
Jakarta
a tool support for formal verification

Gilles Barthe

Pierre Courtieu

Guillaume Dufay

Marieke Huisman

Simão Melo de Sousa

Sorin Stratulat

FirstName.LastName@sophia.inria.fr

INRIA Sophia-Antipolis

France

Verificard’02 – p.1

Talk Overview

Background

Presentation of the JaKarTa toolset

JaKarTa ’s Preliminary Results

Conclusion and Perspectives

Verificard’02 – p.2

Background

CertiCarte: Formal executable specification of the JavaCard

Plateform including offensive and defensive Virtual Machine and

a ByteCode Verifier.

Definitions are (a bit) cluttered and difficult to modify

Case-distinctions make proofs tedious

Low level of automation (both in proofs and writing

specification)

Difficult to make variations on the specification (such as

abstractions)

However, all these problems are not insurmountable: JaKarTa is

design to provide solutions.

Verificard’02 – p.3

JaKarTa, a toolset for formal verification

A dedicated specification language can have a positive
impact on formal specification and formal verification.

Designed with the following goals in mind

Clarity and Executablility of specifications

Specifications easily transformable

Tool independence

Support for partial functions (by automatic transformation

into total functions)

Proof automation (generation of inversion principles)

Support for refinement and abstractions

Verificard’02 – p.4

JaKarTa basic architecture

JaKarTa Basic Architecture

JIR

proof systems

programming languages

rewrite systems

etc ...

Jast

JPI

JAK
JSL Specification Coq

JTK

Verificard’02 – p.5

JSL: JaKarTa Specification Language

JSL types: first-order polymorphic types

JSL expressions: first-order algebraic terms

built from

variables

constructor symbols (data type declarations)

defined symbols (function definitions)

��� � � � � � � � ��� �� � 	 ��

Verificard’02 – p.6

JSL: JaKarTa Specification Language

Functions defined by set of rewrite rules:

Constructor-based oriented conditional rewriting with extra

variables

� � � � ��� � � � � ��� � �� 	
 � �

 � 	 �� with all � � �

pairwise distinct

� � are patterns with fresh variables

var

� � � ���

var

�
 ���

var
� � � � � � � �� var

� � ��� � �

var

� � � ���

var

�
 � � �
and

��� �var

� � � ���

var

� �� � � �

Verificard’02 – p.7

JSL: JaKarTa Specification Language

function take : nat -> list ’a -> list ’a :=

n -> Zero =>(take n l)-> Nil;

n ->(Succ m),

l ->(Cons hd tl)=>(take n l)->(Cons hd (take m tl)).

Partial function

First condition of second rule: binds m

Second condition binds hd and tl

Result uses fresh variables

Verificard’02 – p.8

Interaction with other tools

2 internal data representations:

Jast = JaKarTa Abstract Syntax T ree

JIR = JaKarTa Intermediate Representation = Jast

complemented by a tree stuctured case distinction

2 kinds of translation:

To "rewrite rule" based tools (such as ELAN or SPIKE) :

Translation from Jast to the target language.

To tools with tree stuctured case distinction languages

(COQ, PVS or Ocaml): translation from JIR to the target

language. For Coq, a "two-ways" translation is provided.

Consequence: JSL Specification of CertiCarte for free.

Verificard’02 – p.9

JAK: JaKarTa Automation Kit

Automatic generation of appropriate
theorems to be used in formal verification

Tailored towards specific theorem prover

JAK’s Current Focus: generation of adequate
inversion principles for functions. This is
particularly useful for Coq proofs.

Verificard’02 – p.10

JTK: JaKarTa Transformation Kit

For each datatype � define

� � and

�
�

�� � � � � �

For each defined function

� � � �	 , define

�� � � � � �	

by transforming

 � � � �� � � �
 � � �� �� � �

into

�
 � � � � � � �
 � � �

�
 � � � � �� � � �� � � � � �

Not a legal rule:substitution and cleaning required

Verificard’02 – p.11

JTK: JaKarTa Transformation Kit

The user can:

introduce is own solution to local abstraction.
"Intelligence" in abstraction is introduced by
this way

introduce special guidance to optimize the
treatment of

dead rules
type conversions
functions that become total

Verificard’02 – p.12

Current JaKarTa Focus

Input: Defensive Virtual Machine

Output:
Offensive and Abstract Virtual Machines
Diagrams commute
Offensive and Defensive machines
coincide on well-typed programs

Automating the correctness proof of the BCV is
yet out of reach

Verificard’02 – p.13

Current JTK Focus: Offensive Abstraction

data valu_prim =

VReturnAddress nat |

VBoolean z |

VByte z |

VShort z |

VInt z.

becomes

type abs_valu_prim = z.

Verificard’02 – p.14

Current JTK Focus: Offensive Abstraction

function abstract_valu_prim

: valu_prim -> abs_valu_prim :=

=>abstract_valu_prim (VReturnAddress v)

-> (inject_nat v) ;

=>abstract_valu_prim (VBoolean v) -> v ;

=>abstract_valu_prim (VByte v) -> v ;

=>abstract_valu_prim (VShort v) -> v ;

=>abstract_valu_prim (VInt v) -> v .

Verificard’02 – p.15

Current JTK Focus: Offensive Abstraction

<pUTSTATIC_rule_6>

(stack_f state)->(Cons h lf),

(head (opstack h))->(Value x),

(nth_elt (sheap_f state) idx)->(Value nod),

nod->(VPrim (VBoolean z0)),

t->(Prim Byte)

=> (pUTSTATIC t idx state cap)->

(res_putstatic state x idx);

Verificard’02 – p.16

Current Focus: Offensive Abstraction

<abstracted_pUTSTATIC_rule_6>

(abstracted_stack_f state)->(Cons h lf),

(head (abstracted_opstack h))->(Value x),

(nth_elt (abstracted_sheap_f state)

idx)->(Value nod),

nod->z0,

t->(Prim Byte)

=> (abstracted_pUTSTATIC t idx state cap)->

(abstracted_res_putstatic state x idx);

Verificard’02 – p.17

Current Focus: Offensive Abstraction

<cONV_rule_2>

(stack_f state)->(Cons h lf),

(extr_from_opstack t (head (opstack h)))->(Value k)

=> (cONV t t’ state) ->

(update_frame (update_opstack

(Cons (VPrim (tpz2vp t’

(t_convert t t’ k)))

(opstack h)) h) state);

Verificard’02 – p.18

Current Focus: Offensive Abstraction

<abstracted_cONV_rule_2>

(abstracted_stack_f state)->(Cons h lf),

(head (abstracted_opstack h))->(Value k)

=> (abstracted_cONV t t’ state)->

(abstracted_update_frame

(abstracted_update_opstack

(Cons (abstracted_tpz2vp t’

(t_convert t t’ k))

(abstracted_opstack h)) h) state);

Verificard’02 – p.19

Current Focus: Offensive Abstraction

Script � 40 lines � whole offensive virtual machine

abstract exec_instruction with

abstract_valu_prim (etc...)

and inject_nat (etc...)

(* user intervention directives start here *)

conversion using inject_nat z2n

(etc...)

in cONV replace 2,2,1 by

(head (abstracted_opstack h))

(etc...)

reject (abstracted_abortCode Type_error state)

into jcvm_off_functions log jcvm_log.

Verificard’02 – p.20

Conclusion

right now JaKarTa is proof of concept

Tool independence (translations to theorem
provers, rewrite systems etc...)

Generated offensive virtual machine, abstract
machine underway

Used JAK tactics to good effect

Automation of equational reasoning is on the
way

Verificard’02 – p.21

	{large Talk Overview}
	{large Background}
	{large jaks , a toolset for formal verification}
	{large {jaks } basic architecture}
	{large JSL: emph {J}aKarTa emph {S}pecification emph {L}anguage}
	{large JSL: emph {J}aKarTa emph {S}pecification emph {L}anguage}
	{large JSL: emph {J}aKarTa emph {S}pecification emph {L}anguage}
	{large Interaction with other tools}
	{large JAK: emph {J}aKarTa emph {A}utomation emph {K}it}
	{large JTK: emph {J}aKarTa emph {T}ransformation emph {K}it}
	{large JTK: emph {J}aKarTa emph {T}ransformation emph {K}it}
	{large Current {jak } Focus}
	{large Current JTK Focus: Offensive Abstraction}
	{large Current JTK Focus: Offensive Abstraction}
	{large Current JTK Focus: Offensive Abstraction}
	{large Current Focus: Offensive Abstraction}
	{large Current Focus: Offensive Abstraction}
	{large Current Focus: Offensive Abstraction}
	{large Current Focus: Offensive Abstraction}
	{large Conclusion}

