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Optimal Transportation
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Mass transportation

The theory of mass transportation goes back to the original works by Monge [1781] and
later by Kantorovich [1942].

The problem can be interpretated as the question:

“How do you best move given piles of sand to fill up
given holes of the same total volume?”
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Mass transportation

Example.- In N

µ =
δ1 + δ2

2
and ν =

δ2 + δ3

2
.

Possible costs:

• c1(x, y) = |x − y|,
• c2(x, y) = |x − y|2,

• c3(x, y) =
p

|x − y|.

Possible Transports:

• We leave the mass in 2 and transport the mass in 1 into 3.
The costs are 1, 2, and 1/

√
2, respectively.

• We transport T (x) = x + 1. Then for all three cost functions the cost is one.

There are several transport applications!
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Monge Problem

Monge’s problem consists to search for the one that minimizes the cost, i.e.

(M) inf
T#µ=ν

Z

X

c(x, T (x)) dµ(x).

Sometimes there are not transport applications.

Example.- There is no application sending µ = δ0 into ν =
δ0+δ1

2 .

We would have to split the mass, leave half of it in 0 and send half of it into 1.
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Monge-Kantorovich Problem

We consider a more general strategy in which the mass in x will be distributed over the all
space, following a distribution dλx.

Then dπ(x, y) = dλx(y)dµ(x) is the transported mass from x to y.

The cost of transporting the mass in x will be
Z

Y

c(x, y) dλx(y).

and the total transport cost will be
Z

X×Y

c(x, y) dλx(y)dµ(x) =

Z

X×Y

c(x, y) dπ(x, y).
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Monge-Kantorovich Problem

Kantorovich’s problem consists to search the optimal transport plan

(K) inf
π∈Π(µ,ν)

Z

X×Y

c(x, y) dπ(x, y)

Theorem.- (K) has a solution.
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Application

7



Wireless network with fixed base stations

Consider a bounded set D ⊆ R
2 which is the geographic reference for a network and a

nonnegative function f with unit integral representing the density of demand of the nodes
in the network.

We fix k points x1, x2, . . . , xk at which the antennas are located.

Assumptions

• Being p ≥ 1 suppose that the time spent to cover a distance between x and xi is given
by |x − xi|p

• The total amount of time to be served by antenna j to be hj(cj) where cj is the amount
of nodes asking for information to antenna j.

In order to minimize the total cost of the network

inf
(Ai) partition of D

k
X

i=1

Z

Ai

"

|x − xi|p + hi

 

Z

Ai

f(x) dx

!#

f(x) dx.
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Results

• If hi are continuous functions, then there exists an optimum.

• If hi are continuous functions and ηi(s) := shi(s) are strictly convex, then there exists
a unique optimum.

Defining

(∗)

8

>

<

>

:

Ai = {x ∈ D :

|x − xi|p + hi(ci) + cih
′
i(ci) < |x − xj|p + hj(cj) + cjh

′
j(cj) ∀j 6= i}

ci =
R

Ai
f(x) dx

• If hi are differentiable and continuous in 0, then (∗) is a necessary optimality condition.

• If hi are differentiable in ]0, 1] and continuous in 0 and ηi are convex, then (∗) is a
necessary and sufficient optimality condition.

9



Nash Equilibrium

A user living in x ∈ D and accessing to antenna xi will be satisfied if

|x − xi|p + hi(ci) = min
j=1,...,k

|x − xj|p + hj(cj).

Definition.- A partition (Ai)i=1,...,k of D is an equilibrium if for every i = 1, . . . , k the
following condition holds:
(

Ai = {x ∈ D : |x − xi|p + hi(ci) < |x − xj|p + hj(cj) for every j 6= i}
ci =

R

Ai
f(x) dx.
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Nash Equilibrium

Theorem.-

• Assume that the functions hi are continuous.
Then there exists an equilibrium !

• If in addition the functions hi are non-decreasing.
Then the equilibrium is unique !
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Comparison between optimum and equilibrium

Example 1.-

As an illustration example, suppose that on D = [0, 1] there are two antennas at
coordinates x1 = 1/4 and x2 = 3/4.

Assume that users are uniformly distributed, and take p = 2.

Suppose the first antenna can handle more demand than the second, so

h1(t) = t and h2(t) = (1 + ε)t

Then the optimum (A1, A2) is given by

A1 = [0, λ
opt
ε [, A2 =]λ

opt
ε , 1] with λ

opt
ε =

1

2
+

ε

5 + 2ε
,

whereas the equilibrium (B1, B2) is

B1 = [0, λeq
ε [, A2 =]λeq

ε , 1] with λeq
ε =

1

2
+

ε

6 + 2ε
≤ λopt

ε .
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Comparison between optimum and equilibrium

Example 2.-

Users are uniformly distributed on D = [0, 1].

There are two antennas at coordinates x1 = 0 and x2 = 1. Consider p = 1 and

h1(s) = 100 and h2(s) =



0 for 0 ≤ s ≤ 0.999

1 for 0.999 ≤ s ≤ 1.

Then the equilibrium (B1, B2) is given by

B1 = ∅ and B2 = [0, 1]

and the optimum (A1, A2) is

A1 = [0, 001[ and A2 =]0.001, 1].

The optimum is very unfair for users living in A1, who pay x + 100, whereas the others
just pay the distance from 1.
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with queue penalization effect”
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Random Walk Model

Random Walk Model is also referred to as the Brownian Motion Model.

The nodes change their speed and direction at each time interval:

• For every new interval t, each node randomly and uniformly chooses its new direction
θ(t) from (0, 2π].

• In similar way, the new speed v(t) follows a uniform distribution or a Guassian
distribution from [0, Vmax].

If the node moves according to the above rules and reaches the boundary of simulation
field, the leaving node is bounced back to the simulation field with the angle of θ(t) or
(π − θ(t)).

Disadvantage

• The Random Walk model is a memoryless mobility process, however we observe that
is not the case of mobile nodes in many real life applications.
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Brownian Mobility Model

dρ
+
(t) = v

+
(x, t) dt + σ+(x, t) dW

+
(t)

and/or
dρ−(t) = v

−(x, t) dt + σ−(x, t) dW−(t).
where W +(t) and W−(t) are two independent brownian motion with values in X × Y .

Assuming as in the previous case that we know the initial distribution of the sources then
by using Ito’s lemma the distribution of the sources evolves in time by the Kolmogorov
Forward Equation

∂

∂s
p(x, s) = − ∂

∂x
[µ(x, s)p(x, s)] +

1

2

∂2

∂x2
[σ2

+(x, s)p(x, s)].

for s ≥ 0, with initial condition p(x, 0) = ρ+(x)

Equivalently, the initial distribution of the destinations evolves in time by the Kolmogorov
Forward Equation

∂

∂s
p(x, s) = − ∂

∂x
[µ(x, s)p(x, s)] +

1

2

∂2

∂x2
[σ2

−(x, s)p(x, s)].

for s ≥ 0, with initial condition p(x, 0) = ρ−(x).
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