Verification of Parallel Programs with the Owicki-Gries and
Rely-Guarantee Methods in Isabelle/HOL

Leonor Prensa Nieto
TU Minchen

Marseille, 7 January 2002

Overview

Motivation.

Hoare logic for parallel programs.

— The Owicki-Gries method.
— The rely-guarantee method.

Formalization in Isabelle/HOL.
Completeness for parameterized parallel programs.
Application, examples.

Conclusion.

Motivation

e Parallel programs appear in safety critical applications.
e Verification is necessary, sometimes difficult and mostly tedious.

e Techniques:

1. Testing.

2. Model Checking.
3. Interactive theorem provers: PVS, Coq, Isabelle/HOL ...

Hoare Logic for Parallel Programs

1965, Dijkstra introduces the parbegin statement.

1969, Hoare proposes a formal system of axioms and inference rules for the verification of
Imperative sequential programs.

1976, Susan Owicki and David Gries extend Hoare's system for the verification of parallel
programs with shared variables.

1981, Cliff Jones introduces the rely-guarantee method, a compositional version of the Owicki-
Gries system.

Hoare Logic

e Hoare triples have the form { P} ¢ {Q}
e A Hoare triple is ,i.e = {P} c {Q} iff every execution starting in a state satisfying P

ends up in a state satisfying Q) (partial correctness).

e Hoare logic = inference rules for deriving Hoare triples.

= {Qle/z]} = := e {Q} (Assign)

F{P}co{M} F{M} c{Q}
= {P} co; c1 {Q}

(Sequence)

Soundness and Completeness

e The system is sound if all the specifications that are derivable are also valid
F{P} c{Q} = FA{P} c{Q}
e The system is complete if all specifications that are valid can be derived

=P} c{Q} = F {P} c{Q}

Compositionality

e Hoare logic is compositional for sequential programs.
e Disjoint parallel programs
{True} {y=0} {y=0}
x:=0 y=3 — x:=0 || y:=3
{x=0} {y=3} {x=0 A y=3}
—> Compositional

e But if c; and ¢y share variables, then there is no operator Op such that in general

{P1} {P2} {Op (P1, P2)}
C1 C2 # C1 || C2
{Q1} {Q2} {Op (Q1, Q2)}

— Not compositional

Example

These two programs have the same behaviour when executed sequentially:

X:=X+2 <— x:=x+1; x;=x+1

but they deliver different results when composed in parallel with for example the program "x:=0":

{x=0} {x=0}
x:=0 || x:=x+2 x:=0 || x:=x+1; x:=x+1
{x=0 V x=2} {x=0 V x=1 V x=2}

—> Not compositional (because of interference)

The Owicki-Gries Method

e First complete logic for proving correctness of parallel programs with shared variables.

e Component programs are specified as proof outlines which are free from interference.

Pre-post specification Proof outlines

{x=0} {x=0}

x:=x+1; x:=x+1;
x:=x—1 {x=1}
{x=0} x:=x—1

{x=0}

Proof outlines have the property that whenever the execution of a program reaches an assertion
with state o, this assertion is true of that state.

Interference Freedom

Given two proof outlines Pi:{p1} Po:{q:1}
Cq1 a1
{Pz} {Q2}
C a

2 2

We say that they are interference free iff

Vp; € assertions of P; A Va; € atomic actions of Py,

{pi N pre a;}
d;

{p:}

(and vice versa)

Note: If P; has n statements and Py has m statements, proving interference freedom requires
proving O(n X m) correctness formulas.

Example

These two proof outlines are correct but not interference free. For example, the assertion
Is not preserved against the atomic action x:=x-2:

{x=0} {True} { A x=0}
X:=X~+2 | x:=0 X:=x+2

{x=2} {x=0}

By weakening the postconditions we obtain both correct and interference free proof outlines:

{x=0} {True} { A x=0} {x=0}
X:=x+2 | x:=0 X:=X~+2 —> x=x+2 || x:=0
{x=0 V x=2} { } {x=0 V x=2}

10

Rule for Parallel Composition

{P1} c1 {Q1},...,{Pn} cn {Qn} are correct and interference-free

{Pl/\.../\Pn}Cl||...||Cn{Q1/\.../\Qn}

This rule is not compositional, i.e. a change in one of the components may affect the proof,

not only of the modified component, but also of all the others.

11

The Rely-Guarantee Method

= P sat (pre, rely, guar, post)

P satisfies its specification if under the assumptions that

1.
2.

P is started in a state that satisfies pre, and
any environment transition in the computation satisfies rely,

then P ensures the following commitments:

3.
4,

any component transition satisfies guar, and
if the computation terminates, the final state satisfies post.

12

Rule for Parallel Composition

(rely V guary) — rely,

(rely V guary) — rely,

(guary V guary) — guar

cy sat (pre, rely,, guary, posty)
co sat (pre, rely,, guar,, posts)

c1 || co sat (pre, rely, guar, post; A post,)

e Advantages over Owicki-Gries:

1. Compositional.
2. Lower complexity.

13

e The Programming Language
— Abstract Syntax
— Operational Semantics

e Proof Theory

— Proof System
— Soundness

Formalization in Isabelle

14

The Programming Language

cifl-- -l en

The component programs c; are sequential while-programs with synchronization.

e Syntax: (« represents the state and is an argument of the program)
a com = Basic

| '
| IF THEN ELSE Fl

| WHILE INV DO OD
| AWAIT THEN END
Q. par_com =

e Interleaving semantics
(Ts[i], s) =" (r,t)
(T's,s) —=' (T's[i :=1],)

15

Parameterized Parallel Programs

Many interesting parallel programs are given schematically in terms of a parameter n, represen-
ting the number of components. For example,

{z =0}

licg z =2 +1
{r=n+1}
Syntax: ||[i_qgct=cOlcl|...||cn
In HOL the “..."” can be expressed by the function map and a list from O to n, i.e.

map (Ai. ¢ i) [0..n]

16

Completeness for parameterized parallel programs

Generalized rule for the Owicki-Gries system:

Vi <n. FA{P(,n)} c(i,n) {Q(,n)}
Vi,7 < n.1# j — the proofs outlines of

{P(i,n)c(i,n){Q>i, n)} and {P(j,n)}c(j, n){Q(4,n)}

are interference free

= {Nize P3G)} 11y el n) {Nizy Q6 n)}

We have mechanically proven with Isabelle that this system is sound, but is it complete?

We know (by the completeness of the non-parameterized systems) that for each value of n, we can
find a derivation in the system but ... can we find for every valid specification of a parameterized
program a single derivation that works for all values of n?

We have proven that the answer is yes.

17

Application

e Nice external syntax
e Automatic generation of the verification conditions

e Examples

18

Syntax

Parser

Y

External Syntax

Printer

A

Internal Syntax

{x=0 A y=0} «—— {(x,y). x=0 A y=0}

y:=y+2 «—— Basic A(x, y). (x, y+2)

Cl”"'HCn <—>[C1,--

. Cn]

e Representation of program variables via the quote/antiquote technique.

19

Verification Conditions Generation

Proof System

Program

Verification Conditions

The inferences rules and axioms are systematically applied backwards until all verification

conditions are generated.

20

Examples

Owicki-Gries:

Algorithm Verif. cond. | Automatic | Lemmas

Peterson 122 122 0

Dijkstra 20 20 0

Ticket (param) 35 24 0

Zero search 08 98 0

Prod/Cons 138 125 3

Algorithm Spec.lines | Verif. Cond | Lemmas | Proof Steps

Single mutator garbage collector 35 289 28 408

Multi-mutator garbage collector (param) 35 328 36 756
Rely-Guarantee:

Algorithm Verif. cond. | Lemmas | Proof Steps

Set array to 0 (param) 8 3 40

Increment variable (param) 14 3 23

Find least element in array (param) 22 1 30

21

Conclusion

First formalization of the Owicki-Gries and rely-guarantee methods in a general purpose theorem
prover.

Improvements over the original formalizations:

— No need for program locations.
— Support for schematic programs.

Special interest in applicability: concrete syntax, automation, examples ...
New completeness proof for parameterized parallel programs.

Tool useful not only for the “a posteriori” verification, but also in the search for a proof.

22

