
Modelling General Recursion in Type Theory

Ana Bove∗ Venanzio Capretta†

July 8, 2002

Abstract

Constructive type theory is a very expressive programming language.
However, general recursive algorithms have no direct formalisation in type
theory since they contain recursive calls that do not satisfy any syntactic
condition that guarantees termination. We present a method to formalise
general recursive algorithms in type theory that uses an inductive pred-
icate to characterise termination and that separates the computational
and logical parts of the definitions. As a consequence, the resulting type-
theoretic algorithms are clear, compact and easy to understand. They are
as simple as their Haskell-like versions, where there is no restriction on
the recursive calls. Given a general recursive algorithm, our method con-
sists in defining an inductive special-purpose accessibility predicate that
characterises the inputs on which the algorithm terminates. The type-
theoretic version of the algorithm is then defined by structural recursion
on the proof that the input values satisfy this predicate. We give a formal
definition of the method and discuss its power and its limitations.

1 Introduction

Constructive type theory (see for example [ML84, CH88]) is a very expressive
programming language with dependent types. According to the Curry-Howard
isomorphism [How80, SU98], logic can also be represented in it by identify-
ing propositions with types and proofs with terms of the corresponding type.
Therefore, we can encode in a type a complete specification, requiring also log-
ical properties from an algorithm. As a consequence, algorithms are correct by
construction or can be proved correct by using the expressive power of construc-
tive type theory. This is clearly an advantage of constructive type theory over
standard programming languages. A computational limitation of type theory is
that, to keep the logic consistent and type-checking decidable, only structural
recursive definitions are allowed, that is, definitions in which the recursive calls
must have structurally smaller arguments.

∗Department of Computing Science, Chalmers University of Technology, 412 96 Göteborg,
Sweden, e-mail: bove@cs.chalmers.se, telephone: +46-31-7721020, fax: +46-31-165655

†INRIA Sophia Antipolis, Project LEMME, e-mail: Venanzio.Capretta@sophia.inria.fr,
telephone: +33+4+92385051, fax: +33+4+92385060

1

On the other hand, functional programming languages as Haskell [JHe+99],
ML [MTHM97] and Clean [dMJB+01] are less expressive in the sense that they
do not have dependent types and they cannot represent logic. Moreover, the
existing frameworks for reasoning about the correctness of Haskell-like programs
are weaker than the framework provided by type theory, and it is the respon-
sibility of the programmer to write correct programs. However, functional pro-
gramming languages are computationally stronger because this kind of language
imposes no restrictions on recursive programs and thus, they allow the defini-
tion of general recursive algorithms. In addition, functional programs are usually
short and self-explanatory.

General recursive algorithms are defined by cases where the recursive calls
are performed on non-structurally smaller arguments. In other words, the re-
cursive calls are performed on objects that satisfy no syntactic condition that
guarantees termination. As a consequence, there is no direct way of formalising
this kind of algorithms in type theory.

The standard way of handling general recursion in type theory uses a well-
founded recursion principle derived from the accessibility predicate Acc (see
[Acz77, Nor88, BB00]). However, the use of this predicate in the type-theoretic
formalisation of general recursive algorithms often results in unnecessarily long
and complicated code. Moreover, its use adds a considerable amount of code
with no computational content, that distracts our attention from the compu-
tational part of the algorithm (see for example [Bov99], where we present the
formalisation of a unification algorithm over lists of pairs of terms using the
standard accessibility predicate Acc).

To bridge the gap between programming in type theory and programming
in a functional language, we developed a method to formalise general recursive
algorithms in type theory that separates the computational and logical parts of
the definitions. As a consequence, the resulting type-theoretic algorithms are
clear, compact and easy to understand. They are as simple as their Haskell-like
versions, where there is no restriction on the recursive calls. Given a general re-
cursive algorithm, our method consists in defining an inductive special-purpose
accessibility predicate that characterises the inputs on which the algorithm ter-
minates. The type-theoretic version of the algorithm can then be defined by
structural recursion on the proof that the input values satisfy this predicate.
If the algorithm has nested recursive calls, the accessibility predicate and the
type-theoretic algorithm must be defined simultaneously, because they depend
on each other. This kind of definitions is not allowed in ordinary type theory, but
it is provided in type theories extended with Dybjer’s schema for simultaneous
inductive-recursive definitions [Dyb00].

This method was introduced by Bove [Bov01] to formalise simple general
recursive algorithms in type theory (by simple we mean non-nested and non-
mutually recursive). It was extended by Bove and Capretta [BC01] to treat
nested recursion and by Bove [Bov02] to treat mutually recursive algorithms,
nested or not. Since our method separates the computational part from the log-
ical part of a definition, formalising partial functions becomes possible [BC01].
Proving that a certain function is total amounts to proving that the correspond-

2

ing accessibility predicate is satisfied by every input.
So far, we have just presented our method by means of examples in [Bov01,

BC01, Bov02]. The purpose of this work is to give a general presentation of
the method. We start by giving a characterisation of the class of recursive
definitions that we consider, which is a subclass of commonly used functional
programming languages like Haskell, ML, and Clean. This class consists of
functions defined by recursive equations that are not necessarily well-founded.
Then, we show how we can translate any function in that class into type theory
using our special-purpose accessibility predicates.

When talking about functional programming, we use the terms “algorithm”,
“function” and “program” as synonymous.

The rest of the paper is organised as follows. In section 2, we present a brief
introduction to constructive type theory. In section 3, we illustrate our method
by formalising a few examples of general recursive algorithms in type theory. In
section 4, we define the class FP of recursive definitions that can be translated
into type theory by applying our method. In section 5, we prove that this class
is large enough to allow the definition of any recursive function. In section 6,
we formally describe our method to translate general recursive functions into
type theory. In section 7, we discuss the semantics of functional programs and
we give a mathematical interpretation of the functions in FP with respect to
which our method is sound and complete. Finally, in section 8, we present some
conclusions and related work.

2 Constructive Type Theory

Although this paper is intended mainly for those who already have some knowl-
edge of type theory, we recall the basic ideas and notions that we use. For a com-
plete presentation of constructive type theory, see [ML84, NPS90, CNSvS94].
For impredicative type theory, that we do not use but only mention in section
3, see [CH88]. A general formulation of type systems and their use in formal
verification can be found in [Bar92] and [BG01].

Constructive type theory comprises a basic type called Set and two type
formers, that is, two ways of constructing new types.

The first type former constructs the type of elements of a set. Every element
of Set is an inductively defined type. It is usual to call the elements of Set small
types, and the types that are not elements of Set, like Set itself, large types. Ac-
cording to the Curry-Howard isomorphism [How80, SU98], propositions are also
objects in Set and their elements are proofs of the corresponding proposition.

The second type former allows the construction of dependent product types
or function types. Given a type α and a family of types indexed on α, that is
a type β depending on a variable x ∈ α, we can form the dependent prod-
uct or function type (x ∈ α)β. The canonical elements of function types
are λ-abstractions. If b is an element of β depending on a variable x ∈ α,
then [x ∈ α]b is a canonical element of (x ∈ α)β. If the type of the ab-
stracted variable is clear from the context, we write [x]b. If f is an element

3

of (x ∈ α)β and a an element of α, the application of f to a, f(a), is an el-
ement of β[x := a] (β where every free occurrence of x is substituted with a).
If α and β are in Set, the function type is also in Set. In the case where β
does not depend on x, we can omit the reference to the variable and simply
write (α)β for (x ∈ α)β. We write several consecutive dependent products by
(x1 ∈ α1; . . . ;xn ∈ αn)β and several consecutive λ-abstractions by [x1, . . . , xn]b.
We write (x1, x2, . . . , xn ∈ α) instead of (x1 ∈ α;x2 ∈ α; . . . ;xn ∈ α).

A set former or, in general, any inductive definition is introduced as a con-
stant A of type (x1 ∈ α1; . . . ;xn ∈ αn)Set, for α1, . . . , αn sets. For each
set former, we must specify the constructors that generate the elements of
A(a1, . . . , an) by giving their types, for a1 ∈ α1, . . . , an ∈ αn.

Theorems have the general form of dependent types and thus, they have the
form (x1 ∈ α1; . . . ;xn ∈ αn)β.

A particularly important Set is the set for propositional equality, also called
intentional equality. Given a set α and two elements a and b in α, Id(α, a, b) is
the set that expresses that a and b are equal elements of type α. As the type α
can usually be inferred from the context, we write just a = b to refer to the set
that expresses the propositional equality of a and b. The only way to introduce
elements in this set is through the constructor refl. If a ∈ α, then refl(a) is a
proof that a is equal to itself. Hence, refl(a) ∈ a = a.

Open terms, that is, terms in which not all the occurring variables are ab-
stracted, are valid in a context in which types are assigned to variables. We use
the capital Greek letters Γ,∆,Φ and Θ to range over contexts. A context Γ is a
sequence of variable assumptions: Γ ≡ x1 ∈ α1; . . . ;xn ∈ αn, where the variable
names x1, . . . , xn are pairwise distinct and each type αi, for 1 6 i 6 n, may
contain the variables with indexes smaller that i. If Γ is a context, a sequence
of variable assumptions ∆ is called a context extension of Γ if Γ;∆ is a con-
text. If there is no place for confusion, we might refer to contexts extensions
simply as contexts or as extensions. In addition, we might simply say that ∆ is
an extension whenever the context Γ of which ∆ is an extension can be easily
deduced.

Beside product types, we also use dependent sum types and disjoint unions.
If α is a type and β a family of types depending on a variable x ∈ α, we

can form the dependent sum type Σx ∈ α.β. The canonical terms of the Σ
type are pairs 〈a, b〉, where a ∈ α and b ∈ β[x := a]. In the case that β does
not depend on x, Σx ∈ α.β is called the cartesian product of α and β and it is
simply denoted by α× β.

If α and β are types, the disjoint union of α and β is denoted by α + β. If
a ∈ α and b ∈ β, then inl(a) and inr(b) are elements in α + β.

We extend product and sum types, and disjoint unions to more than two
types.

If Γ is a context and β a type whose free variables are among the ones
assumed in Γ, we write (Γ)β for the sequential product of all the assumptions
in Γ over β. Formally it is defined by recursion on the length of Γ. If Γ is
empty, then ()β ≡ β. If Γ ≡ x ∈ α; Γ′, then (x ∈ α; Γ′)β ≡ (x ∈ α)((Γ′)β).
Our notation for several consecutive dependent products already makes this

4

definition clear.
Similarly, Σ(Γ) is the sum of all the assumptions in Γ, for a non-empty

context Γ. Formally, it is defined by recursion on the length of Γ. If Γ ≡ x ∈ α,
then Σ(x ∈ α) ≡ α. If Γ ≡ x ∈ α; Γ′, then Σ(x ∈ α; Γ′) ≡ Σx ∈ α.Σ(Γ′).
If Γ has n assumptions, that is, Γ ≡ x1 ∈ α1; . . . ;xn ∈ αn, we use n-tuple
notation for its canonical elements and then we write 〈a1, a2, . . . , an−1, an〉 for
〈a1, 〈a2, . . . , 〈an−1, an〉 · · · 〉〉.

Finally, the disjoint union of n types α1, . . . , αn is denoted by α1 + . . . + αn

and defined as (· · · (α1 + α2) + . . . + αn). For the sake of simplicity, we call
in1, in2, . . . , inn to the corresponding constructors.

3 Some Examples

We illustrate our method for formalising general recursive algorithms in type
theory by describing the formalisation of a few easy examples. More detailed
descriptions and more examples can be found in [Bov01] (for simple recursive
algorithms), [BC01] (for nested algorithms and partial functions) and [Bov02]
(for mutually recursive algorithms).

All the auxiliary functions that we use in the examples below are structurally
recursive functions. That is, the recursive calls in those functions are on struc-
turally smaller argument. Therefore, they can be straightforwardly translated in
type theory and we can use their translation in the formalisation of correspond-
ing example. Unless we state the contrary, we assume that the type-theoretic
translation of an auxiliary functions has the same name as in the functional
program.

The first example is a simple general recursive algorithm: the quicksort
algorithm over lists of natural numbers. We start by introducing its Haskell
definition. Here, we use the set N of natural numbers, the inequalities < and
>= over N defined in Haskell in the usual way, and the functions filter and ++
defined in the Haskell prelude.

quicksort :: [N] -> [N]
quicksort [] = []
quicksort (x:xs) = quicksort (filter (< x) xs) ++

x : quicksort (filter (>= x) xs)

Below, the type-theoretic translation of the boolean functions < and >= are
called ≺ and <, respectively. We do not use the symbols < and > for the for-
malisation of those functions because, later on, we use them to denote relations
in type theory, that is, terms of type (N,N)Set, while in this example we need
terms of type (N,N)Bool.

The first step in the definition of the type-theoretic version of quicksort is
the construction of the special-purpose accessibility predicate associated with
the algorithm. To construct this predicate, we analyse the Haskell code and
characterise the inputs on which the algorithm terminates. Thus, we distinguish
the following two cases:

5

• The algorithm quicksort terminates on the input [];

• Given a natural number x and a list xs of natural numbers, the algorithm
quicksort terminates on the input (x:xs) if it terminates on the inputs
(filter (< x) xs) and (filter (>= x) xs).

From this description, we define the inductive predicate qsAcc over lists of
natural numbers by the following introduction rules:

qsAcc(nil)
qsAcc(filter((≺ x), xs)) qsAcc(filter((< x), xs))

qsAcc(cons(x, xs))

where (≺ x) denotes the function [y](y ≺ x) as in functional programming,
similarly for <. We formalise this predicate in type theory as follows:

qsAcc ∈ (zs ∈ List(N))Set
qs accnil ∈ qsAcc(nil)
qs acccons ∈ (x ∈ N;xs ∈ List(N);h1 ∈ qsAcc(filter((≺ x), xs));

h2 ∈ qsAcc(filter((< x), xs))
)qsAcc(cons(x, xs))

We define the quicksort algorithm by structural recursion on the proof that
the input list of natural numbers satisfies the predicate qsAcc.

quicksort ∈ (zs ∈ List(N); qsAcc(zs))List(N)
quicksort(nil, qs accnil) = nil
quicksort(cons(x, xs), qs acccons(x, xs, h1, h2)) =

quicksort(filter((≺ x), xs), h1) ++ cons(x, quicksort(filter((< x), xs), h2))

Finally, as the algorithm quicksort is total, we can prove

allQsAcc ∈ (zs ∈ List(N))qsAcc(zs)

and use that proof to define the type-theoretic function QuickSort.

QuickSort ∈ (zs ∈ List(N))List(N)
QuickSort(zs) = quicksort(zs, allQsAcc(zs))

In the next example, we consider the simple partial function given by the
following Haskell definition:

f :: N -> N
f O = O
f (S n)

| even n = f(div2 n) + 1
| odd n = f(n + 4)

where + is the addition operation and div2 is the division by two over natural
numbers defined in a structurally recursive way, respectively.

6

Following the description given above for the algorithm quicksort, we define
the special-purpose accessibility predicate fAcc that characterises the inputs on
which the algorithm f terminates. In this example, we have conditional recursive
equations depending on the boolean conditions (usually called guards in Haskell
literature) (even n) and (odd n). These conditions are translated using the
predicates Even and Odd in type theory and they are added as arguments of
the corresponding constructor of the accessibility predicate. Here is its type-
theoretical definition:

fAcc ∈ (m ∈ N)Set
f acc0 ∈ fAcc(0)
f accs1 ∈ (n ∈ N; q ∈ Even(n);h ∈ fAcc(div(n, 2)))fAcc(s(n))
f accs2 ∈ (n ∈ N; q ∈ Odd(n);h ∈ fAcc(n + 4))fAcc(s(n))

We use this predicate to define the type-theoretical version of f by structural
recursion on the proof that the input natural number satisfies the predicate
fAcc.

f ∈ (m ∈ N; fAcc(m))N
f(0, f acc0) = 0
f(s(n), f accs1(n, q, h)) = f(div(n, 2), h) + 1
f(s(n), f accs2(n, q, h)) = f(n + 4, h)

In this case we cannot prove ∀m ∈ N.fAcc(m), simply because it is not
true. However, for those m ∈ N that have a proof h ∈ fAcc(m), we can compute
f(m,h). This example shows that the representation of partial recursive function
in type theory is not a problem.

Our method applies also in the formalisation of nested recursive algorithms.
Here is the Haskell code of McCarthy’s f91 function [MM70].

f_91 :: N -> N
f_91 n

| n >= 100 = n - 10
| n < 100 = f_91 (f_91 (n + 11))

where - is the subtraction operation over natural numbers. The function f_91
computes the number 91 for inputs that are smaller than or equal to 101 and
for other inputs n, it computes the value n− 10.

Following our method, we would construct the predicate f91Acc defined by
the following introduction rules (for n a natural number):

n > 100
f91Acc(n)

n < 100 f91Acc(n + 11) f91Acc(f91(n + 11))
f91Acc(n)

Unfortunately, this definition is not correct, since the algorithm f91 is not defined
yet and, therefore, cannot be used in the definition of the predicate. Moreover,
the purpose of defining the predicate f91Acc is to be able to define the algorithm
f91 by structural recursion on the proof that its input value satisfies f91Acc, so
we need f91Acc to define f91. However, there is an extension of type theory that
gives us the means to define the predicate f91Acc and the function f91 at the

7

same time. This extension has been introduced by Dybjer in [Dyb00] and it
allows the simultaneous definition of a predicate P and a function f , where f
has P as part of its domain and is defined by recursion on P . Using Dybjer’s
schema, we can define f91Acc and f91 simultaneously as follows:

f91Acc ∈ (n ∈ N)Set
f91acc>100 ∈ (n ∈ N; q ∈ (n > 100))f91Acc(n)
f91acc<100 ∈ (n ∈ N; q ∈ (n < 100);h1 ∈ f91Acc(n + 11);

h2 ∈ f91Acc(f91(n + 11, h1))
)f91Acc(n)

f91 ∈ (n ∈ N; f91Acc(n))N
f91(n, f91acc>100(n, q)) = n− 10
f91(n, f91acc<100(n, q, h1, h2)) = f91(f91(n + 11, h1), h2)

Mutually recursive algorithms, with or without nested recursive calls, can
also be formalised with our method. If the mutually recursive algorithms are
not nested, their formalisation is similar to the formalisation of the quicksort
algorithm in the sense that we first define the accessibility predicates for each
function and then, we formalise the algorithms by structural recursion on the
proof that the input values satisfy the corresponding predicate. With mutually
recursive algorithms, the termination of one function depends on the termination
of the others. Hence, the accessibility predicates are also mutually recursive.
If, in addition to mutual recursion, we have nested calls, we again need to
define the predicates simultaneously with the algorithms. In order to do so,
we need to extend Dybjer’s schema for cases where we have several mutually
recursive predicates defined simultaneously with several functions (originally,
Dybjer’s schema considers one predicate and one function). This extension
and its application to the formalisation of mutually recursive functions in type
theory was given in [Bov02]. Let us consider a simple example where we define
two mutually recursive algorithms. In Haskell we write them as follows1:

f :: N -> N
f O = O
f (S n)

| g n <= n = f(g n) + n
| g n > n = O

g :: N -> N
g O = 1
g (S n)

| f n <= n = g(f n) + f n
| f n > n = f n + n

where <= and > are inequalities over N defined in the usual way.
1We ignore efficiency aspects such that the fact that some expressions are computed more

than once.

8

In the type-theoretic translation, we need to define two mutually recursive
predicates fAcc and gAcc simultaneously with two mutually recursive algorithms
f and g that, in turn, are defined by structural recursion on the respective
accessibility predicate. Here is the type-theoretical version of our example:

fAcc ∈ (m ∈ N)Set
f acc0 ∈ fAcc(0)
f accs1 ∈ (n ∈ N;h1 ∈ gAcc(n); q ∈ (g(n, h1) 6 n);h2 ∈ fAcc(g(n, h1))

)fAcc(s(n))
f accs2 ∈ (n ∈ N;h1 ∈ gAcc(n); q ∈ (g(n, h1) > n))fAcc(s(n))

gAcc ∈ (m ∈ N)Set
g acc0 ∈ gAcc(0)
g accs1 ∈ (n ∈ N;h1 ∈ fAcc(n); q ∈ (f(n, h1) 6 n);h2 ∈ gAcc(f(n, h1))

)gAcc(s(n))
g accs2 ∈ (n ∈ N;h1 ∈ fAcc(n); q ∈ (f(n, h1) > n))gAcc(s(n))

f ∈ (m ∈ N; fAcc(m))N
f(0, f acc0) = 0
f(s(n), f accs1(n, h1, q, h2)) = f(g(n, h1), h2) + n
f(s(n), f accs2(n, h1, q)) = 0

g ∈ (m ∈ N; gAcc(m))N
g(0, g acc0) = 1
g(s(n), g accs1(n, h1, q, h2)) = g(f(n, h1), h2) + f(n, h1)
g(s(n), g accs2(n, h1, q)) = f(n, h1) + n

Partial functions may also be defined by occurrences of nested and/or mu-
tually recursive calls. This fact is irrelevant to our method and hence, their
formalisation presents no problem.

As a final remark, we draw the reader’s attention to the simplicity of the
translations. The accessibility predicates can be automatically generated from
the recursive equations and the type-theoretic versions of the algorithms look
very similar to the original programs except for the extra proof argument. If
we suppress the proofs of the accessibility predicate we get almost exactly the
original algorithms.

3.1 Necessary Restrictions

In the following sections, we show that our method is of general applicability.
Specifically, we define a large class of functional programs to which it can be
applied.

However, we need to impose some restrictions on that class. Here, we illus-
trate the need of those restrictions by showing a few functional programs that
cannot be translated using our method.

The first restriction is that, in the definition of a function f, any occurrence
of f should always be fully applied. Let us consider the following definition

9

f :: N -> N
f O = O
f (S n) = (iter f n n) + 1

where iter is an iteration function such that when applied to a function f and
a number n gives fn as a result. Here, the defined function f appears in the
right-hand side of the second equation without being applied to any argument.
Although it is easy to see that f computes the identity, at the moment, we do not
know how to translate this definition in type theory using our special-purpose
accessibility predicates. Hence, in what follows, we do not allow such kind of
definitions.

The reason why we need to impose this restriction becomes clear when we
try to apply our method to this function. For the formalisation of the function
above, we have to define a predicate fAcc and a function f with types:

fAcc ∈ (m ∈ N)Set,
f ∈ (m ∈ N; fAcc(m))N

What should the constructors of fAcc look like? Our method requires that
every argument to which the function f is applied satisfies the predicate fAcc.
But the occurrence of f in the right-hand side of the second equation in the
definition of f is not directly applied to an argument, so we do not know how
to formulate the type of the corresponding constructor of fAcc. For this reason,
we require every occurrence of f in the right-hand side of a recursive equation
and in the conditional expression corresponding to the equation (if any) to be
fully applied. If the function f is one of the functions being defined in a mutual
recursive definition, then f should only occur fully applied in the right-hand
side of any of the equations and in any of the conditional expressions within the
mutual recursive definition.

A functional programmer could have the idea of replacing the occurrence of
f with its η-expansion:

f (S n) = (iter (\x -> (f x)) n n) + 1

In this way the occurrence of f is applied to the variable x, thus satisfying the
restriction. However, since the variable is bound inside the right-hand side of
the equation, the constructor of fAcc would have to require that every possible
value of the variable x satisfies fAcc:

f accs ∈ (n ∈ N;H ∈ (x ∈ N)fAcc(x))fAcc(s(n))

This clearly makes it impossible to prove fAcc(s(n)), since we would first need
to prove the totality of fAcc to deduce it. In section 7, we will further discuss
the treatment of λ-abstractions in the right-hand side of recursive equations.

Another restriction is that each function definition should be self-standing,
by which we mean that it should not call other previously defined functions
unless they are structurally recursive. If f is a general recursive function, it
should be translated in type theory as a pair consisting of a predicate fAcc and

10

a function f. Then, we cannot call it inside the definition of another function
g. This restriction is imposed by type-checking requirements and it will become
clearer below. If, instead, f is structurally recursive, it can be directly translated
in type theory as a structurally recursive function f, without the need of our
auxiliary predicate fAcc. In this case, the use of f inside the definition of another
function g is allowed, as it has been seen throughout this section.

We illustrate the reason for this restriction with the following example.

nub_map :: (N -> N) -> [N] -> [N]
nub_map f [] = []
nub_map f (x:xs) = f x : nub_map f (filter (/= x) xs)

f :: N -> N
f O = O
f (S n) = f (S (S n))

g :: [N] -> [N]
g xs = nub_map f xs

where /= is the inequality operator in Haskell.
When we apply our method to each of the functions in this program, we first

get the translation of nub_map:

nub mapAcc ∈ (f ∈ (N)N ; l ∈ List(N))Set
nub map ∈ (f ∈ (N)N; l ∈ List(N); nub mapAcc(f, l))List(N)

Similarly, the partial function f is translates as:

fAcc ∈ (m ∈ N)Set
f ∈ (m ∈ N; fAcc(m))N

The problem arises when we try to translate g. The translation should be given
by a predicate and a function with the following types:

gAcc ∈ (l ∈ List(N))Set
g ∈ (l ∈ List(N); gAcc(l))List(N)

Even though g is not recursive (it does not call itself), it inherits a termination
condition from nub_map. Thus, we have to translate g with a predicate gAcc and
a function g. The difficulty now consists in how to formulate the constructors of
gAcc and the equations that define g. The problem here is that the translation
of the term (nub_map f xs) would not type-check because f does not have the
type (N)N anymore.

For this reason, we require that the only previously defined functions allowed
in a new function definition are the structurally recursive ones. In reality, this
condition could be relaxed by allowing any function that can be proved total in
type theory. As we have seen in the formalisation of the quicksort algorithm,
we can sometimes define a total function that does not depend on the special

11

accessibility predicate anymore, even when the algorithm is a general recursive
one. The function QuickSort is an example of such a function. It would be safe
to also allow these functions inside the definition of other functions. Then, the
class of functions to which our method would apply would depend on what we
can prove in type theory. To keep the definition of this class of functions simple,
we choose not to follow this path. Although this is a severe restriction, we show
in section 5 that the class of functions that we consider still allows us to define
all recursive functions.

One might think that a possible way around this problem could be to define
nub_map, f, and g as mutually dependent functions. However, this does not
work for this particular example because we would fall into the first restriction.
The function f is one of the functions being defined and the occurrence of f
inside g is not fully applied and thus disallowed.

A solution to the problem stated above can be given if we adopt an impred-
icative type system. Using impredicativity, we can define the type of partial
functions from α to β by making the domain predicate part of the object:

α ⇀ β ≡ Σ P ∈ (α)Set.(x ∈ α;P (x))β

Thus, an object of type α ⇀ β is a pair 〈P, f〉 consisting of a predicate P over
α and a function f defined over the elements of α that satisfy the predicate. To
be precise, we should also require, as a third component, a proof that f does
not depend on its second argument, that is, a proof that f(x, h1) = f(x, h2)
for x in α and any two proofs h1 and h2 of P (x). For the sake of simplicity,
we leave this third component out since it is not necessary in the definition of
the translation, but just to guarantee that the function does not depend on the
proof of the predicate.

Having defined the type of partial functions, we can translate functional pro-
grams into type theory by consistently interpreting any functional type A -> B
as α ⇀ β, where α and β are the interpretation of A and B, respectively. Then,
the function nub_map becomes:

nub mapAcc ∈ (p ∈ (N ⇀ N)× List(N))Set
nub map ∈ (p ∈ (N ⇀ N)× List(N); nub mapAcc(p))List(N)

NubMap ∈ (N ⇀ N)× List(N) ⇀ List(N)
NubMap = 〈nub mapAcc, nub map〉

The function f is translated as above, except that now we can eventually pack
its special accessibility predicate and its structural function definition into one
object of a partial function type:

fAcc ∈ (m ∈ N)Set
f ∈ (m ∈ N; fAcc(m))N

F ∈ N ⇀ N
F = 〈fAcc, f〉

12

Finally, we are able to give a translation for g:

gAcc ∈ (N)Set
g acc ∈ (l ∈ List(N); nub mapAcc(〈F, l〉))gAcc(l)

g ∈ (l ∈ N; gAcc(l))List(N)
g(l, g acc(l, h)) = nub map(〈F, l〉, h)

G ∈ List(N) ⇀ List(N)
G = 〈gAcc, g〉

Since in this work we use predicative type theory, we want to avoid such
impredicative definitions. This is the reason why we decide to restrict the use
of general recursive functions inside other function definitions.

4 General Recursive Definitions

We specify the class FP of functional programs that we consider. It is a subclass
of the class of functions that can be defined in any functional programming
language, like Haskell, ML or Clean.

In the previous section we explained that we must impose some restrictions
on this subclass. Here, we formalise these restrictions, namely, we require that
all recursive calls in a recursive definition are fully applied and that only struc-
tural recursive functions can be used inside the definition of a function.

4.1 The Class of Types

First of all, let us characterise the class of types that can appear in a program.
These may be basic types, that are either variable types or inductive data types,
or function types.

Let us assume that we have an infinite set of type variables T V. The class
of types that are allowed in our programs are inductively defined by:

• All elements of T V are types.

• Inductive data types are types. An inductive data type is introduced by
a definition of the form

Inductive T ::= c1 τ11 . . . τ1k1 |
...

co τo1 · · · τoko

where 0 6 o and 0 6 ki for 0 6 i 6 o. Here, if we consider T as a type
variable, then every τ is a type with the extra condition that T occurs only
strictly positively in it. This means that in every τ , the type T can only
occur to the right of arrows.

13

• If σ and τ are types, then σ → τ is a type.

In what follows, σ and τ denote types.
With each type σ, we associate an infinite set of variables. For simplicity, we

assume that the sets of variables associated with two different types are disjoint.
Besides types, we also use programs specifications of the form

σ1, . . . , σm ⇒ τ

If e has the above specification, it must be interpreted as follows: e is an ex-
pression that, when applied to arguments a1 : σ1, . . . , am : σm, produces a term
e(a1, . . . , am) of type τ . The expression e itself is not a term of any type; in
particular, it is not an element of the functional type σ1 → · · · → σm → τ . We
introduce specifications to be able to formalise the requirement, explained in the
previous section, that a function must be fully applied to be allowed to appear
in the right-hand side of any of the equations within the block that defines the
function. As we explain below, we also use specifications to force constructors
to be fully applied.

In what follows, we write a : A to denote that a is an expression of type A
or that a has the specification A.

Given a : σ, the reader should keep in mind the difference between f(a),
that denotes the application of a function with specification f : σ ⇒ τ to a, and
(f a), that denotes the application of a function f of type f : σ → τ to a.

The definition of the inductive data type above introduces not only the new
type T but also its constructors:

ci : τi1, . . . , τiki
⇒ T

Hence, we are not allowed to use ci applied only to a few of its arguments. This
is why we do not directly give to ci the type τi1 → · · · → τiki → T.

As examples, we show how to define some of the most common inductive
data types. The types of boolean values and of natural numbers are defined as

Inductive Bool ::= true | false and Inductive Nat ::= 0 | s Nat,

respectively.
Type variables can appear in an inductive data type definition. Then, we

have a parametric data type. Usually, the type variables are written explicitly
in the left-hand side of the definition:

Inductive T γ1 · · · γw ::= c1 τ11 · · · τ1k1 |
...

co τo1 · · · τoko

where γ1, . . . , γw are type variables, for 1 6 w. Here, every occurrence of T in
the τ ’s must be of the form (T γ1 · · · γw).

To instantiate the above definition, we simply write (T σ1 · · · σw) for specific
types σ1, . . . , σw. This expression denotes the type obtained by substituting
each γg by σg in the definition of T, for 1 6 g 6 w.

14

Let γ and δ be type variables. A typical example of a parametric data type
is the type of lists, defined as

Inductive List γ ::= nil | cons γ (List γ).

Product and sum types can also be seen as parametric data types. Here, we
write the type constructors × and + with infix notation:

Inductive γ × δ ::= pair γ δ and Inductive γ + δ := inl γ | inr δ.

We can directly translate any of the types that can occur in a functional
program into type theory. The equivalent type-theoretic definitions are almost
the same, except for a change in notation.

4.2 Terms and Patterns

Functional programs are defined by pattern matching. In addition, each function
is defined by a sequence of recursive equations. Here, we formally define patterns
and the terms that are allowed in the equations.

Definition 1. Let T be a type. A pattern of type T is an expression build up
according to the following two rules.

• A variable of type T is a pattern of type T.

• If T is an inductive type, c : τ1, . . . , τk ⇒ T is one of its constructors and
p′1, . . . , p′k are patterns of type τ1, . . . , τk, respectively, then c(p′1, . . . , p

′
k)

is a pattern of type T.

Variables occurring in a pattern are called pattern variables. A pattern is linear
if every pattern variable occurs only once in the pattern.

We consider here only linear patterns, since this restriction is present in some
functional programming languages. Usually, we say just pattern when we refer
to linear pattern.

Definition 2. A sequence of patterns p1, . . . , pm of type T is said to be exclu-
sive if it is not possible to obtain the same term by instantiating two different
patterns, that is, by substituting their pattern variables by other terms.

The sequence is called exhaustive if every term in normal form of type T is
an instance of at least one of the patterns.

Now, we define the terms that are allowed in a recursive definition. These
terms depend on three parameters: the variables that can occur free in the
term, the functions being defined, which can be used in the recursive calls,
and the previously defined functions that we allow within a definition. Let us

15

assume that we have a class F of functions together with their type such that
every element f : σ1 → · · · → σm → τ in F can be translated into type theory
with the same functional type. In what follows, we assume that F contains
all structurally recursive functions. As we have already mention, it is possible
to extend F to a larger class of functions by adding all the functions that
can be proved total in type theory. As we can consider the class F to be fix,
below we give the definition of the terms that we allow in a recursive definition
considering only as parameters the variables that can occur free in the term and
the functions being defined. Let X be the set of variables together with their
type that can occur free in a term. The idea is that, when defining an equation,
this set only contains the pattern variables of the equation together with their
corresponding type. Let SF be the set of specifications of the functions being
defined. When defining a single function, SF contains only one specification.
When defining several functions within a mutual recursive block, SF contains
one specification for each of the functions being mutually defined. Formally, we
define terms as follows.

Definition 3. Let X be a set of variables together with their type. Let SF
be a set of functions specifications, that is, every element of SF is of the form
f : σ1, . . . , σm ⇒ τ . Let the set of names of the variables in X , the set of names
of the functions in SF and the set of names of the functions in F be disjoint.
The class of valid terms with respect to X and SF is build up according to the
rules below. When the sets of variables and of function specifications remain
the same, we simply refer to the terms in the class as valid terms.

• The variables in X are valid terms of the corresponding type.

• The functions in F are valid terms of the corresponding type.

• If f : σ1, . . . , σm ⇒ τ is an element of SF and if a1, . . . , am are valid terms
of type σ1, . . . , σm, respectively, then f(a1, . . . , am) is a valid term of type
τ .

• If c : τ1, . . . , τk ⇒ T is one of the constructors of the inductive data type T
and if a1 : τ1, . . . , ak : τk are valid terms, then c(a1, . . . , ak) : T is a valid
term.

• If x : σ is a variable and b : τ is a valid term with respect to (X , x : σ) and
SF , that is, x may occur free in b, then [x]b : σ → τ is a valid term.

• If f : σ → τ and a : σ are valid terms, then (f a) : τ is a valid term.

• Let t be a valid term of an inductive data type T. Let 0 6 v and 0 6 s 6 v.
Let p1, . . . , pv be exclusive patterns of type T and let Ys be the set of
pattern variables in ps together with their type. Finally, let e1, . . . , ev

be valid terms of type τ with respect to (X ,Y1), . . . , (X ,Yv),respectively,

16

and SF . Then, a case expressions on t is a valid term of the form

Cases t of

p1 7→ e1

...
pv 7→ ev

and it has type τ .

Notice that we do not require the patterns in a case expression to be ex-
haustive. This is to be consistent with the fact that we allow partiality in the
definitions. We could also drop the requirement that the patterns should be
exclusive and just say that, in a case expression, the first matching pattern is
used, which is usually done in functional programming. However, this makes
the semantics of case expressions depend on the order of the branches in the
case and it complicates their interpretation in type theory. Requiring that the
patterns are mutually exclusive does not seriously limit the expressiveness of
the definitions.

The computation rules for terms are the usual ones. For a β-redex ([x]b a)
we have the β-reduction rule ([x]b a) ; b[x := a].

The computation behaviour of recursive calls is given in the next subsection.
Cases expressions are computed by pattern-matching. Let us assume that

the expression t : T is an instance of the pattern ps. In other words, t =
ps[y := a], by which we mean the simultaneous substitution of all pattern vari-
ables y by terms a, that is, [y1 := a1, y2 := a2, . . .]. Then, we have the following
computation rule for case expressions:

Cases t of

p1 7→ e1

...
pv 7→ ev

; es[y := a]

A special kind of case expression occurs when we consider cases over the type
of booleans. Since this is a particularly common instance, some programming
languages use the notation

if b then e1 else e2 for Cases b of

{
true 7→ e1

false 7→ e2.

4.3 Fixed Point Function Definition

We define the class FP of recursive functions that we want to translate into type
theory. These functions are given by simple or mutual fixed point equations
satisfying some conditions. The general form of a simple recursive definition is

fix f : σ1, . . . , σm ⇒ τ
f p11 · · · p1m = e1

...
f pl1 · · · plm = el

17

where p1u, . . . , plu are patterns of type σu, for 0 6 u 6 m. We call a sequence of
patterns p1 · · · pm of type σ1, . . . , σm, respectively, a multipattern for f. Usually,
we just say pattern when referring to multipattern, if there is no confusion. We
extend the notions of linearness, exclusiveness and exhaustiveness from patterns
to multipatterns in the normal way. The multipatterns that appear in the
definition of a function f must be linear and mutually exclusive.

Let 1 6 i 6 l and let Yi be the set of pattern variables that occurs in the
ith equation together with their types. The right-hand sides of the equations
on the definition of f, that is, e1, . . . , el, are valid terms of type τ with respect
to Y1, . . . ,Yl, respectively, and {f : σ1, . . . , σm ⇒ τ}. Hence, each ei can con-
tain subterms of the form f(a1, . . . , am), where a1, . . . , am are terms of type
σ1, . . . , σm, respectively. Each au can, in turn, contain occurrences of f, giving
rise to nested recursive definitions, for 1 6 u 6 m.

The computation rules for f are given by the different equations in its def-
inition. If we want to compute the expression f(a1, . . . , am), we first have to
find a pattern p1 · · · pm in the left-hand side of one of the equations defining f
that matches the sequence a1 · · · am. Let f p1 · · · pm = e be the corresponding
equation. As p1 · · · pm matches a1 · · · am, let b be the sequence of terms that
instantiate the pattern variables y. Then, we have the following computation
rule

f(a1, . . . , am) ; e[y := b].

If, on the contrary, there is no pattern that matches the sequence a1 · · · am,
then the function f is undefined on that sequence.

Let us give some examples of recursive functions defined in this way.
The Fibonacci function is defined as

fix fib : Nat⇒ Nat
fib 0 = s(0)
fib s(0) = s(0)
fib s(s(n)) = (+ fib(n) fib(s(n))).

where +: Nat→ Nat→ Nat is one of the function defined in the class F .
The concatenation of lists is defined as

fix concat : List γ, List γ ⇒ List γ
concat nil l2 = l2
concat cons(b, l1) l2 = cons(b, concat(l1, l2))

Since this function is actually defined by pattern matching only on the first
argument, it can also be defined as

fix concat : List γ ⇒ List γ → List γ
concat nil = [l2] l2
concat cons(b, l1) = [l2]cons(b, concat(l1, l2))

We will see in section 6 that this definition is preferable when we translate this
particular function into type theory. In general, it is better to put to the left of
the symbol ⇒ only the arguments that play an actual role in the recursion.

18

The class of functions FP contains also mutually recursive definitions. The
general form for defining n mutually recursive functions is as follows:

mutual fix f1 : σ11, . . . , σ1m1 ⇒ τ1

f1 p111 . . . p11m1 = e11

...
f1 p1l11 . . . p1l1m1 = e1l1

...

fn : σn1, . . . , σnmn
⇒ τn

fn pn11 . . . pn1mn
= en1

...
fn pnln1 . . . pnlnmn

= enln

and defines n functions f1, . . . , fn at the same time. Let Yji be the set of
pattern variables together with their type that occurs in the ith equation of the
jth function, for 1 6 j 6 n and 1 6 i 6 lj , and let SF be the set that contains
the specification of the functions f1, . . . , fn. Then, each right-hand side eji must
be a valid term of type τj with respect to Yji and SF . That is, each function
fj may only occur fully applied on the right-hand side of any of the equations.

The computation rules for f1, . . . , fn are defined as before. The difference is
that now, we have to find the pattern within the definition of the function that
we want to compute.

4.4 Conditional equations

In functional programming, conditional expressions are allowed within fixed
point equations. That is, equations of the following form are allowed:

f p1 · · · pm =

e1 if c1

...
er if cr

If Y is the set of pattern variables of the equation together with their types,
then the conditions c1, . . . , cr are valid terms of boolean type with respect to
Y and {f : σ1, . . . , σm ⇒ τ}. Also in this case, we will require that the boolean
expressions are exclusive. This is really not a strong restriction since we could
define c′1 ≡ c1 and, for 2 6 s 6 r, c′s ≡ cs ∧ ¬cs−1 ∧· · ·∧ ¬c1, and then replace
the above equation with a similar one that uses the conditional expressions c′

instead, where ∧ and ¬ are the boolean operators for conjunction and negation,
respectively.

The computation rule associated with a conditional expression consists sim-
ply in reducing the application of the function to the branch corresponding

19

to the only true condition, if any. If, for a sequence of arguments instantiat-
ing the patterns, none of the conditional expressions evaluates to true, then
f is undefined on that sequence. If a1 · · · am is a sequence of arguments for f
that matches the pattern p1 · · · pm, that is, a = p[y := b], and if the condition
cs[y := b] evaluates to true, then we have the following computation rule

f(a1, . . . , am) ; es[y := b].

We end this section with the observation that a conditional equation as above
can be seen as r equations of the form

f p1 · · · pm = e1 if c1

...
f p1 · · · pm = er if cr

since for a sequence of arguments a1 · · · am matching the pattern p1 · · · pm,
at most one of the conditions c1, . . . , cr evaluates to true. Hence, only one
equation can be used to compute f(a1, . . . , am).

5 Turing Completeness

We prove that the class FP of functional programs allows the definition of
all partial recursive functions. This is not immediately clear, because of the
restrictions that we have imposed on the recursive definitions. In particular,
we do not have a general fixed point operator, that is, given any functional
F : (σ → τ) → σ → τ , we cannot directly define a fixed point for it in our
formalism. The tentative definition

fix f : σ ⇒ τ
f a = F f a

is not correct, since the function f appears in the right-hand side of the above
equation without being applied to an argument.

On the other hand, the alternative definition

fix f : ⇒ σ → τ
f = F f

is a valid recursive definition in our formalism, but it does not define the desired
function since, according to the explanation that we give at the end of section 7,
it does not actually define anything because the object f, which is being defined,
has the specification f : ⇒ σ → τ and occurs in the right-hand side of its own
definition.

Therefore, the fixed point can be defined only when F f can be unfolded
into an expression where f occurs only fully applied.

To show that every recursive function can be defined, we exploit Kleene
normal form theorem (see for example, Theorem 10.1 in [BM77] or Theorem
1.5.6 in [Phi92]):

20

Theorem 1. [Kleene normal form] There exist primitive recursive predicates
T : Nn+2 → N for every natural number n, and a primitive recursive function
U : N → N such that, for every partial recursive function f : Nn →⊥ N there
exists a natural number ef such that

f x = U(µy.T (ef , x, y))

where µ is the minimisation operator.

Since both T and U are primitive recursive functions, they can be pro-
grammed in a functional programming language by structurally recursive algo-
rithms. Therefore, there are programs T : Natn+2 → Bool and U : Nat→ Nat in
the class F , that we can use inside the recursive definition of f .

In [BC01], we have already used our method to translate the minimisation
function in type theory. That formalisation contained a λ-abstraction in the
right-hand side. As we show in section 7, the occurrence of λ-abstractions in
the right-hand side of equations might cause problems in the translation, so
here we give a slightly different formulation that avoids a λ-abstraction in the
right-hand side of the definition. Since only elements of F and recursive calls
can occur inside a recursive definition, we cannot directly use the minimisation
function in the definition of f. Instead, we define a specific minimisation function
and f within a mutual recursive definition. This minimisation function does not
really depend on f, but the use of a mutual recursive definition is a trick to be
able to use minimisation inside the definition of f.

mutual fix minf : Natn, Nat⇒ Nat

minf x y =
{

y if (T ef x y)
minf(x, s(y)) if ¬(T ef x y)

f : Natn ⇒ Nat
f x = (U minf(x, 0))

where ¬ is the boolean negation.
This definition shows that every function definable by a Kleene normal form

can be implemented in our system.

Theorem 2. Every (partial) recursive function is definable in FP.

6 Translation into Type Theory

We give a formal presentation of how to translate a general recursive definition
in type theory. The translation applies to the class of functions FP defined in
section 4.

We assume that the user is familiar with constructive type theory and knows
how to translate types and expressions from functional programming into their

21

type-theoretic equivalents. All types in functional programming have a corre-
sponding type defined in type theory in the same way, except for the difference
in notation. Structurally recursive functions, that is, the elements of the class
F , can also be directly translated in type theory with the corresponding types.
If A is a type or an expression in functional programming, we denote its corre-
sponding translation into type theory by Â.

Let f be a general recursive function in FP. Thus, f has the specification

f : σ1, . . . , σm ⇒ τ

and is defined by a sequence of recursive equations. There are two possible kind
of equations, with or without conditionals. They have the following shapes,
respectively:

f p1 · · · pm = e f p1 · · · pm = e if c (∗)

Notice that the equation on the left is a special case of the equation on the
right, where the condition c is constantly true. For this reason, we only consider
conditional equations in the rest of this section.

Let σ̂1, . . . , σ̂m, and τ̂ be the type-theoretic translation of σ1, . . . , σm, and
τ , respectively. To translate f into type theory, we define a special-purpose
accessibility predicate fAcc and the type-theoretic version of f, which we call f
and that has the predicate fAcc as part of its domain. These two components
have the following types:

fAcc ∈ (x1 ∈ σ̂1; . . . ;xm ∈ σ̂m)Set
f ∈ (x1 ∈ σ̂1; . . . ;xm ∈ σ̂m;h ∈ fAcc(x1, . . . , xm))τ̂ (∗′)

The function f is defined by structural recursion on the argument h. Hence, we
have one equation in f for each constructor of fAcc.

If the function f is defined by nested recursion, we should define fAcc and
f simultaneously using Dybjer’s schema for simultaneous inductive-recursive
definitions [Dyb00]. Otherwise, we first define fAcc and then use that predicate
to define f.

Let us start by discussing how to define the predicate fAcc. This predicate
has at least one constructor for each of the equations in the definition of the
function f. The number of constructors associated with each equation depends
on the structure of the expressions c and e in the equation. All constructors
associated with the equation (∗) produce a proof of fAcc(p̂1, . . . , p̂m), where p̂u

is the straightforward translation2 of pu, for 1 6 u 6 m. The type of each
of the constructors associated with the equation (∗) depends on the structure
and on the recursive calls that occur in c and in e. The fact that at most one
equation can be used for the computation of f(a1, . . . , am), with au : σu, and
the way we break down the structure of c and e to establish the type of each

2As we will see later when we formally define the translation of an expression, patterns are
translated in a straightforward way.

22

constructor, guarantees that at most one constructor can be used to build a
proof of fAcc(â1, . . . , âm), where each âu is the type-theoretic translation of au.

Case expressions are the only kind of expressions that might impose the
need of several constructors associated with an equation. The reason is that
each branch of a case expression needs to be treated separately since it con-
tributes to the type of the corresponding constructor in a different way. Case
expressions may occur anywhere within a term; there may be case expressions
inside a conditional expression, a λ−abstraction, a function application, a con-
structor application, or even inside other case expressions, which implies that
any expression might impose the need of several constructors associated with
an equation.

However, not all case expressions introduce several constructors. Some case
expressions, that we call safe, can be directly translated into type theory as
case expressions. Safe case expressions are such that none of their branches
introduce partiality, hence they can be straightforwardly translated into type
theory without further analysis. The expression on which we perform case
analysis might still introduce partiality. An example of a safe case expression is
the following:

Cases f(n) of

 0 7→ 0

s(m) 7→ Cases xs of

{
nil 7→ s(0)
cons(y, ys) 7→ n + y

where f : Nat ⇒ Nat is the function being defined, n is a natural number and
xs is a list, and m, y and ys are fresh variables of the corresponding types.

First of all, let us explain the general idea of the translation. We associate a
series of constructors for fAcc and a corresponding series of equations for f with
each equation in the definition of f. The most important part of the translation
is the definition of the types of the constructors fAcc. For that purpose, we
analyse the structure of the conditional expression c and of the right-hand side
e of the equation and, from them, we construct a context of assumptions for the
different constructors of the predicate.

We start with the context Γ comprising the variables introduced in the pat-
ters p1, . . . , pm of the equation; each variable is assumed with type σ̂ if σ is
its type in functional programming. Then, we associate classes of context ex-
tensions Φc and Θe with the boolean expression c and with the defining term
e, respectively. Putting these contexts together we get a context Γ;Φc; Θe com-
prising all the assumptions needed for the corresponding constructor of fAcc.
The extension Φc is such that the context Γ;Φc contains assumptions sufficient
to make the condition c meaningful. Together with Φc, we get a translation ĉ
of the condition.

This leads us to the final definition of the type for the corresponding con-
structor of the predicate fAcc:

f accc,e ∈ (Γ;Φc; q ∈ ĉ = true; Θe)fAcc(p̂1, . . . , p̂m).

where = is the propositional identity in type theory and true is the type-theoretic
boolean value true.

23

Simultaneously with the definition of the context extension Θe, we also get
a translation ê of the term e itself. Then, the equation of f associated with the
constructor f accc,e becomes

f(p̂1, . . . , p̂m, f accc,e(x, y, q, z)) = ê

where x is the sequence of variables assumed in Γ, y is the sequence of variables
assumed in Φc, q is a variable of type (ĉ = true), and z is the sequence of
variables assumed in Θe.

A single equation may be associated with several constructors of the ac-
cessibility predicate and, consequently, with several equations of the translated
function. So, we associate a sequence Pc(Γ) of pairs 〈Φc, ĉ〉 of context extensions
Φc and boolean terms ĉ in type theory with the boolean term c. Similarly, we
associate a sequence Pe(Γ) of pairs 〈Θe, ê〉 with the term e. The definition of
P (Γ) is the same for the conditional expression c and for the term e, so we treat
them together in the sequel.

In what follows, given an expression a, we write the sequence of pairs in
Pa(Γ) between {,}, that is, we write Pa(Γ) ≡ {· · · } when defining Pa(Γ). In
addition, 〈Φa, ta〉 denotes a generic element of Pa(Γ) and #Pa denotes the
number of elements in Pa(Γ).

Sometimes a subterm of a contains bound variables with the same name as
the variables in Γ. The definition of Pa(Γ) may require that those variables
are introduced in the context extension. To avoid naming conflicts we assume,
without always explicitly saying it, that those variables are renamed with a fresh
name before being introduced in the context. The need of the renaming of the
variables becomes clear if we consider the following equation:

f x = Cases x of

{
0 7→ e0
s(x) 7→ es

This equation presents no problem in functional programming. Any occurrence
of the variable x in es is bound by the variable x in the pattern s(x), hence it
does not refer to the variable x that occurs in the left-hand side of the equation.
Thus, the binding s(x) shadows the variable x in the left-hand side of the
equation inside the expression es. However, we need to be able to refer to both
variables x in type theory. As it will become clear below, we might need to
add (x = s(x)) to the assumptions of one of the pairs in the definition of Pa(Γ).
While the type (x = s(x)) is empty, the type (x = s(y)) might not be, for y a
fresh variable name of the corresponding type.

We define Pa(Γ) by recursion on the structure of the term a. If 〈Φ, t〉 ∈
Pa(Γ), then the term t can be seen as the translation â of a under the assump-
tions in Γ;Φ. The reader can verify that if σa is the type of a in functional
programming, then σ̂a is the type of t in the context Γ; Φ.

a ≡ z: If the expression a is a variable, then Pa(Γ) ≡ {〈 , z〉}.

e ≡ c(a1, . . . , ao): Here, 0 6 o. First, we determine Pa1(Γ), . . . ,Pao
(Γ) by struc-

tural recursion and then, we combine these sequences into the definition

24

of Pa(Γ). For each 〈Φa1 , ta1〉 in Pa1(Γ), . . . , 〈Φao , tao〉 in Pao(Γ), we add
the pair 〈Φa1 ; . . . ; Φao

, c(ta1 , . . . , tao
)〉 to Pa(Γ), where c ≡ ĉ. That is, we

add a pair to Pa(Γ) for each of the possible combinations of the elements
in Pa1(Γ), . . . ,Pao

(Γ). Formally, we have

Pa(Γ) ≡ {〈Φa1 ; . . . ; Φao , c(ta1 , . . . , tao)〉 |
〈Φa1 , ta1〉 ∈ Pa1(Γ), . . . , 〈Φao

, tao
〉 ∈ Pao

(Γ)}.

a ≡ f(a1, . . . , am): Again, we first determine Pa1(Γ), . . . , Pam
(Γ) by structural

recursion. As before, we combine these sequences into the definition of
Pa(Γ). In addition, we have to add the assumption corresponding to the
recursive call f(a1, . . . , am), stating that the tuple (â1, . . . , âm) satisfies the
predicate fAcc. Remember that f ≡ f̂ and that f takes an extra parameter,
which is a proof that the input values satisfy the predicate fAcc. Hence,
we have that

Pa(Γ) ≡ {〈Φa1 ; . . . ; Φam ;h ∈ fAcc(ta1 , . . . , tam), f(ta1 , . . . , tam , h)〉 |
〈Φa1 , ta1〉 ∈ Pa1(Γ), . . . , 〈Φao

, tao
〉 ∈ Pao

(Γ)}.

a ≡ (a1 a2): This case is treated similarly to the previous two cases.

Pa(Γ) ≡ {〈Φa1 ; Φa2 , ta1(ta2)〉 | 〈Φa1 , ta1〉 ∈ Pa1(Γ), 〈Φa2 , ta2〉 ∈ Pa2(Γ)}.

a ≡ [z]b: Let σ be the type of z. We first calculate Pb(Γ; z ∈ σ̂) recursively.

If Pb(Γ; z ∈ σ̂) = {〈 , tb〉}, that is, if Pb(Γ; z ∈ σ̂) contains only one pair
and the context extension in that pair is empty, then

Pb(Γ) ≡ {〈 , [z] tb〉}.

In other words, in this case, the method does not produce any assumptions,
and the λ-abstraction can be directly translated into type theory.

Otherwise, let Pb(Γ; z ∈ σ̂) = {〈Φb1, tb1〉, . . . , 〈Φb#Pb
, tb#Pb

〉}. To trans-
late this term as a λ-abstraction in type theory, we must impose that the
translation b̂ of the abstracted term b is well-defined for every value of
the variable z. Therefore, the assumption generated by a must be the
universal quantification over z of the all the assumptions for b̂.

Let ΣΦ be the conjunction of all the assumptions in a non-empty context
Φ and let yΦ be the variables in Φ. We define

Pa(Γ) ≡ {〈H ∈ (z ∈ σ̂) ΣΦb1 + . . . + ΣΦb#Pb
, ta〉}

with
ta ≡ [z] Cases H(z) of

in1(〈yΦb1〉) 7→ tb1
...
in#Pb

(〈yΦb#Pb
〉) 7→ tb#Pb

25

If #Pb = 1, then we do not need to construct a disjoint union type and
we just put

Pa(Γ) ≡ {〈H ∈ (z ∈ σ̂) ΣΦb, ta〉}

with
ta ≡ Cases H(z) of

{
〈yΦb

〉 7→ tb.

If, moreover, Φb contains only one assumption, then we do not need to
construct a Σ-type. We can just call yΦb

the variable introduced in the
assumption in Φb, and put

Pb(Γ) ≡ {〈H ∈ (z ∈ σ̂) Φb, ta〉}

with
ta ≡ Cases H(z) of

{
yΦb

7→ tb.

In the examples, we always use the simplest possible version.

a ≡ Cases b of

p1 7→ a1

...
pv 7→ av

: Here, 0 6 v. First, observe that variables, con-

structors and constructor applications are translated into their type-the-
oretic equivalents in a straightforward way. Hence, the translation p̂ of a
pattern p is also straightforward. In addition, notice that if we compute
Pp(Γ) we obtain {〈 , p̂〉}.
If the different branches of the case expression do not contain recur-
sive calls or do not introduce partiality, we can give a straightforward
translation. We call such case expressions safe and we translate them
directly as case expressions in type theory. Formally, a safe case ex-

pression Cases b of

p1 7→ a1

...
pv 7→ av

is such that the patterns p1, . . . , pv

are exclusive and exhaustive and, for each branch in the case expression,
Pas

(Γ) = {〈 , tas
〉}, for 1 6 s 6 v. Notice that, for a case expression to be

safe, there should be no recursive call in any of the expressions a1, . . . , av.

For a safe case expression we define

Pa(Γ) = {〈Φ, ta〉 | 〈Φ, tb〉 ∈ Pb(Γ)}

where

ta = Cases tb of

p̂1 7→ ta1

...
p̂v 7→ tav

If the case expression is not safe, each of the different branches imposes
the need of a different constructor. Let ys be the variables introduced by

26

the pattern ps and let σs be the types of those variables. Let ŷs be a
renaming of the variables in ys by fresh variable names with respect to Γ.
Observe that the renaming of the variables in ys forces the corresponding
renaming in σs, which will be performed together with the translation of
σs into its type-theoretic equivalent σ̂s.

Let us denote (ŷs ∈ σ̂s) by Γs. As we have said before, each branch in
the case expression imposes the need of at least one different constructor.
Notice that each as may impose the need of several constructors, namely
#Pas

. Then, the number of constructors corresponding to the sth branch
is also #Pas

. The constructors associated with the sth branch should
assume the variables introduced in the branch, that is, Γs. In addition, to
ensure that these constructors are used only when we are inside the branch
s, they should also assume qs ∈ b̂ = p̂s, where qs is a fresh variable name for
each s. The expression b might also impose the need of several constructors
and that it might contribute to the type of the constructors. Hence, as
before, we should combine the elements in Pb(Γ) and in Pas(Γ; Γs) in all
possible ways. Now, we determine Pb(Γ),Pa1(Γ; Γ1), . . . , Pav (Γ; Γv) by
structural recursion and then we define

Pa(Γ) ≡ {〈Φb; Γs; qs ∈ (tb = p̂s); Φas
, tas

〉 |
〈Φb, tb〉 ∈ Pb(Γ), 1 ≤ s ≤ v, 〈Φas

, tas
〉 ∈ Pas

(Γ; Γs)}

This completes the definition of Pa(Γ).
Let us now return to the translation of the function f in type theory. To

complete the definitions of fAcc and f, whose types where introduced in (∗′), we
need to give the type of the different constructors of the predicate fAcc and the
different equations that define the function f. We recall that the function f is
defined by (conditional) equations. The shape of each equation that define f is
given in (∗). Let us assume that y is the sequence of pattern variables in the
equation with types τ . Let Γ be (y ∈ τ̂).

Using the definition we presented above, we determine Pc(Γ) and Pe(Γ).
Observe that all the terms tc in the sequence of pairs Pc(Γ) are boolean terms.
To define the constructors of fAcc and the equations that define f, we should
combine in all possible ways the elements in Pc(Γ) and Pe(Γ). Let 〈Φcr, tcr〉
be the rth element of Pc(Γ) and 〈Φel, tel〉 the lth element of Pe(Γ). We re-
call that patterns are straightforwardly translated into type theory. Then, the
corresponding constructor of fAcc is as follows:

faccrl ∈ (Γ;Φcr; qr ∈ tcr = true; Φel)fAcc(p̂1, . . . , p̂m).

If the corresponding equation is a non-conditional equation, then Pc(Γ) is
empty and the assumptions Φcr; qr ∈ tcr = true are not present in the construc-
tor. The presence or not of these premises is the only difference between the
constructors associated with a conditional equation and the constructors associ-
ated with a non-conditional equation. Notice also that in the examples we gave
in section 3, we converted c into a predicate rather than a boolean function.
This is not a problem since we can always define t′cr ≡ tcr = true.

27

The equation in the definition of f that corresponds to the above constructor
is the following:

f(p̂1, . . . , p̂m, faccrl(y, xΦcr
, qr, xΦel

) = tel.

This completes the definition of fAcc and f in type theory.
We have several observations at this point. First, notice that besides the

introduction of the pattern variables of an equation, abstraction, recursive calls,
non-safe case expressions and conditionals are the expressions that contribute to
the type of a constructor. Observe also that if we have two or more syntactically
equal recursive calls in an equation, our method will duplicate the assumptions
corresponding to that call. This problem can be easily eliminated if we add
an assumption corresponding to a recursive call into a sequence of assumptions
only when that assumption has not yet been added to the sequence. This is
what we have done in the examples we presented in section 3. The number of
constructors associated with an equation is strongly related to the structure of
the expressions in the equation, in particular to the case expressions and the
λ−abstractions that are present in the equation. The user should keep this
in mind when choosing the definition of a function. Finally, observe that the
choice of where to put the symbol ⇒ within the specification of the type of a
function f makes a difference in its translation, since it determines the type of
the corresponding fAcc.

Let us now analyse what actually happens when we translate a general recur-
sive algorithm. Hence, let us consider one of the equations that define a general
recursive function f. For the sake of generality, let us assume that we have
nested recursive calls in the equation. For the sake of simplicity, let us assume
that the equation is a non-conditional equation with no case expressions in the
right-hand side. Finally, let us assume here that there are no recursive calls to
f inside a λ−abstraction in the right-hand side of the equation. We consider
that case later. Hence, we have an equation of the following form

f p1 · · · pm = · · · f(a1, . . . , f(a′1, . . . , a
′
m), . . . , am) · · ·

Let us call ef its right-hand side. As there are no case expressions in the equa-
tion, for any subexpression a of ef, Pa has only one element. In order to calculate
Pef(Γ), we first have to calculate Pf(a′1,...,a′m)(Γ)

Pf(a′1,...,a′m)(Γ) ≡ {〈Φa′1
; . . . ; Φa′m

;h ∈ fAcc(â′1, . . . , â′m), f(â′1, . . . , â′m, h)〉}

Hence, ̂f(a′1, . . . , a′m) is defined as f(â′1, . . . , â′m, h). Now, we calculate

Pf(a1,...,f(a′1,...,a′m),...,am)(Γ) ≡
{ 〈Φa1 ; . . . ; Φa′1

; . . . ; Φa′m
;h ∈ fAcc(â′1, . . . , â′m); . . . ; Φam

;
h′ ∈ fAcc(â1, . . . , f(â′1, . . . , â′m, h), . . . , âm),
f(â1, . . . , f(â′1, . . . , â′m, h), . . . , âm, h′) 〉 }

Thus, the translation of f(a1, . . . , f(a′1, . . . , a
′
m), . . . , am) is defined as the term

f(â1, . . . , f(â′1, . . . , â′m, h), . . . , âm, h′).

28

The constructor associated with the equation is

facc ∈ (Γ; . . . ; Φa1 ; . . . ; Φa′1
; . . . ; Φa′m ;h ∈ fAcc(â′1, . . . , â′m); . . . ; Φam ;

h′ ∈ fAcc(â1, . . . , f(â′1, . . . , â′m, h), . . . , âm); . . .
)fAcc(p̂1, . . . , p̂m)

and the corresponding equation in the definition of f would be

f(p̂1, . . . , p̂m, facc(. . . , h, . . . , h′, . . .)) =
· · · f(â1, . . . , f(â′1, . . . , â′m, h), . . . , âm, h′) · · ·

Observe that the recursive calls to the function f are structurally smaller on
the proof that the corresponding values satisfy the predicate fAcc. Notice that
we have the same property even if there are no nested recursive calls. Hence,
a general recursive definition is translated into type theory as a structurally
smaller recursive definition.

Now, let us consider an equation with a λ−abstraction in the right-hand side
and a recursive call to f inside the λ−abstraction. We have then an equation
of the form

f p1 · · · pm = · · · [z](· · · f(a1, . . . , am) · · ·) · · ·

Let us call eλ the expression (· · · f(a1, . . . , am) · · ·). Here, we first need to
compute P[z]eλ

(Γ). If σ is the type of z, we have that

P[z]eλ(Γ) ≡ {〈H ∈ (z ∈ σ̂) ΣΦeλ1 + . . . + ΣΦeλ#Peλ
, [̂z]eλ〉}

where

[̂z]eλ ≡ [z] Cases H(z) of

in1(〈yΦeλ1
〉) 7→ teλ1

...
ins(. . . , h, . . .) 7→ · · · f(â1, . . . , âm, h) · · ·

...
in#Peλ

(〈yΦeλ#Peλ
〉) 7→ teλ#Peλ

Here, 1 6 s 6 #Peλ
, h ∈ fAcc(â1, . . . , âm) and teλs

is the translation of the
part of eλ where the recursive call actually occurs. The context extension Φeλs

contains the assumption fAcc(â1, . . . , âm). There can, of course, be recursive
calls in any of the others teλk

, with 1 6 k 6 #Peλ
.

The constructor associated with the equation is

facc ∈ (Γ; . . . ;H ∈ (z ∈ σ̂) ΣΦeλ1 + . . . + ΣΦeλ#Peλ
; . . .)fAcc(p̂1, . . . , p̂m)

and the corresponding equation in the definition of f would be

f(p̂1, . . . , p̂m, facc(. . . , H, . . .)) = · · · [̂z]eλ · · ·

Although it is less obvious here, the recursive calls to the function f are,
also in this case, structurally smaller on the proof that the corresponding values

29

satisfy the predicate fAcc. To convince ourselves of this, let us analyse the term
[̂z]eλ. Observe that all the pattern variables in yΦeλk

are structurally smaller
than H(z). In addition, the term H(z) is considered structurally smaller than
the term H. Hence, the variable h in the sth branch of the case expression is a
term structurally smaller than H.

If, instead of a single function, we face the mutual definition of n functions

mutual fix f1 : σ11, . . . , σ1m1 ⇒ τ1

...
fn : σn1, . . . , σnmn

⇒ τn

...

then, we need to define n special-purpose accessibility predicates and n type-
theoretic functions with the following types:

fAcc1 ∈ (x11 ∈ σ̂11; . . . ;x1m1 ∈ σ̂1m1)Set
...

fAccn ∈ (xn1 ∈ σ̂n1; . . . ;xnmn ∈ σ̂nmn)Set

f1 ∈ (x11 ∈ σ̂11; . . . ;x1m1 ∈ σ̂1m1 ;h1 ∈ fAcc(x11, . . . , x1m1))τ̂1

...
fn ∈ (xn1 ∈ σ̂n1; . . . ;xnmn

∈ σ̂nmn
;hn ∈ fAcc(xn1, . . . , xnmn

))τ̂n

Similarly to what happens in the translation of a single function definition, if a
function fj is defined by nested recursion, for 1 6 j 6 n, we should define the
fAcc’s and the f’s simultaneously. Otherwise, we first define the fAcc’s and we
then use those predicates to define the f’s.

Each special-purpose accessibility predicate fAccj and each function fj is de-
fined as for a single function. Observe that now, the case in the definition of
Pa(Γ) that deals with recursive calls should consider the recursive calls to any
of the n functions. Each recursive call is translated as in the definition of Pa(Γ).

7 Lazy, Strict and Totally Strict Semantics

We must be careful to state in what sense our type-theoretic translation of a
functional program is equivalent to the original one. Given a program f in FP,
our general method produces a pair consisting of a predicate fAcc and a function
f that takes a proof that the input values satisfy the predicate as extra argument.
For a program with type, for example, f : σ ⇒ τ , we obtain fAcc ∈ (σ̂)Set and
f ∈ (x ∈ σ̂;h ∈ fAcc(x))τ̂ in type theory, where σ̂ and τ̂ are the type-theoretic
translation of σ and τ , respectively. Then, we would like to state:

The program f terminates on the input x if and only if fAcc(x)
is provable. Moreover, if h ∈ fAcc(x) the output produced by the
computation of f(x) is f(x, h).

30

Unfortunately, this conjecture is not always true for lazy computational mod-
els. When evaluating an expression, a lazy computational model evaluates only
the part of the expression that is necessary for the computation to continue.
For example, in the expression f(n) 6 0 we do not need to fully evaluate f(n).
If, at a certain stage, the computation produces the value s(e), where e is still
an unevaluated expression, there is no need to further evaluate e to produce a
result for f(n) 6 0, since we already know that the value of this expression must
be false.

Similarly, in the definition of a recursive function, when we have a recursive
equation of the form

f p = · · · f(a) · · ·

the lazy evaluation strategy requires that f(a) is computed only if it is needed.
Moreover, the computation is performed when it is needed.

On the other hand, a strict evaluation strategy requires that the arguments
of a function are always fully evaluated before the function is computed. Hence,
in the example above, f(a) must be computed before the computation of f(p)
begins, even if the value of f(a) may not actually be needed for the final result.

Our translation of a functional program in type theory corresponds to a
strict evaluation strategy. In the definition of fAcc, to prove fAcc(p) we first
need to prove fAcc(a).

The distinction between lazy and strict evaluation strategy is relevant not
only to the efficiency of computation, but also to the question of termination
since a lazy program may terminate while the corresponding strict program
diverges. Suppose the computation of f(a) diverges and that its value is not
actually needed for the computation of f(p). Then, a lazy evaluation strategy
would just ignore the call f(a) and produce a result anyway, while a strict
evaluation strategy would try to compute f(a) and therefore diverge.

A good illustration of the difference between lazy and strict evaluation is
the following mutual recursive definition, which is a variant of the one given in
section 3.

mutual fix f : Nat⇒ Nat
f 0 = 0
f s(n) = f(g(n)) + g(n)

g : Nat⇒ Nat
g 0 = 0

g s(n) =
{

g(f(n)) + n if f(n) 6 n
0 if f(n) > n

Here is a table with the values of f and g for a few initial inputs:

31

input value x f(x) g(x)
0 0 0
1 0 0
2 0 1
3 1 2
4 2 3
5 4 5
6 9 8
7 8 0

input value x f(x) g(x)
8 0 0
9 0 8
10 8 9
11 9 10
12 18 19
13 undefined 0
14 0 0
15 0 14

First of all, let us consider the computation of f(7). From the definition of
f and g, we have that f(7) = f(g(6)) + g(6) = f(8) + 8. This shows that f
and g cannot be defined by primitive recursion since f(7) calls itself on a larger
argument. Therefore, this definition is a good candidate to be translated with
our method.

As it is shown in the table, the computation of f(13) diverges, independently
of what evaluation strategy we adopt. However, if we partially evaluate it, we
obtain

f(13) = f(g(12)) + g(12) = f(19) + 19.

Now, when computing g(14), we have to decide which of the two branches of the
definition of g to take depending on whether f(13) 6 13 or f(13) > 13. A strict
evaluation strategy would, at this point, try to fully evaluate f(13) and diverge.
On the other hand, in a lazy evaluation strategy, with the right definition of +
and >, one step of the computation of f(13) would be enough to determine that
the value of

f(13) = f(19) + 19 > 13

is true. Therefore, the second branch in the definition of g would be taken and
the desired result would be g(14) = 0.

Using our method we obtain the following two predicates and two functions.

fAcc ∈ (m ∈ N)Set
f acc0 ∈ fAcc(0)
f accs ∈ (n ∈ N;h1 ∈ gAcc(n);h2 ∈ fAcc(g(n, h1)))fAcc(s(n))

gAcc ∈ (m ∈ N)Set
g acc0 ∈ gAcc(0)
g accs1 ∈ (n ∈ N;h1 ∈ fAcc(n); q ∈ (f(n, h1) 6 n);h2 ∈ gAcc(f(n, h1))

)gAcc(s(n))
g accs2 ∈ (n ∈ N;h1 ∈ fAcc(n); q ∈ (f(n, h1) > n))gAcc(s(n))

32

f ∈ (m ∈ N; fAcc(m))N
f(0, f acc0) = 0
f(s(n), f accs(n, h1, h2)) = f(g(n, h1), h2) + g(n, h1)

g ∈ (m ∈ N; gAcc(m))N
g(0, g acc0) = 0
g(s(n), g accs1(n, h1, q, h2)) = g(f(n, h1), h2) + n
g(s(n), g accs2(n, h1, q)) = 0

Then, to compute g on 14, we must first prove gAcc(14). If such a proof exists, it
must be constructed using either g accs1 or g accs2. Both constructors require
a proof h1 ∈ fAcc(13). But fAcc(13) cannot be proved, since f(13) diverges.
Thus, gAcc(14) cannot be proved either and g is not defined on 14.

Therefore, our method corresponds to a strict semantics for functional pro-
grams.

An additional problem arises if a λ-abstraction occurs in the right-hand
side of one of the equations in the definition of a recursive program. A strict
semantics requires that, for an expression to be defined, all its subexpressions
should be defined. This means that if the definition of a function f contains an
equation of the form

f p1 · · · pm = e,

to evaluate f on arguments that instantiate the patterns p1, . . . , pm, we must
strictly evaluate e. In other words, if the computation of any subexpression of
e diverges, then the computation of e also diverges, independently of whether
the value of that subexpression is needed for the computation of e or not. In
terms of definedness, we require that all the subexpressions of e are defined for
e to be defined.

Then, a problem arises if e contains some λ-abstraction. Suppose that e is
of the form

e = · · · [x]e′ · · · .

According to our interpretation, the subexpression [x]e′ must be defined for e to
be defined. Notice however that [x]e′ denotes a function, and that functions are
defined if their values are defined on every input. In other words, [x]e′ is defined
if e′ is defined for every value of x. This amounts to requiring that, whenever
a λ-abstraction occurs in the right-hand side of an equation, the corresponding
function must be total. That is why we call this kind of semantics totally
strict . Since the totality of recursive functions is in general undecidable, the
totally strict semantics is not a computational model of functional programming.
This is why even in functional programming languages with strict semantics, a
higher type term is considered computed whenever it has been reduced to a
λ-abstraction form, and not when the corresponding function is total.

In our method, we need to translate e into type theory to be able to translate
the equation above. Since there are no partially defined terms in type theory,
all subexpressions of e must be translated into totally defined terms. Therefore,
total strictness is the appropriate semantics for FP.

33

This point is illustrated by the following recursive function.

fix fln : List Nat⇒ Nat
fln nil = 0
fln cons(n, l) = Cases (div2 (fln(l))) of{

0 7→ fln(l) + 1
s(m) 7→ fln(map [x]fln(cons(x + s(m), l)) l)

In the second case of the second equation, we have a λ-abstraction as the func-
tional argument of the function map. A recursive call to the function fln occurs
in the scope of this abstraction. This causes the requirement of an infinite num-
ber of termination assumptions for the function. In fact, when we apply our
method to this example, we obtain

flnAcc ∈ (List(N))Set
fln acc0 ∈ flnAcc(nil)
fln accs1 ∈ (n ∈ N; l ∈ List(N);h1 ∈ flnAcc(l); q ∈ (div2(fln(l, h1)) = 0)

)flnAcc(cons(n, l))
fln accs2 ∈ (n ∈ N; l ∈ List(N);h1 ∈ flnAcc(l);

m ∈ N; q ∈ (div2(fln(l, h1)) = s(m));
H ∈ (x ∈ N)flnAcc(cons(x + s(m), l));
h2 ∈ flnAcc(map([x]fln(cons(x + s(m), l),H(x)), l))

)flnAcc(cons(n, l))

fln ∈ (l ∈ List(N); flnAcc(l))N
fln(nil, fln acc0) = 0
fln(cons(n, l), fln accs1(n, l, h1, q)) = fln(l, h) + 1
fln(cons(n, l), fln accs2(n, l, h1,m, q, H, h2)) =

fln(map([x]fln(cons(x + s(m), l),H(x)), l), h2)

To compute fln on a non-empty list cons(n, l) we have to prove flnAcc(cons(n, l)).
For this, we must use either the constructor fln accs1 or the constructor fln accs2.
In both cases, we first need to give a proof h1 ∈ flnAcc(l). Then, whenever
div2(fln(l, h1)) is not zero, that is, it is the successor of m, we must also give a
proof

H ∈ (x ∈ N)flnAcc(cons(x + s(m), l))

and therefore, we must prove flnAcc(cons(x+s(m), l)) for every x. Since we have
an infinite number of x’s, this interpretation does not correspond to a viable
operational semantics, because we cannot compute all these values in practice.

An analysis of the algorithm shows that the assumption H is unnecessarily
strong. It requires the function

[x]fln(cons(x + s(m), l))

to be defined everywhere. However, in practice, since the function above is given
as the functional argument of map and since the second argument of map is l, we
just need the function to be defined on the elements of l.

34

Our translation does not analyse the behaviour of the occurrences of other
functions in the definition. Thus, it does not try to determine what map does
with its arguments. Instead, it considers the worst case scenario, that is, map
could use its arguments in any possible way. Therefore, the translation requires
that the function argument is defined for every value. It is possible to modify
the definition of the function fln to force the interpretation to look into the
definition of map by defining fln by mutual recursion with a specialised version
of map.

mutual fix map fln : Nat, List Nat, List Nat⇒ List Nat
map fln m l1 nil = nil
map fln m l1 cons(n, l2) =

cons(fln(cons(n + s(m), l1)), map fln(m, l1, l2))

fln : List Nat⇒ Nat
fln nil = 0
fln cons(n, l) = Cases (div2 (fln(l))) of{

0 7→ fln(l) + 1
s(m) 7→ fln(map fln(m, l, l))

The reader can verify that when we apply the translation for mutual recursive
functions to this example, we get a much better condition for the termina-
tion of fln. In the case where (div2 fln(l)) = s(m), we require a proof of
map flnAcc(m, l, l), which is equivalent to flnAcc(cons(x + s(m), l)) for all ele-
ments x in l, but not for every natural number x.

From this example, it is clear that it is a good programming style, in terms
of our type-theoretic translation, to avoid λ-abstractions inside the definition
of a recursive function in FP. The user should instead try to replace every
λ-abstraction with a new function mutually defined with the original one. If the
function we want to formalise has the specification

fix f : σ ⇒ τ1 → τ2

an easier solution might be to define it as

fix f : σ, τ1 ⇒ τ2

In this way, the fAcc predicate contains an unnecessary argument but we avoid
the need of a λ-abstraction in the right-hand side of the equations.

This said, the formal definition of the semantics of FP is straightforward.
This semantics consists in a mathematical interpretation of every function de-
finable in FP. We assume that each data type σ is interpreted as a set pσq. A
program f : σ1, . . . , σm ⇒ τ is interpreted as a partial function

[[f]] ∈ pσ1q⊗ · · · ⊗ pσmq →⊥ pτq

where ⊗ denotes the cartesian product of sets and A →⊥ B denotes the set of
partial functions from a set A to a set B.

35

Definition 4. Given the definition of a functional program f : σ1, . . . , σm ⇒ τ
in FP, we define [[f]] as the least fixed point of an operator mapping partial
functions to partial functions.

F : (pσ1q⊗ · · · ⊗ pσmq →⊥ pτq) → (pσ1q⊗ · · · ⊗ pσmq →⊥ pτq)

The definition of F is standard, except for the fact that the value of F (f, a)
should be undefined whenever an occurrence of a λ-abstraction within the defi-
nition of f is instantiated with a partial function.

For the mutual recursive definition of the functions f1, . . . , fn, the associated
operator maps n-tuples of partial functions to n-tuples of partial functions,

F : (pσ11q⊗ · · · ⊗ pσ1m1q →⊥ pτ1q)⊗ · · · ⊗ (pσn1q⊗ · · · ⊗ pσnmn
q →⊥ pτnq) →

(pσ11q⊗ · · · ⊗ pσ1m1q →⊥ pτ1q)⊗ · · · ⊗ (pσn1q⊗ · · · ⊗ pσnmn
q →⊥ pτnq).

and the partial function denoted by [[fi]] is the i-th component of the least fixed
point of F .

In the definition of [[f]], we did not precisely specify how to construct the operator
F . However, this construction is the natural one, once we have pointed out that
λ-abstractions must be interpreted totally strictly.

A limit case occurs when the sequence of types to the left of the symbol ⇒
is empty, that is, for function definitions with the specification f : ⇒ τ . In this
case, the domain of the operator F is 1 →⊥ pτq, where 1 is a singleton set. An
element of 1 →⊥ pτq can be seen as a partial element of pτq in the sense that
it is either undefined or it is defined and denotes an element of pτq. So, here,
the operator F maps partial elements of pτq to partial elements of pτq. Notice
that if f occurs in the right-hand side of the (necessarily unique) equation in
its definition, then, according to our strict interpretation, F would produce an
undefined result when applied to an undefined argument. It follows that the
least fixed point of F is an undefined element of pτq. In conclusion, such a
definition of f does not actually define anything.

We can now state that the translation of the functions in FP into type
theory is complete with respect to the totally strict semantics.

Theorem 3. Let f : σ1, . . . , σm ⇒ τ be a function in FP. Let fAcc and f
be the special accessibility predicate for f and the type-theoretic version of f,
respectively. Then, f defines the same function as [[f]] ∈ pσ1q⊗· · ·⊗pσmq →⊥ pτq,
that is, for every sequence of arguments t1 ∈ σ̂1, . . . , tm ∈ σ̂m we have that

fAcc(t1, . . . , tm) is provable ⇐⇒ [[f]] is defined on (t1, . . . , tm)

and if h ∈ fAcc(t1, . . . , tm), then

f(t1, . . . , tm, h) = [[f]](t1, . . . , tm).

36

8 Conclusions

We described a method to translate a vast class of algorithms from functional
programming into type theory. We defined the class FP of algorithms to which
the method applies. This class is large enough to allow the implementation of
all partial recursive functions. We gave a formal definition of the translation of
the elements of FP in type theory. Finally, we proved that the translation is
sound and complete with respect to a certain mathematical model, that we call
totally strict .

Future work will try to improve the translation of lambda abstractions, that
is for the moment unsatisfactory. We also plan to develop the idea briefly
explained at the end of section 3 and use impredicative type theory to formalise
the method using an explicit type constructor for partial functions.

8.1 Related Work

There are few studies on formalising general recursion in type theory.
In [Nor88], Nordström uses the predicate Acc for that purpose.
In a different setting, Finn et al [FFL97] treat general recursive functions

in a very similar way to our approach. Except for case expressions, for which
they consider the conjunction of all the assumptions that arise in the different
branches of the case expression instead of considering each branch in a sepa-
rate way as we do, an algorithm is analysed in [FFL97] as it is in our method.
Moreover, Finn et al give a similar interpretation when bound variables are
present in the right-hand side of the equations and they arrive to similar con-
clusions about the semantics associated to the formalisation of their programs.
In addition, they have similar problems when using higher order functions in
the definition of other functions. However, the different settings in which both
works are performed give rise to some differences. A function f is formalised in
[FFL97] with the type that it has in a functional programming language, with-
out the need of our extra parameter fAcc as part of the type of f. However, f
obeys its definition in [FFL97] provided that its arguments can be proven to be
in the domain of the function, which is called DOM′f. Once (and if) the func-
tion has been proven total, one can forget about DOM′f, which is not possible
in type theory. Another important difference is that in [FFL97], an application
(f e) is always considered defined since the cases in which (f e) is not defined
are considered as returning an unknown value of the corresponding type. How-
ever, this causes some problems since the semantics they use is not capable of
reflecting this distinction and some times one can prove things like f 0 = 0 when
f 0 diverges.

In [DDG98], Dubois and Viguié Donzeau-Gouge take also a similar approach
to the problem. They also formalise an algorithm with a predicate that charac-
terises the domain of the algorithm and the formalisation of the algorithm itself.
However, they consider neither case expressions nor λ−abstractions as possible
expressions, which simplifies the translation a lot. In addition, they only present
the translation for expressions in canonical form which also helps in the sim-

37

plification. The most important difference is their use of post-conditions. In
order to be able to deal with nested recursion without the need of simultaneous
inductive-recursive definitions, they require that, together with the algorithm,
the user provides a post-condition that characterises the results of the algorithm.

Balaa and Bertot [BB00] use fix-point equations to obtain the desired equal-
ities for the recursive definitions. The solution they present is rather complex
and it does not really succeed in separating the actual algorithms and their
termination proofs. In a later work [BB02], Balaa and Bertot use fix-points
again to approach the problem. Their new solution produces nicer formalisa-
tions and although one has to provide proofs concerning the well-foundedness of
the recursive calls when one defines the algorithms, there is a clear separation
between the algorithms and these proofs. In any case, it is not very clear how
their methods can be used to formalise partial or nested recursive algorithms.

In a recent work, Bertot et al [BCB02] present a technique to encode the
method we described in [BC01] for partial and nested algorithms in type theo-
ries that do not support Dybjer’s schema for simultaneous inductive-recursive
definitions. They do so by combining the way we define our special-accessibility
predicate with the functionals in [BB00].

Other relevant publications that treat the problem of formalising partial
functions and proving termination are [Abe02], [MM02], [dB94], and [BFG+00].

References

[Abe02] A. Abel. Termination checking with types - Strong normaliza-
tion for Mendler-style course-of-value recursion. Technical Report
0201, Institut für Informatik, Ludwig-Maximilians - Universität
München, 2002.

[Acz77] P. Aczel. An Introduction to Inductive Definitions. In J. Barwise,
editor, Handbook of Mathematical Logic, pages 739–782. North-
Holland Publishing Company, 1977.

[Bar92] H. P. Barendregt. Lambda calculi with types. In S. Abramsky,
Dov M. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic
in Computer Science, Volume 2, pages 117–309. Oxford University
Press, 1992.

[BB00] A. Balaa and Y. Bertot. Fix-point equations for well-founded re-
cursion in type theory. In J. Harrison and M. Aagaard, editors,
Theorem Proving in Higher Order Logics: 13th International Con-
ference, TPHOLs 2000, volume 1869 of Lecture Notes in Computer
Science, pages 1–16. Springer-Verlag, 2000.

[BB02] A. Balaa and Y. Bertot. Fonctions récursives générales par itération
en théorie des types. Journées Francophones des Langages Appli-
catifs - JFLA02, INRIA, January 2002.

38

[BC01] A. Bove and V. Capretta. Nested general recursion and partiality in
type theory. In R. J. Boulton and P. B. Jackson, editors, Theorem
Proving in Higher Order Logics: 14th International Conference,
TPHOLs 2001, volume 2152 of Springer-Verlag, LNCS, pages 121–
135, September 2001.

[BCB02] Y. Bertot, V. Capretta, and K. Das Barman. Type-theoretic func-
tional semantics. In Theorem Proving in Higher Order Logics: 15th
International Conference, TPHOLs 2002, 2002.

[BFG+00] G. Barthe, M.J. Frade, E. Giménez, L. Pinto, and T. Uustalu.
Type-based termination of recursive definitions. Under considera-
tion for publication in Math. Struct. in Comp. Science, December
2000.

[BG01] H. Barendregt and H. Geuvers. Proof-assistants using dependent
type systems. In A. Robinson and A. Voronkov, editors, Handbook
of Automated Reasoning, chapter 18, pages 1149–1238. Elsevier Sci-
ence Publishers, 2001.

[BM77] J. L. Bell and M. Machover. A course in mathematical logic. North-
Holland, 1977.

[Bov99] A. Bove. Programming in Martin-Löf type theory: Uni-
fication - A non-trivial example, November 1999. Li-
centiate Thesis of the Department of Computer Science,
Chalmers University of Technology. Available on the WWW
http://cs.chalmers.se/∼bove/Papers/lic thesis.ps.gz.

[Bov01] A. Bove. Simple general recursion in type theory. Nordic Journal
of Computing, 8(1):22–42, Spring 2001.

[Bov02] A. Bove. Mutual general recursion in type
theory, May 2002. Available on the WWW
http://cs.chalmers.se/∼bove/Papers/mutual rec.ps.gz.

[CH88] T. Coquand and G. Huet. The Calculus of Constructions. Infor-
mation and Computation, 76:95–120, 1988.

[CNSvS94] T. Coquand, B. Nordström, J. M. Smith, and B. von Sydow. Type
theory and programming. EATCS, 52, February 1994.

[dB94] N.G. de Bruijn. Computer program semantics in space and time.
In J.H. Geuvers, R.P. Nederpelt, and R.C. de Vrijer, editors, Se-
lected Papers on Automath, number 133 in Studies in Logic and
the Foundations of Mathematics, pages 947–972. North-Holland,
Amsterdam, 1994.

39

[DDG98] C. Dubois and V. Viguié Donzeau-Gouge. A step towards the mech-
anization of partial functions: Domains as inductive predicates. In
M. Kerber, editor, CADE-15, The 15th International Conference
on Automated Deduction, pages 53–62, July 1998. WORKSHOP
Mechanization of Partial Functions.

[dMJB+01] P. de Mast, J.-M. Jansen, D. Bruin, J. Fokker, P. Koopman,
S. Smetsers, M. van Eekelen, and R. Plasmeijer. Functional Pro-
gramming in Clean. Computing Science Institute, University of
Nijmegen, 2001.

[Dyb00] P. Dybjer. A general formulation of simultaneous inductive-
recursive definitions in type theory. Journal of Symbolic Logic,
65(2), June 2000.

[FFL97] S. Finn, M.P. Fourman, and J. Longley. Partial functions in a total
setting. Journal of Automated Reasoning, 18(1):85–104, 1997.

[How80] W. A. Howard. The formulae-as-types notion of construction. In
J. P. Seldin and J. R. Hindley, editors, To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, pages 479–
490. Academic Press, London, 1980.

[JHe+99] S. Peyton Jones, J. Hughes, (editors), L. Augustsson, D. Barton,
B. Boutel, W. Burton, J. Fasel, K. Hammond, R. Hinze, P. Hu-
dak, T. Johnsson, M. Jones, J. Launchbury, E. Meijer, J. Peterson,
A. Reid, C. Runciman, and P. Wadler. Report on the Programming
Language Haskell 98, a Non-strict, Purely Functional Language.
Available from http://haskell.org, February 1999.

[ML84] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.

[MM70] Z. Manna and J. McCarthy. Properties of programs and partial
function logic. Machine Intelligence, 5:27–37, 1970.

[MM02] C. McBride and J. McKinna. The view from the left, 2002. Un-
der consideration for publication in Journal of Functional Program-
ming.

[MTHM97] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition
of Standard ML. MIT Press, 1997.

[Nor88] B. Nordström. Terminating General Recursion. BIT, 28(3):605–
619, October 1988.

[NPS90] B. Nordström, K. Petersson, and J. M. Smith. Programming in
Martin-Löf ’s Type Theory. An Introduction. Oxford University
Press, 1990.

40

[Phi92] J. C. C. Phillips. Recursion Theory, pages 79–187. Oxford Univer-
sity Press, 1992.

[SU98] M. H. B. Sørensen and P. Urzyczyn. Lectures on the curry-howard
isomorphism. Available as DIKU Rapport 98/14, 1998.

41

