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We present in this paper an algorithm which is a natural
extension in dimension n of the Euclidean algorithm com-
puting the greatest common divisor of two integers.

Let H be a sub-group of Z“, given by a system of gen-
erators. This algorithm computes the union of bases of all
monoids obtained as intersection of H with the 2n orthants
of Zn .

As a consequence, this algorithm can be used for example
to compute minimal solutions of linear Diophantine systems,
the basis of the monoid of integer points of a rational sim-
plicial convex cone (called the Hilbert basis of the monoid),
the Hilbert serie of a graded algebra, or integer points of a
rational simplex.

This is a completion algorithm, i.e. similar to Buchberger
algorithm (Grobner bases), and to Knuth-Bendix algorithm
(canonical rewriting systems), also parent with the Euclide
algorithm.

In dimension 2, it is different of the Gaussian algorithm
(see for example [3]).

THE EUCLIDE ALGORITHM IN Z

The Euclide algorithm makes successive Euclidean divisions :

al = qla2 +aa, a2 = qzas +a4, ,.. . ,an–l = qn.-lan

giving finally the gcd an of al and a2.
More generally, given gl, . . . . g~ generating a sub-group

H of Z, divide them with each other, replacing them by
remainders of divisions, while it is possible. Then we obtain
a basis of H, i.e. the gcd of the g,. Remark that this gcd is,
in absolute value, a basis of the monoid If (1 N.

The Euclide algorithm appears then as a completion al-

gorithm, as Buchberger algorithm, which makes divisions on
multivariate polynomials.

GENERALIZATION TO Z“

Naturally, let us generalize the Euclidean division to vectors
of Zn :
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DEFINITION:

a non zero vector v divides a vector rJ’ iff for all i E [1; n],
vivl 20 and lrul < [u{l.

The remainder of the division of v’ by v is v’ – qv, where
q is the greatest natural number such that qv divides v’ if v
divides v’, else q = O.

Note that the remainder is in the same orthant of Z“
than v’, and also than w if q is not zero.

The remainder R(u, F) of the division of a vector v by
a family F of vectors is obtained by successive divisions by
vectors of F or by their opposites. This remainder cannot
be divided by any vector of F U –F but it is not unique in
general, and depends on the order in which vectors of F are
used.

In other words, the division by F is not a confluent re-
lation in general. To make it confluent, it is necessary to
complete F, according to the principle shared by algorithms
of Buchberger and Knuth-Bendix.

THE EUCLIDE ALGORITHM IN DIMENSION n

Prom a generating system G of a sub-group H of 2“, we
build incrementally a family F of vectors in H, by adding
at each step the non zero remainders of divisions by F of
sums and differences of vectors of F (sums and differences
are analog to S-polynomials of Buchberger and cratical paw-s

of Knuth-Bendix). A last step divides vectors between them.

- Procedure Completion(G)
-F,= Gu–G
- SD:= {V+ V’I?J, V’ C F} – {O}

- While SD # I?J

let v c SD

SD := SD – {V, ‘V}

v := R(u, F)
if v # O then

SD := SD U {V’ +V]V’ E F} U {V’ – VIV’ G ~}

F := FU {V, –V}

- Return F

- Procedure Reduction(F)
- While there exists v and v’ in F, not equal, V’ clivicling v

- F:= F - {V, ‘V} U {~(V, {V’}), ‘~(V, {V’})}

- Return F
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- Procedure HilbertBasis(G)
- Return Reduction(Completion( G))

THEOREM

(i) these three procedures always end.
(ii) v E Ef ~ R(v,Completion(G)) = O
(iii) for all orthant 0 of Z’, OnHilbertBasis(G) is the basis
of the monoid 0 n H.

It is a well-known fact that the monoid of lattice points
of a convexe rationnal polyedral cone of Rn is finitely gener-
ated, and has a unique basis of non-decomposable elements
(see for example [8]).

The name of the procedure Hilbert13asis comes from the
fact that this basis is frequently calledl the Hdbert basts of
this monoid (see [7] for example).

In our case, the cone is generated b,y H n R$.

PROOF

(i)

The procedure Reduction always ends:, because dividing a
vector of F strictly decreases the sum of absolute values of
coordinates of vectors of F.

The procedure Completion builds a sequence of vectors,
such that a vector cannot be divided by its predecessors.
If this sequence is infinite, it must contain a sub-sequence
of vectors with non-negative and nondecreasing (or non-
positive and nonincreasing) first coordinate. The same re-
mark applies induct ively for other coordinates. So we get
a sub-sequence of vectors dividing their successor, and we
have a contradiction (this argument is similar to those of
Hilbert basis theorem, and Dixon lemma).

Then, the last procedure also ends D

(ii)

Let F’:=Completion(G). Let v a vector of H irreducible by
F. F is a generating system of H (it contains G), it contains
opposites of its elements, then we can write v = VI +. . . + VP
where the v, are in F.

Let us note u+ the non-negative part of the vector u, and
u– the opposite of its non-positive part. Then u = u+ —u–.

Ifv+=v~+ . ..+v~. then =v~v~ +.. .+vj, andvis
divisible by the v, ‘s, which contradict the hypothesis that v
is irreducible.

Then there exists two vectors, say V1 and vz, such that
(vI +vz)+ # v~+v~, i.e. (V1-I-V2)+ < v~-+v~. Because F=
Completion(G), sums and differences of vectors in F reduce
to O when divided by F.

So, we can write VI + vz = Vp+l + . . . + v~ where the VI
are in F (and in the same orthant than VII + vz), and we have
v=v~+ . ..+v~. We have also (W+ V2)’- = v~+l+... +v~.

But (v1 -t Vz)+ # v~ + v;: the sum of coordinates of
(VI + Vz)+ is strictly lesser than the sum of coordinates of
v? and V$. Then, in v = us+. .+vg , the sum of coordinates
of positive parts is strictly lesser than in v = V1 + . . . + VP:
wehavev~ +... +V:<v:+. ..+ v;.

Iterating this reasoning, we find v = O.
Then every vector of H reduces to O by F. Conversely,

it is clear that if a vector reduces to Oby F, then it is a sum
of vectors of F, and is in H ❑ .

(iii)

Let B:= HilbertBasis(G). The procedure Reduction keeps
the property (ii) valid, then a vector is in H if and only if it
reduces to O with B. The remainders of successive divisions
of a vector remain in its ort hant, wit h divisors in its ort hant,
then a vector of H (l 0 can be written as a sum of vectors
of B ~ 0. Then B n 0 is a generating system of the monoid
H n 0. Vectors of B do not divide between themselves, then
Bfl Qisthebasis of Hf100.

IMPROVEMENTS OF THE ALGORITHM

We can improve this algorithm by avoiding to add to F
remainders of some sums and differences, as it is done by
criterions 1 and 2 of Buchberger and by the “middle rule”
in Kunt h-Bendix algorithm.

CRITERION 1

If v and v’ lies in the same orthant, then v + v’ reduces to O
by division by v, and v’ (similarly, if v and v’ are in opposite
orthants, v — v’ reduces to O). Then it is not necessary to
add their sum to SD (resp. their difference).

CRITERION 2

Let VI, VZ, and V3 in F such that VI – V3 and V3 – V2 are in
the same orthant. Then it is not necessary to add V1– vz to
SD if we add V1 – us and V3 – vz. Indeed, the remainders
of V1 – V3 and V3 – V2 allow to reduce V1 – vz to O.

More generally:
the difference VI – vz is unuseful if there exists in F a

vector V3 different from VI and V2 such that V1 — V3 and
V3 – vz, or V1 + us and –W – vz, are in the same orthant.

the sum V1 + vz is unuseful if there exists in F a vector
V3 different from VI and V2 such that VI —us and us + V2, or
V1 + V3 and V2 — v3, are in the same orthant.

In practice, these criterions are very useful, avoiding
many divisions.

SOME APPLICATIONS

1. Let Az = O, , x > 0 be a linear diophantine system,
where A is a matrix with integer coefficients, and @is an
integer vector. Its minimal solutions are by definition so-
lutions which are not sum of two others (cf [1], [2], [6] for
algorithms computing such minimal solutions).

Let G be a basis of the kernel of the map z I+ Ax from 2’
to Zm (note that such a basis is easy to obtain, by Hermite
normal form computation for example [5]).

Then HilbertBaais(G) rlNn is the set of minimal solutions
of the system.

2. (Dual of application 1) Let C be a rational simpli-
cial convex cone of Rn : C is the convex hull of half lines
R+al,. ., , R+an, where the ai are in Z“, and independent.
Let Abe the square matrix whose columns are the a,, and H

the sub-group of Z“ generated by the family G of columns
of the matrix det(A)A-l.

The image by the map z * *Z of HilbertBasis(G) fliV”

is the basis of the monoid of integer points of C.

3. Let S be a rational simplex in Rn: S is the convex

hull of n + 1 independent points al,. . . . a~+l, with rational
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coordinates. Embed S in R“+l by the map ~ : z E+ (z, 1)

from Z“ to 2“+1 : @(S) generates a convex cone C, which

is rational and simplicial.

In the basis of integer points of C’, elements having 1 as

last coordinate project bijectively on integer points of S (by

the map (x, y) F+ z).

4. We can generalize to the case of dkcrete sub-groups
of Rm

In this case, the procedure Completion may not end :
the monoids H fl 0 are not longer necessary of finite type.
But their intersections with every compact is finite. Then
If we choose in the set SD always the vector with the least
norm, we can enumerate all the bases of the monoids.

The same reasoning applies to the problem of comput-
ing the basis of integer points of a simplicial cone. Recent
results of Lachaud ([4]) allows to approximate e the normal
to the faces of a simplical cone, using the faces of the sail of
the cone (the sail is the boundary of the convex hull of non
zero integer points of the cone).

As the vertices of this sail are in particular in the basis of
integer points of the cone, the Euclide algorithm in dimen-
sion n should provide a method to approximate irrational
vectors.

It is in fact what happens in dimension 1, where the Eu-
clide algorithm gives the coefficients of the continued frac-
tion of the first two numbers. These coefficients can be ob-
tained as lenghts of the faces of the sails of two cones in the
plane.

Can it be generalized in dimension n, in order to give
sense to continued fractions in this context? Another ques-
tion is to understand if the important fact is that we use
vextices of the sails, or if we use a basis of integer points
of cones (these two notions coincide in the plane, not in
general).
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5. The Hilbert basis of H is an universal Grobner basis of
the toric ideal associated to H, which is the ideal generated

by all the differences of monomials X“+ – X“-, where v is
in H (because every binomial of a reduced Grobner basis of
this ideal correspond to an element of the Hilbert basis of
H). Note that this universal Grobner basis is not minimal
in general.

6. An implementation of this algorithm can be tested
through the Web at URL:

http: Ilmm. inria. frlsaf ir/SAFIR/Loic/Bastat\monoid.html
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