# An Anonymous Sequential Game Approach for Battery State Dependent Power Control

#### Eitan Altman, Yezekael Hayel and Piotr Więcek

#### POPEYE meeting Avignon, 9th of april, 2009

(日) (周) (王) (王)

Preliminaries Mathematical model

# Informal description

- A large population of mobile terminals competing for a wireless access.
- Each terminal attempts transmission over a sequence of time slots.
- At each attempt, it has to take the decision on the transmission power based on its battery energy state.
- The transmission ends when the battery is empty.
- The aim of each player to maximize his throughput minus the cost of the transmission over whole lifetime of his battery.

《日》 《圖》 《圖》 《圖》

Preliminaries Mathematical model

# Informal description

- A large population of mobile terminals competing for a wireless access.
- Each terminal attempts transmission over a sequence of time slots.
- At each attempt, it has to take the decision on the transmission power based on its battery energy state.
- The transmission ends when the battery is empty.
- The aim of each player to maximize his throughput minus the cost of the transmission over whole lifetime of his battery.

《日》 《圖》 《臣》 《臣》

Preliminaries Mathematical model

# Informal description

- A large population of mobile terminals competing for a wireless access.
- Each terminal attempts transmission over a sequence of time slots.
- At each attempt, it has to take the decision on the transmission power based on its battery energy state.
- The transmission ends when the battery is empty.
- The aim of each player to maximize his throughput minus the cost of the transmission over whole lifetime of his battery.

《日》 《圖》 《圖》 《圖》

Preliminaries Mathematical model

# Informal description

- A large population of mobile terminals competing for a wireless access.
- Each terminal attempts transmission over a sequence of time slots.
- At each attempt, it has to take the decision on the transmission power based on its battery energy state.
- The transmission ends when the battery is empty.
- The aim of each player to maximize his throughput minus the cost of the transmission over whole lifetime of his battery.

소리가 사람가 소문가 소문가 드문

Preliminaries Mathematical model

## Challenges and mathematical tools I

- Problem has 2 dimensions:
  - Increase in the transmission power has a crucial impact on the achievable throughputs.
  - Each mobile has to take into consideration the battery state in the decision taking, which influenced by its past choices.

A mobile that is interested in maximizing the amount of information during its lifetime, has to balance the two.

- $\implies$  Dynamic model (stochastic game)
- In a CDMA type cellular system all mobiles transmit simultaneously to a common base station.
  - Performance of a mobile determined by the distribution of the actions used by all other mobiles.

《日》 《圖》 《臣》 《臣》

- O Mobiles are indistinguishable.
- $\Rightarrow$  An anonymous game

Preliminaries Mathematical model

## Challenges and mathematical tools I

- Problem has 2 dimensions:
  - Increase in the transmission power has a crucial impact on the achievable throughputs.
  - Each mobile has to take into consideration the battery state in the decision taking, which influenced by its past choices.

A mobile that is interested in maximizing the amount of information during its lifetime, has to balance the two.

- $\implies$  Dynamic model (stochastic game)
- In a CDMA type cellular system all mobiles transmit simultaneously to a common base station.
  - Performance of a mobile determined by the distribution of the actions used by all other mobiles.

《日》 《圖》 《臣》 《臣》

- O Mobiles are indistinguishable.
- $\implies$  An anonymous game

Preliminaries Mathematical mode

# Challenges and mathematical tools I

- Problem has 2 dimensions:
  - Increase in the transmission power has a crucial impact on the achievable throughputs.
  - Each mobile has to take into consideration the battery state in the decision taking, which influenced by its past choices.

A mobile that is interested in maximizing the amount of information during its lifetime, has to balance the two.

 $\implies$  Dynamic model (stochastic game)

- In a CDMA type cellular system all mobiles transmit simultaneously to a common base station.
  - Performance of a mobile determined by the distribution of the actions used by all other mobiles.

(ロ) (部) (注) (注) (注)

2 Mobiles are indistinguishable.

#### $\Rightarrow$ An anonymous game

Preliminaries Mathematical mode

# Challenges and mathematical tools I

- Problem has 2 dimensions:
  - Increase in the transmission power has a crucial impact on the achievable throughputs.
  - Each mobile has to take into consideration the battery state in the decision taking, which influenced by its past choices.

A mobile that is interested in maximizing the amount of information during its lifetime, has to balance the two.

 $\implies$  Dynamic model (stochastic game)

- In a CDMA type cellular system all mobiles transmit simultaneously to a common base station.
  - Performance of a mobile determined by the distribution of the actions used by all other mobiles.

《日》 《圖》 《臣》 《臣》

Ø Mobiles are indistinguishable.

 $\implies$  An anonymous game

Preliminaries Mathematical model

《日》 《圖》 《臣》 《臣》

## Challenges and mathematical tools II

# The framework that combines the two mentioned above is that of anonymous sequential game

- Introduced by Jovanovic and Rosenthal (1988), used subsequently in some economic models.
- Only for discounted cost.
- Our goal: To extend it to the cost criterion used here.

Preliminaries Mathematical model

《日》 《圖》 《臣》 《臣》 三臣

## Challenges and mathematical tools II

The framework that combines the two mentioned above is that of anonymous sequential game

- Introduced by Jovanovic and Rosenthal (1988), used subsequently in some economic models.
- Only for discounted cost.

Our goal: To extend it to the cost criterion used here.

Preliminaries Mathematical model

소리가 사람가 소문가 소문가 드문

## Challenges and mathematical tools II

The framework that combines the two mentioned above is that of anonymous sequential game

- Introduced by Jovanovic and Rosenthal (1988), used subsequently in some economic models.
- Only for discounted cost.

Our goal: To extend it to the cost criterion used here.

Preliminaries Mathematical model

# Model for individual player I

We associate with each player a Markov Decision Process with the following parameters:

- $S = \{0, 1, \dots, N\}$  is a finite set of states.
- $Q = \{q_1, \ldots, q_K\}$  is a finite set of actions.
- *P* is the transition probability law. Namely, p(s'|s, q) is the probability that the next state is s' given that the actual state is s and the action taken is q.

Preliminaries Mathematical model

# Model for individual player II

#### • The state $s^i$ of player i = his battery energy state

• The action of a player = energy level at which he transmits The set of actions available to a player in state *s* is

$$Q_s = \{q_1, \ldots, q_s^+\} \subset Q$$

For any two  $s_1 < s_2$ ,  $q_{s_1}^+ \leq q_{s_2}^+.$ 

• The transitions are defined for individual states of the players. The probability of staying in state *s* by a player taking action *q* is *p*(*q*).

$$p(q) = 1 - \alpha q - \gamma,$$

where  $\alpha$  and  $\gamma$  are some fixed positive coefficients. At any given time a mobile whose battery is empty may have it recharged with probability  $p_{0N}$ 

Preliminaries Mathematical model

# Model for individual player II

- The state  $s^i$  of player i = his battery energy state
- The action of a player = energy level at which he transmits The set of actions available to a player in state *s* is

$$Q_s = \{q_1, \ldots, q_s^+\} \subset Q$$

For any two  $s_1 < s_2$ ,  $q_{s_1}^+ \leq q_{s_2}^+$ .

• The transitions are defined for individual states of the players. The probability of staying in state *s* by a player taking action *q* is *p*(*q*).

$$p(q) = 1 - \alpha q - \gamma,$$

where  $\alpha$  and  $\gamma$  are some fixed positive coefficients. At any given time a mobile whose battery is empty may have it recharged with probability  $p_{0N}$ 

Preliminaries Mathematical model

# Model for individual player II

- The state  $s^i$  of player i = his battery energy state
- The action of a player = energy level at which he transmits The set of actions available to a player in state *s* is

$$Q_s = \{q_1, \ldots, q_s^+\} \subset Q$$

For any two  $s_1 < s_2$ ,  $q_{s_1}^+ \leq q_{s_2}^+$ .

• The transitions are defined for individual states of the players. The probability of staying in state *s* by a player taking action *q* is *p*(*q*).

$$p(q) = 1 - \alpha q - \gamma,$$

where  $\alpha$  and  $\gamma$  are some fixed positive coefficients.

At any given time a mobile whose battery is empty may have it recharged with probability  $p_{0N}$ 

Preliminaries Mathematical model

# Model for individual player II

- The state  $s^i$  of player i = his battery energy state
- The action of a player = energy level at which he transmits The set of actions available to a player in state *s* is

$$Q_s = \{q_1, \ldots, q_s^+\} \subset Q$$

For any two  $s_1 < s_2$ ,  $q_{s_1}^+ \leq q_{s_2}^+$ .

• The transitions are defined for individual states of the players. The probability of staying in state *s* by a player taking action *q* is *p*(*q*).

$$p(q) = 1 - \alpha q - \gamma,$$

where  $\alpha$  and  $\gamma$  are some fixed positive coefficients. At any given time a mobile whose battery is empty may have it recharged with probability  $p_{0N}$ 

Preliminaries Mathematical model

## Model of interactions

• The global state of the system at time t is

$$X^t = (X_0^t, \ldots, X_N^t),$$

- such that  $\sum_{n=0}^{N} X_n^t = 1$  $X_s^t =$ fraction of mobiles with battery state s.
- The reward at time t for a user in state s<sub>t</sub> playing q<sub>k</sub><sup>t</sup> when the vector of proportions of players using different actions is w<sup>t</sup> is

$$R^t(q_k^t, s_t; w^t) = rac{q_k^t}{\sigma^2 + C \sum_{l=1}^K q_l^t w_l^t} - eta q_k^t,$$

《日》 《圖》 《臣》 《臣》

C – interference parameter  $\sigma^2$  – noise power  $\beta$  – energy cost.

Eitan Altman, Yezekael Hayel and Piotr Więcek Battery State Dependent Power Control

Preliminaries Mathematical model

## Model of interactions

• The global state of the system at time t is

$$X^t = (X_0^t, \ldots, X_N^t),$$

such that  $\sum_{n=0}^{N} X_n^t = 1$  $X_s^t =$ fraction of mobiles with battery state s.

• The reward at time t for a user in state s<sub>t</sub> playing q<sub>k</sub><sup>t</sup> when the vector of proportions of players using different actions is w<sup>t</sup> is

$$R^{t}(\boldsymbol{q}_{k}^{t},\boldsymbol{s}_{t};\boldsymbol{w}^{t}) = \frac{\boldsymbol{q}_{k}^{t}}{\sigma^{2} + C \sum_{l=1}^{K} \boldsymbol{q}_{l}^{t} \boldsymbol{w}_{l}^{t}} - \beta \boldsymbol{q}_{k}^{t},$$

《日》 《圖》 《圖》 《圖》

 $\begin{array}{l} {\cal C} - \text{ interference parameter} \\ {\sigma}^2 - \text{noise power} \\ {\beta} - \text{ energy cost.} \end{array}$ 

Preliminaries Mathematical model

イロト イポト イヨト イヨト

## Policies

A stationary policy of a player u is a map from the set of possible individual states S to the set of probability measures over set Q, P(Q).

- We do not consider general (history/time-dependent) policies.
- We assume the game is in a stationary regime
  State of the system X<sup>t</sup> does not change over time

Preliminaries Mathematical model

소리가 사람가 소문가 소문가 드문

## Policies

- A stationary policy of a player u is a map from the set of possible individual states S to the set of probability measures over set Q, P(Q).
  - We do not consider general (history/time-dependent) policies.
  - We assume the game is in a stationary regime
    ⇒ State of the system X<sup>t</sup> does not change over time.

Preliminaries Mathematical model

## Policies

A stationary policy of a player u is a map from the set of possible individual states S to the set of probability measures over set Q, P(Q).

- We do not consider general (history/time-dependent) policies.
- We assume the game is in a stationary regime
  ⇒ State of the system X<sup>t</sup> does not change over time.

Preliminaries Mathematical model

A stationary policy of a player u is a map from the set of possible individual states S to the set of probability measures over set Q, P(Q).

- We do not consider general (history/time-dependent) policies.
- We assume the game is in a stationary regime
  ⇒ State of the system X<sup>t</sup> does not change over time.

Preliminaries Mathematical model

# The equilibrium

The objective of player is to maximize his reward over the whole lifetime of his battery:

$$J(v,u)=E^{p,X^0}\sum_{t=1}^{\tau}R^t(u,v).$$

 $\tau$  – lifetime of a player (random variable) A stationary policy *u* is in an equilibrium if

$$J(u,u) = \max_{v \in \mathcal{U}} J(v,u).$$

Preliminaries Mathematical model

# The equilibrium

The objective of player is to maximize his reward over the whole lifetime of his battery:

$$J(v,u)=E^{p,X^0}\sum_{t=1}^{\tau}R^t(u,v).$$

 $\tau$  – lifetime of a player (random variable) A stationary policy *u* is in an equilibrium if

$$J(u,u) = \max_{v \in \mathcal{U}} J(v,u).$$

Existence and characterization of equilibria Computation of optimal policies Example

イロト イポト イヨト イヨト 二日

## Threshold policies

$$\begin{array}{lll} \mathcal{U}_{0} & = & \left\{ u \in \mathcal{U} : \exists s_{0} \in S, \exists r \in [0,1], \\ & & u_{s} = \left\{ \begin{array}{ll} \delta[q_{1}], & s < s_{0} \\ r\delta[q_{1}] + (1-r)\delta[q_{s}^{+}], & s = s_{0} \\ \delta[q_{s}^{+}], & s > s_{0} \end{array} \right\} \end{array}$$

 $\delta[q]$  – probability measure concentrated in q.

Existence and characterization of equilibria Computation of optimal policies Example

《日》 《圖》 《圖》 《圖》

## Equilibrium characterization theorem I

### Theorem

The game under consideration always possesses an equilibrium  $u \in \mathcal{U}_0$ . Moreover:

(i) This equilibrium is unique in the set  $\mathcal{U}_0$ . (ii) If

$$\beta CN > \frac{N\alpha(1 - \beta\sigma^2) + N\gamma}{\alpha q_1^+ + \gamma} \quad \text{and} \quad p_{0N} \le \frac{\alpha(1 - \beta\sigma^2)}{\beta CN - \frac{N\alpha(1 - \beta\sigma^2) + N\gamma}{\alpha q_1^+ + \gamma}}$$

then 
$$u^+(s) = \delta[q_s^+]$$
 is the equilibrium.

Existence and characterization of equilibria Computation of optimal policies Example

## Equilibrium characterization theorem II

(iii) If

$$\beta Cq_1 > 1 - \beta \sigma^2$$
 and  $p_{0N} \ge \frac{(\alpha q_1 + \gamma)(1 - \beta \sigma^2)}{N(\beta Cq_1 - (1 - \beta \sigma^2))}$ 

then  $u^{-}(s) = \delta[q_1]$  is the equilibrium.

Existence and characterization of equilibria Computation of optimal policies Example

イロト イポト イヨト イヨト

# The proof I

#### Step 1:

For each policy  $u \in U$  we compute a stationary global state X(u). Step 2:

We introduce in the set  $\mathcal{U}_0$  a linear ordering under which  $\mathcal{U}_0$  is homeomorphic with the interval [1, N] (h – the homeomorphism). We show that the global interference

$$A(u) = \sigma^2 + C \sum_{k=1}^{K} w_k(u) q_k$$

is continuous increasing on  $\mathcal{U}_0$ .

Existence and characterization of equilibria Computation of optimal policies Example

イロト イポト イヨト イヨト

# The proof I

#### Step 1:

For each policy  $u \in U$  we compute a stationary global state X(u). Step 2:

We introduce in the set  $U_0$  a linear ordering under which  $U_0$  is homeomorphic with the interval [1, N] (h – the homeomorphism). We show that the global interference

$$A(u) = \sigma^2 + C \sum_{k=1}^{K} w_k(u) q_k$$

is continuous increasing on  $\mathcal{U}_0$ .

Existence and characterization of equilibria Computation of optimal policies Example

《日》 《圖》 《臣》 《臣》 三臣

# The proof II

#### Step 3:

We show that the equilibrium policy is a solution to the equation

$$A(u)=\frac{1}{\beta},$$

which exists and is unique, if A admits values both greater and smaller than  $\frac{1}{\beta}$ , since A has an intermediate value property. Step 4: We compute when  $A(u) > \frac{1}{\beta}$  for every  $u \in U_0$  and when  $A(u) < \frac{1}{\beta}$  for every  $u \in U_0$ . This gives the conditions for  $u^-$  or  $u^+$  to be optimal.  $\Box$ 

Existence and characterization of equilibria Computation of optimal policies Example

《日》 《圖》 《臣》 《臣》 三臣

# The proof II

#### Step 3:

We show that the equilibrium policy is a solution to the equation

$$A(u)=rac{1}{eta},$$

which exists and is unique, if A admits values both greater and smaller than  $\frac{1}{\beta}$ , since A has an intermediate value property. Step 4: We compute when  $A(u) > \frac{1}{\beta}$  for every  $u \in U_0$  and when  $A(u) < \frac{1}{\beta}$  for every  $u \in U_0$ . This gives the conditions for  $u^-$  or  $u^+$  to be optimal.  $\Box$ 

#### Theorem

The equilibrium  $u^*\in\mathcal{U}_0$  in the game under consideration can be computed using bisection applied to function

$$\phi(\mathsf{a}) = \mathsf{A}(h^{-1}(\mathsf{a})) - rac{1}{eta}$$

on the interval [1, N]. The approximation of  $u^*$  will be given by  $h^{-1}(a^*)$ , where  $a^*$  is the (approximate) zero of function  $\phi$ . If the zero does not exist then either  $u^+$  (when  $\phi < 0$ ) or  $u^-$  (when  $\phi > 0$ ) is the equilibrium.

Existence and characterization of equilibria Computation of optimal policies Example

イロト イポト イヨト イヨト

## Simple example with three battery states I

Three possible states of the battery:

- empty (*E*),
- almost empty (A),
- full (*F*).

Whenever the player is in state F he has two actions possible:

- To transmit at high power h,
- To transmit at low power *I*.

If he is in state A, he can only transmit at low power I.

Existence and characterization of equilibria Computation of optimal policies Example

(日) (周) (日) (日)

## Simple example with three battery states II

The strategy  $u^-$  is optimal when

$$\beta \textit{Cl} > 1 - \beta \sigma^2$$

and

$$p_{EF} \geq rac{(lpha l + \gamma)(1 - eta \sigma^2)}{eta C l - (1 - eta \sigma^2)}.$$

The strategy *u*<sup>+</sup> is optimal when

 $\beta \sigma^{2}(\alpha(l+h)+2\gamma) > (l+h)(C\beta\gamma-\alpha)+2(C\beta\alpha hl-\gamma)$ 

or

$$p_{EF} \leq \frac{(\alpha l + \gamma)(\alpha h + \gamma)(1 - \beta \sigma^2)}{(l + h)(C\beta\gamma - \alpha) + 2(\beta\alpha h l - \gamma) - \beta\sigma^2(\alpha(l + h) + 2\gamma)}$$

Existence and characterization of equilibria Computation of optimal policies Example

イロン イボン イヨン イヨン

## Simple example with three battery states II

The strategy  $u^-$  is optimal when

$$\beta \textit{Cl} > 1 - \beta \sigma^2$$

and

$$p_{EF} \geq rac{(lpha l + \gamma)(1 - eta \sigma^2)}{eta Cl - (1 - eta \sigma^2)}.$$

The strategy  $u^+$  is optimal when

$$eta\sigma^2(lpha(l+h)+2\gamma)>(l+h)(Ceta\gamma-lpha)+2(Cetalpha hl-\gamma)$$

or

$$p_{EF} \leq \frac{(\alpha l + \gamma)(\alpha h + \gamma)(1 - \beta \sigma^2)}{(l + h)(C\beta\gamma - \alpha) + 2(\beta\alpha h l - \gamma) - \beta\sigma^2(\alpha(l + h) + 2\gamma)}$$

Existence and characterization of equilibria Computation of optimal policies Example

《日》 《圖》 《문》 《문》

## Simple example with three battery states III

The regions where strategies  $u^+$  and  $u^-$  are optimal as a function of  $\beta$  and C for  $p_{EF} = 0.5$ ,  $\alpha = 0.8$ ,  $\gamma = 0.05$ , h = 1, l = 0.5,  $\sigma^2 = 0.0001$ .



Existence and characterization of equilibria Computation of optimal policies Example

## Simple example with three battery states IV

Equilibrium strategies for the region where neither  $u^-$  nor  $u^+$  are optimal:

$$u^*(s) = \begin{cases} \delta[l], & s = L \\ r\delta[l] + (1-r)\delta[h], & s = H \end{cases}$$

where

$$r = \frac{Cp_{EF}[2\alpha lh + \gamma(l+h)]}{(l-h)[(1-\beta\sigma^2)\alpha(p_{EF}+\alpha l+\gamma) - Cp_{EF}(2\alpha l+\gamma)]} - \frac{(1-\beta\sigma^2)[\alpha p_{EF}(l+h) + 2p_{EF}\gamma + (\alpha l+\gamma)(\alpha h+\gamma)]}{(l-h)[(1-\beta\sigma^2)\alpha(p_{EF}+\alpha l+\gamma) - Cp_{EF}(2\alpha l+\gamma)]}.$$

Existence and characterization of equilibria Computation of optimal policies Example

## Simple example with three battery states V

The dependance of r on  $\beta$  for  $p_{EF} = 0.5$ ,  $\alpha = 0.8$ ,  $\gamma = 0.05$ , h = 1, l = 0.5,  $\sigma^2 = 0.00001$ , and for C = 1.2 (left) and C = 2 (right)



# Work in progress

### Introducing a distributed learning algorithm

- Checking whether in our model the dynamics converge for variants of known evolutionary dynamics.
- Finding the algorithms that converge (proving their convergence).
- Numerical experiments.

《日》 《圖》 《臣》 《臣》

## Work in progress

#### Introducing a distributed learning algorithm

- Checking whether in our model the dynamics converge for variants of known evolutionary dynamics.
- Finding the algorithms that converge (proving their convergence).
- Numerical experiments.

《日》 《圖》 《臣》 《臣》

## Work in progress

#### Introducing a distributed learning algorithm

- Checking whether in our model the dynamics converge for variants of known evolutionary dynamics.
- Finding the algorithms that converge (proving their convergence).
- Numerical experiments.

## Work in progress

#### Introducing a distributed learning algorithm

- Checking whether in our model the dynamics converge for variants of known evolutionary dynamics.
- Finding the algorithms that converge (proving their convergence).
- Numerical experiments.

## Possible extensions

- General theory for anonymous sequential games with total and average costs.
- Extension of the model presented here to include different types of users (differing by some battery characteristics like maximal achievable battery energy or probabilities p(q)).

イロト イポト イヨト イヨト

## Possible extensions

- General theory for anonymous sequential games with total and average costs.
- ② Extension of the model presented here to include different types of users (differing by some battery characteristics like maximal achievable battery energy or probabilities p(q)).

소리가 사람가 소문가 소문가 드문

# Thank you!

Eitan Altman, Yezekael Hayel and Piotr Więcek Battery State Dependent Power Control

(ロ) (部) (注) (注) (注)