (BQ,B_l,B_Q, )

N

cov[Ap(Yp)] = Y E[YJITW + Acov[Yy] AT .

~

Red Expression: Using the convariance expression (5) of Additive Lévy processes at

(15)

Blue Expression: We use the explicit expression (7) for the stationary state process

B,
1=—]
> AB(+1), (16)
§=0

31
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Substituting the last expression, we compute,
E[Ao(Yo) Bl = E [E [ Ao(Yo)BL | Yo, Bo]] = AE [YoB{] ZA-?B

or equivalently,

(© @]

E[Ao(Yo)BI] = > AB(j +ZA~7 [Bo] E[Bo]”

J=1

= ZAJB )+ A(Z — A" E[B)”

7=1

= Z B(j) + AE[Y] E[Bo]"

N

Substitution of expressions RED and BLUE provides the covariance equation.

(17)

32
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4 Symmetric gated polling systems

33
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N

m gated queues.

Arrivals:

e Arrival processes p'(t) to queue ¢ are i.i.d. Levy processes, distributed as some
p(t), t e R+.

e p=E[p(1)] and 02 = var[p(1)]

Walking times:

e {V,}: Stationary ergodic series of walking times, v := E[V}].

e V(j) := E[WVj}] for some integer j and V(j) = E[VoV;] — v2.

34
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/Notation: \

e /(n):= the queue visited at the nth polling instant

e S(n):= nth polling instant (time at which the server arrives at the nth queue)

Yi:=S(n)-Sn—1i), (i=1,2,..,m) isthe time between the (n —i)th and
the nth polling instant.

e In particular, Y," is the duration of the nth cycle.

Let p! be i.i.d. copies of the process p', n =1,2,3, ...

The dynamics: Y, ., = Sn+1)—Sn)=pr ")+ Va, (18)
Yoo = Stn+1)=Sh-1)=Y, +p (") +V,,
Yo = Sn+1)=Sn—2)=Y; +p (V") + Vo,
a1 = S+ =Sh-—m+1)=Y""" 4+ o (V") + Vi

¢(18) states that the time between S(n) and S(n + 1) is the sum of the busy period

at queue I(n) plus the nth vacation time;

e The busy period = the workload that arrived at queue I(n) during the nth cycle. /

35
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/Notation: \

e /(n):= the queue visited at the nth polling instant

e S(n):= nth polling instant (time at which the server arrives at the nth queue)

Yi:=S(n)-Sn—1i), (i=1,2,..,m) isthe time between the (n —i)th and
the nth polling instant.

e In particular, Y," is the duration of the nth cycle.

Let p! be i.i.d. copies of the process p', n =1,2,3, ...

The dynamics: Y., = S(n+1)—S(n)=p: (Ym) + Vi, (18)
Yo = S+1)=Sh-1)=Y, +p7(¥3") + Va,
Yoo = Sh+1)—=8Sn—2)=Y;+p ")+ Va,

a1 = S+ =Sh-—m+1)=Y""" 4+ o (V") + Vi

¢(18) states that the time between S(n) and S(n + 1) is the sum of the busy

period at queue [(n) plus the nth vacation time;

e The busy period = the workload that arrived at queue I(n) during the nth cycle. /
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/Notation: \

e /(n):= the queue visited at the nth polling instant

e S(n):= nth polling instant (time at which the server arrives at the nth queue)

Yi:=S(n)-Sn—1i), (i=1,2,..,m) isthe time between the (n —i)th and
the nth polling instant.

e In particular, Y," is the duration of the nth cycle.

Let p! be i.i.d. copies of the process p', n =1,2,3, ...

The dynamics: Y, ., = S(n+1)—S(n)=yp] (Ym) + Vi, (18)
Yo = S+1)=Sh-1)=Y, +p7(Y7") + Va,
Yo = Sh+1)=8Sn—2)=Y;+p (V") + Va,
a1 = S+ =Sh-—m+1)=Y,""" 4+ o (V") + Vi

¢(18) states that the time between S(n) and S(n + 1) is the sum of the busy period

at queue I(n) plus the nth vacation time;

e The busy period = the workload that arrived at queue I(n) during the nth cycle. /
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/Notation: \

e /(n):= the queue visited at the nth polling instant

e S(n):= nth polling instant (time at which the server arrives at the nth queue)

Yi:=S(n)-Sn—1i), (i=1,2,..,m) isthe time between the (n —i)th and
the nth polling instant.

e In particular, Y," is the duration of the nth cycle.

Let p! be i.i.d. copies of the process p', n =1,2,3, ...

The dynamics: Y., = S(nh+1)-— S(n) i (Ym) + Vn : (18)
Yo, = S(n+1)—5( )= L+ oy (Ym) Vi,
a1 = S+ =Sh-—m+1)=Y""" 4+ o (V") + Vi

¢(18) states that the time between S(n) and S(n + 1) is the sum of the busy period

at queue I(n) plus the nth vacation time;

e The busy period = workload that arrived at queue /(n) during the nth cycle./
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Interpretation of the other equations:

For : > 0, we have
Vit =Sn+1)—Sn—i)=Sn+1)—Sn)+Sn)—S(n—1i)
where
eby definition, S(n) — S(n —1i) =Y, and
eS(n+1)—S(n)=p™(Y™) +V, (see previous slide).

N
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Vector notation:
Y1 = An(Y,) + B, , with

Vi =8Sn+1)—-5Sn) = P (Y) + Vo,
Vi, =Sn+1)—-Snh-1)= Y+ o (Y) 4+ Vi,
Yo, =8S(+1)-Snh-2)= Y7+ o (Ya") + Vi,

i, =S+ -Sh-m+1)= Y+ (") + Va.
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Vector notation:
Y1 = An(Yy,) + B, , with

Vi, =8mn+1)—-5Sn)= pr(Y) + Vi,
Vi, =8n+1)-Snh-1)= Y+l (Yo) + Vo,
Vi, =8n+1)—Snh-2)= Y2+ pm(Y ™) +V,,

Vi, =Sm+1)-Sh-m+1)= Y"1+ (") + V.

_ 1 T
where YV, 1 = (Y1, Y0 )

n 1

N
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Vector notation:
Yoo = An(Yyn) + By, with

Vi, =8Sn+1)—Sn) = pm(Y) + Vi,
Vi, =8Sn+1)-Snh-1)= Y4+ (Vo) + Vi
Vi, =Sn+1)-Snh-2) = Y2+ o (Yom) + Vi,

where Bn — Vn(17 17 17 e 1)T'

ein the special case that {B,,} is i.i.d. Y}, is a Markov chain

N

i1 =S+ 1) =Sh-m+1)= Y7+ (V") + Vi

42
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Vector notation:
Yn+1 — An<Yn> + By ) with

Vi =8Sn+1)-5Sn) = pr(Y) + Vo,
Vi, =8Sn+1)-Sh-1)= Y+ (Y) 4 Vi,
Vi, =8Sn+1)-Snh-2) = Y2+ (Y) 4 Vi,

Yo=Y | 0 [+Y*] 1 [+...4Y™ ] 0 [+p™Y™)| 1

n
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Vector notation:
Y1 = An(Yy,) + B, where

An(y) = A (1) + -+ AL (ym)
where y = (y1, ..., ym)? € R, ¢t € R4 and

AD@) = (0,t,0,0,...,0)T,
AP () = (0,0,t,0,...,0)7,
Am=b@y = (0,0,0,...,0,t)T,
AlM) = pr()(L, ..., )T,

eFor each 1, Aq(f) is a Lévy process taking values in R".

e A, are Additive Lévy fields

N

(19)

(20)
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Taking expectation we get:

[0 0
10
0 1
A=| o0 0
0 0

\ 0 0

A is known as the Companion matrix.

interior of the unit circle is

N

_ o O O

0
0

D <

Checking the stability condnition

0 0
0 0
0 0
0 0
0 ... 0
0 1

1
-

R o o B o

D

(21)

Theorem: A sufficient and necessary condition for all eigenvalues of A to be in the

/
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Conclusions and Discussion

eAdvantage: one component of the state is the cycle time;
its two first moments provide the expected waiting time.

oA very similar structure is obtained in the exhaustive case.

N

e\We use neither the "buffer occupancy” nor the "station times” approaches.
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5 Semi linear processes

47
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/\/Ve shall assume that A,, satisfy the following conditions: \

Al: A, (y) has the following divisibility property: if for some k,
y = y° +y' + ... + 9y where y™ are vectors, then A, (y) can be represented as

k
=2 AW
1=0

where {253)}1-:0,1,2,“,,,43 are identically distributed with the same distribution as
An(4).

A2: (i) There is some matrix A such that for every v,

i) The correlation matrix of A4,,(y) is linear in yy’ and in y. We shall represent
(ii)
It as
d .
E[A, () An ()] = F(yy") + ) _y,TV), (22)
j=1

where F' is a linear operator that maps d X d nonnegative definite matrices to

other d x d nonnegative definite matrices and satisfies F'(0) = 0.

/
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/ Moments: \

(i) The first moment of X is given by

E[X;]=(I—A)""b. (23)

o(ii) Assume that the first and second moments b; and b,§2)'s are finite and that F
satisfies
lim F" = 0. (24)

n—oo

Define () to be the matrix whose ijth entry is Q;; = 22:1 7,L'%). Then the matrix
cov(X ™) is the unique solution of the set of linear equations:

AN

cou(X) = cov(B)+i<A?“z§(r)+ [A?"B(r)r) + Feov[X]) + Q. (25)

The second moment matrix E[X X ] in steady state is the unique solution of the set
of linear equations:

EIXXT] = E[ByBI]+ f: (A"B(r) + [A?"B(r)r) + F(E[XXT]) + Q(26)

r=1

N /
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6 Example: Discrete time infinite server queue
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Example 5: Discrete time infinite server queue

eService times are considered to be i.i.d. and independent of the arrival process.

e\We represent the service time as the discrete time analogous of a phase type
distribution: there are N possible service phases.

eThe initial phase k is chosen at random according to some probability p(k).

elf at the beginning of slot n a customer is in a service phase ¢ then it will move at
the end of the slot to a service phase j with probability P;;.

e\With probability 1 — Zj\le P;; it ends service and leaves the system at the end of

the time slot.

is strictly smaller than 1), which means that services ends in finite time w.p.1. and
that (I — P) is invertible.

N

e P is a sub-stochastic matrix (it has nonnegative elements and it's largest eigenvalue

/
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if at time n, the kth customer among those present at service phase ¢ moved to
phase j.

eObviously, E[fz(f)(n)] = P;;.

number of arrivals at the nth time slot that start their service at phase 7.
e 3, is a stationary ergodic sequence and has finite expectation.

oY !:= number of customers in phase i at time n. Satisfies
Yn—l—l — An(Yn) + Bn

where the ith element of the column vector A, (Y,,) is given by

N YJ

n

A Y)li =3 > W ()

j=1k=1

N

olet €M (n), k=1,2,3,... n=1,2,3,... beiid. random matrices of size N x N.
Each of its element can take values of 0 or 1, and the elements are all independent.

eThe ijth element of £(F)(n) has the interpretation of the indicator that equals one

elet B, = (B}, ..., B¥)T be a column vector for each integer n, where B! is the

~

(27)
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4 N

eNumerical example: Service times are geometrically distributed,

eThe SRE becomes one dimensional. Y,, denotes the number of customers in the

system.

ofq(f) is the indicator that the kth customer present at the beginning of time-slot n
will still be there at the end of the time-slot.

e The probability that a customer in the system finishes its service within a time slot
is precisely p=1—A =1 - FE[{,].
eWe consider a Markov chain with two states {,d} with transition probabilities

given by

1 —ep EP
€q 1 —e€q

P =
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eAs an example, consider the following parameters: p = ¢ = 1, at a given state there
is at most one arrival with prob. p, = 1,ps = 0.5. This gives:

1 3 2 3
v =—"_ (2 °A).
var(Y”] (1—A2)<16+1—A—|—26A+4 )

In Fig. 1 we plot the variance of the steady state number of customers, var[Y ™|,
while varying € and A.

4 N
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Figure 1: var|[Y x| as a function of € and of A
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{ Example: Delay Tolerant Ad-hoc Networks
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eDelay tolerant Ad-hoc Networks make use of nodes’ mobility to compensate for lack

of instantaneous connectivity.

eInformation sent by a source to a disconnected destination can be forwarded and
relayed by other mobile nodes.

elLet X be the number of nodes that have a copy of the packet at time n,
elet X~ be the number of nodes that do not have a copy of the packet at time n.

eMobility: a mobile present at time n may leave and other may arrive. Let B,, be

the number of new arrivals.

N /
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(4)

elLet p;,’ and ﬁff) be the indicator that node ¢ remains in the system for the next

slot. p is used for nodes that have the packet and p for the others.

elet &(f) be the indicator that the source meats mobile i at time slot n. These are
I.i.d. Then

X
XT—l_—l-l = ZP( Z o\ &(1@)
i=1

X1 = Z ) (1= €9) +
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Controling the Energy

eAssume that the source limits the transmissions in order to save energy

Assume (,, are i.i.d.

X, X,
Xha=) o+ plPed
=1 =1
X,
X =3 A1 — &) + By
=1

e This is a semi-linear process, not a branching process

N

elLet (,, be the indicator that the source intends to transmit a packet at time n.
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Partial Information

eObservations: Assume that each node is "sampled” each time unit with some small

probability.

olet aﬁf) be the indicator that node 7 is sampled at time n.

X7

X => p ZA“ £
1=1

X;H—ZA“ — &) +

Y., = Z NG
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g Filtering

eObjective: monitoring the number of packets.

eExample: first order linear filter

olet X' be the estimator of X, The estimation error is €, = X" — X

Xy

X1 = Zp ) +Zp &
1=1

X, = Z 5D (1— () +

Yn—|—1 = zn: a%@)
1=1

Xp1 =K, —X,)+(1-K)X,
n — Xn - Xn

n

vSemi-Iinear process. We can compute E[¢2] and compute K that minimizes it. /
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8 Evolving files in a mobile environment

by E Altman, P Nain, JC Bermond
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eN-+1 mobile nodes (called nodes) including one source node (called source)

eq = prob. any node meets source in a time-slot state of a node : age of file it
carries (if any). Cq(,f?j is the indicator.

eFile of age K41 has no utility anymore (state 0)
oFile of age j = state j, j =1, ... K

e\When a node in state j meets source, latest version of file transmitted to node n
with prob. a;. 57(5?7- is the indicator.

N
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e X/ is the number of mobiles with a file with age 7 at generation n

ofFor 0 < j < K:

X3,
Xt = (1=
i=1
e The number of nodes without a file:
XO
X =D (=& Z k)
=1

e The number of nodes with file of age 1:

K—1 X},
X = ZZ&S,)JC”

7=0 =1

N
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/Open network

(4)

eB,, is the number of arrivals of mobiles at slot n.

ofFor 0 < j < K:

X7
1 7 7 7
X =Y =¢0e0)n)
1=1

e The number of nodes without a file:
Xpi1=Ba +Z Cq(;oﬂ ‘|‘Z

e The number of nodes with file of age 1:

K—1 X}, '
n+1 Zzg( ZB? Sa)J
7=0 =1

N

*p,’; is the indicator that the node will remain till next slot.

(Z)
n K

)

pn)K
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ePayoff: Weighted sum of number of copies

eCost: Transmission energy, proportional to X .

el inear cost:

K
Mazximize Zosz[X%] — CE[X;,,]
j=1

Gives rise to a threshold optimal policy.

eQuadratic cost:

2

K
Mazimize Z o E[X]] | —cE[X,)
=1

Gives rise to linear optimal policy.

N
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9 Random Environment
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Random column vectors X,, € RM, satisfying
Xnt1=An(Xn,Yn)+ Bo(Yn), neZ. (28)

Y = {Y,} denotes a Markov chain, taking values on a finite state-space

© ={1,2,..., N} whereas A,, and B,, denote random vector-valued functions with
domain RM x © and O, respectively. The functions A,,(-, ) are independent random
variables for all y € ©, n € Z and further adhere to the following assumptions.
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e For each y € ©, A, (-,y) has a divisibility property. Let
r=al+22+.. .+ 2 € RM, then A,(x,y) has the following representation,

Z (27, y), (29)

whereby A(J)( y), j =1,...,k, are identically distributed, but not necessarily
independent, and have the same distribution as A, (-, ).

69



E. Altman: Branching Processes with Non-Markov Migration

e For each y € ©, A, (-,y) is linear in the mean,

E[A,(z,y)] :Aé”)x, reRM ycO,neZ. (30)

Here {A?(Jn),y € ©,n € Z} is a set of fixed M x M matrices. Further, for each
y € O, the correlation matrix of A,,(x,y) is linear in xx" and in x. For all

= [z1,...,2] € R, we have the following representation,
M
E[A, (2,y) A} (z,y)] = F{™ (za) + ) %Fg(,nj) : (31)
=1

y € O,ne”Z. Foreach y € © and n € Z, Fy(”) is a linear operator that maps

M x M non-negative definite matrices on M x M non-negative definite

matrices and satisfies £\ (0) = 0. Further, {F?(ﬁ,y,j €O,n € Z}is a set of
fixed M x M matrices.

N /
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Before proceeding to our main results, we introduce some additional notation. Let
pz(-;l) = Pr[Y,,+1 = j|Y» = 7] denote the transition probability of the Markov chain Y},

at time n (4,7 € ©) and let P(") = [pgl)] denote the corresponding transition
matrix. The probability that the Markov chain is in state k at time n is denoted by
WZ(C”) = Pr[Y,, = k]. For the immigration process B,,, the following notation is
introduced for the first and second order moments,

b = E[B,(i)], B =E[Bn(i)B,(j)]

Finally, the following block matrices and block vector are defined to simplify further

N /




E. Altman: Branching Processes with Non-Markov Migration

/notation,

. Al pig

p(") — Z W,gn)

keo©

AP Ay
(n) \(n) — g(n), (1)

2 "Dao

AR 400

2 Pon
A

e

by |

B(m,n) _ Z WIE:M)Elgm,n) ’

keo

5"
B

e

_Bl(cql’n)

(m)  glm.ny(m)

k1 k1
@ B

N B BN

AR )

At

AP |

B
B

BN DN -
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Stationary analysis

Assumptions: e(i) the process { B,,,n € Z} is stationary ergodic; e(ii) the Markov
chain Y, is ergodic and e(iii) the processes A,, are independent and identically
distributed.

Simplify notation as follows: AE”) = A, bg”) — b, bW =h Bgn’n) _ ng_m),
p) = pij, P = P, 7" =, A = A and Bomm) = Bln=m),

For any y € RM, let ®f:n A;(x,Y;) = x for k < n whereas, for k > n, this operator
is defined by the following recursion,

k

k—1
X) Ai(z,Y;) = Ay <® Ai(:c,Y;-),Yk> .

=n

N /
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eTheorem Assume that (i) b; < oo component-wise for all i € ©; and (ii) that all
the eigenvalues of the matrix A are within the open unit disk. Then, there exist a

unique stationary solution X, distributed like,

oo n—1
X;; —d Z ® Agn_j)(Bn—j—l(Yn—j—l)ayvi)7 (32)

j=0i=n—j

for n € Z.. The sum on the right side of the former expression converges absolutely
almost surely. Furthermore, one can construct a probability space such that
lim,, o0 || X7 — X5|| = 0, almost surely, for any initial value Xj.

N /
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Let ji,(z) denote the block column vector with elements,

n—1
E|QRA" (2, V) 1{Y, =1}, leO,zeRM.
1=0

Let 1 be the block column vector with elements p; = E[X$1{Y, =i}], i € ©.

Let ©, be the block column vector with elements Q; £ E[X{ (X)) 1{Yy =i}], i € ©.
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Theorem Assume that the stability conditions of the previous Theorem are satisfied.
The conditional first moment vector is then given by,

= (Z—-A)"1b. (33)

Under the additional assumption that the second moments of By(i) are finite, i € ©,
the conditional second moment matrices {2; of X are the unique solution of,

Z (Fk (Qr) + Z,LL(J)F(]) + B 7Tk + ApAg + AZ;AQC)Z?M :
keo

I € ©, where Ay denotes the kth diagonal (block) element of 37 A7BU+Y and
with ,u(j) the jth element of 1.

N /
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