Formal Development of
a Byte Code Verifier

Ludovic Casset
Gemplus Research Lab
/th January 2002

06/03/2002 Bull CP8 Patents @ GEMPLUS-

Matisse European Project

1 goal: propose methodologies and techniques to
use formal methods in industry

» 3 industrial case studies in 3 different fields:
transportation, health care and smart card

 / European partners
 End| of the project by the end 2002

» Web site: www.matisse.qginetig.com

) e & GEMPLUS'

JavaCard Bytecode Verifier
Goals

* Ensures CAP file format
=11 standard components

* Ensures the enforcement of typing rules
=g pointer cannot be forged from an integer
=0bjects are accessed as what they are

» Ensures no stack over/underflow

» Ensures no memory violation

3 e & GEMPLUS'

Architecture of the Verifier

* A verifier divided into 2 parts

=the type verifier

e ensures that the Java Card typing rules are enforced
» models each Java Card byte code

» relies on the structural verifier to access data

=the structural verifier

» ensure that the byte stream represents a CAP file
» models each CAP file component

* provides access to data

. e & GEMPLUS'

Architecture of the Verifier

| nterface
Abstract Model of the CAP file
Properties and services

A

CAP file storage on-card |T\7emory management

5 e & GEMPLUS'

Type Verifier

e Abstract model

zthe hi

gher specification returns a boolean

=defines the loop on all the methods

~then,

for each method, defines a loop on all the

bytecodes
=specifies the typing rules of the 184 different bytecodes

e Relies 0
CAP file
=help ¢

Title

n the interface and the properties describing the

lefining the structural verifier

% GEMPLUS

Type Verifier (cont.)

» Model of the sload byte code instruction

bb <--| verify_sload_n(idx) =
PRE
dx : t_byte
THEN
| F size(stack)< nethod maxstack(nethod ref) &
idx : don(local _variable) &
| ocal vari abl e(idx) = c_short
THEN
bb := TRUE ||
stack := stack <- c_short
ELSE
bb : = FALSE
END
END;

; e & GEMPLUS'

» Concret
=refine
#USES ¢
=#Provic

8 Title

Type Verifier (Cont.)

e model

s the abstract model

services provided by the interface
les a proved implementation

% GEMPLUS

' Type Verifier: Metrics

* Number of components : 34 (including mch, ref and imp)
* Number of lines of B: around 20 000
* Number of generated lemmas: around 18 160 POs

e Work Load : 5 mm

& GEMPLUS

10

e Abstract

Interface between Verifiers

model of the CAP file

=Properties of each component

met hod_r
c_uref /

Z5ervic

p_b <--
PRE p

THEN

END

Title

eturned type: t ptr +->1t lattice type &
] ran(met hod _returned type)

es to access data within the CAP file
s_net hod_returning_val ue(p_desc_n =

_desc_mran(cp_t oken_desc_net hod)

_b: =bool (p_desc_m dom(net hod returned _type))

% GEMPLUS

11

Title

Structural Verifier

oImp

lements the previous interface

» Specifies internal and external tests
=the interface is not sufficient to define the structural

it

e This
com

verifier

contains only properties related to the type verifier,

not to the byte code interpreter

verifier relies on the model of the 11 standards
ponents contained within the CAP file

% GEMPLUS

Structural Verifier

o Internal verifications
=each|component is modelled and checked
=provide access to information
=close to the hardware (memory representation)
=not hard to specify, but hard to implement
=proof hard to handle

=bugs| are not easily detected by the proof
* bugs related with wrong offset when accessing data
» tests not implemented (specification issues)

=~same result obtained with basic machines (see Class and
Descriptor)

12 Title % GEMPLUS

13

MACHI N

VARI AB
Se
Co

I NVARI
Se
Co

I NI TI'A
I n
Co

OPERAT

Re
PR
TH
EN

Re
PR
TH
EN

END

E cpn_conponent

LES
of variables used to descri be the conponent,
nponent _verified

ANT
of properties on variables previously defined &
nponent _verified : BOOL

L1 SATI ON
tialisation of all variables describing the conponent
nponent _verified := FALSE

I ON

5 & conponent _internal _verif=

Conponent _verified = FALSE
EN (Conponent _verified = TRUE => the conponent is correct)
D;
5 & ot her_services_1=
E Conponent _verified = TRUE
EN ...
D

Title

% GEMPLUS

14

Title

StrLcturaI Verifier (Cont.)

e External verifications

=rely on services and properties of internal
verifications

=easier to specify and to implement

=proof is also made easier thanks to properties
provided by imported machines (internal verifications)
=bugs that are found thanks to the proof

* incoherence between components

» wrong specification of components
e properties missing
* services missing

% GEMPLUS

MACHI NE
Cpn_conponent _ext

SEES
Al'l cpn_conponents concerned by the consistency of
t he |conponent

OPERATI ONS

Rese testl=
PRE Conponent verified= TRUE &
Conmponent 1 verified = TRUE &

THEN Res bool (Description of the property)
END

RES & test2=
PRE...

THEN ...

END;

END

15 Title % GEMPLUS

Structural Verifier: Metrics

e Number of components : 116 (including mch, ref and imp)
* Number of lines of B: around 35 000

* Number of generated lemmas: around 11 700 POs
* Work Load: 8 mm
» Basic Machines: 6 (including the class and the descriptor)

16 Title % GEMPLUS

Bytecode Verifier Integration

* Not |all implementations performed in B
=use of Basic Machines
=file loading and linking

* Need to represent
=the card memory
=packages already present in the card

17 Title

% GEMPLUS

C Code Translator

» Developed within the G+ Lab

» Straight forward conversion into C code
=No optimisation
=in-lining possible

» Use only information available in the converted file
=needs to add explicit typing information in the

implementation

=Use typing information to distinguish byte from short

and int

18 Title % GEMPLUS

19

Benefits from using Formal
Methods

* Provides a complete and unambiguous specification
of the byte code verifier

odelling activities help clarify the informal

specification

* Provides a reference implementation of an on-card

byte code verifier
=a trusted implementation that conforms to its
specification

» Provides elements for high level certification
e formal model of the byte code verifier is available

Title % GEMPLUS

Conclusion

» The code has been generated and loaded into an

smart card chip
zthe code fits the smart card constraints

» The|experience is conclusive

=it is possible to develop code based on formal
techniques and development that fits smart card
constraints

2 Title % GEMPLUS

Formal Development of
a Byte Code Verifier

Ludovic Casset
Gemplus Research Lab
/th January 2002

06/03/2002 Bull CP8 Patents @ GEMPLUS-

