Verification of Parallel Programs with the Owicki-Gries and Rely-Guarantee Methods in Isabelle/HOL

Leonor Prensa Nieto
TU München

Marseille, 7 January 2002
Overview

• Motivation.
• Hoare logic for parallel programs.
 – The Owicki-Gries method.
 – The rely-guarantee method.
• Formalization in Isabelle/HOL.
• Completeness for parameterized parallel programs.
• Application, examples.
• Conclusion.
Motivation

- Parallel programs appear in safety critical applications.
- Verification is necessary, sometimes difficult and mostly tedious.
- Techniques:
 1. Testing.
 2. Model Checking.
 3. Interactive theorem provers: PVS, Coq, Isabelle/HOL ...
Hoare Logic for Parallel Programs

• 1965, Dijkstra introduces the \texttt{parbegin} statement.
• 1969, Hoare proposes a formal system of axioms and inference rules for the verification of imperative sequential programs.
• 1976, Susan Owicki and David Gries extend Hoare’s system for the verification of parallel programs with shared variables.
• 1981, Cliff Jones introduces the rely-guarantee method, a compositional version of the Owicki-Gries system.
Hoare Logic

- Hoare triples have the form $\{P\} \; c \; \{Q\}$
- A Hoare triple is valid, i.e. $\models \{P\} \; c \; \{Q\}$ iff every execution starting in a state satisfying P ends up in a state satisfying Q (partial correctness).
- Hoare logic \equiv inference rules for deriving valid Hoare triples.

\[\vdash \{Q[e/x]\} \; x := e \; \{Q\} \quad (Assign)\]

\[\begin{align*}
\vdash \{P\} \; c_0 \; \{M\} \\
\vdash \{M\} \; c_1 \; \{Q\}
\end{align*} \quad (Sequence)\]
Soundness and Completeness

- The system is **sound** if all the specifications that are derivable are also valid

\[\vdash \{P\} c \{Q\} \implies \models \{P\} c \{Q\} \]

- The system is **complete** if all specifications that are valid can be derived

\[\models \{P\} c \{Q\} \implies \vdash \{P\} c \{Q\} \]
Compositionality

- Hoare logic is compositional for sequential programs.
- Disjoint parallel programs

\[
\begin{align*}
\{ \text{True} \} & \quad \{ y=0 \} \quad \{ y=0 \} \\
\text{x:=0} & \quad \text{y:=3} \quad \implies \quad \text{x:=0 || y:=3} \\
\{ x=0 \} & \quad \{ y=3 \} \quad \{ x=0 \wedge y=3 \}
\end{align*}
\]

\implies \text{Compositional}

- But if \(c_1 \) and \(c_2 \) share variables, then there is no operator \(\text{Op} \) such that in general

\[
\begin{align*}
\{ P_1 \} & \quad \{ P_2 \} \quad \{ \text{Op} (P_1, P_2) \} \\
\text{c}_1 & \quad \text{c}_2 \quad \nRightarrow \quad \text{c}_1 || \text{c}_2 \\
\{ Q_1 \} & \quad \{ Q_2 \} \quad \{ \text{Op} (Q_1, Q_2) \}
\end{align*}
\]

\implies \text{Not compositional}
Example

These two programs have the same behaviour when executed sequentially:

\[x := x + 2 \iff x := x + 1; x := x + 1 \]

but they deliver different results when composed in parallel with for example the program "\(x := 0 \)":

\[
\begin{align*}
\{ x = 0 \} & \quad \{ x = 0 \} \\
\text{x:=0 || x:=x+2} & \quad \text{x:=0 || x:=x+1; x:=x+1} \\
\{ x = 0 \lor x = 2 \} & \quad \{ x = 0 \lor x = 1 \lor x = 2 \}
\end{align*}
\]

\[\Rightarrow \text{Not compositional (because of interference)} \]
The Owicki-Gries Method

- First complete logic for proving correctness of parallel programs with shared variables.
- Component programs are specified as proof outlines which are free from interference.

<table>
<thead>
<tr>
<th>Pre-post specification</th>
<th>Proof outlines</th>
</tr>
</thead>
<tbody>
<tr>
<td>{x=0} \xrightarrow{\text{x:=x+1;}} x:=x−1 \xrightarrow{\text{x:=x+1;}} {x=0}</td>
<td>{x=0} \xrightarrow{x:=x+1;} x:=x−1 \xrightarrow{\text{x:=x+1;}} {x=1} \xrightarrow{x:=x−1} {x=0}</td>
</tr>
</tbody>
</table>

Proof outlines have the property that whenever the execution of a program reaches an assertion with state σ, this assertion is true of that state.
Interference Freedom

Given two proof outlines

\[P_1: \{ p_1 \} \]
\[c_1 \]
\[\{ p_2 \} \]
\[c_2 \]
\[\vdots \]
\[P_2: \{ q_1 \} \]
\[a_1 \]
\[\{ q_2 \} \]
\[a_2 \]
\[\vdots \]

We say that they are interference free iff

\[\forall p_i \in \text{assertions of } P_1 \land \forall a_j \in \text{atomic actions of } P_2, \]
\[\{ p_i \land \text{pre } a_j \} \]
\[a_j \]
\[\{ p_i \} \]

(and vice versa)

Note: If \(P_1 \) has \(n \) statements and \(P_2 \) has \(m \) statements, proving interference freedom requires proving \(O(n \times m) \) correctness formulas.
Example

These two proof outlines are correct but not interference free. For example, the assertion $x=0$ is not preserved against the atomic action $x:=x+2$:

$\{x=0\} \parallel \{x=0\}$

$\{x=0\}$

By weakening the postconditions we obtain both correct and interference free proof outlines:

$\{x=0\} \parallel \{x=0\} \implies x:=x+2 \parallel x:=0$

$\{x=0 \lor x=2\} \parallel \{x=0 \lor x=2\}$

$\{x=0 \lor x=2\}$
Rule for Parallel Composition

\[
\begin{array}{c}
\{P_1\} c_1 \{Q_1\}, \ldots, \{P_n\} c_n \{Q_n\} \text{ are correct and interference-free} \\
\{P_1 \land \ldots \land P_n\} c_1 \parallel \ldots \parallel c_n \{Q_1 \land \ldots \land Q_n\}
\end{array}
\]

This rule is not compositional, i.e. a change in one of the components may affect the proof, not only of the modified component, but also of all the others.
The Rely-Guarantee Method

\[\models P \text{ sat } (\text{pre, rely, guar, post}) \]

\(P \) satisfies its specification if under the \textbf{assumptions} that

1. \(P \) is started in a state that satisfies \textit{pre}, and
2. any environment transition in the computation satisfies \textit{rely},

then \(P \) ensures the following \textbf{commitments}:

3. any component transition satisfies \textit{guar}, and
4. if the computation terminates, the final state satisfies \textit{post}.
Rule for Parallel Composition

\[
\begin{align*}
(rely \lor guar_1) &\rightarrow rely_2 \\
(rely \lor guar_2) &\rightarrow rely_1 \\
(guar_1 \lor guar_2) &\rightarrow guar \\
c_1 \text{ sat } (pre, rely_1, guar_1, post_1) \\
c_2 \text{ sat } (pre, rely_2, guar_2, post_2) \\
\hline
\end{align*}
\]

\[
c_1 \parallel c_2 \text{ sat } (pre, rely, guar, post_1 \land post_2)
\]

- Advantages over Owicki-Gries:
 1. Compositional.
 2. Lower complexity.
Formalization in Isabelle

- The Programming Language
 - Abstract Syntax
 - Operational Semantics
- Proof Theory
 - Proof System
 - Soundness
The Programming Language

\[c_1 \parallel \cdots \parallel c_n \]

The component programs \(c_i \) are sequential while-programs with synchronization.

- **Syntax:** (\(\alpha \) represents the state and is an argument of the program)
 \[\alpha \text{ com} = \text{Basic} (\alpha \Rightarrow \alpha) \]
 \[| (\alpha \text{ com}); (\alpha \text{ com}) \]
 \[| \text{IF } (\alpha \text{ bexp}) \text{ THEN } (\alpha \text{ com}) \text{ ELSE } (\alpha \text{ com}) \text{ FI} \]
 \[| \text{WHILE } (\alpha \text{ bexp}) \text{ INV } (\alpha \text{ assn}) \text{ DO } (\alpha \text{ com}) \text{ OD} \]
 \[| \text{AWAIT } (\alpha \text{ bexp}) \text{ THEN } (\alpha \text{ com}) \text{ END} \]

\[\alpha \text{ par_com} = (\alpha \text{ com}) \text{ list} \]

- **Interleaving semantics**
 \[
 \frac{(Ts[i], s) \rightarrow^1 (r, t)}{(Ts, s) \rightarrow^1 (Ts[i := r], t)}
 \]
Parameterized Parallel Programs

Many interesting parallel programs are given schematically in terms of a parameter n, representing the number of components. For example,

\[
\begin{align*}
\{ x = 0 \} \\
\big\| \big|_{i=0}^{n} x &:= x + 1 \\
\{ x = n + 1 \}
\end{align*}
\]

Syntax: $\|^{n}_{i=0} c~i \equiv c~0 \| c~1 \| \ldots \| c~n$

In HOL the “\ldots” can be expressed by the function map and a list from 0 to n, i.e.

\[
\text{map} \ (\lambda i. \ c \ i) \ [0..n]
\]
Completeness for parameterized parallel programs

Generalized rule for the Owicki-Gries system:

\[\forall i \leq n. \vdash \{ P(i, n) \} \ c(i, n) \ \{ Q(i, n) \} \]
\[\forall i, j \leq n. i \neq j \rightarrow \text{the proofs outlines of} \]
\[\{ P(i, n) \} c(i, n) \{ Q(i, n) \} \text{ and } \{ P(j, n) \} c(j, n) \{ Q(j, n) \} \]
\[\text{are interference free} \]

\[\vdash \{ \bigcap_{i=0}^{n} P(i, n) \} \parallel \bigcap_{i=0}^{n} c(i, n) \ \{ \bigcap_{i=0}^{n} Q(i, n) \} \]

We have mechanically proven with Isabelle that this system is sound, but is it complete?

We know (by the completeness of the non-parameterized systems) that for each value of \(n \), we can find a derivation in the system but ... can we find for every valid specification of a parameterized program a single derivation that works for all values of \(n \)?

We have proven that the answer is yes.
Application

- Nice external syntax
- Automatic generation of the verification conditions
- Examples
Syntax

\{x=0 \land y=0\} \iff \{(x,y). x=0 \land y=0\}

y:=y+2 \iff \text{Basic } \lambda(x, y). (x, y+2)

c_1 \parallel \cdots \parallel c_n \iff [c_1, \cdots, c_n]

- Representation of program variables via the quote/antiquote technique.
The inferences rules and axioms are systematically applied backwards until all verification conditions are generated.
Examples

Owicki-Gries:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Verif. cond.</th>
<th>Automatic</th>
<th>Lemmas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peterson</td>
<td>122</td>
<td>122</td>
<td>0</td>
</tr>
<tr>
<td>Dijkstra</td>
<td>20</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Ticket (param)</td>
<td>35</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>Zero search</td>
<td>98</td>
<td>98</td>
<td>0</td>
</tr>
<tr>
<td>Prod/Cons</td>
<td>138</td>
<td>125</td>
<td>3</td>
</tr>
</tbody>
</table>

Rely-Guarantee:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Spec.lines</th>
<th>Verif. Cond</th>
<th>Lemmas</th>
<th>Proof Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single mutator garbage collector</td>
<td>35</td>
<td>289</td>
<td>28</td>
<td>408</td>
</tr>
<tr>
<td>Multi-mutator garbage collector (param)</td>
<td>35</td>
<td>328</td>
<td>36</td>
<td>756</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Verif. cond.</th>
<th>Lemmas</th>
<th>Proof Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set array to 0 (param)</td>
<td>8</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>Increment variable (param)</td>
<td>14</td>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>Find least element in array (param)</td>
<td>22</td>
<td>1</td>
<td>30</td>
</tr>
</tbody>
</table>
Conclusion

• First formalization of the Owicki-Gries and rely-guarantee methods in a general purpose theorem prover.
• Improvements over the original formalizations:
 – No need for program locations.
 – Support for schematic programs.
• Special interest in applicability: concrete syntax, automation, examples ...
• New completeness proof for parameterized parallel programs.
• Tool useful not only for the “a posteriori” verification, but also in the search for a proof.