
Bull CP8 Patents06/03/2002

Formal Development of
a Byte Code Verifier
Ludovic Casset
Gemplus Research Lab
7th January 2002



2 Title

Matisse European Project

•1 goal: propose methodologies and techniques to
use formal methods in industry

•3 industrial case studies in 3 different fields:
transportation, health care and smart card

•7 European partners

•End of the project by the end 2002

•Web site: www.matisse.qinetiq.com



3 Title

JavaCard Bytecode Verifier
Goals

•Ensures CAP file format
?11 standard components

•Ensures the enforcement of typing rules
?a pointer cannot be forged from an integer
?objects are accessed as what they are

•Ensures no stack over/underflow

•Ensures no memory violation

•...



4 Title

Architecture of the Verifier

•A verifier divided into 2 parts

?the type verifier
•ensures that the Java Card typing rules are enforced
•models each Java Card byte code
•relies on the structural verifier to access data

?the structural verifier
•ensure that the byte stream represents a CAP file
•models each CAP file component
•provides access to data



5 Title

Architecture of the Verifier

Interface
Abstract Model of the CAP file

Properties and services

Type Verifier
Typing Rules of

the 184
bytecodes

Memory managementCAP file storage on-card

Structural
Verifier

Model of the 11
components



6 Title

Type Verifier

•Abstract model
?the higher specification returns a boolean
?defines the loop on all the methods
?then, for each method, defines a loop on all the

bytecodes
?specifies the typing rules of the 184 different bytecodes

•Relies on the interface and the properties describing the
CAP file
?help defining the structural verifier



7 Title

Type Verifier (cont.)

•Model of the sload byte code instruction

bb <-- verify_sload_n(idx) =
 PRE
      idx : t_byte
 THEN
      IF  size(stack)< method_maxstack(method_ref) &
     idx : dom(local_variable) &
     local_variable(idx) = c_short

      THEN
     bb := TRUE ||
     stack := stack <- c_short

      ELSE
     bb := FALSE

      END
  END;



8 Title

Type Verifier (Cont.)

•Concrete model
?refines the abstract model
?uses services provided by the interface
?provides a proved implementation



9 Title

Type Verifier: Metrics

•Number of components : 34 (including mch, ref and imp)
•Number of lines of B: around 20 000
•Number of generated lemmas: around 18 160 POs
•Work Load : 5 mm



10 Title

Interface between Verifiers

•Abstract model of the CAP file

?Properties of each component
method_returned_type: t_ptr +-> t_lattice_type &
c_uref /: ran(method_returned_type)

?Services to access data within the CAP file
  p_b <-- is_method_returning_value(p_desc_m) =
 PRE  p_desc_m:ran(cp_token_desc_method)
 
THEN

 p_b:=bool(p_desc_m:dom(method_returned_type))
 END



11 Title

Structural Verifier

•Implements the previous interface

•Specifies internal and external tests
?the interface is not sufficient to define the structural

verifier
?it contains only properties related to the type verifier,

not to the byte code interpreter

•This verifier relies on the model of the 11 standards
components contained within the CAP file



12 Title

Structural Verifier

•Internal verifications
?each component is modelled and checked
?provide access to information
?close to the hardware (memory representation)
?not hard to specify, but hard to implement
?proof hard to handle
?bugs are not easily detected by the proof

•bugs related with wrong offset when accessing data
•tests not implemented (specification issues)

?same result obtained with basic machines (see Class and
Descriptor)



13 Title

MACHINE cpn_component

VARIABLES
Set of variables used to describe the component,
Component_verified

INVARIANT
Set of properties on variables previously defined &
Component_verified : BOOL

INITIALISATION
Initialisation of all variables describing the component
Component_verified := FALSE

OPERATION

Res ?  component_internal_verif=
PRE Component_verified = FALSE
THEN (Component_verified = TRUE => the component is correct)

 END;

Res ?  other_services_1=
PRE Component_verified = TRUE
THEN …
END
…

END



14 Title

Structural Verifier (Cont.)

•External verifications
?rely on services and properties of internal

verifications
?easier to specify and to implement
?proof is also made easier thanks to properties

provided by imported machines (internal verifications)
?bugs that are found thanks to the proof

•incoherence between components
•wrong specification of components
•properties missing
•services missing



15 Title

MACHINE
Cpn_component_ext

SEES
All cpn_components concerned by the consistency of

the component

OPERATIONS

Res?  test1=
PRE Component_verified= TRUE &
    Component1_verified = TRUE &
         …
THEN Res :: bool(Description of the property)
END

RES ?  test2=
PRE…
THEN …
END;

END



16 Title

Structural Verifier: Metrics

•Number of components : 116 (including mch, ref and imp)
•Number of lines of B: around 35 000
•Number of generated lemmas: around 11 700 POs
•Work Load: 8 mm
•Basic Machines: 6 (including the class and the descriptor)



17 Title

Bytecode Verifier Integration

•Not all implementations performed in B
?use of Basic Machines
?file loading and linking

•Need to represent
?the card memory
?packages already present in the card



18 Title

C Code Translator

•Developed within the G+ Lab

•Straight forward conversion into C code
?no optimisation
?in-lining possible

•Use only information available in the converted file
?needs to add explicit typing information in the

implementation
?use typing information to distinguish byte from short

and int



19 Title

Benefits from using Formal
Methods

•Provides a complete and unambiguous specification
of the byte code verifier
?modelling activities help clarify the informal

specification

•Provides a reference implementation of an on-card
byte code verifier
?a trusted implementation that conforms to its

specification

•Provides elements for high level certification
?the formal model of the byte code verifier is available



20 Title

Conclusion

•The code has been generated and loaded into an
smart card chip
?the code fits the smart card constraints

•The experience is conclusive
?it is possible to develop code based on formal

techniques and development that fits smart card
constraints



Bull CP8 Patents06/03/2002

Formal Development of
a Byte Code Verifier
Ludovic Casset
Gemplus Research Lab
7th January 2002


