
Handling Java’s Abrupt Termination

in a Sequent Calculus for Dynamic Logic

Bernhard Beckert Bettina Sasse

UNIVERSITY OF KARLSRUHE

INSTITUTE FOR LOGIC, COMPLEXITY AND DEDUCTION SYSTEMS

i12www.ira.uka.de/ ˜key

VerifiCard Workshop

Marseille, January 2002
VerifiCard Workshop, Marseille, January 2002 – p.1

Reasons for Limited Use of Verification

No support for programming languages that are used in practice

Verification requires knowledge in higher-order logic,
tactic languages, etc.

Verification is not integrated into standard CASE tools and
software development processes

Verifier and software developer
speak different languages

VerifiCard Workshop, Marseille, January 2002 – p.2

Reasons for Limited Use of Verification

No support for programming languages that are used in practice

Verification requires knowledge in higher-order logic,
tactic languages, etc.

Verification is not integrated into standard CASE tools and
software development processes

Verifier and software developer
speak different languages

VerifiCard Workshop, Marseille, January 2002 – p.2

Reasons for Limited Use of Verification

No support for programming languages that are used in practice

Verification requires knowledge in higher-order logic,
tactic languages, etc.

Verification is not integrated into standard CASE tools and
software development processes

Verifier and software developer
speak different languages

VerifiCard Workshop, Marseille, January 2002 – p.2

Central Paradigm of the KeY Project

Formal methods must – and can – be integrated into

commercially used methodologies, tools, and languages

for software development

Integrated tool for

modelling

formal specification

verification

of object-oriented programs (Java Card)

VerifiCard Workshop, Marseille, January 2002 – p.3

Central Paradigm of the KeY Project

Formal methods must – and can – be integrated into

commercially used methodologies, tools, and languages

for software development

Integrated tool for

modelling

formal specification

verification

of object-oriented programs (Java Card)
VerifiCard Workshop, Marseille, January 2002 – p.3

The KeY System

UML OCL Java

Dynamic Logic

CASE Tool
specification

extension

Verification Component

Deduction Component

for formal

automated
counter examples

interactive

VerifiCard Workshop, Marseille, January 2002 – p.4

Dynamic Logic

Transparency of rules and proofs

Formulas contain programs

Basic rules for each programming construct

Rule application corresponds to symbolic execution

Handling “real” object-oriented language Java

Requires extensions and new concepts

VerifiCard Workshop, Marseille, January 2002 – p.5

Dynamic Logic

Transparency of rules and proofs

Formulas contain programs

Basic rules for each programming construct

Rule application corresponds to symbolic execution

Handling “real” object-oriented language Java

Requires extensions and new concepts

VerifiCard Workshop, Marseille, January 2002 – p.5

Verification of Java Card: Difficulties

Program state depends on the objects and their attributes

Aliasing

Polymorphism (dynamic binding)

Evaluation of Java expressions may have side effects

Programming constructs such as

– abrupt termination (e.g. exceptions)

– built-in data types (incl. arrays and strings)

– initialisation of objects

VerifiCard Workshop, Marseille, January 2002 – p.6

Dynamic Logic

Syntax

Modal operators [p] and 〈〈〈p〉〉〉 for each program p

Refer to the final state of p

Semantics

[p] F: If p terminates, then F holds in the final state
(partial correctness)

〈〈〈p〉〉〉 F: p terminates and F holds in the final state
(total correctness)

VerifiCard Workshop, Marseille, January 2002 – p.7

Dynamic Logic

Syntax

Modal operators [p] and 〈〈〈p〉〉〉 for each program p

Refer to the final state of p

Semantics

[p] F: If p terminates, then F holds in the final state
(partial correctness)

〈〈〈p〉〉〉 F: p terminates and F holds in the final state
(total correctness)

VerifiCard Workshop, Marseille, January 2002 – p.7

Expressivity of Dynamic Logic

Hoare triple

F →→→ [p] G the same as {F} p {G}

Simple example

∀∀∀n (〈〈〈 n 〉〉〉 === →→→

〈〈〈 n 〉〉〉 ===)

VerifiCard Workshop, Marseille, January 2002 – p.8

Expressivity of Dynamic Logic

Hoare triple

F →→→ [p] G the same as {F} p {G}

Simple example

∀∀∀n (〈〈〈 � � ��� � �� �� 	

n

�� 〉〉〉 � ===
�� � � →→→

〈〈〈 � � ��� � �� �� 	

n � �
�� 〉〉〉 �
===

�� � �)

VerifiCard Workshop, Marseille, January 2002 – p.8

Rule for if-else

premisses

new proof obligation

Γ, b ===

� �� � `̀̀ 〈〈〈p〉〉〉F Γ, b ===

��� �	� �

`̀̀ 〈〈〈q〉〉〉F

Γ `̀̀ 〈〈〈

 � �

b

�

p
� � �� �

q

�

〉〉〉F

conclusion

old proof obligation

VerifiCard Workshop, Marseille, January 2002 – p.9

Rule for if-else

premisses new proof obligation

Γ, b ===

� �� � `̀̀ 〈〈〈p〉〉〉F Γ, b ===

��� �	� �

`̀̀ 〈〈〈q〉〉〉F

Γ `̀̀ 〈〈〈

 � �

b

�

p
� � �� �

q

�

〉〉〉F

conclusion old proof obligation

VerifiCard Workshop, Marseille, January 2002 – p.9

Abrupt Termination in Java

Reasons for abrupt termination

� � � �
 �� � (with or w/o label) } loop (current iteration)

� � �� �

(with or w/o label) } loop, � �
 � � �

,
labelled block

exception }

� �� - �� � � �

statement
(also: block, loop, method)

� � � � � � } method
(also:

� �� - �� � � �

, block, loop)

VerifiCard Workshop, Marseille, January 2002 – p.10

Abrupt Termination in Java: Examples

Loop terminated by

� � �� �

� � �� � 	 �� � �
 �

�� 	 � � � ��
 �� �� 	�

� � ��

VerifiCard Workshop, Marseille, January 2002 – p.11

Abrupt Termination in Java: Examples

� �� - �� � � �

-

�
 �� � � � with exception

�� � �
� � � ��� �

 �� � � 	� � � ��� � � � � � � �	 ��
 � �
 �

� � � �

 � � � � � � � �

� � � � ��

VerifiCard Workshop, Marseille, January 2002 – p.12

Integrating Abrupt Termination into DL

New semantics for 〈〈〈p〉〉〉F:

p terminates normally (not abruptly) and F holds in the final state

There is no “return value” describing the reason for termination

VerifiCard Workshop, Marseille, January 2002 – p.13

Possible Contexts of an Abrupt Termination

method

block

� �
 � � �

statement

� �
 � �,

� �- � �
 � �,

� � � loops

� �� - �� � � �

-

�
 �� � � � statement

VerifiCard Workshop, Marseille, January 2002 – p.14

Rule for while Loops

Symbolic execution of one loop iteration

target

Γ `̀̀ 〈〈〈

 � �

b

�

p � �
 � � �
b

�
p

�

〉〉〉F

Γ `̀̀ 〈〈〈 � �
 � � �
b

�
p

�

〉〉〉F

Γ `̀̀ 〈〈〈 b l1 l2 p b p 〉〉〉F

Γ `̀̀ 〈〈〈 b p 〉〉〉F

target

Construction of p’:

→ l1
→ l2

VerifiCard Workshop, Marseille, January 2002 – p.15

Rule for while Loops

Symbolic execution of one loop iteration

target � � � �
 �� �

Γ `̀̀ 〈〈〈

 � �

b

�

l1

�

l2

�

p �

� � �
 � � �
b

�

p

� �

〉〉〉F

Γ `̀̀ 〈〈〈 � �
 � � �
b

�
p

�

〉〉〉F

target

� � �� �

Construction of p’:

� � �� �

→
� � �� � l1

� � � �
 �� � →
� � �� � l2

VerifiCard Workshop, Marseille, January 2002 – p.15

Rule for while Loops: Example

� � �� � 	 �� � �
 �

�� 	 � � � ��
 �� �� 	�

� � ��

p

Γ `̀̀ 〈〈〈

p 〉〉〉 F

Γ `̀̀ 〈〈〈 〉〉〉 F

VerifiCard Workshop, Marseille, January 2002 – p.16

Rule for while Loops: Example

� � �� � 	 �� � �
 �

�� 	 � � � ��
 �� �� 	�

� � ��

p

Γ `̀̀ 〈〈〈

 � � � � � � � � �
�

 � �
�

 � �
 � � � � � � � �� � � ��
 � �� �

� �
 � � � � �� � �

p

� �

〉〉〉 F

Γ `̀̀ 〈〈〈 � �
 � � � � � � � �
 � �
 � � � � � � � �� ��
 � �� �

〉〉〉 F

VerifiCard Workshop, Marseille, January 2002 – p.16

Rule for Exception that is Caught

Γ `̀̀ instanceof (exc, T) Γ `̀̀ 〈〈〈 �� � �

e �exc� q

� � � � � � � �

r

〉〉〉F

Γ `̀̀ 〈〈〈 �� � � ��
 � exc� p

 �� � � 	

T e

 �

q

� � � � � � � �

r

〉〉〉F

VerifiCard Workshop, Marseille, January 2002 – p.17

Rule for Exception that is Caught: Example

� �� � � � � � � � �� � � � � � � �� �

�� � � � � � � � �� �
 � � � � � � � � � � �� �

�
 �� � � � � � � � � � �� �

Γ `̀̀ instanceof (,)

Γ `̀̀ 〈〈〈 〉〉〉 F

Γ `̀̀ 〈〈〈

〉〉〉 F

VerifiCard Workshop, Marseille, January 2002 – p.18

Rule for Exception that is Caught: Example

� �� � � � � � � � �� � � � � � � �� �

�� � � � � � � � �� �
 � � � � � � � � � � �� �

�
 �� � � � � � � � � � �� �

Γ `̀̀ instanceof (� � �

,

� � � �	 �
 �)

Γ `̀̀ 〈〈〈 �� � � � � � � �� � � �� � ��
� � � � � � � �� � �� � ��

〉〉〉 F

Γ `̀̀ 〈〈〈 �� � � ��
 � � � �� � � �� � ��

�� � � 	 � � � �	 �
 � �
 �� � �� � ��

� � � � � � � �� � �� � ��

〉〉〉 F

VerifiCard Workshop, Marseille, January 2002 – p.18

Rule for Exception that is Caught: Example

Γ `̀̀ . . . Γ `̀̀ 〈〈〈 �� � � � � � � �� � � �� � ��
� � � � � � � �� � �� � ��

〉〉〉 F

Γ `̀̀ 〈〈〈 �� � � ��
 � � � �� � � �� � ��

�� � � 	 � � � �	 �
 � �
 �� � �� � ��

� � � � � � � �� � �� � ��

〉〉〉 F

VerifiCard Workshop, Marseille, January 2002 – p.19

Rule for Exception that is Caught: Example

Γ `̀̀ . . .

Γ,

�

===

� � � `̀̀ 〈 �� � �� � �� � ��
� � � � � � � �� � �� � ��

〉F

Γ `̀̀ 〈〈〈 �� � � � � � � �� � � �� � ��
� � � � � � � �� � �� � ��

〉〉〉 F

Γ `̀̀ 〈〈〈 �� � � ��
 � � � �� � � �� � ��

�� � � 	 � � � �	 �
 � �
 �� � �� � ��

� � � � � � � �� � �� � ��

〉〉〉 F

VerifiCard Workshop, Marseille, January 2002 – p.19

Rule for Exception that is Caught: Example

Γ `̀̀ . . .

Γ,

�

===

� � � `̀̀ 〈� � �� � �� � � �� � �� 〉F

Γ,

�

===

� � � `̀̀ 〈 �� � �� � �� � ��
� � � � � � � �� � �� � ��

〉F

Γ `̀̀ 〈〈〈 �� � � � � � � �� � � �� � ��
� � � � � � � �� � �� � ��

〉〉〉 F

Γ `̀̀ 〈〈〈 �� � � ��
 � � � �� � � �� � ��

�� � � 	 � � � �	 �
 � �
 �� � �� � ��

� � � � � � � �� � �� � ��

〉〉〉 F

VerifiCard Workshop, Marseille, January 2002 – p.19

Example

Proof obligation

� � �� � 	 �� � �
 �

�� 	 � � � ��
 � �� �� �� 	�

� � ��

p

terminates with

�

=== 10 if started with 0 ≤≤≤

�

≤≤≤ 10

Formal

0 ≤≤≤
�

,

�

≤≤≤ 10 `̀̀ 〈〈〈p〉〉〉

�

=== 10

VerifiCard Workshop, Marseille, January 2002 – p.20

Example

0 ≤≤≤
�

,

�
≤≤≤ 10 `̀̀ 〈〈〈p〉〉〉

�

=== 10

choice of induction hypothesis

`̀̀ (∀∀∀n)((n ≤≤≤ 10 ∧∧∧

�

=== 10 − n) →→→ 〈〈〈p〉〉〉

�

=== 10)

induction
n === 0

while

if

if

break

break

empty prog.

�

=== 10 `̀̀

�

=== 10

n → n + 1

while

if

if

� � �

n ≤≤≤ 9,

�

=== 10 − n
`̀̀ 〈〈〈p〉〉〉

�

=== 10

induction hypothesis

� � �� � 	 �� � �
 �

�� 	 � � � ��
 � ��

�� �� 	�

� � ��

VerifiCard Workshop, Marseille, January 2002 – p.21

	
	Reasons for Limited Use of Verification
	Central Paradigm of the KeY Project
	The KeY System
	Dynamic Logic
	Verification of javacard : Difficulties
	Dynamic Logic
	Expressivity of Dynamic Logic
	Rule for if-else
	Abrupt Termination in java
	Abrupt Termination in java : Examples
	Abrupt Termination in java : Examples
	Integrating Abrupt Termination into DL
	Possible Contexts of an Abrupt Termination
	Rule for while Loops
	Rule for while Loops: Example
	Rule for Exception that is Caught
	Rule for Exception that is Caught: Example
	Rule for Exception that is Caught: Example
	Example
	Example

