Voting using
Java Card smart cards
(a case study)

Martijn Oostdijk
(joint work with C-B. Breunesse & B. Jacobs)
University of Nijmegen

. Context

. Toys & Setup

. Voting

. Implementation
. Demo

. Results & Conclusions

Outline

Context

e Loop Group: Traditionally, interest in program correctness, semantics, logic
e Semantics of Java in PVS theorem prover implemented in Loop Tool

e VerifiCard: Application of Loop Tool to smart card application

e (Case study driven research

e Problem: No experience with smart card applications

e Security is interesting

zzzzzzzzzz

Toys

Schlumberger Palmera (10x)

Gemplus GemXPresso IS (2x)

Java iButton (4 adapters) (20x)

Gemplus GCR410 (2x)

Setup

Linux machine with Sun’s Java SDK and additional APls, smart card terminal
attached to serial port:

Applet Host Application
Java Card API OCF AP
JavaComm API

RXTX

Why voting?

Electronic voting is an interesting case study because:

e Many aspects of security involved:

— Confidentiality

— Authentication

— Integrity

— Non-non-repudiation

e Distributed application over the Internet

e Untrusted clients: Smart cards as TCB

Voting 1

Host Application Internet . Server

privS
pubA

Personal vote list

““‘Secure’’ feedback channel

Voter

Personal vote list

Stemnummers voor id

pvda 227
vvd 72
cda 242
d66 16
groenlinks 235
sp 96
christenunie 83
sgp 46

Voting 2

Applet A sends id to host application H

H sends vote v to A

A returns RSA/SHA signature s of v (using priv 4)

H generates a new session key des, encrypts it with pubg, and sends it to .S
H sends (id,...,v,s) encrypted with des to S

S checks the signature

. A— H

. H— A

. A— H

. H— S

. H— S

.S — H

id
{a(v)}privA

{des}pubs

=S

Voting 3

{id, ..., (V)stdes =M

ack/deny

Implementation

Loading the applet onto the card: Visa OP

Generating the keys pub 4 and priv 4

Initialization: INS_SET_ID, INS_SET_PRIVATE_EXP, INS_SET_MODULUS
Voting: INS_GET_ID, INS_SIGN

Terminal uses threads to keep GUI responsive

Implementation: process method

case INS_SET_MODULUS:
if (modulus!=null)
ISOException.throwIt (IS07816.SW_CONDITIONS_NOT_SATISFIED);

else {

modulus = new byte[lc];
readBuffer (apdu,modulus) ;

by

break;
case INS_SIGN:

if (modulus==null || private_exp==null)
ISOException.throwIt (IS07816.SW_CONDITIONS_NOT_SATISFIED);

else
sign(apdu) ;
break;

Implementation: sign method

MessageDigest digester;
Cipher encrypter;

bytel[] buffer = apdu.getBuffer();

short 1lc = (short) (buffer[IS07816.0FFSET_LC] & OxOOFF);

if (1c!=BLOCK_SIZE)

ISOException.throwIt (IS07816.SW_WRONG_LENGTH) ;

readBuffer (apdu,plaintext) ;

digester.doFinal (plaintext, (short)0,BLOCK_SIZE,hashtext, (short)0);

Util.arrayCopy(hashtext, (short)O,
paddedhashtext, (short) (BLOCK_SIZE-hashtext.length),
(short)hashtext.length) ;

encrypter.doFinal (paddedhashtext,

(short)0,BLOCK_SIZE,ciphertext, (short)0);
writeBuffer (ciphertext,apdu) ;

Problems/Results

Crypto export restrictions: Sun’s JCE doesn’'t come with RSA
Differences JC 2.0 and 2.1: iButtons use crypto processor directly
Threaded terminal: Correct? Not part of TCB

Patent pending for personal vote lists

Conclusions

Even though it's Java, it's still very low level
Applet is small enough to be formally specified
Security verification requires higher level reasoning?

Future work: Visa OP, GSM, other case studies...

