
January 8th, 2002 SchlumbergerSema & Trusted Logic

VERIFICARD

Formal modeling and verification of the

Java Card security architecture

Eduardo Giménez Olivier Ly
Trusted Logic SchlumbergerSema

January 8th, 2002 SchlumbergerSema & Trusted Logic

The Formavie project

• Partners: CP8, INRIA, Schlumberger.

• Goal: formal modeling and verification of the Java Card
security architecture.

• Means: specify and prove in Coq the correctness of the
critical components of a Java Card platform.

• Models developed by Trusted Logic for CP8 and
Schlumberger.

January 8th, 2002 SchlumbergerSema & Trusted Logic

Summary

1. The Java Card security chain.

2. General pattern of model.

3. The case of a Java Card platform:
1. Formal security model.
2. Internal consistency of the security model.
3. Component specification.
4. A general proof architecture for security properties.

4. Achievements and conclusions.

January 8th, 2002 SchlumbergerSema & Trusted Logic

Java Card applet development chain

Applet

Applet

Applet

Linker

Interpreter

… …
java
… …

0101
class
0101

0101
CAP
0101

Java compiler

Bytecode verifier

Converter

0101
CAP
0101

Secured
environment

secured transmission

Correct Cap file

January 8th, 2002 SchlumbergerSema & Trusted Logic

Security properties

• Main goal is applet isolation.
– No applet can unauthorizedly modify other applets data

– No applet can unauthorizedly disclosure other applets data.

• Correct development and software attack prevention.

• Functional properties of the applets are not the first
security concern.

January 8th, 2002 SchlumbergerSema & Trusted Logic

Security Chain

• Critical part of the development chain :

Protocolsigned cap linked capVerifier Linker Interpretercap cap

• CAP format is taken as the reference format of the model:

The applet developer and the applet issuer may be different.

Is the format used by SUN to specify the JCVM behavior.

Independent from any particular vendor's implementation.

Compiler and converter are critical mainly for functional properties.

January 8th, 2002 SchlumbergerSema & Trusted Logic

FORMAVIE challenges

1. To understand how the different properties enhanced
by each component contribute to ensure applet isolation
on the card.

2. To model the behavior of each component and to prove
the correctness of the Java Card security architecture.

3. To build a logical framework both realistic and
applicable to different vendor implementations (formal
model reuse).

January 8th, 2002 SchlumbergerSema & Trusted Logic

General architecture of the model

January 8th, 2002 SchlumbergerSema & Trusted Logic

A modular architecture

Security Policy
Model

Algorithm

Functional
Specification

proof

proof

proofproof

Algorithm

Functional
Specification

proof

Algorithm

Functional
Specification

proof

Algorithm

Functional
Specification

proof

proof

InterpreterBytecode Verifier Protocol Linker

January 8th, 2002 SchlumbergerSema & Trusted Logic

Model architecture
(1/2)

• Security policy model:
– A collection of state machines.

• A distinguished machine describing the computational semantics of Java Card.
• Several « abstract » machines describing the security policies.

– Security properties are state machine invariants.

• Functional specification
– An abstract description of the component.
– Specified in terms of pre- and post-conditions.

• Component contribution to the security policy model
– The post-conditions entail some property on the execution of one

of the state machines of the Security Policy model.

January 8th, 2002 SchlumbergerSema & Trusted Logic

Model architecture
(2/2)

• Algorithm description
– Should capture the complexity of the implemented solution.
– A deterministic, potentially executable program in Coq.
– Described as a function f : Input Output+Error.

• Implementation soundness
– If the input satisfies the pre-conditions, then the output produced

by the function satisfies the post-conditions.

∀ x ∈ Input . ∀ y ∈ Output . f(x)=y Pre(x) Post(x,y)

January 8th, 2002 SchlumbergerSema & Trusted Logic

Java Card Security Policy Model

January 8th, 2002 SchlumbergerSema & Trusted Logic

Java Card Security Policy Model

SUN
Informal

specifications

JCVM

Typing
Security
Policy

TYVM

Firewall
Security
Policy

FWVM

Static Data
Security
Policy

Security
policy
model

January 8th, 2002 SchlumbergerSema & Trusted Logic

State Machines

p ∈ P ; Mp ≡ 〈 S, →p ,SI , SF 〉

• P = data structures containing the program

• S = data structures describing the state of the machine

• = transition relation (inductive predicate depending on p)

• SI = set of possible initial states

• SF = set of valid final states (more than having no successor)

January 8th, 2002 SchlumbergerSema & Trusted Logic

The JCVM machine

• Formalization of Java Card execution model (JCVMS+JCRES)

• All Java Card features considered:
– All bytecodes
– All kind of identifiers (tokens,offsets,references,AIDs,etc)
– All possible integer representations (big-endian,little-endian)
– Correct access to the beginning of data (bytecode, method info,etc)
– Native method invocation
– Transactions and transient objects
– Critical components of the API (input/output,Applets,PINs,etc)

• A semi-defensive and « ideal » machine.
– All controls are performed dynamically.
– References are separated from arithmetical values.

January 8th, 2002 SchlumbergerSema & Trusted Logic

The JCVM as a state machine

cap ∈ P ; JCVMcap ≡ 〈 S, →cap ,SI , SF 〉

• P = CAP format

• S is formed by :
– heap
– static field images,
– frame stack,
– JCRE structures (transaction log, input, output, etc)

• cap = semantics of each bytecode, as (partially) specified by SUN

• sI = frame stack only contains the frame of the invoked method

• SF = empty frame stack

January 8th, 2002 SchlumbergerSema & Trusted Logic

The TYVM machine

• A formalization of « must » clauses in SUN’s specification.

• Both an abstraction and a refinement of the JCVM.

• All values of the same type are collapsed into a single
point.

• Control flow is local to the current method
(modular type-checking).

January 8th, 2002 SchlumbergerSema & Trusted Logic

The TYVM as a state machine

p ∈ P ; TYVMp ≡ 〈 S, →p ,sI , SF 〉

• P = CAP format + well-formedness constraints.

• S is formed by :
– The type abstraction of the operand stack of the method
– The type abstraction of the local variables of the method
– The current pc

• = typing constraints associated to each bytecode

• SI = empty stack, local variables with method type, method initial pc.

• SF = control flows out of the method (return or uncaught exception).

January 8th, 2002 SchlumbergerSema & Trusted Logic

CAP format constraints
(examples)

• Language constraints: If a method overrides another method, then
both have the same number of arguments.

• Redundant structures: searching the type of a method invocation
either directly from its constant pool index or by traversing the class
structure of the descriptor component leads to the same type.

• No hanged pointers: each exception handler points to the beginning
of some bytecode.

• Consistent pointers: each argument of a static method invocation has
an entry in the constant pool, and the entry describes a static method
(and not, say, a field).

• Correspondences between components: each class in the class
component has an entry in the descriptor component.

January 8th, 2002 SchlumbergerSema & Trusted Logic

The FWVM machine

• A formalization of Java Card firewall rules.

• Obtained forgetting those conditions of the JCVM rules which do not
concern firewall verifications.

• All arithmetic values collapsed into a single point.

• Structure of the operand stack and local variables forgotten.

• Control flow similar to the TYVM, but method invocations are
followed (not intended for static verification).

• Intended to prove properties entailed by firewall rules (applet
isolation).

January 8th, 2002 SchlumbergerSema & Trusted Logic

The FWVM as a state machine

cap ∈ P ; FWVMcap ≡ 〈 S, →cap ,sI , SF 〉

• P = CAP format

• S is formed by :
– Frame stack (active context, pc, known references)
– Static field images abstraction (field values collapsed)
– Heap abstraction (field values collapsed)

• = firewall verifications associated to each bytecode

• SI = single frame with initial pc, context and known references.

• SF = empty frame stack

January 8th, 2002 SchlumbergerSema & Trusted Logic

Example: arraylength bytecode

JCVM
〈sfi; hp; 〈c;pc;lv;[rf,…]〉::…〉  arraylength→ 〈sfi; hp; 〈c;pc+1;lv;[n,…]〉::…〉

rf ≠ null hp(rf) = 〈o,[a1,…,an]〉 FirewallConditions(c,o)

TYVM
〈pc; lv; [Array(T),…] 〉  arraylength→ 〈 pc+1; lv; [short,…] 〉

rf ∈ refs rf ≠ null hp(rf) = 〈o,_〉 FirewallConditions(c,o)
FWVM

〈sfi; hp; 〈c;pc;refs〉::…〉  arraylength→ 〈sfi; hp; 〈c;pc+1;refs〉::…〉

January 8th, 2002 SchlumbergerSema & Trusted Logic

Internal consistency of the security
model

January 8th, 2002 SchlumbergerSema & Trusted Logic

Type abstraction soundness

The typing rules express sufficient conditions for the program code
to completely determine the execution in the computational model
(JCVM).

Safe(Mp) = any trace of M generated by the program p leads to
a valid final state of M.

Safe (tyvmp) ⇒ Safe (jcvmp)

Example: arraylength 〈sfi; hp; 〈c;pc;lv, []〉::…〉

January 8th, 2002 SchlumbergerSema & Trusted Logic

Firewall abstraction soundness

Any trace of the computation model corresponds to
some trace of the machine stating the firewall rules
through an abstraction function.

FWVM
∃ fws2

JCVM jcs2

abstraction function

fws1

jcs1

abstraction function

January 8th, 2002 SchlumbergerSema & Trusted Logic

Component modeling

January 8th, 2002 SchlumbergerSema & Trusted Logic

Embedded interpreter: functional specification

• A new state machine is introduced (EMVM).

• It focuses on the modifications of the card memory.

• Differences with respect to the JCVM:
– Works on linked CAP format.
– Less defensive than the JCVM.

– Less typed model (every piece of data is a block of bytes).
– Considers potentially side effects resulting from:

• Overflow of data structures (operand stack, objects, etc)
• Access to non-initialized memory blocks;

• Bounded resources

• Observational point of view (abstract state, memory services)

January 8th, 2002 SchlumbergerSema & Trusted Logic

Embedded Linker: functional specification

• A new program format is introduced (linked format).

• Specification consists in two relations between a cap file
and a card memory state.

– Resolution post-condition: the linked format of the CAP
file can be observed from the card memory.

– Preparation post-condition: the static field image
described in the CAP file and the initial static arrays can
be observed from the card memory.

January 8th, 2002 SchlumbergerSema & Trusted Logic

Off-card bytecode verifier: functional specification

• Type assignment: a mapping associating a (pair of) type stacks and
local variable type mappings to each point of a method.

• Specification consists in a collection of conditions on a type assignment
for the program.

aload 0
tystck1,tylocs1

tystck2,tylocs2
TYVM transition

tystck1,tylocs1

tystck2,tylocs2
TYVM transition

⊆

aload 1

invokevirtual(m)

January 8th, 2002 SchlumbergerSema & Trusted Logic

Algorithm design

• Written in a functional programming language (Coq).

• Bytecode verifier: bv : cap → type

– A variant of Kildall's algorithm
– Can deal with sub-routine polymorphism

• Embedded linker : linker: CardMemory → cap → CardMemory

• Embedded interpreter: interp : CardMemory → CardMemory

• Could be extracted into Ocaml executable functions.
• Provides a way of testing the specifications.

January 8th, 2002 SchlumbergerSema & Trusted Logic

A general architecture for
proving security properties

January 8th, 2002 SchlumbergerSema & Trusted Logic

Proof architecture

Safe (tyvmcap) ⇒
Safe (jcvmcap)

TYVM

Security property P
Safe (TYVMcap)

Abstraction

P satisfied by any
FWVM trace

EMVM

Bv (cap) = ty

JCVM

FWVM

Safe (jcvmcap) P satisfied by any JCVM trace

P satisfied by any
EMVM trace

Linker (cap) = mo

StaticTyping(cap,ty)

correct
implementation

Resolution (cap,mo)
Preparation(cap,mo)

correct
implementation

SPM link

Interp (mo) = mo,m1,…

Impl Impl

jcvm

emvm

Safe (jcvmcap) ⇒

Impl
s0

m0
SPM link SPM link

correct
implementation

P(mo,m1,…)

January 8th, 2002 SchlumbergerSema & Trusted Logic

Some statistics

TotalPROOFSPECLIB
120920719043559313423Lines

27811614220Modules

• Definitions : 2600

• Inductive definitions : 788

• Theorems : 2422

• Axioms : 236

• Model parameters : ≈230

• Six year/men of work (including documentation)

• Several people (from 2 to 5) working in parallel.

January 8th, 2002 SchlumbergerSema & Trusted Logic

Conclusions

January 8th, 2002 SchlumbergerSema & Trusted Logic

Modeling contributions
(1/2)

• A general proof architecture for security properties.
– Factorizes part of the proof effort.
– Adaptable for a particular vendor’s implementation.

• A complement to SUN’s specifications (some examples)

– CAP file information access.
– Native method: invocation and resources.
– Transaction effects on bytecode semantics.
– The whole state of the API.
– A useful bytecode abstraction.

January 8th, 2002 SchlumbergerSema & Trusted Logic

Modeling contributions
(1/2)

• Enhanced organization of the specification

• Logical dependencies between concepts are put

forward.
– Spread descriptions collected and completed.
– What does the “JCRE” actually cover?

• Some specification imprecisions and omissions detected.
– Example: what active context shall the JCRE use to call the
Applet.install method?

• Slight refinements of SUN specification proposed.

January 8th, 2002 SchlumbergerSema & Trusted Logic

Feedback about the Coq proof assistant

• Using Coq for industrial applications is feasible
(not true 5 years ago).

• A challenge for the future: proving in the large.

– Proof maintenance?
• No experience in specification evolution.
• An example: automatic generation of hypotheses

names should be avoided as much as possible.

– How development time can be reduced?
• Tools for managing huge models become necessary.
• Hypertext navigation, fold/unfold tools, find tools, etc.
• Context sensitive information.
• Should not be "external" tools!

January 8th, 2002 SchlumbergerSema & Trusted Logic

Future work

• Verification of security properties.

• Customization for particular implementations an
application domains (GSM, etc).

• Specification evolution (Java Card 2.2)

• Migration to Coq V7.2

• Integration into a certification tool (TL-FIT).

	The Formavie project
	Summary
	Security properties
	Security Chain
	FORMAVIE challenges
	General architecture of the model
	Model architecture (1/2)
	Model architecture (2/2)
	Java Card Security Policy Model
	State Machines
	The JCVM machine
	The JCVM as a state machine
	The TYVM machine
	The TYVM as a state machine
	CAP format constraints(examples)
	The FWVM machine
	The FWVM as a state machine
	Example: arraylength bytecode
	Internal consistency of the security model
	Type abstraction soundness
	Component modeling
	Embedded interpreter: functional specification
	Embedded Linker: functional specification
	Off-card bytecode verifier: functional specification
	Algorithm design
	A general architecture for proving security properties
	Some statistics
	Conclusions
	Modeling contributions(1/2)
	Modeling contributions(1/2)
	Feedback about the Coq proof assistant
	Future work

