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Informal description

A large population of mobile terminals competing for a
wireless access.

Each terminal attempts transmission over a sequence of time
slots.

At each attempt, it has to take the decision on the
transmission power based on its battery energy state.

The transmission ends when the battery is empty.

The aim of each player to maximize his throughput minus the
cost of the transmission over whole lifetime of his battery.
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Challenges and mathematical tools I

Problem has 2 dimensions:
1 Increase in the transmission power has a crucial impact on the

achievable throughputs.
2 Each mobile has to take into consideration the battery state in

the decision taking, which influenced by its past choices.

A mobile that is interested in maximizing the amount of
information during its lifetime, has to balance the two.
=⇒ Dynamic model (stochastic game)

In a CDMA type cellular system all mobiles transmit
simultaneously to a common base station.

1 Performance of a mobile determined by the distribution of the
actions used by all other mobiles.

2 Mobiles are indistinguishable.

=⇒ An anonymous game
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Challenges and mathematical tools II

The framework that combines the two mentioned above is that of
anonymous sequential game

Introduced by Jovanovic and Rosenthal (1988), used
subsequently in some economic models.

Only for discounted cost.

Our goal: To extend it to the cost criterion used here.
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Model for individual player I

We associate with each player a Markov Decision Process with the
following parameters:

S = {0, 1, . . . ,N} is a finite set of states.

Q = {q1, . . . , qK} is a finite set of actions.

P is the transition probability law. Namely, p(s ′|s, q) is the
probability that the next state is s ′ given that the actual state
is s and the action taken is q.

Eitan Altman, Yezekael Hayel and Piotr Więcek Battery State Dependent Power Control



The model
Main results
Future work

Preliminaries
Mathematical model

Model for individual player II

The state s i of player i = his battery energy state

The action of a player = energy level at which he transmits
The set of actions available to a player in state s is

Qs = {q1, . . . , q
+
s } ⊂ Q

For any two s1 < s2, q+
s1
≤ q+

s2
.

The transitions are defined for individual states of the players.
The probability of staying in state s by a player taking action q
is p(q).

p(q) = 1 − αq − γ,

where α and γ are some fixed positive coefficients.
At any given time a mobile whose battery is empty may have
it recharged with probability p0N
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Model of interactions

The global state of the system at time t is

X t = (X t
0 , . . . ,X t

N),

such that
∑N

n=0
X t

n = 1
X t

s = fraction of mobiles with battery state s.

The reward at time t for a user in state st playing qt
k when the

vector of proportions of players using different actions is w t is

R t(qt
k , st ;w

t) =
qt
k

σ2 + C
∑K

l=1
qt
l
w t

l

− βqt
k ,

C – interference parameter
σ2 – noise power
β – energy cost.
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Policies

A stationary policy of a player u is a map from the set of possible
individual states S to the set of probability measures over set Q,
P(Q).

We do not consider general (history/time-dependent) policies.

We assume the game is in a stationary regime
=⇒ State of the system X t does not change over time.
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The equilibrium

The objective of player is to maximize his reward over the whole
lifetime of his battery:

J(v , u) = E p,X 0

τ
∑

t=1

R t(u, v).

τ – lifetime of a player (random variable)
A stationary policy u is in an equilibrium if

J(u, u) = max
v∈U

J(v , u).
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Threshold policies

U0 =







u ∈ U : ∃s0 ∈ S ,∃r ∈ [0, 1],

us =







δ[q1], s < s0
rδ[q1] + (1 − r)δ[q+

s ], s = s0
δ[q+

s ], s > s0







.

δ[q] – probability measure concentrated in q.
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Equilibrium characterization theorem I

Theorem

The game under consideration always possesses an equilibrium
u ∈ U0. Moreover:

(i) This equilibrium is unique in the set U0.

(ii) If

βCN >
Nα(1 − βσ2) + Nγ

αq+
1

+ γ
and p0N ≤

α(1 − βσ2)

βCN − Nα(1−βσ2)+Nγ

αq+
1

+γ

then u+(s) = δ[q+
s ] is the equilibrium.
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Equilibrium characterization theorem II

(iii) If

βCq1 > 1 − βσ2 and p0N ≥
(αq1 + γ)(1 − βσ2)

N(βCq1 − (1 − βσ2))

then u−(s) = δ[q1] is the equilibrium.

Eitan Altman, Yezekael Hayel and Piotr Więcek Battery State Dependent Power Control



The model
Main results
Future work

Existence and characterization of equilibria
Computation of optimal policies
Example

The proof I

Step 1:
For each policy u ∈ U we compute a stationary global state X (u).
Step 2:
We introduce in the set U0 a linear ordering under which U0 is
homeomorphic with the interval [1,N] (h – the homeomorphism).
We show that the global interference

A(u) = σ2 + C
K

∑

k=1

wk(u)qk

is continuous increasing on U0.
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The proof II

Step 3:
We show that the equilibrium policy is a solution to the equation

A(u) =
1

β
,

which exists and is unique, if A admits values both greater and
smaller than 1

β
, since A has an intermediate value property.

Step 4:
We compute when A(u) > 1

β
for every u ∈ U0 and when A(u) < 1

β

for every u ∈ U0. This gives the conditions for u− or u+ to be
optimal. �
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Theorem

The equilibrium u∗ ∈ U0 in the game under consideration can be
computed using bisection applied to function

φ(a) = A(h−1(a)) −
1

β

on the interval [1,N]. The approximation of u∗ will be given by
h−1(a∗), where a∗ is the (approximate) zero of function φ. If the
zero does not exist then either u+ (when φ < 0) or u− (when
φ > 0) is the equilibrium.
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Simple example with three battery states I

Three possible states of the battery:

empty (E ),

almost empty (A),

full (F ).

Whenever the player is in state F he has two actions possible:

To transmit at high power h,

To transmit at low power l .

If he is in state A, he can only transmit at low power l .
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Simple example with three battery states II

The strategy u− is optimal when

βCl > 1 − βσ2

and

pEF ≥
(αl + γ)(1 − βσ2)

βCl − (1 − βσ2)
.

The strategy u+ is optimal when

βσ2(α(l + h) + 2γ) > (l + h)(Cβγ − α) + 2(Cβαhl − γ)

or

pEF ≤
(αl + γ)(αh + γ)(1 − βσ2)

(l + h)(Cβγ − α) + 2(βαhl − γ) − βσ2(α(l + h) + 2γ)
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Simple example with three battery states III

The regions where strategies u+ and u− are optimal as a function of β

and C for pEF = 0.5, α = 0.8, γ = 0.05, h = 1, l = 0.5, σ2 = 0.00001.

β

C

0.5 1 1.5 2 2.5 3

0.5

1
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Simple example with three battery states IV

Equilibrium strategies for the region where neither u− nor u+ are
optimal:

u∗(s) =

{

δ[l ], s = L
rδ[l ] + (1 − r)δ[h], s = H

where

r =
CpEF [2αlh + γ(l + h)]

(l − h)[(1 − βσ2)α(pEF + αl + γ) − CpEF (2αl + γ)]

−
(1 − βσ2)[αpEF (l + h) + 2pEF γ + (αl + γ)(αh + γ)]

(l − h)[(1 − βσ2)α(pEF + αl + γ) − CpEF (2αl + γ)]
.
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Simple example with three battery states V

The dependance of r on β for pEF = 0.5, α = 0.8, γ = 0.05, h = 1,

l = 0.5, σ2 = 0.00001, and for C = 1.2 (left) and C = 2 (right)
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Work in progress

Introducing a distributed learning algorithm

Checking whether in our model the dynamics converge for
variants of known evolutionary dynamics.

Finding the algorithms that converge (proving their
convergence).

Numerical experiments.
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Possible extensions

1 General theory for anonymous sequential games with total and
average costs.

2 Extension of the model presented here to include different
types of users (differing by some battery characteristics like
maximal achievable battery energy or probabilities p(q)).
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Thank you!
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