
Verification of Parallel Programs with the Owicki-Gries and
Rely-Guarantee Methods in Isabelle/HOL

Leonor Prensa Nieto

TU München

Marseille, 7 January 2002

λ →

∀
=Isa

be
lle

β
α

HOL

Overview

• Motivation.

• Hoare logic for parallel programs.

– The Owicki-Gries method.

– The rely-guarantee method.

• Formalization in Isabelle/HOL.

• Completeness for parameterized parallel programs.

• Application, examples.

• Conclusion.

1

Motivation

• Parallel programs appear in safety critical applications.

• Verification is necessary, sometimes difficult and mostly tedious.

• Techniques:

1. Testing.

2. Model Checking.

3. Interactive theorem provers: PVS, Coq, Isabelle/HOL ...

2

Hoare Logic for Parallel Programs

• 1965, Dijkstra introduces the parbegin statement.

• 1969, Hoare proposes a formal system of axioms and inference rules for the verification of

imperative sequential programs.

• 1976, Susan Owicki and David Gries extend Hoare’s system for the verification of parallel

programs with shared variables.

• 1981, Cliff Jones introduces the rely-guarantee method, a compositional version of the Owicki-

Gries system.

3

Hoare Logic

• Hoare triples have the form {P} c {Q}
• A Hoare triple is valid, i.e |= {P} c {Q} iff every execution starting in a state satisfying P

ends up in a state satisfying Q (partial correctness).

• Hoare logic ≡ inference rules for deriving valid Hoare triples.

` {Q[e/x]} x := e {Q} (Assign)

` {P} c0 {M} ` {M} c1 {Q}
` {P} c0; c1 {Q}

(Sequence)

...

4

Soundness and Completeness

• The system is sound if all the specifications that are derivable are also valid

` {P} c {Q} =⇒ |= {P} c {Q}

• The system is complete if all specifications that are valid can be derived

|= {P} c {Q} =⇒ ` {P} c {Q}

5

Compositionality

• Hoare logic is compositional for sequential programs.

• Disjoint parallel programs

{True} {y=0} {y=0}
x:=0 y:=3 =⇒ x:=0 ‖ y:=3

{x=0} {y=3} {x=0 ∧ y=3}

=⇒ Compositional

• But if c1 and c2 share variables, then there is no operator Op such that in general

{P1} {P2} {Op (P1, P2)}
c1 c2 6=⇒ c1 ‖ c2

{Q1} {Q2} {Op (Q1, Q2)}

=⇒ Not compositional

6

Example

These two programs have the same behaviour when executed sequentially:

x:=x+2⇐⇒ x:=x+1; x:=x+1

but they deliver different results when composed in parallel with for example the program ”x:=0”:

{x=0} {x=0}
x:=0 ‖ x:=x+2 x:=0 ‖ x:=x+1; x:=x+1

{x=0 ∨ x=2} {x=0 ∨ x=1 ∨ x=2}

=⇒ Not compositional (because of interference)

7

The Owicki-Gries Method

• First complete logic for proving correctness of parallel programs with shared variables.

• Component programs are specified as proof outlines which are free from interference.

Pre-post specification Proof outlines

{x=0} {x=0}
x:=x+1; x:=x+1;

x:=x−1 {x=1}
{x=0} x:=x−1

{x=0}

Proof outlines have the property that whenever the execution of a program reaches an assertion

with state σ, this assertion is true of that state.

8

Interference Freedom

Given two proof outlines P1:{p1} P2:{q1}
c1 a1

{p2} {q2}
c2 a2
... ...

We say that they are interference free iff

∀pi ∈ assertions of P1 ∧ ∀aj ∈ atomic actions of P2,

{pi ∧ pre aj}
aj
{pi}

(and vice versa)

Note: If P1 has n statements and P2 has m statements, proving interference freedom requires

proving O(n×m) correctness formulas.

9

Example

These two proof outlines are correct but not interference free. For example, the assertion x=0

is not preserved against the atomic action x:=x+2:

{x=0} {True} {x=0 ∧ x=0}
x:=x+2 ‖ x:=0 x:=x+2

{x=2} {x=0} {x=0}

By weakening the postconditions we obtain both correct and interference free proof outlines:

{x=0} {True} {x=0 ∨ x=2 ∧ x=0} {x=0}
x:=x+2 ‖ x:=0 x:=x+2 =⇒ x:=x+2 ‖ x:=0

{x=0 ∨ x=2} {x=0 ∨ x=2} {x=0 ∨ x=2} {x=0 ∨ x=2}

10

Rule for Parallel Composition

{P1} c1 {Q1}, . . . , {Pn} cn {Qn} are correct and interference-free

{P1 ∧ . . . ∧ Pn} c1‖ . . . ‖cn {Q1 ∧ . . . ∧Qn}

This rule is not compositional, i.e. a change in one of the components may affect the proof,

not only of the modified component, but also of all the others.

11

The Rely-Guarantee Method

|= P sat (pre, rely, guar, post)

P satisfies its specification if under the assumptions that

1. P is started in a state that satisfies pre, and

2. any environment transition in the computation satisfies rely,

then P ensures the following commitments:

3. any component transition satisfies guar, and

4. if the computation terminates, the final state satisfies post.

12

Rule for Parallel Composition

(rely ∨ guar1)→ rely2

(rely ∨ guar2)→ rely1

(guar1 ∨ guar2)→ guar
c1 sat (pre, rely1, guar1, post1)

c2 sat (pre, rely2, guar2, post2)

c1 ‖ c2 sat (pre, rely, guar , post1 ∧ post2)

• Advantages over Owicki-Gries:

1. Compositional.

2. Lower complexity.

13

Formalization in Isabelle

• The Programming Language

– Abstract Syntax

– Operational Semantics

• Proof Theory

– Proof System

– Soundness

14

The Programming Language

c1 ‖ · · · ‖ cn

The component programs ci are sequential while-programs with synchronization.

• Syntax: (α represents the state and is an argument of the program)

α com = Basic (α⇒ α)

| (α com); (α com)

| IF (α bexp) THEN (α com) ELSE (α com) FI

| WHILE (α bexp) INV (α assn) DO (α com) OD

| AWAIT (α bexp) THEN (α com) END

α par com = (α com) list

• Interleaving semantics
(Ts[i], s)→1 (r, t)

(Ts, s)→1 (Ts[i := r], t)

15

Parameterized Parallel Programs

Many interesting parallel programs are given schematically in terms of a parameter n, represen-

ting the number of components. For example,

{x = 0}
‖ni=0 x := x+ 1

{x = n+ 1}

Syntax: ‖ni=0 c i ≡ c 0 ‖ c 1 ‖ . . . ‖ c n

In HOL the “. . .” can be expressed by the function map and a list from 0 to n, i.e.

map (λi. c i) [0..n]

16

Completeness for parameterized parallel programs

Generalized rule for the Owicki-Gries system:

∀i ≤ n. ` {P (i, n)} c(i, n) {Q(i, n)}
∀i, j ≤ n. i 6= j −→ the proofs outlines of
{P (i, n)}c(i, n){Q(i, n)} and {P (j, n)}c(j, n){Q(j, n)}
are interference free

` {
⋂n
i=0 P (i, n)} ‖ni=0 c(i, n) {

⋂n
i=0 Q(i, n)}

We have mechanically proven with Isabelle that this system is sound, but is it complete?

We know (by the completeness of the non-parameterized systems) that for each value of n, we can

find a derivation in the system but ... can we find for every valid specification of a parameterized

program a single derivation that works for all values of n?

We have proven that the answer is yes.

17

Application

• Nice external syntax

• Automatic generation of the verification conditions

• Examples

18

Syntax

External Syntax Internal Syntax

Parser

Printer

{x=0 ∧ y=0} ←→ {(x,y). x=0 ∧ y=0}

y:=y+2 ←→ Basic λ(x, y). (x, y+2)

c1 ‖ · · · ‖ cn ←→ [c1, · · ·, cn]

• Representation of program variables via the quote/antiquote technique.

19

Verification Conditions Generation

Proof System

Program Verification ConditionsTactic

The inferences rules and axioms are systematically applied backwards until all verification

conditions are generated.

20

Examples

Owicki-Gries:

Algorithm Verif. cond. Automatic Lemmas

Peterson 122 122 0

Dijkstra 20 20 0

Ticket (param) 35 24 0

Zero search 98 98 0

Prod/Cons 138 125 3

Algorithm Spec.lines Verif. Cond Lemmas Proof Steps

Single mutator garbage collector 35 289 28 408

Multi-mutator garbage collector (param) 35 328 36 756

Rely-Guarantee:

Algorithm Verif. cond. Lemmas Proof Steps

Set array to 0 (param) 8 3 40

Increment variable (param) 14 3 23

Find least element in array (param) 22 1 30

21

Conclusion

• First formalization of the Owicki-Gries and rely-guarantee methods in a general purpose theorem

prover.

• Improvements over the original formalizations:

– No need for program locations.

– Support for schematic programs.

• Special interest in applicability: concrete syntax, automation, examples ...

• New completeness proof for parameterized parallel programs.

• Tool useful not only for the “a posteriori” verification, but also in the search for a proof.

22

