
Université de Nice - Sophia Antipolis
UFR SCIENCES

École Doctorale STIC

THÈSE

Présentée pour obtenir le titre de :
Docteur en SCIENCES de l’Université de Nice - Sophia Antipolis

Spécialité : Informatique

par

Kuntal DAS BARMAN

Équipe d’accueil : LEMME - INRIA Sophia Antipolis

Type theoretic semantics for
programming languages

Thèse dirigée par Yves BERTOT

Soutenue publiquement à l’INRIA le 30 Septembre 2004 devant à 14h30
devant le jury composé de :

Mme : Laurence Pierre Université de Nice Présidente
MM. : Gilles Dowek LIX - École Polytechnique Rapporteurs

Jean-François Monin Verimag, Université Joseph Fourier
Mme : Savitri Maharaj University of Stirling Examinatrice

M. : Yves Bertot INRIA Directeur

Abstract

Semantics of programming languages gives the meaning of program con-
structs. Operational and denotational semantics are two main approaches
for programming languages semantics. Operational semantics is usually
given by inductive relations. Denotational semantics is given by partial
functions. Implementing the denotational semantics inside type theory is
difficult as the type theory expects total functions.

In this dissertation we develop a functional semantics for a small imper-
ative language inside type theory and show its equivalence with operational
semantics. We then exploit this functional semantics to obtain a more direct
proof search tool, while developing a way to describe and manipulate un-
known expressions in the symbolic computation of programs for formal proof
development. In a third part, we address the problem of encoding complex
programs inside type theory and we show how to circumvent the limita-
tions of guardedness conditions as the are used in the Calculus of Inductive
Constructions.

Key words: Type Theory, CIC, Coq, Semantics, Reflection, Compiler

Résumé

La sémantique des langages de programmation donne la signification
des constructions de programme. Les sémantiques opérationnelle et dénota-
tionelle sont les deux principales approches pour la sémantique de langages
de programmation. La sémantique opérationnelle est habituellement donnée
par des relations inductives. La sémantique dénotationelle est donnée par
des fonctions partielles. Mettre en application la sémantique dénotationelle
à l’intérieur de la théorie des types est difficile car cette théorie ne supporte
que les fonctions totales.

Dans cette thèse nous développons une sémantique fonctionnelle pour
un petit langue impératif à l’intérieur de la théorie des types et montrons
son équivalence avec la sémantique opérationnelle. Nous exploitons ensuite
cette sémantique fonctionnelle pour obtenir un outil plus direct de recherche
de preuve, tout en développant une manière de décrire et manipuler des
expressions inconnues dans le calcul symbolique des programmes pour le
développement formel de preuve. Dans une troisième partie, nous adressons
le problème de coder des programmes complexes à l’intérieur de la théorie
des types et nous montrons comment éviter les limitations des conditions de
garde telle qu’elles sont employés dans le calcul des constructions inductives.

Mot clés: Théorie des types, CIC, Coq, Sémantique, Réflexion, Compila-
teur

To my family,

Acknowledgments

I would like to express my deep sense of gratitude and everlasting indebtness
to my thesis supervisor Yves Bertot for his constant support, patience and
guidance with which he put me on the right path towards the completion of
my thesis. His helps were not limited in academic activities. I still remember
the initial days when he guided me to have a comfortable life in France. Such
generous helps never stopped during my three and half years stay. He is a
nice supervisor in every sense.

I thank to Gilles Dowek, Jean-François Monin, Savitri Maharaj and Lau-
rence Pierre to kindly agree to be jury members of my thesis. They were
very helpful in reading the thesis quickly, giving proper suggestions and find-
ing time very early for my PhD defense. Their suggestions made my thesis
more correct and complete.

I wish to thank Löıc Pottier, Laurence Rideau, Gilles Barthe, Laurent
Théry, Marieke Huisman, Janet Bertot, Frédérique Guilhot and Philippe
Audebeau for their constant support and encouragement. The members
of the Lemme and Everest group were really co-operative and showed care
whenever I needed.

I thank to my family who encouraged me to pursue higher education.
Without their constant support all this would not have been possible.

It will be too little if I say thanks to my wife Sampa. She showed constant
support during my PhD studies. Different language and culture in France
did not stop her to come here to stay and share her life with me.

I thank to my officemates Nicolas, Benjamin and Asia for helping me
whenever I sought their assistance. I am really thankful to Venanzio, Lau-
rence, Benjamin and Bernard for the nice discussions we had during my PhD
studies.

My friends and colleagues have contributed immensely to make my stay
in France enjoyable and memorable. I thank to Marieke, who helped a lot to
have a comfortable stay in France. I will remember several discussions I had
with her during my life in INRIA. I also thank to Tamara, Hanane, Aubin,
Guillaume, Pierre, Nestor, Simao, Laurent, Christoph, Sabrina, Mariela for
their constant support, coupled with the humor and several going outs that
have a long way in keeping my spirits up and making my stay enjoyable.

ii

This space is really too small to name all those good people in INRIA and
recount the great times I have had with them. I went for several memorable
hiking and rock-climbing with the Agos montagne members, which helped
to refresh my mind.

I should specially thank my friends in Antibes. Ana, Luis, Sylvain, Ade-
line, Olivier, Vijay, Jan, Charith, Balazs and me had several unforgettable
get together. Be it hiking, snorkeling or 2VB party, they made my life really
enjoyable.

I am thankful to Nathalie for her helpful support in administrative works.
I also thank to administrative people in INRIA who took immediate and nec-
essary steps whenever I needed. People in Semir were extremely supportive
for the logistic support to make my work environment comfortable.

I am very thankful to every person and incident that has come my way,
whose contact has made what I am.

Contents

1 Introduction 1
1.1 Programming languages . 3

1.1.1 Syntax . 3
1.1.2 Semantics . 3

1.2 Calculus of Inductive Constructions 10
1.2.1 Terms and types . 10
1.2.2 Program execution and term reductions 11
1.2.3 Predicates . 12
1.2.4 Logic . 12
1.2.5 Dependent types and dependent products 13
1.2.6 Inductive types . 14
1.2.7 Inductive predicates 17
1.2.8 Specification of functions 18
1.2.9 General recursive functions 19

1.3 Conclusion . 22

2 Type-theoretic functional semantics 25
2.1 Introduction . 25
2.2 IMP and its semantics . 27
2.3 Functional interpretation . 31

2.3.1 The iteration technique 32
2.3.2 Extracting an interpreter 33
2.3.3 Characterizing terminating programs 35

2.4 The Accessibility predicate 36
2.5 Conclusions . 40

3 Proof by reflection in semantics 43
3.1 Introduction . 43
3.2 IMP and its semantics . 45

3.2.1 Difficulty in automation 45
3.3 Functional interpretation . 46
3.4 Proof by reflection . 48

3.4.1 Giving names . 49

iv Contents

3.4.2 The iteration technique 53
3.5 Collection of data objects and table building 54
3.6 Usefulness of Ltac . 55
3.7 Conclusions . 56

4 An experimental compiler for Cminor to RTL - I 59
4.1 Introduction . 59
4.2 Cminor . 62

4.2.1 Memory structure . 63
4.2.2 Cminor operations . 64
4.2.3 Cminor expressions . 65
4.2.4 Cminor instructions 67
4.2.5 Cminor procedures . 69
4.2.6 Cminor program . 71
4.2.7 Comparison with C 71

4.3 Register Transfer Language 72
4.3.1 Operations in RTL . 73
4.3.2 Memory address calculation in RTL 77
4.3.3 RTL Instructions . 77
4.3.4 Functions and programs in RTL 79

4.4 Conclusion . 80

5 An experimental compiler for Cminor to RTL - II 81
5.1 Cminor to RTL translation 81
5.2 The translation environment 82
5.3 Allocation of registers for intermediate results 85
5.4 Instruction selection . 87
5.5 Code linearization . 89
5.6 Heuristics for static branch prediction 91
5.7 Guardedness problem . 91
5.8 Construction of the RTL control flow graph 93
5.9 Conclusion . 97

6 General conclusion 99

A Sémantique en théorie des types pour les langages de pro-
grammation 101
A.1 Sémantique fonctionnelle en théorie des types 103
A.2 Preuve par réflexion en sémantique 111

A.2.1 Preuves par réflexion 114
A.3 Un compilateur . 116

Bibliography 123

Index 127

Chapter 1

Introduction

One of the major concern in both the academics and in industry is to reduce
the amount of errors or bugs in the computer programs. Often the source
of the errors in computer programs is due to the bad implementation of the
computer programs. We spend a lot of time to debug the programs, which
finally does not guarantee the non-existence of errors. Formal methods pro-
vide us a way to reason about the computer programs we write. It not only
helps to find out the bugs, the major benefits of the formal methods is in de-
scribing the computer programs in precise and rigorous specifications. Such
specifications pave the way for rigorous formal proofs about the computer
programs. In general these proofs are tedious and not often trivial. Proofs
can be mechanized with the help of computers, where the latter is known to
perform well for tedious work.

Verifying the source code does not remove all the errors. The code which
is effectively executed by the machine, is generated from this source code
by a compiler. Compilers can be another source of generating errors. With
complex optimizations in the compiler, bugs are not rare. An incorrect
compiler can introduce errors in the target code whose source code is well
verified. Thus a formally verified compiler is of utmost importance. It will
be more useful if the formalized compiler is moderately optimized and closer
to one of the languages used in academics and in industries.

In practice, the source code of a program is often verified on a set of test
data and the assembler code generated by the compiler is verified manually
to see that the assembler code correlates to the source code. Both these
tasks are easily error prone. In addition, there is no mathematical proof
that they will produce safe and error free code. Type theory provides a
basic pillar to produce safe and error free code. In fact, static typing, based
on a sound type system is a basic requirement for robust systems engineering.
Machine checked proofs about the source language and the compiler provide
the mathematical base.

In this dissertation we study the formal semantics of programming lan-
guages in type theory. We start with an introduction to the programming
languages in the next section 1.1. We give the overall picture of syntax and

2 Introduction

semantics of the programming languages. In the section 1.2, we describe the
Calculus of Inductive Constructions, which we will use for the formalization
of programming language properties. We machine check all the proofs in
the proof assistant Coq, which is based on the Calculus of Inductive Con-
structions.

In chapter 2, we describe the operational and denotational semantics of
a small imperative language in type theory with inductive and recursive def-
initions. We show the problem that arises to prove the equivalence between
operational and denotational semantics, when the language contains partial
and nested recursion. We provide a technique to work around this problem
inside type theory.

Conventional approaches to describe the semantics of programming lan-
guage usually rely on relations, in particular inductive relations. Simulating
program execution then relies on proof search tools. In chapter 3, we describe
a functional approach to automate proofs about programming language se-
mantics. Reflection is used to take facts from the context into account. The
main contribution of this work is that we developed a systematic approach
to describe and manipulate unknown expressions in the symbolic computa-
tion of programs for formal proof development. The tool we obtain is faster
and more powerful than the conventional proof tools.

The language C suits the best with the criteria we have set earlier for a
formalized compiler. The work of this thesis is a contribution to the collec-
tive project Concert, where we plan to produce a formally correct compiler
for C-like languages. The initial objective is to develop this formalization
and this certification in the framework of the calculus of inductive construc-
tions and to take advantage of the characteristics of this system to produce
certified software, for instance with the extraction mechanism. The idea is
to start with Cminor, a subset of C, which is sufficiently rich to describe al-
most all the C programs. Instead of generating the object code directly, we
move to an intermediate code, written in a register transfer language(RTL),
where we decide the control flow, allocate registers, verify constant propa-
gation, eliminate dead code and optimize the code. The Register Transfer
Language is closer to the language of the processor and RTL programs rep-
resent the control flow graph of the execution of the program. We generate
the object code by linearization of the RTL graph. In chapter 4, we describe
the abstract syntax of Cminor and RTL.

In the chapter 5, we present the formalization of the Cminor to RTL
compiler. We discuss the difficulties that arise for this formalization and how
we work around these difficulties. In this dissertation we realize a compiler
which constructs the RTL control flow graph from the Cminor programs.
The formal description of the compiler follows a style that is close to the
Caml programming style and keeps the modularity of programming and
significantly helps in its correctness proofs, though we do not consider any
proofs in this dissertation. Finally we conclude giving the future directions

1.1 Programming languages 3

of the work we have done.

1.1 Programming languages

The description of a programming language has two parts, syntax and se-
mantics. A formal semantics for a programming language is a mathemat-
ically precise description of the intended meaning of each construct in the
language. In contrast to a formal syntax for a language, which tells us
which sequences of symbols are correctly formed programs, a formal seman-
tics tells us what programs will actually do when we run them. The ideas
of semantics are of importance for language designers, compiler writers, and
programmers; they also provide a basis for mathematical proofs of the cor-
rectness of programs.

1.1.1 Syntax

The Grammatical structure of a program is expressed by its syntax. Syntax
can be divided in two broad categories. The Abstract syntax of a program-
ming language describes how to build the expressions and statements in
that language, specifying the connections between logical parts of the lan-
guage. It specifies the tree forms of a language, known as syntax trees.
Concrete syntax provides sufficient information to construct unique parse
trees. In other words, concrete syntax decides in which order evaluation
of expressions in the language should take place. In this dissertation, we
will consider only abstract syntax for syntactic entities so that there is no
ambiguity in their parse tree structure, as we will only be interested in the
meaning of programming languages and for that reason syntactic categories
will suffice.

1.1.2 Semantics

The meaning of a grammatically correct program is revealed by its semantics.
Semantics can also be viewed as relation between inputs, programs and
outputs. The semantics of programming languages can be formalized mainly
in three different approaches. Operational semantics is not only concerned
with the result of the execution of a program, it puts stress on how to execute
programs. Denotational semantics is only concerned with the result of the
execution of a program and not on how to execute programs. Axiomatic
semantics is concerned with the fact whether a program satisfies some partial
correctness properties given a precondition and a postcondition.

4 Introduction

1.1.2.1 Operational semantics

The meaning of a program construct is specified by the computation which
the program construct induces while executing on a machine. Operational
semantics provides an abstraction of how the program is executed on a
machine, and is independent of machine architectures and implementation
strategies. There is an abstract notion of states. In operational semantics
we are interested in how the states are modified during the execution of
a program construct. In fact, operational semantics provides a relation
between the old state, a program construct and the new state. There exists
two different approaches for operational semantics. Structural operational
semantics describes how the individual steps of the execution of a program
take place [31]. For this reason this kind of operational semantics is also
known as small step semantics. Natural semantics gathers all the execution
for immediate constituents of a program construct to describe the final result
of the execution and thus differs from structural operational semantics by
hiding some execution details [23]. For this reason this kind of operational
semantics is also known as big step semantics.

1.1.2.2 Structural operational semantics

Let us assume i is a metavariable ranging over instructions and σ is a
metavariable ranging over states for any imperative programming language.
The transition relation in operational semantics specifies the final state of
the execution of an instruction i in a state σ. In small step semantics the
transition relation is expressed by 〈i, σ〉; γ, where γ can be either 〈i′, σ′〉
or σ′. The transition specifies the first step of the execution of i in the state
σ. If the execution does not complete in the first step, the result of the
execution is obtained from the execution of the instruction i′ in the state
σ′, where i′ and σ′ are the transformed instruction and state after one step
of execution, respectively. If the execution completes in the first step then
it returns the final state σ′. The execution is said to be stuck if there is no
γ such that 〈i, σ〉; γ. An execution in small step semantics can therefore
be a sequence of γs, and this derivation sequence could be finite or infinite,
depending on whether we reach a γ in the derivation sequence which is either
a terminal configuration or a stuck configuration, or not.

This execution process can be viewed as a reduction system. In a reduc-
tion system, when a term is not further reducible we call such a term as a
normal form. A term which reduces to its normal form in a finite sequence
of reductions, is called strong normalizing. A term which has a normal form,
but also infinite chains of reductions, is called weakly normalizing. In struc-
tural operational semantics we say an execution terminates if there is a finite
derivation sequence for that execution resulting the last element in a normal
form. An execution loops if there is an infinite derivation sequence. In gen-

1.1 Programming languages 5

eral proofs on structural operational semantics is conducted by induction on
the length of the derivation sequence.

1.1.2.3 Natural semantics

Instead of describing how the individual steps are performed, big step se-
mantics is concerned with the relationship between the initial and the final
state of an execution. In big step semantics the transition relation is given
in the form 〈i, σ〉; σ′, thus specifying the relationship between the initial
state σ and the final state σ′ in the execution of the instruction i. For im-
mediate constituents of the instruction i, say i1, i2, . . . , in, natural semantics
rule is given by a number of premises of the form 〈i1, σ1〉; σ′

1, 〈i2, σ2〉;

σ′
2, . . . , 〈in, σn〉 ; σ′

n, where σ1, σ2, . . . , σn are intermediate states in the
execution, with the conclusion 〈i, σ〉 ; σ′. Any rule with no premises is
known as an axiom. A derivation tree can be built for an execution of an
instruction i in a state σ leading to a final state σ′ using the rules provided
by natural semantics, where the root node is 〈i, σ〉; σ′ and the leaves are
instances of axioms, while the internal nodes are conclusions of instantiated
rules and their immediate sons are their corresponding premises. Execution
of an instruction i in a state σ terminates if there is a state σ′ such that
〈i, σ〉 ; σ′. If there is no such state σ′ the execution loops. Proofs on
natural semantics is conducted by induction on the shape of the derivation
tree.

As we have noticed that natural semantics does not provide a stuck
configuration, abnormal termination in natural semantics can not be distin-
guished from looping, whereas in structural operational semantics an infinite
derivation sequence is given as a proof for looping and a finite sequence end-
ing in a stuck configuration is given as a proof for abnormal termination.
Again if we allow non-determinism in the programming language, given a
choice between looping and termination natural semantics will possibly sup-
press looping because natural semantics always tries to find out the final
state at termination. In such a case, structural operational semantics does
not suppress looping as it tries to provide information about computation
for the first step of execution and can not foresee looping. Finally, if we allow
parallelism in the programming language, the set of results obtained by nat-
ural semantics will be a subset of the set of results obtained by structural
operational semantics. The reason behind this is the fact that in natural
semantics we consider the execution of each instruction, including its imme-
diate constituents, as atomic entity. So we cannot express the interleaving
of computations, whereas in structural operational semantics we express the
execution of each small steps and can express the interleaving of computa-
tions.

In later chapters when we discuss our work, we consider a small im-
perative language and do not consider either abnormal termination, non-

6 Introduction

determinism or parallelism. In such a case natural semantics and structural
operational semantics are equivalent, and we continue our work with natural
semantics.

When the programming language is deterministic, the semantic relation
is a function, but it is only a partial function when the programming lan-
guage allows looping program construct. In our work we will consider an
imperative language with looping construct, thus our semantic relation will
be a partial function on states. Structural operational semantics was in-
troduced by Gordon Plotkin and natural semantics was later derived from
it.

1.1.2.4 Denotational Semantics

Denotation semantics is interested in the association between initial states
and final states for program constructs. In denotational semantics the mean-
ing of a program is at a more abstract level where denotation of an instruc-
tion is considered to be a partial function on states. For each syntactic
category in the programming language a semantic function has to be de-
fined, which will map each syntactic construct to a function describing the
effect of executing that construct. Semantic functions in denotational se-
mantics are defined compositionally. A semantic clause is defined for each
of the base elements of the syntactic category and for each of the composite
elements of the syntactic category a semantic clause is defined in terms of the
semantic function applied to the immediate constituents of the composite
element. In other words structural induction is used to define denotational
semantics. Execution of an instruction i in a state σ leads to a final state
σ′ is denoted by [[i]]σ = σ′. Though the semantic relations for structural op-
erational semantics and natural semantics associate a partial function from
state to state to each instruction, but they are not defined compositionally.

We cannot define denotational semantics compositionally if there exists
any syntactic category of nested recursive nature. For example, loops in
programming languages. In such a case, semantic function has the form
[[i]]σ = (. . . [[i]][[i]]σ′ . . .). Structural induction or compositionality does not
work in such a case, as the immediate constituent of i is i itself. To work
around such a problem the semantic function is viewed as [[i]]σ = F ([[i]]σ′),
where the functional F can be applied to the immediate constituent of [[i]]σ
or more precisely [[i]]σ′ . This indicates [[i]]σ must be a fixed point of F . Let
us look at the fixed point theory a little more.

1.1.2.5 Fixed point theory

A fixed point of a function f , is any value x, for which f x = x. A function
may have any number of fixed points from none (e.g. f x = x + 1) to
infinitely many (e.g. f x = x). If f is recursive, we can represent it as

1.1 Programming languages 7

f = fix F where F is some higher-order function and fix F = F (fix F).
The standard denotational semantics of f is then given by the least fixed
point of F . This is the least upper bound of the infinite sequence (the
ascending Kleene chain) obtained by repeatedly applying F to the totally
undefined value, ⊥ or bottom. I.e. fix F = LUB(⊥, F ⊥). The least
fixed point is guaranteed to exist for a continuous function over a complete
partial order.

Let f be any fixed point of F in [[i]]σ = F ([[i]]σ′), that is F f = f ,
where f is a partial function from state to state. There exist two different
approaches to solve this fixed point equation. A general way to solve this is
to use the theory of complete partial order and continuous functions. When
the instruction i keeps on looping on itself, [[i]]σn = σn+1 for all n. Thus we
have f σn = σn+1 for all n, which leads to the fact that f σ0 = σn for all n
and makes it difficult to determine the value of f σ0. Various fixed points of
F may differ in such a situation, let f be the desired fixed point fix F then
for any other fixed point of F , say f ′, f σ = σ′ should imply f ′ σ = σ′ for
all choices of σ and σ′. This automatically leads to an ordering between f
and f ′ which we discuss in the next subsection.

Another way to solve the fixed point equation [[i]]σ = F ([[i]]σ′) is to con-
sider the operator on sets determined by rule instances given by rule induc-
tion, of which induction principle, viz. structural induction for operational
semantics is a special case. Let R̂ be an operator on set R such that it takes
the premises of the rule instances in R and returns the conclusions. Apply-
ing R̂ on empty set will return the conclusions of instances of axioms, say
R̂(∅). Remember, axioms are the rule instances with no premises. Applying
R̂ on R̂(∅) will return the conclusions of the rule instances whose premises
are in the set R̂(∅). Similarly it goes on. Clearly this forms a monotonic
chain ∅ ⊆ R̂(∅) ⊆ R̂2(∅) . . . Let A be the set of conclusions obtained as⋃

R̂n(∅), where n ranges from 0 to ∞. Intuitively A contains all the possi-
ble derivations from the set of rule instances R. It can be easily proved that
R̂(A) = (A) holds and A is the least fixed point of it. In the fixed point
equation [[i]]σ = F ([[i]]σ′), F matches with R̂ for the properly defined set of
rule instances for i.

1.1.2.6 Complete partial order and continuous functions

In general, very few recursive functions can be easily expressed by least fixed
points of operators on sets. Denotational semantics uses complete partial
order and continuous functions to deal with them. A partial order is defined
by a pair of a set, say P , and a binary relation v over P , such that v is
reflexive, transitive and antisymmetric. For a partial order (P,v) and a
subset P ′ ⊆ P , p is an upper bound of P ′ if and only if ∀q ∈ P ′. q v p and
in addition if for all upper bounds q of P ′ p v q holds, p is called least upper
bound of P ′. A partial order (P,v) is called a complete partial order if it has

8 Introduction

least upper bounds of all infinite chains p1 v p2 v . . ., where p1, p2, . . . ∈ P .
A function f : P → Q, where P and Q are complete partial orders, is

continuous if it is monotonic and f (LUB P ′) = LUB (f p′) | p′ ∈ P ′ for all
directed sets P ′ in P . By directed set P ′ we mean, if p′1, p

′
2, . . . are elements

of P ′ then there exists a chain p′1 v p′2 v In other words, the image
of the least upper bound in continuous function is the least upper bound
of any directed image. A continuous function has a least fixed point if its
domain has a least element. When a least element, bottom or⊥, is added in a
complete partial order the least fixed point is given by fix f = (LUB (fn ⊥))
where n ranges from 0 to ∞.

Semantic functions for instructions in denotational semantics are given
by partial functions Σ ⇀ Σ, where Σ is the set of states and Σ forms a com-
plete partial order with inclusion order of states. Partial functions on states
can be considered as continuous total functions if we extend the set of output
states Σ to a complete partial order by adding a least element ⊥ to form Σ⊥,
ordered by ∀σ. ⊥ v σ. Intuitively this means adding a state corresponding
to an undefined state. There exists an one to one correspondence between
the partial functions Σ ⇀ Σ and the total functions Σ → Σ⊥. Inclusion
order between partial functions corresponds to the pointwise order between
total functions. Thus semantic functions in denotational semantics can be
considered continuous functions over a complete partial order and recursive
equations are solved by taking the least fixed point of this function.

In denotational semantics programs are translated into functions about
which properties can be proved using the standard mathematical theory of
functions, and especially domain theory.

1.1.2.7 Domain theory

In the denotational semantics of programming languages, the meaning of
a program construct is given by assigning it to an element in a domain of
possible meanings. Different domains correspond to the different types of
object with which a program deals. A domain is a mathematical struc-
ture consisting of a set of values (or ”points”) and an ordering relation, ≤
on those values. Domain theory studies such structures. We have already
given a small description of complete partial order and continuous functions.
The traditional approach to have a theoretical development of denotational
semantics is to develop a meta language for expressing denotational defi-
nitions. The theoretical foundation of this language then ensures that the
semantic functions exist as long as we use domains and operations from the
meta language.

Denotational semantics is much more widely applicable than to simple
imperative programming languages, it can handle virtually all programming
languages, though the standard framework appears inadequate for paral-
lelism and fairness. Denotational semantics can handle abnormal execution

1.1 Programming languages 9

and non-determinism using power-domains. Power-domains are complete
partial order analogues of powersets enabling denotations to represent sets of
possible outcomes. Gordon Plotkin has introduced them in [32]. λ-calculus
provides the mathematical base of denotational semantics. Christopher Stra-
chey and Dana Scott pioneered the approach of denotational semantics by
providing mathematical foundations.

1.1.2.8 Axiomatic semantics

Axiomatics semantics is appropriate for reasoning about program correct-
ness. The use of operational semantics or denotational semantics to reason
about specific properties of programs is not always convenient and some-
times may not be possible.

In axiomatic semantics, properties of programs are specified as asser-
tions. An assertion is a triple of the form {A} P {B}, where P is a program
construct and A and B are predicates. A is called the precondition and B is
called the postcondition. This triple is also known as the Hoare triple. The
meaning of the assertion {A} P {B} is that if A holds in the initial state
σ and if the execution of the program construct P from the initial state σ
terminates in a state σ′ then B holds in the final state σ′. Assertions of
the form {A} P {B} are called partial correctness assertions because they
do not say anything about the program construct P if it fails to terminate.
Intuitively, if we view the program as a state transformer or a collection of
state transformers, the axiomatic semantics is a set of invariants on the state
which the state transformer satisfies.

There are two approaches on specifying the preconditions and postcon-
ditions of the assertions. More commonly used the intensional approach
introduces an explicit language called an assertion language and then the
conditions (pre- or post-) will be formulæ of that language. This assertion
language is much more powerful than the boolean expressions as it needs to
express all the possible preconditions and postconditions. The extensional
approach reformulates the meaning of {A} P {B} as if A holds on a state
σ and if P is executed from σ results in the state σ′ then B holds on σ′. In
the extensional approach an inference system is built to specify the partial
correctness assertions. It consists of a set of inference axioms and inference
rules similar to the derivation rules for natural semantics. An inference rule
has the form {Ai} i {Bi} for each instruction i, where Ai and Bi are predi-
cates. In general there exists a rule of consequence in the inference system
which states that a precondition can be weakened at the cost of strength-
ening the postcondition. Similar to the derivation tree in natural semantics
an inference tree can be built with the inference rules for an execution. An
inference tree provides a proof of the property expressed by its root. Proofs
of properties about program constructs are conducted on the shape of the
inference tree.

10 Introduction

In the extensional approach the inference system needs to be sound and
complete. An inference rule is valid if its conclusion is valid under valid
premises and when all the inference rules are valid the inference system is
sound. An inference system is complete when all the valid partial correctness
assertions can be obtained by its rules. Gödel’s incompleteness theorem sug-
gests that there is no effective proof system for partial correctness assertions
such that its theorems are precisely the valid partial correctness assertions.
In the intensional approach the problem comes with the expressiveness of
the assertion language, which also needs to be finitely computable.

Axiomatic semantics can be extended to verify total correctness proper-
ties, where assertions have the form {A} P {⇓ B}, which says that if the
precondition A is satisfied in the initial state then the program construct P
is guaranteed to terminate and the final state satisfies the postcondition B.
The proof system for total correctness can be further extended to prove the
order of magnitude of the execution time of a program construct.

Axiomatic semantics can handle abnormal execution, non-determinism
and parallelism naturally. Traditionally first order predicate logic or tem-
poral logic provides the mathematical foundation of axiomatic semantics.
Floyd invented rules for reasoning on flow charts and later Hoare modified
and extended these rules to pioneer axiomatic semantics. In our work we
will limit ourselves in natural semantics and functional semantics.

1.2 Calculus of Inductive Constructions

To machine check the proofs about the programming language properties we
use the proof assistant Coq, which helps to build the proofs in an interactive
way with the help of automatic search tools whenever possible. A remarkable
characteristic of Coq is the possibility to generate certified programs from
the proofs, and more recently, certified modules. The main objective of this
section is to give a brief introduction to the underlying theory, the Calculus
of Inductive Constructions, of the Coq proof assistant.

1.2.1 Terms and types

Terms are the basic ingredients of Calculus of Inductive Constructions. In
most type theories, one usually makes a syntactic distinction between types
and terms. This is not the case for Calculus of Inductive Constructions
which defines both types and terms in the same syntactical structure. This
is because the type theory itself forces terms and types to be defined in a
mutual recursive way and also because similar constructions can be applied
to both terms and types and consequently can share the same syntactic
structure. In general there are two kind of terms, expressions and types.

Expressions are formed with constants and identifiers, following a few
construction rules. Every expression has a type, the type for an identifier is

1.2 Calculus of Inductive Constructions 11

usually given by a declaration and the rules that make it possible to form
combined expressions come with typing rules that express the links between
the type of the parts and the type of the whole expression.

Type checking is done with respect to an environment and a context.
An environment contains all the global declarations and a context contains
all the local declarations. For examples, axioms are in the environment
and hypotheses are in the context. To start with, types are of two kinds.
Atomic types are made of single identifiers. For example, N, Z and B. Arrow
types are of the form A→ B, where A and B are themselves types. Arrow
types represent types of functions, thus A → B is a function which takes
an argument of type A and returns a value of type B. An arrow type
A→ B → C is either the type of a function taking two arguments of type A
and B and returning a value of type C, or the type of a function taking an
argument of type A and returning a function of type B → C. In Calculus
of Inductive Constructions we consider all functions are total, making every
function a terminating computation process.

In the Coq proof assistant we can write programs in a similar way we
write them in functional programming languages. In this dissertation we are
going to discuss about the type theory based semantics for programming lan-
guages. In the following sections we prepare ourselves for the programming
language constructs in type theoretical context. In the Calculus of Inductive
Constructions, a declaration attaches a type to an identifier, without giving
the value. A definition either assigns a well formed term to an identifier as
a value, or gives both the type and the value to an identifier. Notions of
free and bound variable comes from the notion of the λ-abstraction. When
all free occurrences of a variable v in a term t is replaced by another term u
we denote it by t{v/u}, where all free variables in u remains free in t{v/u}.
Renaming of a bound variable in a λ-abstraction is known as α-conversion.

1.2.2 Program execution and term reductions

Programs can be executed in Calculus of Inductive Constructions. Though
the main intention is to develop correct programs, computation is neces-
sary even to check that some expressions are well typed. Computations are
performed by term reductions. In general reductions are done along with
α-conversions. There exists four kinds of reductions. δ-reduction replaces
an identifier with its definition. β-reduction is the application of a lambda
abstraction to an argument expression. ζ-reduction removes local definitions
occurring in terms by replacing the defined variable by its value. More pre-
cisely, it replaces any formula of the form let v := e1 in e2 into e2{v/e1}.
ι-reduction deals with recursive functions. The typing rules of Calculus of In-
ductive Constructions interact with reductions. The type of a term remains
same after any series of reductions. Every sequence of reductions from a
given term in the Calculus of Inductive Constructions terminates and this

12 Introduction

property is known as strong normalization. Reductions on a term can be
applied in any order. In the Calculus of Inductive Constructions it is decid-
able whether two terms are convertible, where two terms are convertible if
they can be reduced to the same term.

A call-by-value strategy or lazy strategy can be used to evaluate the
arguments of a function call. In call by value strategy the arguments will
be evaluated first and later their values will be passed. In the lazy strategy
the evaluation of arguments will be delayed as long as possible.

1.2.3 Predicates

In the Calculus of Inductive Constructions, the expressions and types are
considered as particular cases of terms. The type of a type is called a sort.
Two basic sorts in the language of the Calculus of Inductive Constructions
are Set and Prop. The sort Prop intends to be the type of the logical
propositions. The logical propositions themselves are typing the proofs.
An object of type Prop is called a proposition. The sort Set intends to
be the type of specifications. The specifications themselves are typing the
programs. An object of type Set is called a program. These two sorts
constitute two different semantic subclass of the syntactic class term. The
Calculus of Inductive Constructions considers an infinite hierarchy of sorts
called universes. Universes are constituted with types Type(i) for every i
in N, such that the type of Set and Prop is Type(i), for every i and type
of Type(i) is Type(j), where i < j. Set of terms is organized in different
levels and the type of every term at the level i is a term at the level i + 1.
The Calculus of Inductive constructs hides the hierarchy and instead the
notation Type is used for any type Type(i). This leads to the fact that the
type of Set is Type and the type of Type is also Type.

1.2.4 Logic

The Calculus of Inductive Constructions uses intuitionistic logic to reason
about programs. Heyting introduced the intuitionistic logic in [22]. In the
intuitionistic logic to prove a proposition P true, we look for proofs of P .
A proof of implication P ⇒ Q is considered as a process to obtain a proof
of Q from a proof of P . From the functional programming point of view, a
proof of P ⇒ Q is a function that given an arbitrary proof of P constructs
a proof of Q. The Curry-Howard isomorphism provides the correspondence
between λ-Calculus as a model of functional programming and proof calculi
like natural deduction [35]. In intuitionistic logic we can extract correct
programs from proofs. In functional language a proof can be considered as a
expression and the proven statement as the type of proofs for the statement.
For example, the implication P ⇒ Q is the arrow type P → Q. The
implication can be stated as an abstraction of the form λH : P, t where t is

1.2 Calculus of Inductive Constructions 13

a proof of Q, well formed in the context which has a hypothesis H stating
P . Logical developments and programs are developed in the similar way,
where the universe of logical propositions is the sort Prop and the universe
of specifications is the sort Set. Two programs may be totally different for
the same specification as they may differ in implementation or efficiency,
whereas two proofs of a proposition, if they exist, are equally important to
ensure the truth of the proposition. Thus proofs of a given proposition can
be interchanged, and this possibility is known as proof irrelevance.

1.2.5 Dependent types and dependent products

In the Calculus of Inductive Constructions arrow types represent type of
functions. But types can also be passed as arguments to functions in the
Calculus of Inductive Constructions. If we consider a function f which takes
an argument of type A and returns a type, we may consider another function
that returns its value in type (f a). Such a definition makes it possible to
consider functions whose result type vary with the argument. These return
types are called dependent types. When a function returns a proposition as
a result we call such a function as a predicate. In the Calculus of Inductive
Construction typing rule for dependent types says that in an environment
and in a context if A is of type Set and B is of type Type then the arrow
type A → B has type Type in the same environment and context. Types
for the predicates and the parameterized data types can be obtained if B
is assigned to Prop and Set respectively in the typing rule for dependent
types. And the case where both A and B has type Type leads to higher
order types.

In the Calculus of Inductive Constructions, a unified formalism for uni-
versal quantification and product types is provided by the dependent product
construct. A dependent product is a type of the form ∀a : A, B where A
and B are types and a is a bound variable of type A and scope of a covers
B. Thus the variable a can have free occurrences in B. Dependent products
are similar to the cartesian products in mathematics, the main difference be-
tween them is that dependent products use types whereas cartesian products
in mathematics use sets. Dependent products also differ from abstractions
as the abstractions describe type expressions in which functions may occur
and dependent type describe functions and not the function types. If t is
term of type B then the type of the abstraction λv : A⇒ t is the dependent
product ∀v : A,B. When v does not occur in B the product ∀v : A,B is the
simple arrow type A→ B. They are also called non-dependent products as
the variable for the input does not occur in the result type. The expressive
power of dependent products in the Calculus of Inductive Constructions is
based on Martin Lof’s type theory. Dependent products are also subject to
α-conversion.

Dependent types make it possible that the type of a program can contain

14 Introduction

constraints expressed as propositions that must be satisfied by the data. A
certified program can be expressed as a function which computes and also
provides a certificate for the computation. There are two approaches to
define functions and providing proofs that they satisfy a given specification.
In the weak specification, functions are specified to do the computations
and later companion lemmas are added for the proof. For example, given a
relation R : A → B → Prop, we define a function f of type A → B and
prove a lemma with a statement of the form ∀a : A, R a (f a). In the strong
specification, the type of the function includes the type of the proof. For
example, the type of the function f states that it takes an argument a of
type A and the result is the combination of a value b of type B and a proof
that (R a b) holds. Adding proof arguments to functions makes it possible
to make the type of these functions more explicit about their behavior.
Functions defined using the strong specification style are also known as well-
specified functions and usually such functions rely on dependent types.

1.2.6 Inductive types

Inductive types provide ways to specify programs and to verify the consis-
tency of the specification. Thus the Calculus of Inductive Constructions
provides a lot of power to the inductive types with respect to the types
given in conventional programming languages. Inductive types help to build
certified programs, programs whose type specifies exactly the behavior.

Inductive type paves the way of building the data structures and type
definitions in the Calculus of Inductive Constructions. Inductive types are
constructed with the help of constructors, where the constructors represent
different possible cases of the type. For example, to define the type of
boolean values, there exists two possible values, true and false. The boolean
type is defined as follows:

Inductive bool : Set := true : bool | false : bool.

For each inductive definition of a type T , the Coq system adds several
theorems and functions that make it possible to reason and compute on data
in this type. of theorems. These theorems always have the same form, they
contain a universal quantification over a variable P of type T → s where s
is a sort and their statement ends with formula of the form ∀x : T (P x).
When the sort s is Prop the theorem is named T ind, when the sort s is
Set the function is named T rec and when the sort s is Type the function
is called T rect. T ind is the induction principle associated to the inductive
definition. For example, the induction principle of the boolean type defined
above is as follows:

bool_ind :
∀ P: bool→Prop,

1.2 Calculus of Inductive Constructions 15

P true → P false →
∀ b:bool, P b

Each inductive type corresponds to a computation structure, based on pat-
tern matching and recursion.

Inductive types can have types or values as parameters. Constructors
of the inductive types can have dependent types or functions. To write
recursive functions with these inductive types the dependent arguments must
of the constructors should appear in the pattern for the pattern matching
constructs. Inductive types can be formed where subterms are in another
instance of the same inductive type than the whole term.

The strength of inductive types in the Calculus of Inductive Construc-
tions is mostly a consequence of their interaction with the dependent prod-
uct. With the extra expressive power a large variety of properties on data
and programs can be formulated simply using type expressions. Depen-
dent inductive types easily cover the usual aspects of logic: connectives,
existential quantification, equality, natural numbers. All these concepts are
uniformly described and handled as inductive types. The expressive power of
inductive types also covers logic programming, in other words, the languages
of the Prolog family.

Non-recursive functions are defined with the Definition construct. Pat-
tern matching makes it possible to describe functions that perform a case
analysis on the value of an expression whose type is an inductive type. The
pattern matching construct is associated with the ι-reduction. ι-reduction
adds some conversion rules for different cases of the pattern matching con-
struct in a conversion table. These rules are used to compare two terms by
the type-checking process.

Recursive types can be defined in the Calculus of Inductive Construc-
tions. Recursive types are simple inductive types, where some data frag-
ments that has the same nature as the whole. Recursive types help to rea-
son about data structures of unknown size. Recursive types allow to build
infinite sets where each element is constructed in finite number of steps.
For example, natural number is represented by Peano’s arithmetic in the
Calculus of Inductive Constructions as follows:

Inductive nat : Set := O : nat | S : nat→nat.

where S stands for successor function. Thus any natural number can be
constructed by repeatedly applying the successor function over zero.

The Calculus of Inductive Constructions allows to define an empty type.
We call a type empty if no element of this type can be built. An usual way
to define an empty type is to define an inductive type with no constructor.
Later we will see such an example to build the inductive predicate False.
A dependent type may be empty for some of its arguments, but the Curry-
Howard isomorphism says that even in such a case the type can carry logical
information.

16 Introduction

The computation structures of the inductive types provide the basis of
recursive programming. In the Calculus of Inductive Constructions the re-
cursive functions are defined over recursive types using the fixpoint con-
struct. To ensure that the recursive function is well-defined, definitions of
recursive functions are organized around the structure of the inductive type.
For each constructor of the inductive type a value is defined for the function,
if the constructor is recursive then a recursive value is given. Such pattern of
recursive definition is called structural recursion. The Calculus of Inductive
Constructions allows to define functions whose terminations are guaranteed.

Recursive functions can be defined on any number of arguments, but the
recursive structure of the function relies on a particular argument which is
called the principal argument. The constructors in the principal argument
help to carry out the function computation by ι-reduction. Function compu-
tation is done by pattern matching on the principal argument and recursive
calls are only available for the subterms of the principal argument of the
same type.

The computation of a structural recursive function follows the structure
of its principal argument. Reasoning about a structural recursive function
relies on a proof by induction on the principal argument of this function.
Thus the proofs about such functions follow the structure of the pattern
matching constructs present in the function.

In the Calculus of Inductive Constructions abstraction is used to build a
non-recursive function inside a term. To build a recursive function directly
inside a term the fix command is used, which does not provide a name for
the function. The fix construct only describes a function and unlike the
fixpoint construct it does not define a constant having this function as its
value.

Dependent types make it possible to define polymorphic types in the Cal-
culus of Inductive Constructions. In general, polymorphic types are defined
as dependent types with arguments. These arguments appear as parameters
in the inductive definition of the polymorphic type. When parameters are
provided, they must appear at every use of the type being defined. Similar
to the inductive types, recursive functions and pattern matching can be per-
formed on the polymorphic types. Since the parameters can not be bound
in the pattern, parameter arguments do not appear in the constructor of
pattern matching clauses. To describe a large class of partial functions an
option type can be defined as a polymorphic type of the following form:

Inductive option (A:Set) : Set :=
Some : A→option A

| None : option A.

To define a partial function which takes an argument of type A and returns a
value y of type B, it is often possible to define the partial function as a total
function from A to option B, such that the function returns None when the

1.2 Calculus of Inductive Constructions 17

function is not defined and returns Some y when the partial function should
have returned y.

1.2.7 Inductive predicates

A dependent type with one argument could be empty or not depending on
the value of this argument. The Curry-Howard isomorphism can exploit
this aspect. A dependent inductive type can represent a predicate that is
provable or not depending on the value of its argument. In the Calculus of
Inductive Constructions inductive types are systematically used to describe
predicates. In general, these inductive types are defined in the sort Prop
rather than in the sort Set because they are used to represent properties
rather than the data types. Proof irrelevance plays a role here; the exact
form of an inhabitant of an inductive property is irrelevant, only its existence
matters. The choice between Set and Prop as the sort of an inductive type
also influences the extraction tools that produce executable programs from
Coq developments.

In general, in the Calculus of Inductive Constructions logical connectives
are represented as inductive types. Among the exceptions are implication,
universal quantification and negation. Implication and universal quantifica-
tion are directly represented using products and negation is represented as
a function on top of False. The constructors in the inductive definition of a
logical connective correspond to the introduction rules for these connectives
in natural deduction and the induction principles correspond to the elimi-
nation rule. The proposition which can be proved in any context is given by
the inductive definition of True, which has a constructor I representing the
proof without conditions.

Inductive True : Prop := I : True.

The contradictory proposition can never be proved and thus given by the
inductive definition of False which has no constructor.

Inductive False : Prop := .

The logical connective there exists is obtained with the following inductive
definition:

Inductive ex (A:Type)(P:A→Prop) : Prop :=
ex_intro : ∀x:A, P x → ex A P.

Equality between two terms, of the same type or which can be converted
to the same type, is expressed by a parameterized inductive type.

Inductive eq (A:Type)(x:A) : A→Prop := refl_equal : eq A x x.

18 Introduction

Dependent types make it possible to have two terms in two types which are
provably equal but not convertible.

The Calculus of Inductive Constructions puts restriction on function
specification that the function should be total. This requirement for termi-
nation of reductions imposes strong limitations on what terms can be formed.
Sometimes this makes it difficult to specify a function f by a functional term
in the Calculus of Inductive Constructions. In particular, partial functions
are difficult to describe. Using an option type does not help enough. In-
ductive definitions make it possible to relax the constraints on the functions
to describe them formally. For example, to describe a function f from A
to B, the inductive definition is very useful if it is undecidable whether a
given value belongs to the function’s domain. The inductive definition of the
function f gives a logical characterization of the set of pairs (x, f(x)). The
inductive predicate describing the function f has the type A→ B → Prop.

Inductive definition makes it possible to describe a function whose ter-
mination is not guaranteed. This approach is very useful for the description
of programming languages. To represent the semantics of a programming
language directly by a function, which takes the initial state and the pro-
gram as arguments and returns the final state after executing the program,
is impossible to describe as soon as the language is Turing-complete. Oth-
erwise this would mean solving the halting problem, which is undecidable.
On the other hand a description of the semantics by the inductive relation
is possible.

The description of a function f that takes k arguments as an inductive
relation is given by an inductive predicate Pf that relates k input values with
the result value. Thus the predicate Pf has k +1 arguments. This predicate
Pf is described with a collection of constructors which describes all the cases
that appear in the function. For each of these cases, the form of the input
data is described in the constructor’s final type, the constraints on the input
are described as premises, recursive calls of the form f x1 x2 . . . xk are also
represented by premises of the form Pf x1 x2 . . . xk y where y is a fresh
variable representing the final value of this recursive call. To describe the
type of all variables appearing in the constructor universal quantifications
are added. If a function takes k argument and returns a tuple of p arguments
as a final value, an inductive predicate with k + p arguments can be defined
to describe the function as an inductive relation.

Induction principle of inductively defined predicate precisely uses the
facts that are expressed by the constructors, thus makes the proof by induc-
tion on inductive predicates more efficient.

1.2.8 Specification of functions

Strong specification of functions rely on the inductive types in the Set sort
that have constructors with the arguments in theProp sort. Thus the spec-

1.2 Calculus of Inductive Constructions 19

ification combines a data type and a predicate over this type as a proof.
This proof argument is not used for computation. In the Coq library such
specification has the following type:

Inductive sig (A:Set) (P:A→Prop) : Set :=
exist : ∀x:A, P x → (sig A P).

where in the constructor exist the computation component is described
by ∀x : A and the proof over this data type is P x. The inductive type
sig corresponds to the Σ-type[6]. Since the result type of sig is in the Set
sort, a function of type (sig A P)→ A can be constructed such that given a
value of type (sig A P) a witness of type A can be obtained which satisfies
the property P . From a (exist x p), where p : (P x) we can extract its
witness x:A (using an elimination construct) but not its justification p, which
stays hidden, like in an abstract data type. In technical terms, sig is a
weak (dependent) sum. A strong (dependent) sum is defined by defining the
predicate P as A→ Set.

The constructive sum of two propositions A and B is given by the type
sumbool, which serves as a well-specified version of the type bool. The
sumbool type is defined inductively as follows:

Inductive sumbool (A B:Prop) : Set :=
left : A → (sumbool A B)

| right : B → (sumbool A B).

Traditionally in the Coq system functions with the result type sumbool
are denoted with dec suffix. Such functions are used to decide between two
alternatives. Using the sumbool type is like attaching a comment to the
function definition, which gives the meaning of this function and the type
system verifies the validity of this comment.

1.2.9 General recursive functions

Sometimes it is difficult to express the termination of a recursive function
as structural recursion with respect to one of the function arguments. Later
in the chapter we discuss such an example coming from the recursive na-
ture of while loops in programming language instructions. In the Calculus
of Inductive Constructions there are several methods to work around this
difficulty.

1.2.9.1 Bounded recursion

In the first method the function is defined by structural recursion on an arti-
ficial argument. In general this artificial argument represents the complexity
of the function to be defined, it is calculated before calling the function and

20 Introduction

then added to the function. In this way we express the recursive function
by bounded recursion. Bounded recursion adds extra computation on top of
the desired function. First, the bound must be determined before calling the
function and second, the function needs to be modified adding extra compu-
tation on this argument so that the function becomes structurally recursive
with respect to this argument, thus making the function different from the
original function. This extra computation remains even after the extraction
process.

1.2.9.2 Well founded recursion

A second method uses a well founded relation to define the recursive func-
tion. A well founded relation guarantees a finite descending chain and all
recursive calls of the function are done on an expression which is a predeces-
sor of the initial argument for this relation, thus ensuring the fact that there
exists no infinite loop. In general, the relation that relates any element of an
inductive type to its strict subterms can be proved well-founded by struc-
tural induction. The Coq proof assistant provides a collection of theorems to
build and work on well-founded relations in the module Well-founded. Recur-
sive functions are built with the help of the recursor well founded induction.
The type of well founded induction is as follows:

well_founded_induction
:∀(A:Set)(R:A→A→Prop),

well_founded A R→
∀P:A→Set, (∀x:A, (∀y:A, R y x → P y) → P x) →

∀a:A, P a

Thus the recursor takes five arguments and returns a function of the
type ∀a : A, P a. The first argument A describes the input type of the
function to be defined. The second argument R describes a binary relation.
The third argument well founded A R is a proof that the relation R is well
founded. The fourth argument P is a dependent type and gives the output
type of the function to be defined. The fifth argument is a dependently
typed function which describes the computation process for an element of
type A such that the recursive calls are performed on expressions which
are smaller than this element with respect to the relation R. This function
takes two arguments. The first argument x represents the initial argument
of the function we want to define and the second argument is a dependently
typed function representing the recursive calls of the function to be defined.
The relation (R y x) inside the fifth argument is the type of a proof that
recursive calls are only allowed to a predecessor y of x for the relation R
provided for the function to be defined. Since the third argument in the
function to be defined says that the relation R is well-founded, to ensure
that there is no infinite chain of recursive calls it is enough to show that the

1.2 Calculus of Inductive Constructions 21

recursive calls are only allowed on smaller elements for the relation R. The
induction principle corresponding to the recursor well founded induction is
also provided in the Coq module Well-founded as well founded ind.

Though this method makes the extracted code more reliable, this method
is in general more complex in nature and difficult to reason about for func-
tions with weak specification. Well-specified recursive function when defined
directly with the well-founded induction removes the complexity of extra
proofs for the function specification. Well-founded recursive functions are
difficult to reason about directly. An approach to reason directly about them
is to first make sure that we are working in a good context where enough of
the definitions are theorems are available for such a purpose. Then the proof
is done using the maximal induction predicate provided in the Coq library
as Acc inv dep. Another approach to reason directly about a well-founded
function is to rely on a fix-point equation for the function. With the fixpoint
equation the proofs are carried on by the well founded induction using the
induction principle called well founded ind.

1.2.9.3 Recursion by iteration

In a third method, proposed by Balaa and Bertot [1], recursion is achieved by
iteration. This approach makes the style of programming closer to the usual
style of conventional functional programming languages. In this approach,
first the functional associated to the recursive function is determined. It-
erating this functional a function is defined which performs the intended
computation of the recursive function we want to define. With the help
of the well-founded induction this function is proved to be total, in other
words it is proved that this function terminates. The recursive function is
then built from this function by ignoring the termination proof. Let f be a
recursive function which takes an argument x of type A and returns a type
B. The definition of f can be written as an equation of the following form

f x = . . . f x . . .

We can define a functional F which takes f and x as arguments and maps
them to the right side of the above equation. The above equation then takes
the following form

f x = F f x

The function F has the type (A→ B)→ A→ B. If g is a function of type
A → B, F g has type A → B, F (F g) has type A → B and so on. Thus
we can iterate F for a number of times to do the computation, when F is
iterated k times it is represented as F k. If the function f takes a p number
of recursive calls for the computation f x, then by construction F k g x =
f x, for every k > p and for every function g of right type. The result
value F k g x does not depend on g for any k larger than p, therefore this

22 Introduction

result value can be defined without defining the function f . The recursive
function is constructed with the help of a proof by well-founded relation on
A. The recursive calls are described by a function which corresponds to the
induction hypothesis given by the induction step. The termination proof of
the recursive function follows the structure of the described computation in
the functional F .

In fact the function f is a fixpoint of F in the previous equation. This
approach makes it easy to obtain a fix-point equation, which helps to prove
properties of general recursive functions even for weakly specified functions.
The companion theorems for the specification of the recursive function is
proved with the help of the fix-point equation. This approach of achieving
recursion by iteration makes it possible to work separately on the algorithm,
the proof of termination and the specification of the recursive function.

This approach of recursion by iteration takes care of separating the com-
putations on the number of iterations from the computations performed on
the real arguments, thus making the programming style more closer to the
usual functional programming. The first approach of bounded recursion is
similar to this approach, but there is an extra computation for the bound.
The second approach of well-founded recursion is complex in nature and
needs expertise to use. The approach of recursion by iteration is easier to
use and the fixpoint equation makes it easier to prove the companion lemmas
for the specification of the function. But this approach is not suitable when
the termination of the function is not known, in other words the functions
are partial. In the chapter 2 we will provide another method to deal with
the recursive function where the structural recursion is not adaptable for
the specification and the function is partial.

1.2.9.4 Nested recursion

A recursive function f is nested if the function has the following form:

f(x) = . . . f(g(f(y))) . . .

Nested functions are difficult to prove to be total and thus they are difficult
to define. In the next chapter we show a technique to describe the nested
recursion in programming languages inside type theory.

1.3 Conclusion

In the context of programming languages the algebraic types are suitable for
syntax and inductive propositions are suitable for natural semantics. De-
notational semantics fit with the functional definitions. For denotational
semantics we need unrestricted use of recursive functions. Recursion is also
common in the context of programming languages. One of the main question

1.3 Conclusion 23

studied in this thesis, how do we represent the programming constructs with
mutual and nested recursion inside type theory, where the type theory puts
the constraint of structural recursion, total functions etc and the program-
ming languages do not inherit them? How do we benefit from the functional
descriptions of the programming language? We discuss these questions in
the following chapters.

24 Introduction

Chapter 2

Type-theoretic functional
semantics

The work of this chapter is a joint work with Yves Bertot and Venanzio
Capretta [5]

2.1 Introduction

In the previous chapter we described two main kinds of semantics for pro-
gramming languages.

Operational semantics consists in describing the steps of the computation
of a program by giving formal rules to derive judgments of the form 〈p, a〉;

r, to be read as “the program p, when applied to the input a, terminates
and produces the output r”.

Denotational semantics consists in giving a mathematical meaning to
data and programs, specifically interpreting data (input and output) as el-
ements of certain domains and programs as functions on those domains;
then the fact that the program p applied to the input a gives r as result is
expressed by the equality [[p]]([[a]]) = [[r]], where [[−]] is the interpretation.

Our main goal is to develop operational and denotational semantics in-
side type theory, to implement them in the proof-assistant Coq [33], and to
prove their main properties formally. In this chapter we will prove a sound-
ness and completeness theorem stating that operational and denotational
semantics agree.

The implementation of operational semantics is straightforward: The
derivation system is formalized as an inductive relation whose constructors
are direct rewording of the derivation rules.

The implementation of denotational semantics is much more delicate.
Traditionally, programs are interpreted as partial functions, since they may
diverge on certain inputs. However, all function of type theory are total.
The problem of representing partial functions in a total setting has been the
topic of recent work by several authors [15, 13, 34, 10, 37]. A standard way of
solving it is to restrict the domain to those elements that are interpretations

26 Type-theoretic functional semantics

of inputs on which the program terminates and then interpret the program
as a total function on the restricted domain. There are different approaches
to the characterization of the restricted domain. Another approach is to lift
the co-domain by adding a bottom element, this approach is not sufficient
here because the expressive power of the programming language imposes a
limit to computable functions. For example, reduction always terminates in
the Calculus of Inductive Constructions, therefore we cannot represent all
computable functions through reduction.

When considering the nested recursive function, a direct formalization
needs to define domain and function simultaneously. This is not possible
in standard type theory, but can be achieved if we extend it with Dybjer’s
simultaneous induction-recursion [14]. This is the approach adopted in [10].

An alternative way, adopted by Balaa and Bertot in [1], sees the partial
function as a fixed point of an operator F that maps total functions to total
functions. It can be approximated by a finite number of iterations of F on
an arbitrary base function. The domain can be defined as the set of those
elements for which the iteration of F stabilizes after a finite number of steps
independently of the base function.

The drawback of the approach of [10] is that it is not viable in stan-
dard type theories (that is, without Dybjer’s schema). The drawback of the
approach of [1] is that the defined domain is the domain of a fixed point
of F that is not in general the least fixed point. This maybe correct for
lazy functional languages (call by name), but is incorrect for strict func-
tional languages (call by value), where we need the least fixed point. The
interpretation of an imperative programming language is essentially strict
and therefore the domain is too large: The function is defined for values on
which the program does not terminate.

Here we combine the two approaches of [10] and [1] by defining the
domain in a way similar to that of [10], but disentangling the mutual de-
pendence of domain and function by using the iteration of the functional F
with a variable index in place of the yet undefined function.

We claim two main results. First, we develop denotational semantics in
type theory. Second, we model the accessibility method in a weaker system,
that is, without using simultaneous induction-recursion.

Here is the structure of this chapter. In Section 2.2 we define the simple
imperative programming language IMP. We give an informal description of
its operational and denotational semantics. We formalize the operational
semantics by an inductive relation. We explain the difficulties related to the
implementation of the denotational semantics.

In Section 2.3 we describe the iteration method. We point out the dif-
ficulty in characterizing the domain of the interpretation function by the
convergence of the iterations.

In Section 2.4 we give the denotational semantics using the accessibility
method. We combine it with the iteration technique to formalize nested

2.2 IMP and its semantics 27

recursion without the use of simultaneous induction-recursion.
All the definitions have been implemented in Coq and all the results

proved formally in it. We use here an informal mathematical notation,
rather than giving Coq code. There is a direct correspondence between this
notation and the Coq formalization. Using the PCoq graphical interface
1, we also implemented some of this more intuitive notation. The Coq files
of the development are on the web 2.

2.2 IMP and its semantics

Winskel [38] presents a small programming language IMP with while loops.
IMP is a simple imperative language with integers, truth values true and
false, memory locations to store the integers, arithmetic expressions, boolean
expressions and commands. The formation rules are

arithmetic expressions: a ::= n | X | a0 + a1 | a0 − a1 | a0 ∗ a1;

boolean expressions: b ::= true | false | a0 = a1 | a0 ≤ a1 | ¬b | b0 ∨ b1 |
b0 ∧ b1;

commands: c ::= skip | X ← a | c0; c1 | if b then c0 else c1 | while b do c

where n ranges over integers, X ranges over locations, a ranges over arith-
metic expressions, b ranges over boolean expressions and c ranges over com-
mands.

We formalize it by three inductive types AExp, BExp, and Command.
For simplicity, we work with natural numbers instead of integers. We do

so, as it has no significant importance in the semantics of IMP. Locations
are also represented by natural numbers. One should not confuse the nat-
ural number denoting a location with the natural number contained in the
location. Therefore, in the definition of AExp, we denote the constant value
n by Num(n) and the memory location with address v by Loc(v)

We see commands as state transformers, where a state is a map from
memory locations to natural numbers. The map is in general partial, indeed
it is defined only on a finite number of locations. Therefore, we can represent
a state as a list of bindings between memory locations and values. If the
same memory location is bound twice in the same state, the most recent
binding, that is, the leftmost one, is the valid one.

State : Set
[] : State
[· 7→ ·, ·] : N→ N→ State→ State

1http://www-sop.inria.fr/lemme/pcoq/index.html
2http://www-sop.inria.fr/lemme/Kuntal.Das Barman/imp/

28 Type-theoretic functional semantics

The state [v 7→ n, s] is the state s with the content of the location v replaced
by n.

Operational semantics consists in three relations giving meaning to arith-
metic expressions, boolean expressions, and commands. Each relation has
three arguments: The expression or command, the state in which the expres-
sion is evaluated or the command executed, and the result of the evaluation
or execution.

(〈·, ·〉A ; ·) : AExp→ State→ N→ Prop
(〈·, ·〉B ; ·) : BExp→ State→ B→ Prop
(〈·, ·〉C ; ·) : Command→ State→ State→ Prop

For arithmetic expressions we have that constants are interpreted in
themselves, that is, we have axioms of the form

〈Num(n), σ〉A ; n

for every n : N and σ : State. Memory locations are interpreted by looking
up their values in the state. Consistently with the spirit of operational
semantics, we define the lookup operation by derivation rules rather than
by a function.

(value ind σ v n)
〈Loc(v), σ〉A ; n

where

value ind : State→ N→ N→ Prop
no such location : (v : N)(value ind [] v 0)
first location : (v, n : N;σ : State)(value ind [v 7→ n, σ] v n)
rest locations : (v, v′, n, n′ : N;σ : State)

v 6= v′ → (value ind σ v n)→ (value ind [v′ 7→ n′, σ] v n)

Notice that we assign the value 0 to empty locations, rather that leaving
them undefined. This corresponds to giving a default value to uninitialized
variables rather than raising an exception.

The operations are interpreted in the obvious way, for example,

〈a0, σ〉A ; n0 〈a1, σ〉A ; n1

〈a0 + a1, σ〉A ; n0 + n1

where the symbol + is overloaded: a0 +a1 denotes the arithmetic expression
obtained by applying the symbol + to the expressions a0 and a1, n0 + n1

denotes the sum of the natural numbers n0 and n1.

2.2 IMP and its semantics 29

In short, the operational semantics of arithmetic expressions is defined
by the inductive relation

(〈·, ·〉A ; ·) : AExp→ State→ N→ Prop
eval Num : (n : N;σ : State)(〈Num(n), σ〉A ; n)
eval Loc : (v, n : N;σ : State)(value ind σ v n)→ (〈Loc(v), σ〉A ; n)
eval Plus : (a0, a1 : AExp;n0, n1 : N;σ : State)

(〈a0, σ〉A ; n0)→ (〈a1, σ〉A ; n0)→
(〈a0 + a1, σ〉A ; n0 + n1)

eval Minus : · · ·
eval Mult : · · ·

For the subtraction case the cutoff difference is used, that is, n −m = 0 if
n ≤ m.

The definition of the operational semantics of boolean expressions is
similar and we omit it.

The operational semantics of commands specifies how a command maps
states to states. skip is the command that does nothing, therefore it leaves
the state unchanged.

〈skip, σ〉C ; σ

The assignment X ← a evaluates the expression a and then updates the
contents of the location X to the value of a.

〈a, σ〉A ; n σ[X 7→n] ; σ′

〈X ← a, σ〉C ; σ′

where σ[X 7→n] ; σ′ asserts that σ′ is the state obtained by changing the
contents of the location X to n in σ. It could be realized by simply σ′ =
[X 7→ n, σ]. This solution is not efficient, since it duplicates assignments of
existing locations and it would produce huge states during computation. A
better solution is to look for the value of X in σ and change it.

(·[·7→·] ; ·) : State→ N→ N→ State→ Prop
update no location : (v, n : N)([][v 7→n] ; [])
update first : (v, n1, n2 : N;σ : State)([v 7→ n1, σ][v 7→n2] ; [v 7→ n2, σ])
update rest : (v1, v2, n1, n2 : N;σ1, σ2 : N)v1 6= v2 →

(σ1[v2 7→n2] ; σ2)→ ([v1 7→ n1, σ1][v2 7→n2] ; [v1 7→ n1, σ2])

Notice that we require a location to be already defined in the state to update
it. If we try to update a location not present in the state, we leave the state
unchanged. This corresponds to requiring that all variables are explicitly
initialized before the execution of the program. If we use an uninitialized
variable in the program, we do not get an error message, but an anomalous
behavior: The value of the variable is always zero.

30 Type-theoretic functional semantics

Evaluating a sequential composition c1; c2 on a state σ consists in eval-
uating c1 on σ, obtaining a new state σ1, and then evaluating c2 on σ1 to
obtain the final state σ2.

〈c1, σ〉C ; σ1 〈c2, σ1〉C ; σ2

〈c1; c2, σ〉C ; σ2

Evaluating conditionals uses two rules. In both rules, we evaluate the
boolean expression b, but they differ on the value returned by this step and
the sub-instruction that is executed.

〈b, σ〉B ; true 〈c1, σ〉C ; σ1

〈if b then c1 else c2, σ〉C ; σ1

〈b, σ〉B ; false 〈c2, σ〉C ; σ2

〈if b then c1 else c2, σ〉C ; σ2

As for conditionals, we have two rules for while loops. If b evaluates to
true, c is evaluated on σ to produce a new state σ′, on which the loop is
evaluated recursively. If b evaluates to false, we exit the loop leaving the
state unchanged.

〈b, σ〉B ; true 〈c, σ〉C ; σ′ 〈while b do c, σ′〉C ; σ′′

〈while b do c, σ〉C ; σ′′
〈b, σ〉B ; false

〈while b do c, σ〉C ; σ

The above rules can be formalized in Coq in a straightforward way by
an inductive relation.

〈·, ·〉C ; · : Command→ State→ State→ Prop
eval skip : (σ : State)(〈skip, σ〉C ; σ)
eval assign : (σ, σ′ : State; v, n : N; a : AExp)

(〈a, σ〉A ; n)→ (σ[v 7→n] ; σ′)→ (〈v ← a, σ〉C ; σ′)
eval scolon : (σ, σ1, σ2 : State; c1, c2 : Command)

(〈c1, σ〉C ; σ1)→ (〈c2, σ1〉C ; σ2)→ (〈c1; c2, σ〉C ; σ2)
eval if true : (b : BExp;σ, σ1 : State; c1, c2 : Command)

(〈b, σ〉B ; true)→ (〈c1, σ〉C ; σ1)→
(〈if b then c1 else c2, σ〉C ; σ1)

eval if false : (b : BExp;σ, σ2 : State; c1, c2 : Command)
(〈b, σ〉B ; false)→ (〈c2, σ〉C ; σ2)→
(〈if b then c1 else c2, σ〉C ; σ2)

eval while true : (b : BExp; c : Command;σ, σ′, σ′′ : State)
(〈b, σ〉B ; true)→ (〈c, σ〉C ; σ′)→
(〈while b do c, σ′〉C ; σ′′)→ (〈while b do c, σ〉C ; σ′′)

eval while false : (b : BExp; c : Command;σ : State)
(〈b, σ〉B ; false)→ (〈while b do c, σ〉C ; σ)

For the rest of the paper we leave out the subscripts A, B, and C in
〈·, ·〉; ·.

2.3 Functional interpretation 31

2.3 Functional interpretation

Denotational semantics consists in interpreting program evaluation as a
function rather than as a relation. We start by giving a functional interpre-
tation to expression evaluation and state update. This is quite straightfor-
ward, since we can use structural recursion on expressions and states. For
example, the interpretation function on arithmetic expressions is defined as

[[·]] : AExp→ State→ N
[[Num(n)]]σ := n
[[Loc(v)]]σ := value rec(σ, v)
[[a0 + a1]]σ := [[a0]]σ + [[a1]]σ
[[a0 − a1]]σ := [[a0]]σ − [[a1]]σ
[[a0 ∗ a1]]σ := [[a0]]σ · [[a1]]σ

where value rec(·, ·) is the function giving the contents of a location in a state,
defined by recursion on the structure of the state. It differs from value ind
because it is a function, not a relation; value ind is its graph. We can now
prove that this interpretation function agrees with the operational semantics
given by the inductive relation 〈·, ·〉; · (all the lemmas and theorems given
below have been checked in a computer-assisted proof).

Lemma 2.1. ∀σ : State.∀a : AExp.∀n : N.〈σ, a〉; n⇔ [[a]]σ = n.

In the same way, we define the interpretation of boolean expressions

[[·]] : BExp→ State→ B

and prove that it agrees with the operational semantics.

Lemma 2.2. ∀σ : State.∀b : BExp.∀t : B.〈σ, b〉; t⇔ [[a]]σ = t.

We overload the Scott brackets [[·]] to denote the interpretation function
both on arithmetic and boolean expressions (and later on commands).

Similarly, we define the update function

·[·/·] : State→ N→ N→ State

and prove that it agrees with the update relation

Lemma 2.3. ∀σ, σ′ : State.∀v, n : N.σ[v 7→n] ; σ′ ⇔ σ[n/v] = σ′.

The next step is to define the interpretation function [[·]] on commands.
Unfortunately, this cannot be done by structural recursion, as for the cases

32 Type-theoretic functional semantics

of arithmetic and boolean expressions. Indeed we should have

[[·]] : Command→ State→ State
[[skip]]σ := σ
[[X ← a]]σ := σ[[[a]]σ/X]
[[c1; c2]]σ := [[c1]][[c2]]σ

[[if b then c1 else c2]]σ :=
{

[[c1]]σ if [[b]]σ = true
[[c2]]σ if [[b]]σ = false

[[while b do c]]σ :=
{

[[while b do c]][[c]]σ if [[b]]σ = true
σ if [[b]]σ = false

but in the clause for while loops the interpretation function is called on the
same argument if the boolean expression evaluates to true. Therefore, the
argument of the recursive call is not structurally smaller than the original
argument.

So, it is not possible to associate a structural recursive function to the
instruction execution relation as we did for the lookup, update, and expres-
sion evaluation relations. The execution of while loops does not respect the
pattern of structural recursion and termination cannot be ensured: for good
reasons too, since the language is Turing complete. We describe a way to
work around this problem.

2.3.1 The iteration technique

A function representation of the computation can be provided in a way that
respects typing and termination if we don’t try to describe the execution
function itself but the second order function of which the execution function
is the least fixed point. This function can be defined in type theory by cases
on the structure of the command.

F : (Command→ State→ State)→ Command→ State→ State
(F f skip σ) := σ
(F f (X ← a) σ) := σ[[[a]]σ/X]
(F f (c1; c2) σ) := (f c2 (f c1 σ))

(F f (if b then c1 else c2) σ) :=
{

(f c1 σ) if [[b]]σ = true
(f c2 σ) if [[b]]σ = false

(F f (while b do c) σ) :=
{

(f (while b do c) (f c σ)) if [[b]]σ = true
σ if [[b]]σ = false

Intuitively, writing the function F is exactly the same as writing the recursive
execution function, except that the function being defined is simply replaced
by a bound variable (here f). In other words, we replace recursive calls with
calls to the function given in the bound variable f .

The function F describes the computations that are performed at each
iteration of the execution function and the execution function performs the

2.3 Functional interpretation 33

same computation as the function F when the latter is repeated as many
times as needed. We can express this with the following theorem.

Theorem 2.1 (eval com ind to rec).

∀c : Command.∀σ1, σ2 : State.
〈c, σ1〉; σ2 ⇒ ∃k : N.∀g : Command→ State→ State.(Fk g c σ1) = σ2

where we used the following notation

Fk = (iter (Command→ State→ State) F k) = λg. (F (F · · · (F︸ ︷︷ ︸
k times

g) · · ·))

definable by recursion on k,

iter : (A : Set)(A→ A)→ N→ A→ A
(iter A f 0 a) := a
(iter A f (S k) a) := (f (iter A f k a)).

Proof. Easily proved using the theorems described in the previous section
and an induction on the derivation of 〈c, σ1〉 ; σ2: This kind of induction
is also called rule induction in [38]. 2

Note that our definition of iteration is different from the denotational
semantics, as we do not check for definiteness. We call this semantics as
functional semantics. In our functional semantics we separate the two kind
of information that the denotational semantics gathers in the same object,
namely the definiteness information and the resulting value. In the section
2.4 we show how we include this definiteness information in our functional
semantics.

2.3.2 Extracting an interpreter

The Coq system provides an extraction facility [28], which makes it pos-
sible to produce a version of any function defined in type theory that is
written in a functional programming language’s syntax, usually the OCaml
implementation of ML. In general, the extraction facility performs some
complicated program manipulations, to ensure that arguments of functions
that have only a logical content are not present anymore in the extracted
code. For instance, a division function is a 3-argument function inside type
theory: The first argument is the number to be divided, the second is the
divisor, and the third is a proof that the second is non-zero. In the extracted
code, the function takes only two arguments: The extra argument does not
interfere with the computation and its presence cannot help ensuring typing,
since the programming language’s type system is too weak to express this
kind of details.

34 Type-theoretic functional semantics

The second order function F and the other recursive functions can also
be extracted to ML programs using this facility. However, the extraction
process is a simple translation process in this case, because none of the
various function actually takes proof arguments.

To perform complete execution of programs, using the ML translation
of F, we have the possibility to compute using the extracted version of the
iter function. However, we need to guess the right value for the k argument.
One way to cope with this is to create an artificial “infinite” natural number,
that will always appear to be big enough, using the following recursive data
definition:

letrec ω = (S ω).

This definition does not correspond to any natural number that can be
manipulated inside type theory: It is an infinite tree composed only of S
constructors. In memory, it corresponds to an S construct whose only field
points to the whole construct: It is a loop.

Using the extracted iter with ω is not very productive. Since ML evalu-
ates expressions with a call-by-value strategy, evaluating

(iter F g ω c σ)

imposes that one evaluates

(F (iter F g ω) c σ)

which in turn imposes that one evaluates

(F (F (iter F g ω)) c σ)

and so on. Recursion unravels unchecked and this inevitably ends with a
stack overflow error. However, it is possible to use a variant of the iteration
function that avoids this infinite looping, even for a call-by-value evaluation
strategy. The trick is to η-expand the expression that provokes the infinite
loop, to force the evaluator to stop until an extra value is provided, before
continuing to evaluate the iterator. The expression to define this variant is
as follows:

iter′ : (A,B : Set)((A→ B)→ A→ B)→ N→ (A→ B)→ A→ B
(iter′ A B G 0 f) := f
(iter′ A B G (S k) f) := (G λa : A.(iter′ A B G k f a))

Obviously, the expression λa : A.(iter′ A B G k f a) is η-equivalent to the
expression (iter′ A B G k f). However, for call-by-value evaluation the two
expression are not equivalent, since the λ-expression in the former stops the
evaluation process that would lead to unchecked recursion in the latter.

With the combination of iter′ and ω we can now execute any terminating
program without needing to compute in advance the number of iterations of

2.3 Functional interpretation 35

F that will be needed. In fact, ω simply acts as a natural number that is big
enough. We obtain a functional interpreter for the language we are study-
ing, that is (almost) proved correct with respect to the inductive definition
〈·, ·〉; ·.

Still, the use of ω as a natural number looks rather like a dirty trick:
This piece of data cannot be represented in type theory, and we are taking
advantage of important differences between type theory and ML’s memory
and computation models: How can we be sure that what we proved in type
theory is valid for what we execute in ML? A first important difference is
that, while executions of iter or iter′ are sure to terminate in type theory,
(iter′ F ω g) will loop if the program passed as argument is a looping program.

The purpose of using ω and iter′ is to make sure that F will be called
as many times as needed when executing an arbitrary program, with the
risk of non-termination when the studied program does not terminate. This
can be done more easily by using a fixpoint function that simply returns the
fixpoint of F. This fixpoint function is defined in ML by

letrec (fix f) = f(λx.fix f x).

Obviously, we have again used the trick of η-expansion to avoid looping in the
presence of a call-by-value strategy. With this fix function, the interpreter
function is

interp : Command→ State→ State
interp := fix F.

To obtain a usable interpreter, it is then only required to provide a parser
and printing functions to display the results of evaluation. This shows how
we can build an interpreter for IMP in ML. But we realized it by using
some tricks of functional programming that are not available in type theory.
If we want to define an interpreter for IMP in type theory, we have to find
a better solution to the problem of partiality.

2.3.3 Characterizing terminating programs

Theorem 2.1 gives one direction of the correspondence between operational
semantics and functional interpretation through the iteration method. To
complete the task of formalizing denotational semantics, we need to define
a function in type theory that interprets each command. As we already
remarked, this function cannot be total, therefore we must first restrict its
domain to the terminating commands. This is done by defining a predicate
D over commands and states, and then defining the interpretation function
[[·]] on the domain restricted by this predicate. Theorem 2.1 suggests the
following definition:

D : Command→ State→ Prop
(D c σ) := ∃k : N.∀g1, g2 : Command→ State→ State.

(Fk g1 c σ) = (Fk g2 c σ).

36 Type-theoretic functional semantics

Unfortunately, this definition is too weak. In general, such an approach
cannot be used to characterize terminating “nested” iteration. This is hard
to see in the case of the IMP language, but it would appear plainly if one
added an exception instruction with the following semantics:

〈exception, σ〉; [].

Intuitively, the programmer could use this instruction to express that an
exceptional situation has been detected, but all information about the exe-
cution state would be destroyed when this instruction is executed.

With this new instruction, there are some commands and states for which
the predicate D is satisfied, but whose computation does not terminate.

c := while true do skip; exception.

It is easy to see that for any state σ the computation of c on σ does not
terminate. In terms of operational semantics, for no state σ′ is the judgment
〈c, σ〉; σ′ derivable.

However, (D c σ) is provable, because (Fk g c σ) = [] for any k > 1.
In the next section we work out a stronger characterization of the domain

of partial functions, that turn out to be the correct one in which to interpret
the operational semantics.

2.4 The Accessibility predicate

A common way to represent partial functions in type theory is to restrict
their domain to those arguments on which they terminate. A partial function
f : A ⇀ B is then represented by first defining a predicate Df : A → Prop
that characterizes the domain of f , that is, the elements of A on which f is
defined; and then formalizing the function itself as f : (Σx : A.(Df x))→ B,
where Σx : A.(Df x) is the type of pairs 〈x, h〉 with x : A and h : (Df x).

The predicate Df cannot be defined simply by saying that it is the do-
main of definition of f , since, in type theory, we need to define it before we
can define f . Therefore, Df must be given before and independently from
f . One way to do it is to characterize Df as the predicate satisfied by those
elements of A for which the iteration technique converges to the same value
for every initial function. This is a good definition when we try to model lazy
functional programming languages, but, when interpreting strict program-
ming languages or imperative languages, we find that this predicate would
be too weak, being satisfied by elements for which the associated program
diverges, as we have seen at the end of the previous section.

Sometimes the domain of definition of a function can be characterized
independently of the function by an inductive predicate called accessibility
[29, 15, 13, 9]. This simply states that an element of a can be proved to be

2.4 The Accessibility predicate 37

in the domain if the application of f on a calls f recursively on elements
that have already been proved to be in the domain. For example, if in the
recursive definition of f there is a clause of the form

f(e) := · · · f(e1) · · · f(e2) · · ·

and a matches e, that is, there is a substitution of variables ρ such that
a = ρ(e); then we add a clause to the inductive definition of Acc of type

Acc(e1)→ Acc(e2)→ Acc(e).

This means that to prove that a is in the domain of f , we must first prove
that ρ(e1) and ρ(e2) are in the domain.

This definition does not always work. In the case of nested recursive
calls of the function, we cannot eliminate the reference to f in the clauses
of the inductive definition Acc. If, for example, the recursive definition of f
contains a clause of the form

f(e) := · · · f(f(e′)) · · ·

then the corresponding clause in the definition of Acc should be

Acc(e′)→ Acc(f(e′))→ Acc(e)

because we must require that all arguments of the recursive calls of f satisfy
Acc to deduce that also e does. But this definition is incorrect because we
haven’t defined the function f yet and so we cannot use it in the definition
of Acc. Besides, we need Acc to define f , therefore we are locked in a vicious
circle.

In our case, we have two instances of nested recursive clauses, for the
sequential composition and while loops. When trying to give a semantics of
the commands, we come to the definition

[[c1; c2]]σ := [[c2]][[c1]]σ

for sequential composition and

[[while b do c]]σ := [[while b do c]][[c]]σ

for a while loop, if the interpretation of b in state σ is true.
Both cases contain a nested occurrence of the interpretation function

[[−]].
An alternative solution, presented in [10], exploits the extension of type

theory with simultaneous induction-recursion [14]. In this extension, an

38 Type-theoretic functional semantics

inductive type or inductive family can be defined simultaneously with a
function on it. For the example above we would have

Acc : A→ Prop
f : (x : A)(Acc x)→ B
...
accn : (h′ : (Acc e′))(Acc (f e′ h′))→ (Acc e)
...
(f e (accn h′ h)) := · · · (f (f e′ h) h) · · ·
...

This method leads to the following definition of the accessibility predicate
and interpretation function for the imperative programming language IMP:

comAcc : Command→ State→ Prop
[[]] : (c : Command;σ : State)(comAcc c σ)→ State

accSkip : (σ : State)(comAcc skip σ)
accAssign : (v : N; a : AExp;σ : State)(comAcc (v ← a) σ)
accScolon : (c1, c2 : Command;σ : State;h1 : (comAcc c1 σ))

(comAcc c2 [[c1]]h1
σ)→ (comAcc (c1; c2) σ)

accIf true : (b : BExp; c1, c2 : Command;σ : State)
[[b]]σ = true→ (comAcc c1 σ)
→ (comAcc (if b then c1 else c2) σ)

accIf false : (b : BExp; c1, c2 : Command;σ : State)
[[b]]σ = false→ (comAcc c2 σ)
→ (comAcc (if b then c1 else c2) σ)

accWhile true : (b : BExp; c : Command;σ : State)[[b]] = true
→ (h : (comAcc c σ))(comAcc (while b do c) [[c]]hσ)
→ (comAcc(while b do c) σ)

accWhile false : (b : BExp; c : Command;σ : State)[[b]] = false
→ (comAcc (while b do c) σ)

[[skip]](accSkip σ)
σ := σ

[[(v := a)]](accAssign v a σ)
σ := σ[a/v]

[[(c1; c2)]]
(accScolon c1 c2 σ h1 h2)
σ := [[c2]]h2

[[c1]]
h1
σ

[[if b then c1 else c2]]
(accIf true b c1 c2 σ p h1)
σ := [[c1]]h1

σ

[[if b then c1 else c2]]
(accIf false b c1 c2 σ q h2)
σ := [[c2]]h2

σ

[[while b do c]](accWhile true b c σ p h h′)
σ := [[while b do c]]h

′

[[c]]hσ

[[while b do c]](accWhile false b c σ q)
σ := σ

This definition is admissible in systems that implement Dybjer’s schema for

2.4 The Accessibility predicate 39

simultaneous induction-recursion. But on systems that do not provide such
schema, for example Coq, this definition is not valid.

We must disentangle the definition of the accessibility predicate from
the definition of the evaluation function. As we have seen before, the eval-
uation function can be seen as the limit of the iteration of the functional
F on an arbitrary base function f : Command → State → State. Whenever
the evaluation of a command c is defined on a state σ, we have that [[c]]σ is
equal to (F k

f c σ) for a sufficiently large number of iterations k. Therefore,
we consider the functions F k

f as approximations to the interpretation func-
tion being defined. We can formulate the accessibility predicate by using
such approximations in place of the explicit occurrences of the evaluation
function. Since the iteration approximation has two extra parameters, the
number of iterations k and the base function f , we must also add them as
new arguments of comAcc. The resulting inductive definition is

comAcc : Command→ State→ N→ (Command→ State→ State)→ Prop
accSkip : (σ : State; k : N; f : Command→ State→ State)

(comAcc skip σ k + 1 f)
accAssign : (v : N; a : AExp;σ : State; k : N; f : Command→ State→ State)

(comAcc (v ← a) σ k + 1 f)
accScolon : (c1, c2 : Command;σ : State;

k : N; f : (Command→ State→ State))
(comAcc c1 σ k f)→ (comAcc c2 (F k

f c1 σ) k f)
→ (comAcc (c1; c2) σ k + 1 f)

accIf true : (b : BExp; c1, c2 : Command;σ : State;
k : N; f : Command→ State→ State)
(〈b, σ〉; true)→ (comAcc c1 σ k f)
→ (comAcc (if b then c1 else c2) σ k + 1 f)

accIf false : (b : BExp; c1, c2 : Command;σ : State;
k : N; f : Command→ State→ State)
(〈b, σ〉; false)→ (comAcc c2 σ k f)
→ (comAcc (if b then c1 else c2) σ k + 1 f)

accWhile true : (b : BExp; c : Command;σ : State;
k : N; f : Command→ State→ State)(〈b, σ〉; true)
→ (comAcc c σ k f)→ (comAcc (while b do c) (F k

f c σ))
→ (comAcc(while b do c) σ k + 1 f)

accWhile false : (b : BExp; c : Command;σ : State;
k : N; f : Command→ State→ State)(〈b, σ〉; false)
→ (comAcc (while b do c) σ k + 1 f).

This accessibility predicate characterizes the points in the domain of the
program parametrically on the arguments k and f . To obtain an indepen-
dent definition of the domain of the evaluation function we need to quantify
on them. We quantify existentially on k, because if a command c and a

40 Type-theoretic functional semantics

state σ are accessible in k steps, then they will still be accessible in a higher
number of steps. We quantify universally on f because we do not want the
result of the computation to depend on the choice of the base function.

comDom : Command→ State→ Set
(comDom c σ) = Σk : N.∀f : Command→ State→ State.(comAcc c σ k f)

The reason why the sort of the predicate comDom is Set and not Prop is
that we need to extract the natural number k from the proof to be able to
compute the following evaluation function:

[[]] : (c : Command;σ : State; f : Command→ State→ State)
(comDom c σ)→ State

[[c]]〈k,h〉
σ,f = (F k

f c σ)

To illustrate the meaning of these definitions, let us see how the interpre-
tation of a sequential composition of two commands is defined. The interpre-
tation of the command (c1; c2) on the state σ is [[c1; c2]]Hσ , where H is a proof
of (comDom (c1; c2) σ). Therefore H must be in the form 〈k, h〉, where k : N
and h : ∀f : Command→ State→ State.(comAcc (c1; c2) σ k f). To see how
h can be constructed, let us assume that f : Command→ State→ State and
prove (comAcc (c1; c2) σ k f). This can be done only by using the construc-
tor accScolon. We see that it must be k = k′ + 1 for some k′ and we must
have proofs h1 : (comAcc c1 σ k′ f) and h2 : (comAcc c2 (F k′

f c1 σ) k′ f). No-
tice that in h2 we don’t need to refer to the evaluation function [[]] anymore,
and therefore the definitions of comAcc does not depend on the evaluation
function anymore. We have now that (h f) := (accScolon c1 c2 σ k′ f h1 h2).
The definition of [[c1; c2]]Hσ is also not recursive anymore, but consists just in
iterating F k times, where k is obtained from the proof H.

We can now prove an exact correspondence between operational seman-
tics and denotational semantics given by the interpretation operator [[·]].

Theorem 2.2.

∀c : Command.∀σ, σ′ : State.
〈c, σ〉; σ′ ⇔ ∃H : (comDom c σ).∀f : Command→ State→ State.[[c]]Hσ,f = σ′.

Proof. From left to right, it is proved by rule induction on the derivation of
〈c, σ〉 ; σ′. The number of iterations k is the depth of the proof and the
proof of the comAcc predicate is a translation step by step of it. From right
to left, it is proved by induction on the proof of comAcc. 2

2.5 Conclusions

The combination of the iteration technique and the accessibility predicate
has, in our opinion, a vast potential that goes beyond its application to

2.5 Conclusions 41

denotational semantics. Not only does it provide a path to the implemen-
tation and reasoning about partial and nested recursive functions that does
not require simultaneous induction-recursion; but it gives a finer analysis
of convergence of recursive operators. As we pointed out in Section 2.3, it
supplies not just any fixed point of an operator, but the least fixed point.

We were not the first to formalize parts of Winskel’s book in a proof
system. Nipkow [26] formalized the first 100 pages of it in Isabelle/HOL.
The main difference between our work and his, is that he does not represent
the denotation as a function but as a subset of State × State that happens
to be the graph of a function. Working on a well developed library on sets,
he has no problem in using a least-fixpoint operator to define the subset
associated to a while loop: But this approach stays further removed from
functional programming than an approach based directly on the functions
provided by the prover. In this respect, our work is the first to reconcile a
theorem proving framework with total functions with denotational seman-
tics. One of the gains is directly executable code (through extraction or
ι-reduction). The specifications provided by Nipkow are only executable in
the sense that they all belong to the subset of inductive properties that can
be translated to Prolog programs. In fact, the reverse process has been
used and those specifications had all been obtained by a translation from a
variant of Prolog to a theorem prover [7]. However, the prover’s functions
had not been used to represent the semantics.

Our method tries to maximize the potential for automation: Given a
recursive definition, the functional operator F, the iterator, the accessibil-
ity predicate, the domain, and the evaluation function can all be generated
automatically. Moreover, it is possible to automate the proof of the acces-
sibility predicate, since there is only one possible proof step for any given
argument; and the obtained evaluation function is computable inside type
theory.

We expect this method to be widely used in the future in several areas
of formalization of mathematics in type theory. A direct application of our
method will be discussed in chapter 4, during the formalization of Cminor,
a subset of the language C, in the Calculus of Inductive Constructions.

42 Type-theoretic functional semantics

Chapter 3

Proof by reflection in semantics

3.1 Introduction

In the previous chapter we have seen that in the context of theorem proving,
there are two ways to describe the semantics of a programming language.
The most commonly used, operational semantics, relies on inductive defini-
tions. The execution of the program statements is represented by a propo-
sition relating a program, its input and its output. Universally quantified
logical formulas, presented as inference rules, are provided to describe under
which conditions a given program fragment executes correctly. Proving that
a given program maps a given input to a given output in a given context
corresponds to showing that the proposition relating this program, input,
and output is a consequence of the inference rules and the context.

An alternative approach is to describe the programming language seman-
tics as a function mapping programs and inputs to outputs. This function
can be used to compute the result of executing a given program on a given
input, but it is not suitable to reason on programs using information coming
from the context. There is a way to make the functional approach more
powerful, so that it also uses the context.

We talk about functional semantics rather than denotational semantics
because our work does not come with the usual background on domain
theory or complete partial orders.

To simulate the execution of a program using the operational semantics,
we need to combine this semantics with a proof search procedure. To simu-
late the execution of a program using the functional semantics, we only need
to apply a function to the program and inputs and reduce it to the output.
In this sense, the functional semantics opens the door to proof by reflection
[8, 36, 21] because it makes it possible to represent both the semantics and
the proof procedure. But the proof tool that we obtain is still rather weak,
because it can reduce to final value only for ground programs and it does
not use the context. Our goal is to obtain a proof procedure that is more
powerful than conventional proof search. The most important result is a
technique which helps to reason on metavariables, in other words, symboli-

44 Proof by reflection in semantics

cally represented expressions and instructions. This technique is systematic
and general.

Common methods to automate the proof search are based on unification
and resolution. A proof can be viewed as a goal to solve, given a context
of hypotheses. A unification and resolution based procedure looks into the
local context and tries to match the current goal against the conclusion of
one of the hypotheses. If it succeeds, then it returns a subgoal for each of
the premises of the matched hypothesis.

The drawbacks of this approach are, first, that the general proof strategy
is not focused and loses time in exploring a large search space and second,
that it does not have computation power. So we can arrive in a situation
where, even if we have enough information to execute an instruction we
won’t be able to execute. We will show such an example in the next section.

In type theory based proof assistants like Coq [33] functions are pro-
vided and reductions are used to compute with them. Functions compute
on data objects. In usual formal proofs the facts related to computations
are provided as assertions, which are in fact relations between data objects.
We use reflection to bridge this gap to use functions in proof search. We
collect the data objects from the given facts and put them in several tables.
Unlike unification and resolution based approach, we do not look for a match
for a hypothesis in the context to do the computation, we consult these ta-
bles and use functions to do the computation. This functional approach is
more focused and does not need to search in the entire search space, as we
can directly consult the particular table related to the enquiry. Function
evaluation is performed by term reduction and reasoning on unknown ex-
pression needs special care. In this chapter we show a way to work around
this problem.

In this chapter we claim two main results. First, using reflection and a
functional approach to automate proof search we produce an easier and bet-
ter way than the currently available unification and resolution based tech-
nique in proof automation. Second, more important, we present another
general and systematic way to reason on unknown expressions, which is
different from resolution techniques and thereby facilitating symbolic com-
putations (or computations involving metavariables) inside type theory.

Here is the structure of this chapter. In the section 3.2 we consider the
simple imperative language IMP, which we have already discussed in the
section 2.2 and the formalization of its operational semantics by inductive
relations. We discuss about our main objective, a step towards automation,
giving a look into the current situation. We show the difficulties with the
current solution. In Section 3.3 we present the functional interpretations
of IMP. We show how to collect and use data objects from the provided
facts to execute instructions in a functional approach. In Section 3.4 we
give the idea of reflection and how it will be used in our context. We pro-
vide a systematic and general technique to work with metavariables. To

3.2 IMP and its semantics 45

implement the function which does not follow structural recursion we use
iteration technique, which we have described in section 2.3.

All the definitions have been implemented in Coq and all the results
proved formally in it. We use here an informal mathematical notation,
rather than giving Coq code. There is a direct correspondence between this
notation and the Coq formalization. Using the PCoq graphical interface
(available on the web1), we also implemented some of this more intuitive
notation. The Coq files of the development are on the web2.

3.2 IMP and its semantics

In the previous chapter we presented a small programming language IMP
with while loops given by Winskel [38]. IMP is a simple imperative language
with integers, truth values true and false, memory locations to store the
integers, arithmetic expressions, boolean expressions and instructions.

The only difference we have made is that we have decided to work with
integers instead of natural numbers. But it has no significant importance in
the semantics of IMP. Locations are also represented by integers.

3.2.1 Difficulty in automation

In proof assistants, like Coq, Isabelle/HOL, executing instructions can be
viewed as proving them as lemmas, where the facts needed to help the
execution are provided as hypotheses. For instance, we would like to show
an execution of a sequence of two instructions i1 and i2 starting from a state
σ will obtain a final state σ′′, given the facts that execution of i1 in the state
σ yields a state σ′ and the state σ′′ will be obtained in an execution of i2 in
the state σ′.

Lemma 3.1. ∀σ, σ′, σ′′ : State.∀i1, i2 : Inst.
(〈i1, σ〉I ; σ′)→ (〈i2, σ′〉I ; σ′′)︸ ︷︷ ︸

facts

→ (〈i1; i2, σ〉I ; σ′′)︸ ︷︷ ︸
goal

.

To automate this proof, which is similar to the operational semantics de-
scription of eval scolon, difficulties arise to derive the intermediate results,
the state σ′ in our case, which does not appear in the goal. Usually this
kind of proof is done by resolution and unification, as in Prolog interpreters,
and missing values are replaced with existential variables to be instantiated
later through unification. For our example in Coq, a unification and reso-
lution based procedure EAuto finds a match with eval scolon and replaces
σ′ by ?1. Then it needs to solve two more subgoals,viz., (〈i1, σ〉I ;?1) and
(〈i2, ?1〉I ; σ′′). It then finds a match in the context for both the sub-
goals and therefore instantiates ?1 to σ′, thus solving the goal. However a

1http://www-sop.inria.fr/lemme/pcoq/index.html
2http://www-sop.inria.fr/lemme/Kuntal.Das Barman/reflsem/

46 Proof by reflection in semantics

unification and resolution based procedure fails when computation power is
needed. For instance, consider the following lemma

Lemma 3.2. ∀σ : State.∀v : Z.
(lookup σ v 1)︸ ︷︷ ︸

facts

→ 〈while 3 ≤ v do skip, σ〉I ; σ︸ ︷︷ ︸
goal

.

Given the fact that the location v is bound to 1 in the state σ, we need
to prove that execution of the while loop will not change state. We have
the necessary information to prove that the boolean expression 3 ≤ 1 will
be evaluated to false, but such a proof does not exist in the context and
needs to be computed. A unification and resolution based procedure does
not have the computation power for this. A way to solve this problem is to
use functions instead of relations. Functions can also compute intermediate
results, thus handling lemma3. 1.

As we have mentioned before, previously computed results are avail-
able as assertions, which actually are relations between data objects. But
the functions compute on data objects, not on assertions. Unification and
resolution based procedures use a context to do the proof search. To use
functions, we need to construct the data objects from the context that truly
represent the context. Now we show how to achieve this, along with the
functional interpretations of the language.

3.3 Functional interpretation

Functions are well suited to describe how to evaluate arithmetic and boolean
expressions, lookup for variable values or update the state, as they follow
structural recursion. But we want these evaluation functions to use data
from the context. We build a few tables to collect this information from
the context and then design evaluation functions to consult regularly these
tables. For instance,

Lemma 3.3. ∀a1, a2 : AExp.∀σ : State
〈a1, σ〉A ; n1 → 〈a2, σ〉A ; n2︸ ︷︷ ︸

facts

→ 〈a1 + a2, σ〉A ; n1 + n2︸ ︷︷ ︸
goal

.

To keep these information on arithmetic expressions, a1 and a2, we create
a table Tr

AExp (to be read as list of results given for arithmetic subexpres-
sions). Tr

AExp a list of triplets, where each triplet consists of a state, an
arithmetic expression and the integer value of this arithmetic expression
in this state. For example for lemma 3.3, Tr

AExp = [(σ, a2, n2), (σ, a1, n1)].
We ensure that this table contains information that is only provided in the

3.3 Functional interpretation 47

context with the consistency function:

[[·]]cAExp : (list State ∗ AExp ∗ Z)→ Prop

[]rAExp : True

[(σ, a, n) :: lrAExp]
r
AExp :

∀a : AExp. ∀n : Z. ∀σ : State.
〈a, σ〉A ; n ∧ [[lrAExp]]cAExp.

Similarly we create different tables to collect different types of information
from the context. We can have results to lookup in the memory states, to
update a memory state, evaluate boolean expressions and execute instruc-
tions. We will represent them as Tr

lookup,T
r
update,T

r
BExp and Tr

Inst respectively.
Again, we ensure that these tables are consistent with the context with a
set of consistency functions, viz., [[·]]clookup, [[·]]cupdate, [[·]]cBExp and [[·]]cInst,
respectively. The definitions of these functions are similar and we omit them.

To evaluate any expression, we first look in the corresponding table,
whether we already know the result or not. If not, we follow the semantics.
Therefore, the evaluation function for arithmetic expressions is defined as
follows:

[[·]] : AExp→ State→ (list State ∗ Z ∗ Z)
→ (list State ∗ AExp ∗ Z)→ (option Z)

λa : AExp, λσ : State,
λTr

lookup : (list State ∗ Z ∗ Z),
λTr

AExp : (list State ∗ AExp ∗ Z),

x when (σ, a, x) ∈ Tr
AExp

Otherwise :
[[Num(n), Tr

lookup, Tr
AExp]]σ := n

[[Loc(v), Tr
lookup, Tr

AExp]]σ := flookup(σ, v, Tr
lookup)

[[a1 + a2, Tr
lookup, Tr

AExp]]σ :=

[[a1,T
r
lookup,T

r
AExp]]σ

+ [[a2,T
r
lookup,T

r
AExp]]σ

if [[a1, Tr
lookup, Tr

AExp]]σ 6= None
& [[a2, Tr

lookup, Tr
AExp]]σ 6= None

None
if [[a1, Tr

lookup, Tr
AExp]]σ = None

or [[a2, Tr
lookup, Tr

AExp]]σ = None
[[a0 − a1, Tr

lookup, Tr
AExp]]σ := · · ·

[[a0 ∗ a1, Tr
lookup, Tr

AExp]]σ := · · ·

where flookup(·, ·, ·) is the function giving the contents of a location in a
state, defined by recursion on the structure of the state. It differs from

48 Proof by reflection in semantics

lookup because it is a function, not a relation; lookup is its graph. We use
the option type of Coq for type lifting.

In the same way, we define the evaluation function for boolean expres-
sions

[[·]] : BExp→ State→ (list State ∗ Z ∗ Z)→ (list State ∗ AExp ∗ Z)
→ (list State ∗ BExp ∗ B)→ (option B).

We overload the Scott brackets [[·]] to denote the evaluation function both
on arithmetic and boolean expressions.

Similarly, we define the update function

fupdate : State→ Z→ Z→ (list State ∗ Z ∗ Z ∗ State)→ (option State)
λσ : State. λn1, n2 : Z.
λTr

update : (list State ∗ Z ∗ Z ∗ State).

x when (σ, n1, n2, x) ∈ Tr
update

Otherwise :
[[[],Tr

update]]σ := None

[[[x 7→ v, σ′],Tr
update]]σ :=

[n1 7→ n2, σ
′] if x = n1

None
if x 6= n1 &
(fupdate σ′ n1 n2 Tr

update) = None

[x 7→ v, σ′′]
if x 6= n1 &
(fupdate σ′ n1 n2 Tr

update) = σ′′

3.4 Proof by reflection

In usual formal proofs, hypotheses about computations are represented as
assertions that some relation hold for some piece of data. The proof search
mechanisms usually search the context containing all these hypotheses to see
if the goal can be solved directly because it is one of these assumptions. In
a proof system based on type theory like Coq, functions are also provided
and reduction can be used to compute with these functions [27]. The idea of
reflection is to use these functions to perform the proof search. But functions
compute on formalized data and the (context) hypotheses are not data at
the level of these functions but only at the level of the proof system.

This discussion on levels can be found in [3]. Reflection was pioneered
in Coq by Samuel Boutin [8], where reflection was used to decide efficiently
whether two expressions, denoting values in a ring, are equal. Similarly,
Kumar Neeraj Verma and Jean Goubault-Larrecq [36] have recently used
reflection to build a certified BDD algorithm in Coq. Work on reflection
in Coq can be also found in [21], where Dimitri Hendriks described a for-
malization of natural deduction for intuitionistic first-order logic in Coq.

3.4 Proof by reflection 49

In the literature we do not find any reference where reflection was used in
semantics.

To prove a given property P applied to some term t using reflection, is
as follows: Consider a proof-assistant where we can both describe and prove
programs. Then write a program Q that takes t as input and returns true
only when P (t) holds. Prove that Q(t) = true ⇒ P (t) and then use Q to
prove instances of P .

In our case, we would like to prove that 〈σ, i〉I ; σ′ holds given a set
of hypotheses Γ. We should, therefore, write a function Q which takes
data objects that represent Γ, σ and i as inputs and returns σ′ only when
〈σ, i〉I ; σ′ holds along with Γ. To have this last criteria we need to prove
Q(σ, i, data objects from Γ) = σ′ ⇒ Γ → 〈σ, i〉I ; σ′. For the needs of
reflection, we have already built data to represent the hypotheses at the
level where functions can compute.

In section 3.2 we described two problems that need to be solved by
proof search engines to build proofs in semantics. The first problem is to
find intermediate values in computation. This is solved in a natural way,
the evaluation computations. The second problem is to interleave arith-
metic computation with proof search and this, too, can easily be solved if
evaluation functions call the relevant arithmetic functions. For these prob-
lems, proof tools based on function evaluation are better than proof search
tools based on unification and resolution. Function evaluation is also more
focused than proof search and therefore more efficient. All this process be-
comes very powerful if fast reduction mechanisms are implemented in proof
assistant [19].

3.4.1 Giving names

A new difficulty arises when we reason on unknown expressions. Consider
the following lemma :

Lemma 3.4. ∀σ : State.∀v : Z.(lookup σ v 3)→
〈σ, (while v ≤ 1 do skip)〉I ; σ.

In this case the memory state is given by a universally quantified variable
σ. If we remember, in section 3.2, we defined state as an Inductive type Set
with two constructors, one describes the case when the list is empty and
the other describes the case when the list is non empty. But it does not say
anything if we don’t know anything about this list, in other words if such a
list is described by a metavariable, for example by σ as above.

In type theory based proof-assistant, function evaluation is performed
by term reduction. Term reduction changes the term being studied, only if
the current data matches one of the reduction rules. For instance,

[[a1 + a2,T
r
lookup,T

r
AExp]]σ

50 Proof by reflection in semantics

reduces to [[a1, Tr
lookup, Tr

AExp]]σ + [[a2, Tr
lookup, Tr

AExp]]σ. But reduction
does not occur if one of the expression is represented by a universally quan-
tified variable, for instance [[a,Tr

lookup,T
r
AExp]]σ stays [[a,Tr

lookup,T
r
AExp]]σ.

The context can still contain enough information related to these metavari-
ables to execute instructions, consider lemma 3.3. Therefore we need a way
to reason about them. The solution is to associate a number to metavari-
ables like σ. We do it in a systematic way. We define a new inductive type
called n State (to read as named state) which contains an extra constructor
for these numbered terms.

n State : Set
[]n : n State
[· 7→ ·, ·]n : Z→ Z→ n State→ n State
metavariables : N→ n State

Elements of n State are names for expressions of type State in the theo-
rem prover when an unknown expression of type State is available we assign
a number (a name) n and we represent it by metavariables(n). When an
expression of type State is [· 7→ ·, tl] we construct the name n tl for tl and
we give the name [· 7→ ·, n tl] for the whole expression. Similarly we asso-
ciate numbers to all those arithmetic expressions, boolean expressions and
instructions which are known by their symbolic names. For arithmetic ex-
pressions it is as follows:

n AExp : Set
Locn(·) : Z→ n AExp
Numn(·) : Z→ n AExp
(· +n ·) : n AExp→ n AExp→ n AExp

...
metavariablea : N→ n AExp

The specification for named boolean expressions and named instructions are
similar and we omit them.

Once we assigned numbers to metavariables we need to keep track of
them. We do so by creating a few more tables where we have entries only
for metavariables as in other cases it’s easy to get back the original. We
have four such tables, namely, TState,TAExp,TBExp and TInst for metavari-
ables representing states, arithmetic expressions, boolean expressions and
instructions, respectively. After we have assigned names to all arithmetic
and boolean expressions, instructions and states, to work with the metavari-
ables we define new result tables, Tr

n lookup,T
r
n update,T

r
n AExp,T

r
n BExp and

Tr
n Inst, that have a similar role and structure to the result tables, introduced

in section 3.3, but contain named expressions.
Similarly, we need to change the consistency functions to work with

named expressions. For instance, the consistency function for the arithmetic

3.4 Proof by reflection 51

function is as follows.

Cn AExp(·) : (list State ∗ n State)→ (list AExp ∗ n AExp)
→ (list n State ∗ n AExp ∗ Z)→ Prop

λTState : (list State ∗ n State),
λTAExp : (list AExp ∗ n AExp),

[]rn AExp : True

[(n σ, n a, n) :: Tr
n AExp]

r
n AExp :

〈a, σ〉A ; n ∧
Cn AExp(TState, TAExp, Tr

n AExp)
if [[n σ,TState]] � σ

& [[n a,TAExp]] � a

False
if[[n σ,TState]] � None
or [[n a,TAExp]] � None

In the above, [[n σ, TState]] � σ is the translation from the named state
to state. Given a named state the following function looks for a matching
pair (state, named state) in the table TState.

find nstate : n State→ (list State ∗ n State)→ (option State)
λ n σ : n State

[]State � None

[(n σ′, σ′) :: TState]State �

σ′ if n σ = n σ′

(find nstate n σ TState)
if n σ 6= n σ′

The translation function is defined as follows:

translate nstate : n State→ (list State ∗ n State)→ (option State)
λ TState : (list State ∗ n State)

[]n � []

[x 7→ v, n σ′]n �

[x 7→ v, σ′]

if (translate nstate n σ′ TState) = σ′

None
if (translate nstate n σ′ TState) = None

(metavariables s) � (find nstate (metavariables s) TState)

Similarly we need to translate arithmetic expressions, boolean expres-
sions and instructions. We change the consistency functions for lookup in a

52 Proof by reflection in semantics

state, arithmetic expressions, boolean expressions and instructions as well.
They are similar and we omit their detail.

We also need to change the evaluation functions accordingly, so that we
can work with the named expressions. For instance, now evaluation function
for arithmetic expressions will be the following.

[[·]] : n AExp→ n State→ (list n State ∗ Z ∗ Z)
→ (list n State ∗ n AExp ∗ Z)→ (option Z)

λn a : . . . λn σ : . . . λTr
n lookup : . . . λTr

n AExp : . . .

x when (n σ, n a, x) ∈ Tr
n AExp

Otherwise :
[[n Num(n), Tr

n lookup, Tr
n AExp]]n σ := n

[[n Loc(v), Tr
n lookup, Tr

n AExp]]n σ := n flookup(n σ, v,Tr
n lookup)

[[n a1 +n n a2,T
r
n lookup,T

r
n AExp]]n σ :=

[[n a1,T
r
n lookup,T

r
n AExp]]n σ

+[[n a2,T
r
n lookup,T

r
n AExp]]n σ

if [[n a1, · · ·]]n σ 6= None
& [[n a2, · · ·]]n σ 6= None

None
if [[n a1, · · ·]]n σ = None
or [[n a2, · · ·]]n σ = None

[[n a0 −n n a1, Tr
n lookup, Tr

n AExp]]n σ := · · ·
[[n a0 ∗n n a1, Tr

n lookup, Tr
n AExp]]n σ := · · ·

[[metavariablea(n), Tr
n lookup, Tr

n AExp]]n σ := None

Our approach is systematic. The structure of the inductive type and the
functions over the type is kept unchanged with two main differences. First,
we changed the input to their named counterparts and second, we added an
extra rule to deal with the metavariable.

We prove that this evaluation function agrees with the operational se-
mantics given by the inductive relation 〈·, ·〉 ; · (all the theorems given
below have been checked in a computer-assisted proof). Here is the state-
ment for arithmetic expressions.

Theorem 3.1.
∀ TState : (list State ∗ n State).∀ Tr

n lookup : (list n State ∗ Z ∗ Z).
∀ TAExp : (list AExp ∗ n AExp). ∀ Tr

n AExp : (list n State ∗ n AExp ∗ Z).
∀ n σ : n State.∀ n a : n AExp.∀ σ : State.∀ a : AExp.∀ n : Z.

Cn lookup(TState, Tr
n lookup)→ Cn AExp(TState, TAExp, Tr

n AExp)

→ [[n σ, n a, Tr
n lookup, Tr

n AExp]] = n

→ [[n σ, TState]] � σ → [[n a, TAExp]] � a

3.4 Proof by reflection 53

→ 〈a, σ〉A ; n.
We also proved that evaluation functions for boolean expression, to up-

date memory state and to lookup into a memory state agree. They are
similar and therefore we omit them.

3.4.2 The iteration technique

We cannot define the evaluation function for instructions in the similar way
as we did for arithmetic and boolean expressions, since the execution of
instruction (in particular while loop) does not follow structural recursion.
In the previous chapter, we have already presented the iteration technique
to work around this problem.

The evaluation function for instructions can be provided in a way that
respects typing and termination if we don’t try to describe the evaluation
function itself but the second order function of which the evaluation function
is the least fixed point. This function can be defined in type theory by cases
on the structure of the instruction.

F : (n Inst→ n State
→ (list n State ∗ Z ∗ Z)→ (list n State ∗ Z ∗ Z ∗ n State)
→ (list n State ∗ n AExp ∗ Z)→ (list n State ∗ n BExp ∗ B)
→ (list n State ∗ n Inst ∗ n State)→ (option n State))

→ n Inst→ n State
→ (list n State ∗ Z ∗ Z)→ (list n State ∗ Z ∗ Z ∗ n State)
→ (list n State ∗ n AExp ∗ Z)→ (list n State ∗ n BExp ∗ B)
→ (list n State ∗ n Inst ∗ n State)→ (option n State)

λf : . . . λn i : . . . λn σ : . . .
λTr

n lookup : . . . λTr
n update : . . . λTr

n AExp : . . . λTr
n BExp : . . . λTr

n Inst : . . .

n σ′ when (n σ, n i, n σ′) ∈ Tr
n Inst

Otherwise :
(F f skipn n σ Tr

n lookup Tr
n update Tr

n AExp Tr
n BExp Tr

n Inst) := n σ
...

(F f (while n b do n i)n n σ Tr
n lookup Tr

n update Tr
n AExp Tr

n BExp Tr
n Inst)

:=

(f (while n b do n i)n (f n i n σ · · ·) · · ·)
if [[n b, Tr

n lookup, Tr
n AExp, Tr

n BExp]]n σ = true
& (f n i n σ · · ·) 6= None

n σ if [[n b, Tr
n lookup, Tr

n AExp, Tr
n BExp]]n σ = false

None if [[n b, Tr
n lookup, Tr

n AExp, Tr
n BExp]]n σ = None

or (f n i n σ · · ·) = None
or (f (while n b do n i)n (f n i n σ · · ·) · · ·) = None

(F f (metavariablei(n))n n σ · · ·) := None

54 Proof by reflection in semantics

We omit the full description of the evaluation function F, as it makes the
text unreadable and can be easily understood from the description of while
clause.

Intuitively, writing the function F is exactly the same as writing the
recursive function, except that recursive calls are simply replaced by calls to
a bound variable (here f).

The function F describes the computations that are performed at each
iteration of the execution function and the execution function performs the
same computation as the function F when the latter is repeated as many
times as needed. Later we will use the following notation

Fk = λg. (F (F · · · (F︸ ︷︷ ︸
k times

g) · · ·))

And finally to complete the task of reflection we prove that the evaluation
function for instruction yields the same result as the operational semantics.

Theorem 3.2.
∀ TState : (list State ∗ n State).∀ Tr

n lookup : (list n State ∗ Z ∗ Z).
∀ Tr

n update : (list n State ∗ Z ∗ Z ∗ n State).
∀ TAExp : (list AExp ∗ n AExp). ∀ Tr

n AExp : (list n State ∗ n AExp ∗ Z).
∀ TBExp : (list BExp ∗ n BExp). ∀ Tr

n BExp : (list n State ∗ n BExp ∗ B).
∀ TInst : (list Inst ∗ n Inst). ∀ Tr

n Inst : (list n State ∗ n Inst ∗ n State).
∀ k : N.∀ n σ, n σ′ : n State.∀ n i : Inst.∀ σ : State.∀ i : Inst.

C(TState, TAExp, TBExp, TInst, Tr
n lookup, Tr

n update,
Tr

n AExp, Tr
n BExp, Tr

n Inst)

→ (Fk ⊥ n i n σ Tr
n lookup Tr

n update Tr
n AExp Tr

n BExp Tr
n Inst) = n σ′

→ [[n σ, TState]] � σ → [[n i, TInst]] � i

→ ∃ σ′ : State.[[n σ′, TState]] � σ′ ∧ 〈σ, i〉I ; σ′

C is a function which sums up the work by all consistency functions,
namely Cn lookup, Cn update, Cn AExp, Cn BExp and Cn Inst.

Note that we provide ⊥, replacing the bound variable (denoted by f
earlier), to the functional F to execute the program. Execution of a program
fails in either of two cases. First, if the execution encounters any runtime
error, or second, if the given number of iterations (here k) is not enough to
finish the execution.

3.5 Collection of data objects and table building

The Coq system provides tools to make theorem proving easier. Among
these tools, tactics play an important role. These tactics make it possible

3.6 Usefulness of Ltac 55

to obtain proofs in a semi-automatic way. Given a proposition that one
wants to prove, the system proposes tools to construct a proof. These tools,
called tactics, make it easier to construct the proof of a proposition, using
elements taken from a context: declarations, definitions, axioms, hypotheses,
lemmas and theorems that were already proven. In many cases, tactics make
it possible to construct proofs automatically, but this cannot always be the
case. This notion of tactics dates back to very old versions of proof assistants;
before Coq, we can cite LCF [18], HOL [17], and Isabelle [30].

Tactics are commands that can be applied to a goal. Their effect is to
produce a new, possibly empty, list of goals. If g is the input goal and g1,
. . . , gk are the output goals, the tactic has an associated function that makes
it possible to construct a proof of g from the proofs of goals gi.

In our case we write few tactics to collect data objects from the given
facts (provided as propositions) in the context. We assign names to states,
arithmetic expressions, boolean expressions and instructions. For the metavari-
ables, we put them in tables TState,TAExp, TBExp and TInst. Similarly, we
write tactics to build the tables Tr

n update, Tr
n lookup, Tr

n AExp, Tr
n BExp and

Tr
n Inst, where we keep the results of evaluations of program constructs.
Finally we write a tactic Ltac to automate the proof on program con-

struct evaluation. Ltac first calls the tactics to build up different tables we
need for the computations and assign names. Then the Ltac tactics apply
the induction principle attached to the theorem 2, which generates few sub-
goals and all these subgoals can be solved using already available automatic
tactics in the Coq proof system. We use these automatic tactics inside Ltac
to make it a complete tool. In the following section we give an example to
show the usefulness of the Ltac tactic.

3.6 Usefulness of Ltac

Let us consider the following program construct in C programming language
[24].

{
int a=0;
while (a <= 2) {a = a+1};
}

We would like to check that when the above program construct stops the
variable a contains the value 3. The above program construct is represented
in the Coq proof assistant as

Theorem example: (s: state)
(exec (one_location ‘1‘ ‘1‘ s)

(Scolon
(Assign ‘1‘ (Num ‘0‘))

56 Proof by reflection in semantics

(WhileDo (LessEq (Loc ‘1‘) (Num ‘2‘))
(Assign ‘1‘ (Plus (Loc ‘1‘) (Num ‘1‘)))))

(one_location ‘1‘ ‘3‘ s)).

The variable a is represented by the integer ‘1‘ in the above. We assume that
before the program construct the variable a (or ‘1‘) contains 1 and the rest
of the memory state is represented by s. This fact is given by the predicate
(one location ‘1‘ ‘1‘ s), which represents the initial state. Similarly the final
state (one location ‘1‘ ‘3‘ s) says that the variable a (or ‘1‘) contains the
value 3 when the program construct stops. The predicate

(Scolon
(Assign ‘1‘ (Num ‘0‘))
(WhileDo (LessEq (Loc ‘1‘) (Num ‘2‘))

(Assign ‘1‘ (Plus (Loc ‘1‘) (Num ‘1‘)))))

described in the section 3.5, we collect the data objects from the given facts
and put them in different tables. Our proof search tool solves the above
theorem in one step. Following is the proof of the above example.

Intros s.
Ltac ’(5).
Qed.

where 5 is the depth of the computation.

3.7 Conclusions

This technique to assign names to metavariables has a vast potential. It
is systematic and does not depend on the language. Our method tries to
maximize the potential for automation: we have implemented a tactic that
successfully handles complex goals. We hope to apply the same technique for
larger languages and use them in proofs about compilers. There are good
reasons to believe that this will be possible because our approach is very
systematic. In recent work on a more complete programming language with
procedure, we could see that the functional approach carries over nicely
to larger programming language, even though semantics requires mutual
inductive propositions.

In the literature we found work by Nancy A. Day and Jeffrey J. Joyce
where they discuss about Symbolic Functional Evaluation[12]. But this work
is different from ours, as in their work symbolic functional evaluation is an al-
gorithm for executing functional programs to evaluate expressions in higher
order logic. It carries out the logical transformations of expanding defini-
tions, beta-reduction and simplification of built-in constants in the presence
of uninterpreted constants and quantifiers. They suggest different levels of

3.7 Conclusions 57

evaluation for such an algorithm to terminate while evaluating the argu-
ments of uninterpreted functions. However this kind of capability already
exists in the Coq proof-assistant, where the tactic Simpl does a similar
work. In our work we showed a way to reason on metavariables. One can
have some information related to uninterpreted symbols and use it in an
intelligent way.

The main lesson we learned in this work is the technique for naming sub-
expressions that makes it possible to reason about non-closed programs.

The second important lesson that we learn in this experiment is that
we can reason by induction about the symbolic execution of a program
through an induction on the natural number that counts the iterations that
are required to obtain a result.

With the traditional presentation, based on Inductive predicates, rea-
soning by induction relies on the induction principle that is provided for the
induction predicate. This induction principle corresponds to what Winskel
calls rule induction in [38]. Rule induction is an approximation of induc-
tion on the size of derivations for proofs of execution, but it is only an weak
approximation, because induction hypotheses are provided only for direct
subderivations.

Actually, defining the generation of subderivations for proof execution is
a tricky problem, much trickier than defining subterm for a non-dependent
inductive type. As our technique uses induction on the number of iterations
required to obtain a result we have another approximation, but this approx-
imation is much more powerful because we can use induction hypotheses for
derivations that are not even subderivations, as long as they are smaller in
size. The experiments in the Concert effort around an optimizing compiler
showed that induction on the number of iterations was the most practical
solution, if not the only practical one, to cope with optimizations where one
has to consider executions of subterm that are not direct subterms.

58 Proof by reflection in semantics

Chapter 4

An experimental compiler for
Cminor to RTL - I

4.1 Introduction

In the industry where formal methods, machine checked proof of programs,
model checking, etc, are used to certify software, in general the source code
is certified. But the code which is effectively executed by the machine, gen-
erated from the source code by a compiler, is not formally verified. An
incorrect compiler can perfectly introduce errors in a code whose source is
well verified by machine checked proofs. Bugs in compilers are not rare,
especially in the area of complex optimizations. In addition, specialized
compilers for embedded systems are more error prone than the general com-
pilers, as they are less tested. In other words, when we want to raise the
level of certification, compilers become a weak link between the formally
verified source code and the formally certified microprocessor.

As a solution to this problem, the current practice in the industry is
to manually verify the assembler code generated by the compiler in the
correlation of the source code. But such a solution takes a lot of time and
is easily error prone. In general, source code of a program are changed
often due to modifications or corrections. Change of compiler is rare, but
not impossible. One may as well like to verify the program running in
different kind of processors. In such cases, each time we change the source
program or the compiler we need to redo the verification, which takes a lot
of effort and time. Verifying the assembly code generated for different kinds
of processors makes it not a very practical solution. In addition, such a
verification prevents high-level optimization.

Compilers are debugged using a large numbers of test cases, some of
which are distilled at considerable expense from large application programs.
Besides being expensive and time consuming, the effectiveness of testing is
reduced by the practical impossibility of adequately covering the execution
paths of the compiled programs. George C Necula and Peter Lee [25] pro-
posed certifying compilers to check the result of each compilation instead

60 An experimental compiler for Cminor to RTL - I

of verifying the compiler’s source code. A certifying compiler not only pro-
duces the machine code for each given program to it, but also produces a
proof of correctness for the given machine code. The compiler itself does
not need to be verified.

An alternative solution would be to use a certified compiler. The notion
of certified compiler is close to but distinct from the notion of certifying
compiler used in the context of proof carrying code. A certified compiler
possesses a proof of correctness which is valid for all the programs that it
accepts. In particular, the certified compiler should come with a formal
proof to certify the compilation process that the generated machine code
is semantically equivalent with the source code. At least there should be a
formal proof that all the properties which are true in the source code remain
true in the compiled machine code.

In general most of the source code for the software in the industry are
written in C [24]. To our knowledge C compilers were never formally verified.
A realistic solution would be a formally verified compiler which compiles a
source language usable in practice (typically, the subset of C used to program
embedded systems) which produces target code for a RISC microprocessor
of the real world; and which carries out some optimizations among the most
profitable optimizations. A group of researchers has joined together to share
their experiences to look into the above. This project is known as ARC
Concert. The objective of the ARC Concert is to realize a certified compiler
which is complete and moderately optimized.

In this project we have to define formal semantics for each of the source,
intermediate and target languages. Particularly, a usable semantics of a
subset of C on a realistic machine is necessary. Use of these semantics
on machine should comprise of the use in the proof systems and symbolic
execution in order to test the specifications on example programs. Finally
we need to write a compiler, written directly in the form of Coq functions.
In other words, a purely functional programming style will be followed where
all the recursions are either primitive or well founded. These constraints of
recursion in writing the compiler ensure that the compiler terminates.

The general architecture of a compiler is well known and has not changed
much in the last 30 years. After a syntax analysis and eventually a type
verification phase, a series of program transformations progressively takes
the source language to the machine language, via one or several intermediate
languages.

Among the intermediate languages the most commonly used are the reg-
ister transfer languages or RTL, also known as 3 code addresses: these are
imperative languages with the basic constructors directly corresponding to
the processor instructions, but they operate on arbitrary number of pseudo
registers. More constrained forms of RTL, like the SSA (single static assign-
ment) form or control flow graphs are also used.

Finally, we need to decide what would be the target language of our

4.1 Introduction 61

compiler. We chose RISC type PowerPC processors over the CISC type
Pentium processors for two reasons. First, PowerPC is more widely used
in the embedded world, and second, the semantics of the RISC processor is
simpler to describe. Within the framework of the ARC Concert, among the
vast choices over the source, intermediate and target languages, we decided
to concentrate in priority on the following combination: a subset of C as
the source language; RTL as intermediate language; the PowerPC machine
code as target language. This combination is enough to address most of the
practical problems we encounter and in this combination the semantics of
the source and the target languages are not too different. The main goal
of ARC Concert is to realize the formalized compiler for a C like language
which can be used for practical purposes. Once we have achieved that goal,
extensions of these techniques will help us to develop formalized compilers
for other high-level languages.

Certain transformations pass from one language to another language
which is more closer to the processor instructions: explicitation of v-tables
(for the languages to objects), instruction selection (RTL production), allo-
cation of registers (RTL with pseudo registers to RTL with real registers),
machine code generation. Other transformations (the optimizations) stay
in the same intermediate languages, but the transformations make the code
more efficient: constant propagation, loop invariants, delooping, elimination
of induction variables, linearization of instructions. In our case, register
transfer language is described as graph and code linearization goes from one
language (RTL graph) to another (linear).

Most of the transformations are applied after some static analysis of the
code, which indicates which transformations are needed and which of these
transformations will preserve the semantics of the code. For instance, explic-
itation of v-tables is applied after control flow analysis, the constant propa-
gation and loop optimizations are applied after data-flow analysis, register
allocation is applied on a data-flow analysis during the lifespan of a variable,
completed by graph coloring of interference results.

Essentially, the program transformations need to be certified. Syntax
analysis, generated by a formal grammar, is essentially correct by construc-
tion. The static type verification does not need to be verified, except if the
rest of the compiler exploits the typing results in a crucial way. Otherwise
every state of code transformation needs to be accompanied with a proof
of semantic equivalence between its entry and exit. This implies that ev-
ery language we are considering (source, intermediate and executable) must
possess a formal semantics. Since the transformations exploit the results of
static analyses, the latter also needs to be proved correct: the results of the
static analyses should constitute an approximation of the dynamics of the
program.

The transformation proofs on the machine and the static analyses can
naturally be considered as instance of the general problem of proof of pro-

62 An experimental compiler for Cminor to RTL - I

grams. It is necessary to represent these transformations and analyses in a
form of objects that the proof system can manipulate. We think that in the
context of compilers if we write these transformations and analyses directly
in the form of Coq functions we will get the results in a more direct way.
On these functions we can directly reason and finally we can extract the
compiler program in Caml from the Coq functions.

In the Concert project, whose main objective is to realize a certified
compiler which is complete and moderately optimized, my objective is to
realize a compiler which constructs the RTL control flow graph from the
Cminor programs. Another objective is to realize this compiler as close as
the Caml programming style and to keep the modularity of programming,
overcoming the constraints put by the type theory. The way we have written
the compiler to construct the RTL control flow graph from the Cminor
programs significantly helps in its correctness proofs, but we do not do any
proofs.

In the next section we present the source language we have chosen for
our compiler. It is a subset of C, that excludes some of the most complicated
constructs of C. We call this subset of C as Cminor. Cminor is sufficiently
rich to encode all ANSI C except for setjmp and longjmp. We tried to
simplify Cminor as much as possible, keeping in mind that it should be
able to express almost all the ANSI C programs. For instance, the different
repetitive structures of ANSI C, for, while, do-while, can be described with
the same constructs of Cminor after a little modifications. Our choice of
Cminor also helps us in transformation to RTL. We describe this in a little
more detail at the end of the next section.

4.2 Cminor

Cminor is described as an imperative language based on expressions and
instructions. Similar to C, it is also weakly typed and it has both integers
and floating point numbers. Pointers are considered as integers representing
the memory addresses. In Cminor, the questions raised by the overloaded
operators are solved and type conversions are made explicit. The addresses
for the tables, records, etc., are also computed explicitly. Compared to C,
control structures are simplified in Cminor. The specification of Cminor
makes it possible to accommodate later addition of a garbage collector and
exceptions.

We describe the language Cminor by its abstract syntax. The language
Cminor is organized in four parts, expressions, instructions (or statements),
procedures and programs. We start with the comparison relations, namely
=, 6=, <,≤, > and ≥. Comparison relations are necessary for Cminor ex-
pressions. We use the same comparison relations for RTL. The comparison
relations are given by the following type.

4.2 Cminor 63

Inductive comparison : Set :=
| Cequal : comparison
| Cnotequal : comparison
| Cless : comparison
| Clessequal : comparison
| Cgreater : comparison
| Cgreaterequal : comparison.

4.2.1 Memory structure

In Cminor the memory is designed similar to the memory of the processor.
A pointer is an integer value which refers to a byte of the memory. Though
this memory model is simpler, it can appear awkward in certain cases. For
example, nothing prevents the stacks from allocating the memory which is
already allocated to the static variables and this does not match totally
with the semantics of C, where a local variable is never the alias of a global
variable. Therefore it is necessary to plan dynamic tests of stack overflow
and this should be tested until the assembler code generated at the end. In
the interpreter the allowance of the global variables and stack in the memory
capacity is deterministic. The specification needs to allow a nondeterministic
placement, with conditions of non-overlap between global variables and the
stack space. Finally, distributing the stack space in local blocks is also
entirely deterministic, and does not allow to use, in later phases of the
compiler, the same stack to store return addresses and intermediate results.

To access the memory the type memory chunk indicates the size (8, 16,
32 or 64 bits) and the type (integer or float) of the given value. The 8 bits
and 16 bits integer values are stored as 32 bits integer, by adding zeros if the
integer values are not signed or by replicating the signed bit if the integer
values are signed.

Inductive memory_chunk : Set :=
| Mint8signed: memory_chunk
| Mint8unsigned: memory_chunk
| Mint16signed: memory_chunk
| Mint16unsigned: memory_chunk
| Mint32: memory_chunk
| Mfloat32: memory_chunk
| Mfloat64: memory_chunk.

Memory is accessed with the load and store operations, which we will
discuss in the section 4.2.3. For the load and store operations in memory
we need to specify the block of memory that should be accessed. The above
definition of different memory blocks suitably serve our purpose.

64 An experimental compiler for Cminor to RTL - I

4.2.2 Cminor operations

The types unary operation and binary operation gather all the strict opera-
tors of the language, of arity one and two respectively. In Cminor operations,
overloading of operators are solved and we made them explicit. For exam-
ple, negation operator for integer and float values are expressed in Cminor
as OPnegint and OPnegfloat, respectively. Among the operators in C are
the negation operators, like ” ! ”, ” ∼ ” , ”− ”, and type casting operators
are expressed as unary operators in Cminor. Here is the abstract syntax of
unary operators in Cminor.

Inductive unary_operation : Set :=
| OPnegint : unary_operation
| OPnegfloat : unary_operation
| OPabsfloat : unary_operation
| OPintoffloat : unary_operation
| OPfloatofint : unary_operation
| OPfloatofintu : unary_operation
| OPnotbool : unary_operation
| OPnotint : unary_operation
| OPcast8signed : unary_operation
| OPcast8unsigned : unary_operation
| OPcast16signed : unary_operation
| OPcast16unsigned : unary_operation
| OPsingleoffloat : unary_operation.

In general, the semantics of the unary operations are straightforward.
We negate an integer by subtracting it from zero. The not operations are
of two types. For the boolean not operation we check the integer against
zero, which returns a boolean value and finally we translate the boolean
value to its corresponding integer. The bitwise not operation on an integer
is performed by the bitwise nor operation over the two copies of the integer.

Overloading of operators are also explicit for binary operations. Here we
have overload of some operators for three different data types, viz. integers,
floats and pointers. None of the operations are allowed between two different
data types. Thus for a C operation including two different data types, we
need to type-cast one of the data types explicitly for the corresponding
Cminor operation. For instance,

{

int a=12, c;

float b=2.5;

c=a/b;}

will result c = 4 in C. If c is declared as float then c will contain 4.8.
In Cminor, we need to specify the operation accordingly. For instance, if c

4.2 Cminor 65

is a float we should write (OPdivfloat (OPfloatofint a) b), if c is an integer
we should write (OPintoffloat (OPdivfloat (OPfloatofint a) b)). Note that
we converted a from integer to float in the previous expressions. This is the
convention normally followed in C, automatic conversions convert a narrower
operand into a wider operand without losing information.

Inductive binary_operation : Set :=
| OPaddptr : binary_operation
| OPsubptr : binary_operation
| OPcmpptr : comparison -> binary_operation
| OPaddint : binary_operation
| OPsubint : binary_operation
| OPmulint : binary_operation
| OPdivint : binary_operation
| OPmodint : binary_operation
| OPdivintu : binary_operation
| OPmodintu : binary_operation
| OPandint : binary_operation
| OPorint : binary_operation
| OPxorint : binary_operation
| OPshiftleftint : binary_operation
| OPshiftrightint : binary_operation
| OPshiftrightintu : binary_operation
| OPaddfloat : binary_operation
| OPsubfloat : binary_operation
| OPmulfloat : binary_operation
| OPdivfloat : binary_operation
| OPcmpint : comparison -> binary_operation
| OPcmpintu : comparison -> binary_operation
| OPcmpfloat : comparison -> binary_operation.

For the comparison operator in Cminor we need to provide the name of
the kind of the comparison we would like to carry out. In general the se-
mantics of the binary operations in Cminor is straightforward. For example,
OPaddint is evaluated by integer addition on two integers provided for this
operation. But for OPsubptr we need to check that we do not refer to a
wrong address, this is done by comparing the address and the amount that
would be deducted from this address.

4.2.3 Cminor expressions

The abstract syntax for the Cminor expressions are described as follows.

Inductive expr : Set :=
| Evar : lident -> expr

66 An experimental compiler for Cminor to RTL - I

| Eaddrsymbol : gident -> expr
| Eaddrstack : intval -> expr
| Eassign : lident -> expr -> expr
| Econstint : intval -> expr
| Econstfloat : floatval -> expr
| Eunop : unary_operation -> expr -> expr
| Ebinop : binary_operation -> expr -> expr -> expr
| Eload : cmemory_chunk -> expr -> expr
| Estore : cmemory_chunk -> expr -> expr -> expr
| Ecall : expr -> (list expr) -> type_res -> expr
| Eandbool : expr -> expr -> expr
| Eorbool : expr -> expr -> expr
| Econdition : expr -> expr -> expr -> expr
| Esequence1 : expr -> expr -> expr
| Esequence2 : expr -> expr -> expr.

Constructors Eaddrsymbol gv and Evar lv return the value associated
with the global variable gv and the local variable lv, respectively. Eaddrstack
n returns the address stored in the stack at an offset n. Eaddrstack is used
to access the array elements and we discuss it again in the section 4.2.5,
where we describe how do we represent arrays in Cminor. We distinguish
between an integer and a float type of constant by the expressions Econstint
n and Econstfloat n.

Unary and binary operations are described by the constructors Eunop
and Ebinop. Each of these constructors expect the name of the operation
and proper number of expressions required for the operation. The Ebinop
operator is a strict operator. In other words both of its expressions will be
evaluated irrespective of the operation. For this reason we need to separate
the non strict binary operations. In case of Eandbool and Eorbool the second
expression will not be evaluated if the the first expression is evaluated to
false and true, respectively. Similarly, the operator Econdition is non strict,
thus depending on the value of the first expression either of the second or
third expression will be evaluated. Eassign is used for the assignments. For
load and store operations in the memory Eload and Estore is used. The
expressions of assignment Eassign and Estore return the value of the right-
hand member of the assignment as the result.

We provide two constructors to express the sequence of expressions. The
first constructor Esequence1 e1 e2 evaluates e2 after e1 and the returns the
value of e1 as the result. It is needed for expressions like a = b + + in
C, where a will be assigned the value of b, followed by the increment of
b by 1 and the result of this expression is the value returned by a. For
example, the C program fragment a = b + + will be described in Cminor
as (Esequence1 (Eassign a (Evar b)) (Eassign b (Ebinop OPaddint (Evar b)
(Econstint 1)))). The result of this operation will return the value of a. The

4.2 Cminor 67

second constructor Esequence2 e1 e2 evaluates e2 after e1 and the returns
the value of e2 as the result. The second constructor is more natural and
will be used more often than the first operator for sequence. For instance,
expressions like a = ++ b in C is evaluated as follows: first b is incremented
by 1 and then its value is assigned to a and the final result of this expression
is the value returned by a. For example, the C program fragment a = + + b
will be described in Cminor as (Esequence2 (Eassign a (Evar b)) (Eassign
b (Ebinop OPaddint (Evar b) (Econstint 1)))). The result of this operation
will return the value of b.

C functions are called by their name and providing appropriate number
and types of arguments. In Cminor, function calls are expressed with the
constructor Ecall, which expects the function name and list of arguments -
each of which are provided as Cminor expression. Note the use of recursive
types to describe the construct Ecall in the definition of expr,

Ecall : expr -> (list expr) -> type_res -> expr

This makes it possible to implement a systematic reasoning pattern, but
writing a recursive function on this recursive type expr comes across the
constraints of guardedness conditions, which we describe in the section 5.7.
The subexpression (list expr) no longer remains a subterm of the initial term
expr. We discuss this in the next chapter. We use this kind of recursive types
also in the section 4.2.4.

In C, each function may or may not return a value. To verify that a
function in Cminor returns a value of correct type or does not return any
value we also provide the return type in Ecall as its third argument. This
third argument for the result type type res is given as follows.

Inductive typ : Set :=
| TPint : typ
| TPfloat : typ
| TPaddr : typ.

Definition type_res := (option typ).

Thus the type indicates the expected type of the result of the function,
for example if the function returns an integer value it is described as Some
TPint. This type can be None if the function does not return any value,
which corresponds to the function of the type void in C. In general, type
verification is done each time we call a function and each time we leave a
function, so that the caller and the callee function agree on the type of the
arguments and the result.

4.2.4 Cminor instructions

The abstract syntax for the instructions(or statements) are given as follows.

68 An experimental compiler for Cminor to RTL - I

Inductive statement : Set :=
| Sexpr : expr -> statement
| Sifthenelse : expr -> (list statement)

-> (list statement) -> statement
| Sswitch : expr -> (list (list intval)*(list statement))

-> statement
| Sloop : (list statement) -> statement
| Sblock : label -> (list statement) -> statement
| Sexit : label -> statement
| Sreturn : (option expr) -> statement.

The constructor Sexpr describes an expression. We have already dis-
cussed different types of instructions. C conditional structure if (condition)
statement1 else statement2 is described with the constructor Sifthenelse.
Note that, the constructor Econdition does not describe the conditional
structure if-else of C, rather it describes the conditional operator ”(? :)”.
For instance, C statements like (a==b)?a:b are described with the construc-
tor Econdition.

The selective structure switch of C is described with the constructor Ss-
witch. An expression and several branches, similar to the switch of C, are
provided to this constructor. Each branch is composed of a list of integer
values, the values of the expression for which this branch must be carried
out and a list of instructions, the instructions to be executed if this branch
is selected. An empty list of integer values indicates the default case, the
corresponding branch will be executed if no other integer value corresponds
to the value of the expression. Like in C and Java, when a branch is se-
lected, its instructions are carried out and then the execution falls through
to the following branches. Thus the following instructions of all the follow-
ing branches are executed. This behavior can be changed by using a labeled
block and the construction Sexit.

The instruction Sblock groups together a list of statements under a label.
A similar example in the language C could be the use of { and } pair. In
general, such a pair does not contain any label. The instruction Sexit moves
the control flow to a specified location given as a label, where the label is
an argument to the Sexit instruction.

The instruction Sloop is an infinite loop, without a termination condi-
tion. C repetitive structures or loops (for instance while, for, do-while) are
described with this constructor. To terminate a loop it is necessary to place
Sloop in a named block and to use construction Sexit for the terminating
condition. With the expense of a few more break and continue instructions
of C, constructors Sblock and Sexit make it possible to express all kinds of
loops. For instance, the following C while loop

while (a!=b) c;

4.2 Cminor 69

can be restructured as follows

if (a!=b) {
loop {c; if (a!=b) continue; else break;}
}

where loop is an infinite loop constructor, more precisely loop x = while true
x.

C expressions for bifurcation of control and jumps are described by the
constructors Sblock and Sexit. For instance, C expressions break and con-
tinue can be described by the the constructor Sexit by providing the proper
label. Similarly goto can be described by Sblock. When the execution of the
instruction Sexit(lbl) is carried out, it prevents the execution of the following
instructions and moves the execution control at the end of the block Sblock
to the instruction whose label is equal to lbl. The return statement of the
C language is described by the constructor Sreturn. The function that does
not return a value, void in C, is described by Sreturn None. Otherwise if it
returns the value of the expression expr, in Cminor we write Sreturn (Some
expr).

4.2.5 Cminor procedures

Using functions we can structure our programs in a more modular way,
accessing all the potential that structured programming in C can offer us.
In general, a function is a block of instructions that is executed when it is
called from some other point of the program. The following is its format in
C:

type name (argument1, argument2, . . .) <list of statements>

where:

• type is the type of data returned by the function.

• name is the name by which it will be possible to call the function.

• arguments can be specified as many as we want. Each argument con-
sists of a type of data followed by its identifier, like in a variable decla-
ration (for example, int x) and which acts within the function like any
other variable. They allow passing parameters to the function when it
is called.

• list of statements is the function’s body. It can be a single instruction
or a block of instructions.

We can declare temporary variables for computation inside the function.
The scope of these variables is restricted to the function. C functions are
described by the procedures in Cminor. Here is the abstract syntax of the
Cminor procedures.

70 An experimental compiler for Cminor to RTL - I

Record procedure : Set := mkproc{
proc_return : type_res;
proc_params : (list lident * typ);
proc_vars : (list lident * typ);
proc_stackspace : size;
proc_body : (list statement)

}.

The field proc return represents the type of the data returned by the
procedure. It should be None if the procedure does not return any value,
like the function of the type void in C. The field proc params describes the
parameters of the procedure as an associated list of the parameter identifiers
and their corresponding types. The C functions with a variable number of
arguments are not treated. In the similar way the field proc vars describes
the local variables of the procedure. Cminor does not allow the declaration
of local variables at the level of a block. Thus the scope of all the local
variables is the very whole procedure. The type of the variables and the
parameters is either integer, floating point numbers, or pointers.

The field proc stackspace indicates the size of the block in the number
of octet to be allocated at the start of the function. This block can later be
used during the lifetime of the function by the expression Eaddrstack. This
block is automatically freed when the control leaves the function.

The main use of proc stackspace is for arrays. It is better to take an ex-
ample to understand how do we represent an array and access array elements
in Cminor. Let’s say in C, we consider the declarations of two following ar-
rays.

int intlist[8];
float floatlist[10];

These two arrays should be declared in one of the functions, either main
or some other, in C. In Cminor, we allocate spaces for these two arrays in
the corresponding Cminor procedure. Spaces are allocated consecutively.
We allocate (8 ∗ 32)/8 or 32 octets for the intlist at the beginning of the
proc space and (10 ∗ 64)/8 or 80 octets for the floatlist next to the intlist.
The nth element of the intlist is accessed by (Eaddrstack 4*n) and the nth
element of the floatlist is accessed by (Eaddrstack 32+(8*n).

Lastly, the field proc body contains the instructions which constitute the
body of the procedure.

The evaluation of a procedure applied to arguments results in an option
value and represents the returned value of the procedure. The evaluation
is not defined in the following cases. First, the effective arguments and the
required parameters are different in numbers or in types. Second, we access
a local variable which is not initialized. Third, the procedure execution

4.2 Cminor 71

terminates prematurely by the construction Sexit without a corresponding
Sblock.

4.2.6 Cminor program

A complete program is composed of a set of procedures and a set of global
variables. A global variable is either a pointer to a memory address allocated
in the heap, or a pointer to a function.

Record program : Set := {
prog_procs : (list gident * procedure);
prog_vars : (list gident * size)

}.

The evaluation of a complete program starts by allocating the memory
space and by constructing the global environment by assigning the addresses
to the global variables. Then we call the procedure named main in the
program. The result of the program is composed of the value returned by
the procedure main and the final contents of the global variables, in the
form of an associated list (identifier, size of the variable).

The evaluation of expressions and instructions is carried out with the
evaluator, we do not give their specification here. We give a few remarks
on them. The evaluator consists of 4 mutually recursive functions, for ex-
pressions, instructions, sequence of instructions, and procedure calls. These
functions are parameterized by store, global environment, local environment
and stack pointer. The store represents memory, the global environment cor-
responds to the pointers and the procedure names, the local environment
consists of local variables and the stack pointer is an address in the memory
where the stack starts.

4.2.7 Comparison with C

The functions with a variable number of arguments could be coded as pro-
cedures taking a last parameter of the type addresses, pointing towards a
block containing the additional arguments. However, such a coding would
be extremely complex, for a feature which does not have any interest for
embedded software. To translate a C code (annotated by the types) into
Cminor requires few transformations, first overloaded arithmetic operators
should be resolved, second Cminor needs explicit address computations at
the time of the access to the tables, structures and unions, third the coding
of the loops in terms of Sblock, Sloop and Sexit and finally pre-allocation
of the local variables of table type or scalar in the stack, whose address is
used. These are not very difficult but not trivial either.

72 An experimental compiler for Cminor to RTL - I

Cminor is simplified as much as possible, under the constraint that it
must remain able to express almost any ANSI C program. This will of sim-
plification is apparent in the encoding of the loops in terms of Sblock, Sloop
and Sexit, and in the elimination of the operator &. This last point not
only makes it possible to simplify the semantics as the environment asso-
ciates the local variables values and not of the addresses memory containing
these values, but also the translation in lower level languages, for example
a local variable Cminor is translated directly into a virtual register of lan-
guage CFG-RTL. In spite of that, the result language of the experiment is
quite heavy and complex. A good share of this heaviness is due to the great
number of different operators in the expressions.

We do not provide the Cminor semantics in this dissertation, as our
main intention is to write a compiler to convert the Cminor programs to an
intermediate language, Register Transfer Language. For us, a description of
Cminor and RTL suffices. We should mention that the techniques we have
shown in the previous chapters are intensively used in the description of
Cminor semantics, specially the technique we described in the chapter 2 to
describe nested recursion for partial functions. In Cminor semantics, mutual
recursions are expressed in a similar way. Another notable point is that the
technique we described in the section 3.4.2 is the most practical solutions
till now for the proofs where one has to consider executions of subterm that
are not direct subterms.

4.3 Register Transfer Language

The Register Transfer Language or RTL is described as a control flow graph.
The nodes of this graph are the elementary operations. RTL operations
are close to the machine instructions. The arguments and results of the
operations are stored in the registers. We consider two kinds of registers, viz.
real and virtual. The real registers correspond to those of the processors and
the virtual registers are those variables which are later replaced by placing
their values in the real register or in the stack. The RTL we describe here
can have infinite number of registers in theory. But in practice, to make
the proofs easier we need to keep track of the maximum number of registers
used. We try to optimize the number of registers as much as possible in the
transformation from Cminor to RTL. Later RTL registers are allocated to
the real registers by graph coloring.

Arcs of the RTL graph represent the flows of the control in the graph
and give the successor operations. If the operation is arithmetic then there
should be one successor that is for the next operation to be followed. For the
conditional branches there are two successors, one for the true case and the
other for the false case of the condition. For the selective structure or switch
there are n successors, one for each possible case of the switch expression

4.3 Register Transfer Language 73

and for return statement of a function there is no successor operation, as
the return statement sends back the control to the caller of the function.

4.3.1 Operations in RTL

The RTL operations are close to the machine or processor operations. We
have chosen RISC kind processor close to the PowerPC for the target lan-
guage. We try to keep the RTL operations independent of the processor
operations. But, we will later show how we exploit the special operations
of PowerPC and how the design changes for that exploitation. The op-
erations in the RTL language can be broadly classified in five categories.
They are arithmetic operations involving integers and float values, conver-
sions between integers and float values, pointer operations, operations on
the memory addresses and the move operation. Arithmetic operations are
further classified in two categories, one involves integer values and the other
involves float values. We separate the arithmetic operations with immediate
argument from the arithmetic operations with both arguments in registers.
Integer operations can have signed or unsigned integers as arguments. Here
is the abstract syntax for the operations in the RTL intermediate language.

Inductive operation : Set :=
| Omove : operation
| Oconst_int : intval -> operation
| Oconst_float : floatval -> operation

(* operations on the memory addresses *)

| Oaddrglobal : gident -> intval -> operation
| Oaddrstack : intval -> operation

(* Integer arithmetic *)

| Osignextend8 : operation
| Osignextend16 : operation
| Oadd : operation
| Oadd_imm : intval -> operation
| Osub : operation
| Osub_imm : intval -> operation
| Omul : operation
| Omul_imm : intval -> operation
| Odiv : operation
| Odiv_imm : intval -> operation
| Odivu : operation

74 An experimental compiler for Cminor to RTL - I

| Oand : operation
| Oand_imm : intval -> operation
| Oor : operation
| Oor_imm : intval -> operation
| Oxor : operation
| Oxor_imm : intval -> operation
| Onand : operation
| Onor : operation
| Onxor : operation
| Oandnot : operation
| Oornot : operation
| Oshiftleft : operation
| Oshiftright : operation
| Oshiftright_imm : intval -> operation
| Oshiftrightu : operation
| Orlwinm : intval -> intval -> operation

(* Floating-point arithmetic *)

| Onegf : operation
| Oabsf : operation
| Osingleoffloat : operation
| Oaddf : operation
| Osubf : operation
| Omulf : operation
| Odivf : operation
| Omuladdf : operation
| Omulsubf : operation

(* Conversion between int and float *)

| Ofloatofint : operation
| Ofloatofintu : operation
| Ointoffloat : operation

(* Pointers operations *)

| Oaddptr : operation
| Oaddptr_imm : intval -> operation
| Osubptr : operation

(* Boolean tests *)

| Ocomp : condition -> operation.

4.3 Register Transfer Language 75

4.3.1.1 Arithmetic operations

Osignextend8 and Osignextend16 returns 8 bit and 16 bit sign extension of
the argument, respectively. The rightmost bit of the integer is considered
as the sign bit. Note that these two operations correspond directly to the
OPcast8signed and OPcast16signed operations in Cminor. To evaluate the
Osignextend8 or Osignextend16 operations in RTL we split the integer in
four bytes of 8 characters and return the rightmost or the two rightmost
bytes, respectively.

We take advantage of PowerPC processor instructions, where operations
with immediate arguments are treated separately from the operations with
all the arguments in registers. For example, to add two integers we Oadd
and Oadd imm operations. The Oadd operation expects both its arguments
in registers, whereas Oadd imm expects one of its two arguments in register
and the other as immediate value. Similarly for subtraction, multiplication,
division, boolean and, boolean or and boolean xor operations. The division
operation between two unsigned integers is special because of the sign bit,
we keep it separate as Odivu.

We keep the similarity of our RTL operations with the PowerPC instruc-
tions set. For that reason we do not have a binary not operations, rather we
have Onand, Onor and Onxor. We also do not have boolean not operation
and instead we have Oandnot and Oornot. The last two operations are in
general more often used and they reduce the code length. For binary shift
and rotation operations we have Oshiftleft, Oshiftright, Oshiftright imm, Os-
hiftrightu and Orlwinm. Note that we do not have any Oshiftleft imm and
Oshiftleftu operation. These choices are based on PowerPC instruction set.
In fact, PowerPC instruction set is well optimized. The Oshiftleft imm op-
eration can be achieved with the Orlwinm operation, which is more often
used. The reason behind not having the Oshiftleftu is rather simple. When
we shift left an integer we push zeros from the right, which has no effect on
the sign bit. So a Oshiftleft operation does equally well with both signed and
unsigned integers. The Oshiftrightu does not care the sign bit and always
pushes zero on on the left, whereas the Oshiftright operation pushes the sign
bit from the left.

The operation Orlwinm takes two arguments other than the principal
argument on which the operation is to be applied. This is a combination of
left rotation and mask operation. The first argument provides the amount
by which the principal argument should be left rotated before masking by
the integer provided in the second argument. This operation will be very
much exploited in some operations, like and, or and shift, with immediate
arguments.

Floating point arithmetic operations consist of negation, abstraction, ad-

76 An experimental compiler for Cminor to RTL - I

dition, subtraction, multiplication, division etc. The operation Osigleoffloat
is type casting operation, it converts a double precision floating point num-
ber to a single precision floating point number. We exploit some of the
special PowerPC operations. For example, there is a built-in multiply and
addition operation. Expressions like e1 ∗ e2 + e3 can be, therefore, directly
translated in RTL instructions Omuladdfloat e1 e2 e3. Similarly Omulsubf
is a built-in multiply and subtraction operation.

4.3.1.2 Type cast, pointer arithmetic and other operations

We have three type casting operations between integers and floating point
numbers. Ofloatofint converts a signed integer to a floating point number,
Ofloatofintu converts an unsigned integer to a floating point number and
Ointoffloat converts a floating point number to a signed integer.

Pointer operations include addition, subtraction and comparison. We
grouped together all the comparison operations in the operation Ocomp,
where the condition describes the type of the comparison operation. Con-
dition is described as follows.

Inductive condition : Set :=
| Ccomp : comparison -> condition
| Ccompu : comparison -> condition
| Ccomp_imm : comparison -> intval -> condition
| Ccompu_imm : comparison -> intval -> condition
| Ccompf : comparison -> condition
| Cnotcompf : comparison -> condition
| Cmaskzero : intval -> condition
| Cmasknotzero : intval -> condition
| Ccompptr : comparison -> condition.

Remember that we have already defined comparison in the section 4.2.
The operations Ccomp, Ccomp imm or Ccompu, Ccompu imm compare two
integers signed or unsigned, without or with immediate argument. Similarly,
Ccompf compares two floating point numbers and Cnotcompf compares two
floating point numbers for non equality. PowerPC built-in mask operations
can be exploited to test the results of and operations with constants. The
outcome of such results can be either zero or nonzero. RTL operations
Cmaskzero and Cmasknotzero describes this operation. For the mask oper-
ation we need to provide the amount as an argument by which it should be
masked. Pointer comparisons are done using the Ccompptr operation.

The Oaddrglobal and Oaddrstack operations involve the memory loca-
tions. In fact each global symbol is associated to a pointer and an offset.
The Oaddrglobal operation takes two arguments, a global symbol and an
offset. It finds the pointer associated to the global symbol and adds the

4.3 Register Transfer Language 77

offset provided with the Oaddrglobal to the offset already associated to the
global symbol. This is very useful for array data structure. The Oaddrstack
operation takes an offset and adds it to the address of the stack pointer.
This operation is very useful in stack operation.

4.3.2 Memory address calculation in RTL

The addressing mode type describes how the address of a memory load or
store is computed from the argument registers.

Inductive addressing_mode : Set :=
| Aindexed : addressing_mode
| Aindexed_imm : intval -> addressing_mode
| Abased : gident -> intval -> addressing_mode
| Abased_imm : gident -> intval -> addressing_mode
| Ainstack : intval -> addressing_mode.

We consider five types of relative addressing mode. To access an ar-
ray using a static address we have indexed addressing mode, given by the
constructor Aindexed imm. In this addressing mode the starting address of
the array is given in the register and an offset is provided along with the
constructor. For example, to access a variable a[3], where a is an array of
more than 4 places, we should write Aindexed imm 3 and should provide
address of the beginning of the array a in the register. To access an array
using dynamic address we have base-indexed addressing mode, given by the
constructor Aindexed. In this addressing mode both the starting address of
the array and the distance of the accessed element from this staring address
are provided in registers. For example, to access a variable a[n], where a
is an array of more than n places, we should write Aindexed and should
provide address of the beginning of the array a and the value of n in the
registers.

We also have base-displacement addressing, given by the constructor
Abased. The base address and the distance are provided along with the con-
structor. In base-indexed-displacement, given by the constructor Abased imm,
the base address and the distance are provided along with the constructor
and the indexed address are provided in the register. For example, to access
a global variable a we should write Abased imm a 0. Finally, we calculate
the addresses in the stack with the constructor Ainstack, where we provide
the displacement in the stack along with the constructor. This displacement
is added to the stack pointer to get the address of an element in the stack.

4.3.3 RTL Instructions

An instruction in the Register Transfer Language is described by three fields.
The first constructor instr desc describes the operation to be performed.

78 An experimental compiler for Cminor to RTL - I

List of arguments needed for this operation is provided in the second con-
structor instr args as a list of registers and to store the final value returned
by the instruction the third constructor instr res provides a register. The
following record describes the instruction in the Register Transfer Language.

Record instruction : Set := mkinstr {
instr_desc : instruction_desc;
instr_args : (list Reg.T);
instr_res : (option Reg.T)

}.

Note that we described the register instr res by an option type as some
instructions may not return any value.

In Cminor, implicitly all instructions have a list of successors. Most of
the instructions fall through, in other words they continue with the next
instruction. Only the branching instructions in Cminor do not fall through.

Each Cminor instruction describes a graph in RTL, which is in fact a
subgraph of the graph describing the whole program. The list of successors
of an instruction are made explicit in RTL. In other words, each node in RTL
graph is connected to another node, which contains the successor instruction.
When the Cminor branching instructions are transformed to RTL, they are
connected to more than one node, one of which should be followed.

The Inop instruction does nothing and just branches to its successor.
The instruction (Iop op) performs the operation op with the arguments given
in the register list instr args and returns the final value of the operation in
the register instr res.

The instruction (Iload chunk adrmode) loads the memory fragment chunk
at the address determined by the addressing mode adrmode and stores the
value just read in the register instr res. The arguments which are needed to
determine the memory location for this addressing mode are provided in the
list of registers instr args. Similarly, the instruction (Istore chunk adrmode)
stores the value of the register instr res in the memory fragment chunk and
the address of the memory location is determined by the addressing mode
adrmode. All these instructions are non-branching instructions and continue
with their successors.

Among the branching instructions we have instructions for function call
and conditions. The instruction Icall and Icall imm performs the function
call taking the arguments of the function from the list of registers instr args
and returns the result of the function call in the register instr res. The
function is called either through a pointer given in the register list, in case
of Icall or by a direct call, in case of Icall imm where the address is directly
provided. One can consider that a function call makes a bigger node in the
control graph which contains all the operations of the function and then
follows the next instruction in the program.

4.3 Register Transfer Language 79

The instruction Icond cond tests the condition cond with the arguments
given in the list of registers instr args. This instruction has two successors,
for true and false values of the condition. The Iswitch li instruction the
number of successor depends on li. Iswitch discriminates on the value pro-
vided in the register list and matches the value in the list li and goes to the
corresponding node. The instruction Ireturn returns to the caller function.
It returns the value stored in the register instr res. For C functions which
return void, the instruction Ireturn returns None. Ireturn has no successor.

Inductive instruction_desc : Set :=
| Inop : instruction_desc
| Iop : operation -> instruction_desc
| Iload : cmemory_chunk -> addressing_mode

-> instruction_desc
| Istore : cmemory_chunk -> addressing_mode

-> instruction_desc

(* branching operation *)
| Icall : instruction_desc
| Icall_imm : gident -> instruction_desc
| Icond : test -> instruction_desc
| Iswitch : (list intval) -> instruction_desc
| Ireturn : instruction_desc.

4.3.4 Functions and programs in RTL

A function is represented by the following record.

Record fundecl : Set := mkfun {
fun_args : (list Reg.T);
fun_max_reg : Map.range;
fun_code : (Graph.T instruction);
fun_entry_point : Graph.key;
fun_stackspace : size

}.

The list of arguments to the function is provided by the list of regis-
ters fun args, which contains the values of the arguments in the registers.
fun code is the graph of instructions for this function and entry point of this
function is also provided by fun entry point. Type checking ensures that in a
function definition, number of the registers should be less than fun max reg.
Type checking also ensures that the graph for this function is not disjoint
from the graph presenting the program and the entry point for this function
is a vertex of this graph.

80 An experimental compiler for Cminor to RTL - I

A program is a collection of functions. The name of the distinguished
main function should be provided. Global variables are also provided as a
list tuples, name and its size in bytes. Type checking ensures that all the
global identifiers are different. Abstract syntax of a program is given by the
following record.

Record rprogram : Set := mkrprog {
rprog_fun : (list gident * fundecl);
rprog_main : gident;
rprog_vars : (list gident * size)

}.

4.4 Conclusion

We tried to show the links between the Cminor instructions and their cor-
responding RTL instructions. These will help us to understand the trans-
formation from Cminor programs to RTL programs. In the next chapter we
show how to transform a Cminor program to a RTL program. It is to be
noted that the RTL language is very close to the target language of RISC
kind PowerPC processors. We need to go through a lot of transformations
before producing the target code. These transformations will consist of op-
timization, register allocation, constant propagation, linearization etc. In
that sense RTL plays a significant role in the formalized C compiler.

In the collective project Concert, Laurence Rideau and Sandrine Blazy
implements the Cminor semantics and Benjamin Grégoire realizes the mem-
ory model and the RTL semantics. The compiler described in the next
chapter connects their works and the implementation of the compiler de-
pends very much on the formulation of Cminor and RTL they propose. In
the next chapter, we will show how much we can push the expressivity of the
restrictive language of the Coq proof system to keep the modularity of the
compiler. Keeping the modularity of the compiler is helpful to add future
changes in the Cminor and the RTL.

Chapter 5

An experimental compiler for
Cminor to RTL - II

5.1 Cminor to RTL translation

In this chapter we present how do we transform the Cminor programs to
RTL programs and construct the control flow graph in RTL. In Cminor,
the environment contains all the local and global variables, keeps track of
the stack pointer and maintains the memory. This environment is necessary
for the semantics of the Cminor language. We describe the environment of
Cminor as follows.

Record env : Set := mkenv {
genv : (assoc gident value);
lenv : (assoc lident value);
stack : ptr;
store : cmemory

where genv is a list associating a value to each global variable, the lenv is
a list associating a value to each local variable, stack is a pointer which
contains topmost address of the stack and store is the memory where we
keep the instructions, arrays etc. In other words, the environment in Cmi-
nor represents the state of the program and therefore the execution of the
instructions is very much dependent on the environment.

Similarly the RTL semantics depends on the state of the program. To
transform the Cminor programs into RTL programs, it is therefore necessary
to transform the Cminor environment to its RTL counterpart, which will be
later needed to show the equivalence between the Cminor program and its
RTL translation. To facilitate this proof of equivalence we keep the memory
structure in RTL mostly unchanged. In the previous chapter we told that
in RTL all the local variables are stored in the registers and theoretically
we can use as many as registers we need. Thus in RTL we keep the local
variables in registers and the rest of the memory structures of Cminor are

82 An experimental compiler for Cminor to RTL - II

kept unchanged in RTL. Note that the translation of memory structure is
needed for the semantics, not for the syntax

5.2 The translation environment

The translation environment contains all the necessary information about
the RTL control flow graph. We start with the mapping of the Cminor local
variables to RTL registers. The intermediate results of any computation
are also kept in the registers. Cminor instructions are translated to RTL
instructions and then mapped to the nodes of the control flow graph. It is
necessary to know which of the variables are often accessed in a loop and for
that reason we keep track of the loop nesting depths. This information helps
in later optimizations in register allocations. Note that for this compiler
we consider theoretically an infinite number of registers. When we finally
produce machine code they run on a fixed number of registers, thus we
have to go through the register allocation. We can significantly reduce the
compilation time if the variables inside a loop are kept in registers, as the
memory access will cost more time. Nodes of the control flow graph are
mapped to loop nesting depths, as each node corresponds to an instruction
in RTL and we keep the loop nesting depth of the instruction along with
the instruction.

Later in this chapter we show the functions to translate Cminor expres-
sions, Cminor conditions, Cminor instructions to their RTL counterparts.
The translated environment is threaded through all the translated functions.
Following is the translation environment in RTL.

Record env: Set := mkenv {
vars : (Stringmap.T Reg.T);
nextreg : Map.key;
instrs : (Graph.T instruction);
loops : (Map.T positive);
nesting : positive

}.

where vars is the list of registers containing all the local variables and in-
termediate results. To assign a new register we keep track of the key of the
last used register in nextreg. The instr is the control flow graph in RTL
we keep on building along the translation from Cminor to RTL. Similarly,
loops keeps track of the depth of nesting of the instruction in the graph and
nesting helps in giving the current depth of the nesting.

We initialize the above translated environment by providing zero or
empty values to each of them.

Definition init_env :=

5.2 The translation environment 83

(mkenv (Stringmap.init Reg.T (Reg.make xH TPint)) xH
(Graph.empty (mkinstr Inop (nil Reg.T) (None Reg.T)))
(Map.init xH) xH).

For each Cminor variable we create a pseudo register in RTL with the
help of the following function.

Definition add_var
[envir:env; key:string; ty:typ]:(env*Reg.T) :=

let r=(Reg.make (nextreg envir) ty) in
let envir’=(mkenv

(Stringmap.set Reg.T key r (vars envir))
(add_un (nextreg envir))
(instrs envir) (loops envir) (nesting envir)) in

(envir’, r).

Thus, it creates a new register of the proper type, stores the value of the
local variable and modifies the environment.

We also create a pseudo register for each intermediate result in an ex-
ecution. Given a type the following function will create a pseudo register
with that type and return the enriched environment.

Definition new_reg [envir:env; ty:typ]:(env*Reg.T) :=
((mkenv (vars envir) (add_un (nextreg envir)) (instrs envir)

(loops envir) (nesting envir)),
(Reg.make (nextreg envir) ty)).

Each Cminor instruction is translated to RTL instructions and added to
the control flow graph. Every node in the control flow graph corresponds to a
RTL instruction. To add an instruction in the control flow graph we need to
provide a list of successors of that node. We then create a node for that RTL
instruction, determine the loop nesting depth of that instruction and then
return the modified environment and the key of that node. Remember that
the environment keeps all the information about the control flow graph, list
of registers used and the depth of the nested loop instruction. The following
function describes how we add an instruction in the control flow graph.

Definition add_instr
[envir:env; instr:instruction; succs:(list Graph.key)]:

(env*Graph.key) :=
let (n, code) =

(Graph.add_vertice instr succs (instrs envir)) in
let envir’ =
(mkenv (vars envir) (nextreg envir) code

84 An experimental compiler for Cminor to RTL - II

(Map.set n (nesting envir) (loops envir))
(nesting envir)) in

(envir’, n).

The compilation process which compiles Cminor programs to RTL pro-
grams builds the control flow graph in a backward direction. In other words,
for an expression we create a node for the top level operation, but this op-
eration depends on the subexpressions of the expression. This node is fully
constructed after its successor nodes, which correspond to its subexpres-
sions, in the control flow graph is constructed. We discuss the construction
of the control flow graph in the section .

For a loop we cannot add a node in the control flow graph straightaway.
We can consider that each loop consists of a head part and a body part.
We enter the loop through the head part and then the body of the loop
follows. If it loops again, the head follows the body and so on. We leave
the loop from the body part. Thus we cannot provide the successor node
for the head part of the loop before creating the nodes for the body part of
the loop. To construct loops, we break the add instr in two steps. The first
step reserve instr just allocates a node in the control flow graph and returns
the key of that node, without associating it with an instruction. The second
step update instr sets the instruction at the given node. We provide the list
of successors in the second step, thus in the first step the created node is
not connected to the graph. Below we present these two functions.

Definition reserve_instr [envir:env]:(env*Graph.key) :=
(add_instr envir

(mkinstr Inop (nil Reg.T) (None Reg.T))
(nil Graph.key)).

Definition update_instr
[envir:env; key: Graph.key; instr:instruction;

succs:(list Graph.key)]:env :=
let code = (Graph.update key instr succs (instrs envir)) in
(mkenv (vars envir) (nextreg envir) code
(Map.set key (nesting envir) (loops envir))

(nesting envir)).

We record the current loop nesting in the environment in nesting of
the translated environment. Each time we enter or leave a loop we mod-
ify the current loop nesting and this information on depth is later used in
update instr. The following functions enter loop and leave loop respectively
increment and decrement the current loop nesting.

Definition enter_loop [envir:env]:env :=

5.3 Allocation of registers for intermediate results 85

(mkenv (vars envir) (nextreg envir) (instrs envir)
(loops envir) (add_un (nesting envir))).

Definition leave_loop [envir:env]:env :=
(mkenv (vars envir) (nextreg envir) (instrs envir)

(loops envir) (sub_un (nesting envir))).

5.3 Allocation of registers for intermediate results

To keep the intermediate results for an expression we need to allocate a
register. Given an expression, the following function alloc reg allocates a
fresh pseudo register having the same type as the expression and therefore
can hold the value of the expression. Since the environment records the
list of registers, the function returns the modified environment and the new
allocated register.

Definition alloc_reg [envir:env; e:expr]:(env*Reg.T) :=
(new_reg envir (type_of_expr envir e)).

where type of expr determines the type of a Cminor expression. To deter-
mine the type of an expression we also need to determine the type of unary
and binary operations and memory chunks used to store the variable in the
memory, as they are interleaved with the expression. We determine the type
of a Cminor expression with the following functions.

Definition type_of_unop [unop: unary_operation]: typ :=
Cases unop of

OPnegint => TPint
| OPnegfloat => TPfloat
| OPabsfloat => TPfloat
| OPintoffloat => TPint
| OPfloatofint => TPfloat
| OPfloatofintu => TPfloat
| OPnotbool => TPint
| OPnotint => TPint
| OPcast8signed => TPint
| OPcast8unsigned => TPint
| OPcast16signed => TPint
| OPcast16unsigned => TPint
| OPsingleoffloat => TPfloat
end.

Definition type_of_binop [binop: binary_operation]: typ :=
Cases binop of

86 An experimental compiler for Cminor to RTL - II

OPaddptr => TPaddr
| OPsubptr => TPint
| (OPcmpptr _) => TPint
| OPaddint => TPint
| OPsubint => TPint
| OPmulint => TPint
| OPdivint => TPint
| OPmodint => TPint
| OPdivintu => TPint
| OPmodintu => TPint
| OPandint => TPint
| OPorint => TPint
| OPxorint => TPint
| OPshiftleftint => TPint
| OPshiftrightint => TPint
| OPshiftrightintu => TPint
| OPaddfloat => TPfloat
| OPsubfloat => TPfloat
| OPmulfloat => TPfloat
| OPdivfloat => TPfloat
| (OPcmpint _) => TPint
| (OPcmpintu _) => TPint
| (OPcmpfloat _) => TPint
end.

Definition type_of_chunk
[chunk: memory_chunk]: typ :=

Cases chunk of
Mint8signed => TPint

| Mint8unsigned => TPint
| Mint16signed => TPint
| Mint16unsigned => TPint
| Mint32 => TPint
| Mfloat32 => TPfloat
| Mfloat64 => TPfloat
end.

Definition type_of_cmchunk
[cmchunk: cmemory_chunk]: typ :=

Cases cmchunk of
(Mchunk chunk) => (type_of_chunk chunk)

| Maddr => TPaddr
end.

5.4 Instruction selection 87

Fixpoint type_of_expr
[env: env; ex: expr]: typ :=

Cases ex of
(Evar id) => (Reg.reg_type (find_var env id))

| (Eaddrsymbol _) => TPint
| (Eaddrstack _) => TPint
| (Eassign id e) => (Reg.reg_type (find_var env id))
| (Econstint _) => TPint
| (Econstfloat _) => TPfloat
| (Eunop unop e) => (type_of_unop unop)
| (Ebinop binop e1 e2) => (type_of_binop binop)
| (Eload chunk adr) => (type_of_cmchunk chunk)
| (Estore chunk addr data) => (type_of_cmchunk chunk)
| (Ecall fn args None) => TPint
| (Ecall fn args (Some tyres)) => tyres
| (Eandbool e1 e2) => TPint
| (Eorbool e1 e2) => TPint
| (Econdition e1 e2 e3) => (type_of_expr env e2)
| (Esequence1 e1 e2) => (type_of_expr env e1)
| (Esequence2 e1 e2) => (type_of_expr env e2)
end.

5.4 Instruction selection

We decompose each Cminor expression into an RTL operation, condition
or addressing mode and a list of sub-expressions in such a way that the
operation applied to the values of the subexpressions computes the value
of the original expression. Instead of doing directly this decomposition of
Cminor expression into RTL expressions we divide them into five different
functions. The first function transl cond decomposes a Cminor condition e
in an RTL condition cond and a list of subexpressions of e. Applying cond to
the values of the list of these subexpressions produces the same truth value
as evaluating e. The second function transl unop takes a Cminor expression
for unary operation e = Eunop(unop e1) and decomposes it to an RTL
operation and a list of subexpressions of e.

The third function transl binop takes a Cminor binary operation e =
Ebinop(binop e1 e2) and decomposes it to an RTL operation and a list
of subexpressions of e. The fourth function transl addressing decides the
addressing mode in RTL for a corresponding expression in Cminor. Finally,
the fifth function transl expr takes a Cminor expression, translates it to a
RTL instruction, creates a node in the control flow graph, assigns the RTL
instruction to that node and finally connects it to the control flow graph.
Thus the first four functions can be viewed as subparts of the fifth function.

88 An experimental compiler for Cminor to RTL - II

In fact we need to define each of the first four functions as mutually recursive
with the fifth function, we will discuss it later in section. The function
transl expr is also mutually recursive with another function transl condition.
The function transl condition checks the priority of branches in a branching
instruction and sets the structure of the control flow graph accordingly. We
discuss the priority of branches in section.

In general, the translation functions for unary and binary operations are
simpler as most of the time the RTL operation is equivalent to the top-level
operator and sub-expressions are just the argument of the top level operator.
For instance, consider the Cminor expression (Ebinop OPaddint e1 e2) for
the addition of two expressions e1 and e2, where each of these expressions
return integer values. This Cminor expression when transformed to RTL
instruction, it is decomposed into the operation Oadd and the subexpressions
e1 and e2. Each of these subexpressions are then recursively transformed to
RTL instructions.

However we decided to take advantage of complex instructions of Pow-
erPC, which are already included as special operations of RTL, to decompose
Cminor expressions. In section, we gave the example of built-in multiply add
operation for C expression e1 ∗ e2 + e3, where each of e1, e2 and e3 returns a
float value. This expression is translated in Cminor as (Ebinop OPaddfloat
(Ebinop OPmulfloat e1 e2) e3). In the transformation from Cminor to RTL,
we try to decompose Cminor expressions more aggressively and exploit the
complex PowerPC operations, thus we transform the above using RTL op-
eration Omuladdfloat and recursively transforming the expressions e1 and
e2.

Using such instructions needs special care as we need to reorient the list
of arguments (or subexpressions in transl binop). This is because we would
like to follow the order or computation over the results of subexpressions
and these instructions have fixed computation order. For instance, Cminor
expressions (Ebinop OPaddfloat e1 (OPmulfloat e2 e3)) can be transformed
to RTL instruction Omuladdfloat e2 e3 e1. Thus, a simple change in the order
of the subexpressions is enough to transform such expressions isomorphically.

In another case, to transform an unary Cminor OPnotint operation we
lack a binary not operation in PowerPC. PowerPC provides a more general
not or operation and this can be used to achieve binary not operation, since
x̃ = (̃x‖x). Therefore we need to duplicate the expression, and then apply
the RTL operation Onor to these two expressions.

Other than these few special operations RTL operation is to be applied
to a list of argument registers that is isomorphic to the list of subexpressions.
These suggest that we need three register list transformers. First, the reg id
is the identity function, in other words it returns the same list of registers.
This function will be used in most of the operations. Second, the reg dup
duplicates the register. Its only use is the operation is OPnegint. Third,
the reg 123 231 rotates a 3-register list by one left shift and its only use is

5.5 Code linearization 89

Omuladdfloat. Here are the three register list transformers.

Inductive reg_list_trans: Set:=
reg_id : reg_list_trans

| reg_dup : reg_list_trans
| reg_123_231 : reg_list_trans.

Definition eval_reg_list_trans
[rt: reg_list_trans; l:(list Reg.T)]:(list Reg.T) :=

Cases rt of
reg_id => l

| reg_dup =>
Cases l of

nil => l
| (cons r rl) =>

Cases rl of
nil => (cons r (cons r (nil Reg.T)))

| _ => l
end

end
| reg_123_231 =>

Cases l of
nil => l

| (cons r1 rl1) =>
Cases rl1 of
nil => l

| (cons r2 rl2) =>
Cases rl2 of
nil => l

| (cons r3 rl3) =>
Cases rl3 of
nil =>
(cons r2 (cons r3 (cons r1 (nil Reg.T))))

| _ => l
end

end
end

end
end.

5.5 Code linearization

To execute the machine code that we generate from the RTL control flow
graph in the RISC kind PowerPC processor, which is essentially sequential,

90 An experimental compiler for Cminor to RTL - II

we need to transform the RTL control flow graph into a linearized sequence
of instructions. It is important to linearize the code in a careful manner
as it will save the run time costs, though any linearization works for the
processor.

Consider the following block of instructions in C.

i1;
while b

i2;

where i1 and i2 are list of instructions and b is a boolean expression.
When we try to produce the machine code for the above piece of source

code in C, we have certain restrictions in the machine language. For example,
the machine language does not contain a construct while and we need to
express the above with the help of condition, gotos and labels. We gave
some examples in this direction for transforming the code from Cminor to
RTL in the section... Thus, the above piece of code can be rewritten as

i1;
l1: if !b then l2;

i2;
goto l1;

l2: ...

where the jump instruction is built-in inside the condition (if-then). If the
while construct repeats itself 10 times, we generate 10 gotos during runtime.
We can optimize the code further by significantly reducing the number of
gotos in the target code, if we exploit the target language in a more intelligent
way. For instance, the above target code can be rewritten as

i1;
goto l1;

l1: i2;
l2: if b then l1;
...

If the while construct repeats itself 10 times, we execute only 1 goto during
the runtime, therefore we reduce the number of gotos by 9.

Linearization of the code transforms the control flow graph of RTL in-
structions into a linearized sequence of instructions, inserting labels and go-
tos to express the flow of control. We remove the Inop instructions from the
RTL program. In the beginning, each instruction in the linearized code has
a label, which corresponds to the key of the node in the RTL graph. Other
than the branching instructions, described in section 4.3.3, all instructions
continues with their next nodes in the control flow graph. For the branching

5.6 Heuristics for static branch prediction 91

instructions we need to decide which of its successors should be chosen for
the fall through case. This choice depends on the heuristics we present in
the following section. We insert gotos for the other branches. Finally we
remove the labels that are never used as the target of a branch instruction.

5.6 Heuristics for static branch prediction

Static branch prediction guesses which of the arms in a conditional executes
most often. This prediction helps during linearization of code. We follow few
heuristics to predict the branch to be more often executed in a conditional.
In the first heuristic we adopt the convention that in RTL condition Icond
execution of the else branch is more likely than the then branch. If it is
not so, we can swap the two branches and negate the condition to meet
the above convention. We implement the static branch prediction strategy
proposed by Ball and Larus in the article Branch prediction for free. The
function likeliness stmts returns a probability that a list of statements is
executed based on the following heuristics.

• An arm that contains a return statement is less likely to be executed
than an arm that does not contain a return. Because early returns
often correspond to error cases or base cases of a recursion.

• An arm that exits a loop, for instance exit in RTL, is unlikely to be
executed because normally loops iterate several times.

• An arm that contains a function call is less likely to be executed than
an arm that does not contain any function call. In general, function
call often corresponds to the error reporting.

Another heuristic says that while comparing two floats, two pointers or two
unsigned integers for equality in general the two numbers are not equal. In
case of a conditional we compare the probability returned by the function
likeliness stmts for each of its arms, this gives us a first estimate. Finally
the function likeliness cond decides which arm of the conditional will be
chosen based on this probability estimation and the last heuristic. It is to
be noted that this transformation preserves semantics thus the correctness
of the compiler is not compromised.

5.7 Guardedness problem

We have seen earlier that the functions transl cond, transl unop, transl binop
and transl addressing are called in the function transl expr. For instance to
translate a Cminor instruction Eunop OPnegfloat e1 we call the function
transl unop. The transl unop decomposes this expression into a RTL opera-
tion and a list of subexpressions, to be precise Onegfloat and a list containing

92 An experimental compiler for Cminor to RTL - II

e1. The transl expr should be called again recursively on the list containing
e1. But guardedness condition of Coq system does not allow it.

In the Calculus of Inductive Constructions we need to explicitly state
what is the decreasing argument in a recursive function. The guardedness
condition of Coq is satisfied when the actual value of the decreasing param-
eter for every recursive call is smaller than the one of the previous iteration.
In the Calculus of Inductive Constructions the principal argument of a struc-
tural recursive function is guarded. In a case expression over an inductive
type the guardedness continues through the constructor of the inductive
type. For instance, if we have an inductive type t with two constructor,

Inductive t:Set :=
c1 x : ...

| c2 y :

then in a case expression of the following pattern

...
Case t of

c1 x => f x
| c2 y => g y
end.

both the x and y are guarded in f and g respectively. Among the other
guardedness conditions,

In our case it is necessary to write the functions in a mutually recursive
way. For instance, to translate the Cminor expression Ebinop OPaddint
e1 e2 we should select the corresponding binary operation in RTL, thus we
need to call the function transl binop. The function transl binop decomposes
the Cminor expression in two subexpressions, e1 and e2 and a RTL binary
integer operation over the result of the two subexpressions. Finally we call
the function transl subexpressions to translate the list of the subexpressions
returned by the function transl binop. The function transl subexpressions
calls the function transl expr for each of the subexpressions in the list. As the
function returns a list of subexpressions to the caller function transl instr we
no more have a sub-term of the principal argument, instead we have a super-
term. Even though we are structurally decreasing the principal argument,
our translating function is not well defined.

A possible to way to solve this problem is to call the function directly to
each of the subexpressions produced by the function transl binop. Earlier,
transl binop used to return the RTL operation and a list of subexpressions
to the caller function transl expr, so that transl expr can be called to each
of these subexpressions. We have seen that such a solution creates a super
term instead of a sub-term, and the Calculus of Inductive Constructions
reject it. Again, it is difficult to contain each of the functions transl unop,

5.8 Construction of the RTL control flow graph 93

transl binop, transl addressing, transl condition inside the transl expr, as we
loose the modularity of programming and such a solution makes the proof
extremely complicated. Another possible way to keep the modularity of
programming we can build the graph in each of these mutually recursive
functions. Thus, when the control passes from one function to another, the
callee function will modify the graph and finally will return the modified
graph to the caller function. We exploit the higher order function of the
Calculus of Inductive Constructions to build each of these functions in a
non mutual way. We have exploited this fact in the chapter 2, we defined
the functional to describe the denotational semantics of Imp.

For instance, the transl binop functional now expects two more functions,
in addition to its previous arguments. The first function is the transl expr
itself, which is called to build the control flow graph for each of the subex-
pressions. The second function builds the control flow graph for the RTL
operation over these subexpressions. Remember that earlier the transl binop
function used to return a RTL operation and a list of subexpressions.

We need to modify each of the functions transl unop, transl binop, transl
addressing, transl cond and transl condition to exploit the higher order func-
tions in the Calculus of Inductive constructions. Even though we could keep
the modularity of the function and expressed the functions in non mutual
way, each of these functions are quite big and complex. This is due to the
vastness of the Cminor.

5.8 Construction of the RTL control flow graph

We construct the RTL control flow graph in a bottom-up left to right di-
rection. We start with a Cminor instruction, decompose the instruction
to generate the top level RTL operation and a list of subexpressions. We
create a node for this RTL operation in the control graph, assign the RTL
instruction to this node, modify the environment and connect it to its suc-
cessor. For each of the subexpressions we create a node and connect them to
the node which contains the top level RTL operation over these subexpres-
sions. We repeatedly call our procedures to build the graph for each of these
subexpressions. We take them from left to right in the list. For conditional
branches, we consider the heuristics we have described in the section. The
function transl condition decides which branch is most likely and makes it
as the leftmost child of the node. We stop when all the Cminor expressions
are translated.

Let us take an example to understand better the way we construct the
RTL control graph, the problems we encountered to model the compiler in
type theory and the procedures we followed to overcome those problems. To
construct the RTL graph from the Cminor expression Ebinop OPaddint e1
e2 we call the function transl expr. Note that, one of our major objective is

94 An experimental compiler for Cminor to RTL - II

to keep the modularity in the compiler code. The function transl expr is a
generalized function to construct the RTL control flow graph from any Cmi-
nor expression. Following is the type definition of the transl expr function
in the Coq proof assistant.

Fixpoint transl_expr [envir:env; expr1:expr]:
Reg.T-> Graph.key -> (env*Graph.key)

The transl expr function expects the RTL environment in which the
Cminor expression needs to be transformed, the Cminor expression, the list
of registers where the Cminor variables and the intermediate results are
stored and the node of the graph which should be executed after the current
instruction (to be precise, this node should be executed after the execution of
the RTL graph corresponding to the Cminor instruction we are considering),
in other words the exit point for the Cminor instruction in the RTL control
flow graph. The transl expr function returns the new environment and a
pointer to the node which should be executed next, in other words the entry
point for the next Cminor instruction in the RTL control flow graph. For
example, in our case this pointer should be the node for the expression e2.
It will be clearer at the end of this discussion.

Ideally, we should have a piece of code to transform the binary Cminor
operation into corresponding RTL control flow graph. This piece of code
should first decide the corresponding RTL operation for the binary Cminor
operation, in our case it is Oadd. Remember that earlier in the section 5.4 we
discussed how we exploit the PowerPC instruction set. Thus, the function
which decides the RTL operation, should also return a list of subexpressions
by decomposing the Cminor expression, in our case e1 and e2. Then, the
piece of code should allocate registers to store the intermediate results for
these subexpressions. Finally it should add a node for the RTL operation, in
our case for the operation Oadd and recursively call the trasl expr function
to construct the RTL graph for each of those subexpressions. The piece of
code should have the following definition in the Coq proof assistant.

(Ebinop binop e1 e2) =>
let (reg_fn, opel) = (select_binop binop e1 e2) in
let (op’, el) = opel in
let (envir’, rl) = (alloc_regs envir el) in
let (envir’’, no) =
(add_instr envir’
(mkinstr (Iop op’) (eval_reg_list_trans reg_fn rl)

(Some Reg.T rd)) (cons nd (nil Graph.key))) in
(transl_subexprs envir’’ rl el no)

The function select binop decides the RTL operation and decomposes
the Cminor expression into a list of subexpressions and in the function

5.8 Construction of the RTL control flow graph 95

trasl subexprs we call the function transl expr on each element of the list
of expressions el. Though in reality we are calling the recursive function on
arguments which are smaller than the initial argument, the list of expres-
sions returned by the function select binop does not appear as a subterm
with respect to the guardedness conditions of the Coq proof assistant. In
other words, the above definition of the constructor is not well defined.

To keep the modularity and the well formedness, we use the higher or-
der function which we have already exploited in the chapter 2. Earlier the
transl expr was the sole function to construct the RTL control flow graph.
In the new construct, we call the function transl binop to construct the RTL
control flow graph for a binary Cminor operation. Note that the functions
transl expr and transl binop are inter dependent, as the transl expr func-
tion constructs the RTL graph for each of the subexpressions. Exploiting
the higher order function we assume that there exists a function transl expr
to construct the control flow graph for each of the subexpressions and there
also exists another function which selects the exact RTL operation and de-
composes the Cminor expressions into subexpressions. The later function
also adds a node in the RTL control flow graph for the top level RTL op-
eration. Here is definition of the constructor to construct the RTL control
flow graph for the binary Cminor operation which is well formed and keeps
the modularity of the compiler code.

(Ebinop binop e1 e2) =>
(transl_binop transl_expr

[op’,rl,envf]
(add_instr envf (mkinstr (Iop op’) rl (Some Reg.T rd))

(cons nd (nil Graph.key)))
envir binop e1 e2)

For any binary Cminor operation we need to add a node, which contains
the corresponding RTL operation, in the control flow graph. This is common
to every binary Cminor operations. We significantly reduce the amount of
code by providing the common part when we call the function transl binop.
This can be observed in the above definition of the constructor. The Coq
proof assistant facilitates the modular programming, which we exploit in the
definition of the function transl binop. Below we show the constructor we
need to construct the control flow graph for the Cminor operation OPaddint.

Section SELECT_BINOP.

Variable transl_expr: env -> expr -> Reg.T
-> Graph.key -> (env*Graph.key).

Variable f: operation -> (list Reg.T)

96 An experimental compiler for Cminor to RTL - II

-> env -> (env*Graph.key).

Definition transl_binop
[envbinop:env; binop:binary_operation;

expbinop1,expbinop2:expr]:
(env*Graph.key):=

...

| OPaddint e1 e2 =>
let (envbinop’,r1) = (alloc_reg envbinop e1) in
let (envbinop’’,r2) = (alloc_reg envbinop’ e2) in
let (envbinop’’’,n2) =
(f Oadd
(eval_reg_list_trans reg_id

(cons r1 (cons r2 (nil Reg.T))))
envbinop’’) in

let (envbinop’’’’,n1) =
(transl_expr envbinop’’’ e2 r2 n2) in

(transl_expr envbinop’’’’ e1 r1 n1)
...

End SELECT_BINOP.

In short, to construct the control flow graph for the Cminor expression
containing binary operation we call the function transl expr. This function
calls transl binop. The function transl binop decomposes the Cminor ex-
pression into a few subexpressions and allocates registers for each of the
subexpressions. Then the function transl binop calls the function f, which
decides the top level RTL operation and adds a node for this operation in
the control flow graph. Finally the function transl binop calls transl expr to
construct the control flow graph for each of the subexpressions it created.

In our example, to construct the RTL control flow graph for the Cminor
expression Ebinop OPaddint e1 e2 we call transl expr. Let’s say nd as the
node to follow in the RTL graph. transl expr calls the function transl binop.
The transl binop function first allocates registers for the subexpressions e1
and e2, say r1 and r2 consecutively, then calls the function f. The function
f decides the top level RTL operation as Oadd and adds a node in the
control flow graph for this operation. This operation will be performed on
the results stored in the registers r1 and r2. Let’s say that this node is
nd0. Thus the node nd will be followed after the node nd0. The function
transl binop then calls transl expr to construct the RTL control flow graph
for the Cminor subexpressions e2 and e1 respectively.

5.9 Conclusion 97

5.9 Conclusion

In a recent work[4] by Yves Bertot on co-inductive types, syntactic re-
strictions on the termination of computation on inductive structures or the
guardedness conditions are discussed. Claudio Sacerdoti Coen also discusses
the guardedness conditions in his PhD thesis [11] on knowledge management
of formal mathematics in the Coq system.

The section system of the Coq proof assistant, along with the higher
order functions can be exploited in other cases where the guardedness con-
ditions pose constraints. Our technique is easy to implement and we expect
this method to be widely used in the future in several areas of formalization.

98 An experimental compiler for Cminor to RTL - II

Chapter 6

General conclusion

In this dissertation we studied how to use functional semantics to represent
the programming constructs with mutual and nested recursion inside type
theory. We also look into the benefit from the functional descriptions of
the programming language. Below we recapitulate our works and give some
perspectives of these works.

In the first work, we describe the operational and denotational semantics
of a small imperative language in type theory with inductive and recursive
definitions. The operational semantics is given by natural inference rules,
implemented as an inductive relation. The realization of the denotational
semantics is more delicate as the nature of the language imposes a few dif-
ficulties on us. First, the language is Turing-complete, and therefore the
interpretation function we consider is necessarily partial. Second, the lan-
guage contains strict sequential operators and while loops, and therefore
the function necessarily exhibits nested recursion. Our solution combines
and extends recent work by the authors [1, 2, 10] and others[9, 14, 16] on
the treatment of general recursive functions and partial and nested recursive
functions. The first new result is a technique to encode the approach of Bove
and Capretta[10] for partial and nested recursive functions in type theories
that do not provide simultaneous induction-recursion. A second result is a
clear understanding of the characterization of the definition domain for gen-
eral recursive functions, a key aspect in the approach by iteration of Balaa
and Bertot[2]. The applicability of this technique extends to other circum-
stances where complex recursive functions need to be described formally. In
the collective project Concert, Laurence Rideau has applied a similar tech-
nique to implement the functional representation of the Cminor semantics,
where mutual recursions posed a similar problem. In short, let’s say f and
g be two mutually recursive function, we create a higher order function F
that expects a tuple of functions (f ′, g′). The function f ′ has the same type
as f and the function g′ has the same type as g. We can then iterate F to
obtain the results that we were expecting from f and g.

Conventional approach to describe the semantics of programming lan-
guage usually rely on relation, in particular inductive relations. Simulating

100 General conclusion

program execution then relies on proof search tools. In a second work,
we describe a functional approach to automate proofs about programming
language semantics. Reflection is used to take facts from the context into ac-
count. The main contribution of this work is that we developed a systematic
approach to describe and manipulate unknown expressions in the symbolic
computation of programs for formal proof development. The tool we obtain
is faster and more powerful than the conventional proof tools. The use of
bottom (⊥) as the function argument in the higher order function F and the
induction on the number of iterations give us a powerful approximation. In
the collective project Concert, Laurence Rideau has already used this tech-
nique to implement the functional semantics of Cminor. The experiments
in the Concert effort around an optimizing compiler showed that induction
on the number of iterations was the most practical solution, if not the only
practical one. The applicability of naming techniques and memory functions
should extend to other circumstances where computations need to be done
on unknown expressions.

In the collective project Concert we contributed a compiler that con-
structs the RTL control flow graph from the Cminor programs. We keep
the modularity of programming while overcoming the constraints of guard-
edness conditions in the Coq system. The implementation of this compiler
follows closely the Caml programming style. In the implementation we have
seen that guardedness conditions can pose serious problems for recursions
even if the principal argument is strictly deceasing. We have shown, with
the help of higher order functions, how the section system to structure pro-
grams in the Coq system can be exploited to overcome this constraint. Our
technique is practical and easy to follow. The Cminor to RTL compiler is
implemented in a way that should help in its proofs. This compiler is still
complex and its proofs are going to be bigger and complex. We hope our
previous techniques should help in this respect.

Appendix A

Sémantique en théorie des types
pour les langages de
programmation

L’une des préoccupations majeures dans le monde académique et dans l’industrie
est de réduire la quantité d’erreurs (les bogues) dans les programmes. Les
méthodes formelles fournissent un moyen de raisonner à propose des pro-
grammes que nous écrivons. Elle ne permette pas seulement de trouve les
bogues, les bénéfices majeurs des méthodes formelles sont de décrire les
programmes dans des spécifications précises et rigoureuses. De telles spé-
cifications pavent la route vers des preuves formelles rigoureuses à propos
des programmes. En général, de telles preuves sont pénibles et peu souvent
triviales. Les preuves peuvent être mécanisées avec l’aide d’ordinateurs, car
ces derniers sont connus pour leur efficacité dans les tâches fastidieuses.

Vérifier le code source d’un programme n’enlève pas toutes les erreurs.
Le code qui est effectivement executé sur la machine est engendré à partir
du code source par un compilateur. Les compilateurs peuvent être une
source supplémentaire d’erreurs. Avec des optimisations complexes dans les
compilateurs, les erreurs ne sont pas rares. Un compilateur incorrect peut
introduire des erreurs dans un code cible dont le code source est bien vérifié.
Ainsi un compilateur vérifié formellement est d’une importance capitale.
Bien sûr, ce sera plus utile si the compilateur formalisé est modérément
optimisé et proche d’un langage largement utilisé dans le milieu académique
et dans l’industrie.

En pratique, le code source d’un programme est souvent vérifié sur un
jeu de données de test et le code assembleur engendré par le compilateur
est vérifié manuallement pour voir si le code assembleur est bien relié avec
le code source. Ces deux tâches sont susceptible de laisser passer des er-
reurs. De plus, il n’existe aucune preuve mathématique qu’elle permettent
de produire un code sur et sans erreurs. En fait, le typage statique, basé sur
un système de type correct, est un pré-requis de base pour l’ingéniérie de
systèmes robustes. Les preuves vérifiées par machine portant sur le langage

102
Sémantique en théorie des types pour les langages de

programmation

source et le compilateur fournissent la base mathématique.
Dans cette dissertation, nous étudions la sémantique formelle des lan-

gages de programmation dans la théorie des types. Nous commençons avec
une introduction sur les langages de programmation. Nous donnons une im-
age globale de la syntaxe et de la sémantique des langages de programmation.
Ensuite, nous fournissons une brève description du calcul des constructions
inductives que nous utiliserons pour formaliser les propriétés des langages
de programmations. Nous verifions toutes les preuves dans l’assistant de
preuves Coq, qui est basé sur le calcul des constructions inductives.

Dans la section A.1, nous décrivons la sémantique opérationnelle et la
sémantique denotationnelle d’un petit langage impératif en en théorie des
types avec des définitions inductives et récursives. Nous montrons le prob-
lème qui apparait dans la démonstration d’équivalence entre ces séman-
tiques, lorsque le langage contient de la récursion partielle et imbriquée.
Nous fournisson une technique pour contourner ce problème à l’intérieur de
la théorie des types.

Les approches conventionnelles pour décrire la sémantique des langages
de programmation reposent habituellement su des relations, en particulier
des relations inductives. On peut alors simuler l’exécution de programmes à
l’aide d’outils de recherche de preuves. Dans la section A.2, nous décrivons
une approache fonctionnelle pour automatiser les preuves sur la sémantique
des langages de programmation. La technique de ”réflexion”est utilisée pour
prendre en compte les faits venant du contexte d’exécution. La contribution
principale de ce travail est que nous avons développé une approche systéma-
tique pour décrire et manipuler des expression inconnues dans l’exécution
symbolique de programmes pour le développement de preuves formelles.
L’outil que nous obtenons est plus rapide et plus puissant que les outils
conventionnels.

Le langage C est l’un des meilleurs langages vis-à-vis des critères que
nous avons cités précédement pour un compilateur formalisé. Le travail de
cette thèse est une contribution au projet collectif Concert, où nous voulons
produire un compilateur formellement correct pour des langages à la C. Dans
cette thèse nous décrivons la syntaxe abstraite et la sémantique formelle de
Cminor, un sous-ensemble de C.

Plutot que d’engendrer le code objet directement, nous passons par un
code intermédiaire, écrit dans un langage de transfert de registres (RTL, reg-
ister transfer language en anglais) où le flux de contrôle, l’allocation de reg-
istre, la propagation des constrantes, l’élimination de code mort, et d’autres
optimisations sont calculées. Le langage de transfert de registres est plus
du langage du micro-processeur que les programmes RTL représentent le
graphe de flot de contrôle de l’exécution du programm. Le code objet est
ensuite engendré par linéarisation du graphe RTL.

Dans cette dissertation, nous présentons la formalisation du traducteur
de Cminor vers RTL. Dans la section A.3 nous exposons les difficultés qui

A.1 Sémantique fonctionnelle en théorie des types 103

apparaissent pour cette formalisation et les moyens de contourner ces diffi-
cultés. La description formelle du compilateur suit un style qui est proche
du style de programmation en Caml, conserve la modularité des programmes
ce qui facilite les preuves de correction, bien que nous ne considérions pas
les preuves de correction dans cette thèse.

A.1 Sémantique fonctionnelle en théorie des types

Dans le context des langages de programmation, les types algébriques sont
adaptés pour la syntaxe et les propositions inductives sont adaptées pour
la sémantique naturalle. La sémantique dénotationnelle fonctionne plutôt
avec des définitions de fonctions. Pour la sémantique dénotationnelle, nous
avons besoin d’utiliser des fonctions récursives sans contraintes. Pour nous
la question devient la suivante: comment pouvons représenter les construc-
tions de programmes qui font appel à de la récursion mutuelle et de la
récursion imbriquée en théorie des types, alors que cette théorie impose les
contraintes de la récursion structurelle et de fonctions totales alors que le
langage de programmation ne possède pas toutes ces propriétés? Comment
pouvons-nous bénéficier des descriptions fonctionnelles du langage de pro-
grammation? Nous abordons ces question dans les sections suivantes.

La sémantique opérationnelle consiste dans la description des pas de
calcul d’un probram en fournissant des règles formelles pour dériver des
jugements de la forme 〈p, a〉 ; r, qui se lit l’application du programme p
à l’entrée a termine et retourne le résultat r .

La sémantique dénotationnelle consiste dans la description d’une signifi-
cation mathématique aux données et aux programmes, plus précisément en
interprétant les données (entrées et sorties) comme des éléments de certains
domaines et les programmes comme des fonctions sur ces domaines; ainsi
le fait que le programme appliqué à l’entrée a retourne le résultat r sera
exprimé par l’égalité [[p]](a) = r, où [[−]] est la fonction d’interprétation.

Dans ce travail, nous démontrons un théorème de correction et de com-
plétude qui exprime que la sémantique opérationnelle et la sémantique déno-
tationnelle sont en accord.

La mise en place de la sémantique opérationnelle est immédiate: le sys-
tème de dérivation est décrit comme une relation inductive dont les con-
structeurs sont une paraphrase directe des règles de dérivation.

La mise en place de la sémantique dénotationnelle est bien plus délicate.
Traditionnellement, les programmes sont interprétés comme des fonctions
partielles, puisqu’ils peuvent diverger sur certaines entrées. Mais toutes les
fonctions de la théorie des types sont totatles. Le problème de représenter les
fonctions partielles dans un contexte total a été le sujet de travaux récents
par de plusieurs auteurs [15, 13, 34, 10, 37]. Une technique standard pour
résoudre ce problème est de réduire le domaine à exactement les entrées dont

104
Sémantique en théorie des types pour les langages de

programmation

pour lesquelles le programme termine et d’interpreter le programme comme
une fonction totale sur le domaine restraint.

Quand nous considérons une fonction récursive imbriquée, une formali-
sation directe requiert de définir le domaine et la fonction simultanément.
Ceci n’est pas possible dans toutes les théories de types, mais seulement
dans celles qui sont étendues avec de l’induction-récursion simultanée à la
Dybjer [14]. C’est l’aproche adoptée dans [10].

Une approche alternative, adoptée par Balaa et Bertot dans [1], est de
voir la fonction partielle comme le point fixe d’un opérateur F qui envoie
les fonctions totales vers les fonctions totales. Ce pointfixe peut être ap-
proché par un nombre fini d’itérations de F à partir d’une fonction de base
arbitraire. Le domaine peut être décrit comme l’ensemble des éléments pour
lesquels la fonction F stabilise après un nombre fini d’itération, indépendam-
ment de la fonction de base.

L’inconvénient de l’approche de [10] est qu’elle n’est pas viable dans
les théories de types usuelles (c’est-à-dire privées du schéma de Dybjer).
L’inconvénient de l’approche de [1] est que le domaine de définition obtenu
est celui d’un point de fixe qui peut ne pas être le point fixe minimal. Cette
approche peut être correcte si l’on modèle un langage paresseux, mais c’est
certainement incorrect si l’on étudie un langage strict (en appel-par-valeur),
pour lequel le point fixe minimal est requis. L’interprétation des langages
impératifs est essentiellement stricte and le domaine obtenu est trop large:
le program est défini sur des valeurs pour lesquelles le programme ne termine
pas.

Nous combinons les deux approches de [10] et [1] pour définir un do-
maine de définition de façon similaire à [10] mais en démélant la dépendance
mutuelle entre le domaine et la fonction, à l’aide d’intérations de la fonc-
tionnelle F avec un nombre d’itération variable à la place de la fonction qui
n’est pas encore définie.

Nous affirmons deux résultats principaux. Premièrement, nous dévelop-
pons de la sémantique dénotationnelle en théorie des types. Deuxièmement,
nous modélisons la méthode d’accessibilité dans un système plus faible, sans
induction-récursion simultanée. Voici un aperçu rapide de ce travail.

Winskel [38] présente un petit langage de programmation IMP avec des
boucles while. IMP est un langage impératif simple avec des entiers, des
valeurs de vérité true et false, des cellules de mémoire pour stocker des
entiers, des expressions arithmétiques, des expressions booléennes, et des
instructions. Les règles de formation sont les suivantes:

expressions arithmétiques: a ::= n | X | a0 + a1 | a0 − a1 | a0 ∗ a1;

expressions booléennes: b ::= true | false | a0 = a1 | a0 ≤ a1 | ¬b | b0 ∨ b1 |
b0 ∧ b1;

instructions: c ::= skip | X ← a | c0; c1 | if b then c0 else c1 | while b do c

A.1 Sémantique fonctionnelle en théorie des types 105

Ici, n dénote un entier, X dénote une cellule de mémoire, a dénote une
expression arithmétique b dénote une expression booléenne, et c dénote une
instruction.

Nous formalisons ceci avec trois types inductifs AExp, BExp, et Command.

Nous voyons les instructions comme des transformeurs d’état, où un état
est une correspondance des cellules de mémoire avec des entiers. Cette cor-
respondance est partielle en générale, en fait elle n’est définie que pour un
nombre fini de cellules mémoire. Nous pouvons représenter cette correspon-
dance à l’aide d’une liste de liaison entre cellules mémoire et valeurs. Si la
même cellule mémoire est liée deux foix dans le même état, la liaison la plus
récente, c’est-à-dire la plus à gauche, est la liaison valide.

State : Set
[] : State
[· 7→ ·, ·] : N→ N→ State→ State

L’état [v 7→ n, s] est l’état s où le contenu de la cellule v est remplacé par n.

La sémantique opérationnelle des instruction est donnée de la façon suiv-
ante:

〈skip, σ〉C ; σ

〈a, σ〉A ; n σ[X 7→n] ; σ′

〈X ← a, σ〉C ; σ′

〈c1, σ〉C ; σ1 〈c2, σ1〉C ; σ2

〈c1; c2, σ〉C ; σ2

〈b, σ〉B ; true 〈c1, σ〉C ; σ1

〈if b then c1 else c2, σ〉C ; σ1

〈b, σ〉B ; false 〈c2, σ〉C ; σ2

〈if b then c1 else c2, σ〉C ; σ2

〈b, σ〉B ; true 〈c, σ〉C ; σ′ 〈while b do c, σ′〉C ; σ′′

〈while b do c, σ〉C ; σ′′
〈b, σ〉B ; false

〈while b do c, σ〉C ; σ

Les règles ci-dessus peuvent être formalisées en Coq de façon directe par

106
Sémantique en théorie des types pour les langages de

programmation

une relation inductive.

〈·, ·〉C ; · : Command→ State→ State→ Prop
eval skip : (σ : State)(〈skip, σ〉C ; σ)
eval assign : (σ, σ′ : State; v, n : N; a : AExp)

(〈a, σ〉A ; n)→ (σ[v 7→n] ; σ′)→ (〈v ← a, σ〉C ; σ′)
eval scolon : (σ, σ1, σ2 : State; c1, c2 : Command)

(〈c1, σ〉C ; σ1)→ (〈c2, σ1〉C ; σ2)→ (〈c1; c2, σ〉C ; σ2)
eval if true : (b : BExp;σ, σ1 : State; c1, c2 : Command)

(〈b, σ〉B ; true)→ (〈c1, σ〉C ; σ1)→
(〈if b then c1 else c2, σ〉C ; σ1)

eval if false : (b : BExp;σ, σ2 : State; c1, c2 : Command)
(〈b, σ〉B ; false)→ (〈c2, σ〉C ; σ2)→
(〈if b then c1 else c2, σ〉C ; σ2)

eval while true : (b : BExp; c : Command;σ, σ′, σ′′ : State)
(〈b, σ〉B ; true)→ (〈c, σ〉C ; σ′)→
(〈while b do c, σ′〉C ; σ′′)→ (〈while b do c, σ〉C ; σ′′)

eval while false : (b : BExp; c : Command;σ : State)
(〈b, σ〉B ; false)→ (〈while b do c, σ〉C ; σ)

La sémantique dénotationnelle consiste dans l’interprétation du program
comme une fonction plutôt qu’une relation. Malheureusement, la fonction
d’interprétation [[·]] ne peut pas être donnée par récursion structurelle. Nous
aurions alors:

[[·]] : Command→ State→ State
[[skip]]σ := σ
[[X ← a]]σ := σ[[[a]]σ/X]
[[c1; c2]]σ := [[c1]][[c2]]σ

[[if b then c1 else c2]]σ :=
{

[[c1]]σ if [[b]]σ = true
[[c2]]σ if [[b]]σ = false

[[while b do c]]σ :=
{

[[while b do c]][[c]]σ if [[b]]σ = true
σ if [[b]]σ = false

mais dans la clause pour les boucles while, la fonction d’interpretation est
appelée sur le même argument si l’expression booléenne s’évalue à true. Pour
cette raison l’argument de l’appel récursif n’est pas structurellement plus
petit que l’argument initial. L’exécution des boucles while ne respecte pas
le schéma de la récursion structurelle et la terminaison ne peut pas être
assurée, pour une bonne raison, puisque le langage est complet au sens de
Turing. Nous décrivons un moyen de contourner ce problème.

Une représentation fonctionelle des calculs peut être fournie d’une manière
qui respecte le typage et la terminaison si nous n’essayons pas de décrire
l’exécution de la fonction mais la fonction de second-ordre dont la fonction
d’exécution est le point fixe. Cette fonction peut être définie en théorie des

A.1 Sémantique fonctionnelle en théorie des types 107

types par une analyse de la structure de la commande.

F : (Command→ State→ State)→ Command→ State→ State
(F f skip σ) := σ
(F f (X ← a) σ) := σ[[[a]]σ/X]
(F f (c1; c2) σ) := (f c2 (f c1 σ))

(F f (if b then c1 else c2) σ) :=
{

(f c1 σ) if [[b]]σ = true
(f c2 σ) if [[b]]σ = false

(F f (while b do c) σ) :=
{

(f (while b do c) (f c σ)) if [[b]]σ = true
σ if [[b]]σ = false

Intuitivement, écrire la fonction F est la même chose que d’écrire la
fonction récursive d’exécution, sauf que la fonction en cours de définition
est simplement replacé par une variable liée (is f). Autrement dit, nous
remplaçons les appels récursifs par des appels à la fonction donnée par la
variable liée f.

La fonction F décrit les calculs qui sont effectués à chaque itération de la
fonction d’exécution et cette dernière effectue les même calculs que F lorsque
celle-ci est répétée autant de fois que nécessaire. Nous pouvons exprimer ceci
à l’aide du théorème suivant:

Theorem A.1 (eval com ind to rec).

∀c : Command.∀σ1, σ2 : State.
〈c, σ1〉; σ2 ⇒ ∃k : N.∀g : Command→ State→ State.(Fk g c σ1) = σ2

où nous avons utilisé la notation suivante

Fk = (iter (Command→ State→ State) F k) = λg. (F (F · · · (F︸ ︷︷ ︸
k times

g) · · ·))

définissable par récursion sur k,

iter : (A : Set)(A→ A)→ N→ A→ A
(iter A f 0 a) := a
(iter A f (S k) a) := (f (iter A f k a)).

Le théoreme A.1 donne l’une des directions de la correspondance entre
la sémantique opérationnelle et la sémantique dénotationnelle à l’aide de la
méthode des itérations. Pour compléter la tâche de formaliser la séman-
tique dénotationnelle, il nous faut définir une fonction en théorie des types
qui interprète chaque commande. Comme nous l’avons déjà remarqué cette
fonction ne peut pas être totale; nous devons donc réduire le domaine aux
instructions qui terminent. Ceci est fait à l’aide d’un prédicat D sur les in-
structions et les états et nous définissons ensuite la fonction d’interprétation
[[·]] sur le domaine restraint par ce prédicat.

108
Sémantique en théorie des types pour les langages de

programmation

Le théorème A.1 suggère la définition suivante:

D : Command→ State→ Prop
(D c σ) := ∃k : N.∀g1, g2 : Command→ State→ State.

(Fk g1 c σ) = (Fk g2 c σ).

Malheureusement, cette définition est trop faible. En général une telle
approche ne peut pas être utilisée pour caractériser la terminaison de récur-
sion imbriquée. Il est difficile de s’en convaincre dans le cas du langage IMP,
mais cela apparaitrait de façon plus directe si on ajoutait au langage une
instruction exception avec la sémantique suivante:

〈exception, σ〉; [].

Intuitivement, le programmeur pourrait utiliser cette instruction pour ex-
primer qu’une situation exceptionnelle a été détectée, mais toute information
sur le calcul en cours serait détruite.

Avec cette nouvelle instruction, on pourrait avoir des instructions et
des entrées pour lesquelles le prédicat D est satisfait mais pour lesquels
l’exécution ne terminerait pas.

c := while true do skip; exception.

Il est facile de voire que pour n’importe quel état σ le calcul de c sur σ ne
termine pas. Du point de vue de la sémantique opérationnelle le jugement
〈c, σ〉; σ′ n’est dérivable pour aucun σ′. Néanmoins, (D c σ) est prouvable,
parce que (Fk g c σ) = [] pour tout k > 1.

Nous allons maintenant concevoir une caractérisation plus forte du do-
maine des fonctions partielles qui est la correct pour interpréter la séman-
tique opérationnelle.

Le domaine de définition d’une fonction peut parfois être caractérisé in-
dépendamment de la fonction par un prédicat inductif appelé accessibilité
[29, 15, 13, 9]. Ce prédicat exprime simplement qu’un élément a appar-
tient provablement au domaine si l’application de f sur a provoque des
appels récursifs sur des éléments qui appartiennent eux même prouvable-
ment au domaine. Cette définition ne fonctionne pas toujours. Dans le cas
de fonctions récursives imbriquées nous ne pouvons éliminer les références
à la fonction f dans les clauses de la définition inductive de l’accessibilité.
Dans notre cas, nous avons deux instances de clauses récursives imbriquées,
pour la composition séquentielle et pour les boucles while.

Une solution alternative, présentée dans [10], exploite une extension de la
théorie des types avec l’induction-récursion simultanée [14]. Cette méthode
mène à la définition suivante de l’attribut d’accessibilité et de la fonction
d’interprétation pour le langage de programmation impératif IMP :

A.1 Sémantique fonctionnelle en théorie des types 109

comAcc : Command→ State→ Prop
[[]] : (c : Command;σ : State)(comAcc c σ)→ State

accSkip : (σ : State)(comAcc skip σ)
accAssign : (v : N; a : AExp;σ : State)(comAcc (v ← a) σ)
accScolon : (c1, c2 : Command;σ : State;h1 : (comAcc c1 σ))(comAcc c2 [[c1]]h1

σ)
→ (comAcc (c1; c2) σ)

accIf true : (b : BExp; c1, c2 : Command;σ : State)[[b]]σ = true→ (comAcc c1 σ)
→ (comAcc (if b then c1 else c2) σ)

accIf false : (b : BExp; c1, c2 : Command;σ : State)[[b]]σ = false→ (comAcc c2 σ)
→ (comAcc (if b then c1 else c2) σ)

accWhile true : (b : BExp; c : Command;σ : State)[[b]] = true
→ (h : (comAcc c σ))(comAcc (while b do c) [[c]]hσ)
→ (comAcc(while b do c) σ)

accWhile false : (b : BExp; c : Command;σ : State)[[b]] = false
→ (comAcc (while b do c) σ)

[[skip]](accSkip σ)
σ := σ

[[(v := a)]](accAssign v a σ)
σ := σ[a/v]

[[(c1; c2)]]
(accScolon c1 c2 σ h1 h2)
σ := [[c2]]h2

[[c1]]
h1
σ

[[if b then c1 else c2]]
(accIf true b c1 c2 σ p h1)
σ := [[c1]]h1

σ

[[if b then c1 else c2]]
(accIf false b c1 c2 σ q h2)
σ := [[c2]]h2

σ

[[while b do c]](accWhile true b c σ p h h′)
σ := [[while b do c]]h

′

[[c]]hσ

[[while b do c]](accWhile false b c σ q)
σ := σ

Cette définition est admissible dans les systèmes qui mettent en applica-
tion le schéma de Dybjer’s pour l’induction-récursion simultanée. Mais sur
les systèmes qui ne fournissent pas un tel schéma, par exemple Coq, cette
définition est inadmissible.

Nous devons déméler la définition du prédicat d’accessibilité de la défi-
nition de la fonction d’évaluation. Comme nous l’avons déjà vu, la fonction
d’évaluation peut être vue comme la limite de l’itération de la fonctionnelle
F sur une fonction de base arbitraire f : Command → State → State. A
chaque fois que l’exécution d’une instruction c est définie sur un état σ,
nous obtenons que [[c]]σ est égal à (F k

f c σ) pour un nombre suffisamment
large d’itération k. Pour cette raison, nous considérons les fonction telles
F k

f comme des approximations de la fonction d’interprétation en cours de
définition. Nous pouvons formuler le prédicat d’accessibilité en utilisant
de telles approximations à la place des occurrences explicites de la fonc-
tion d’évaluation. Puisque l’approximation par itération a deux paramètres
supplémentaires, le nombre d’itérations k et la fonction de base f nous de-

110
Sémantique en théorie des types pour les langages de

programmation

vons ajouter ces paramètres au prédicat que nous appelons comAcc. Nous
obtenons une définition inductive de la forme suivante:

comAcc : Command→ State→ N→ (Command→ State→ State)→ Prop
accSkip : (σ : State; k : N; f : Command→ State→ State)(comAcc skip σ k + 1 f)
accAssign : (v : N; a : AExp;σ : State; k : N; f : Command→ State→ State)

(comAcc (v ← a) σ k + 1 f)
accScolon : (c1, c2 : Command;σ : State; k : N; f : (Command→ State→ State))

(comAcc c1 σ k f)→ (comAcc c2 (F k
f c1 σ) k f)

→ (comAcc (c1; c2) σ k + 1 f)
accIf true : (b : BExp; c1, c2 : Command;σ : State;

k : N; f : Command→ State→ State)(〈b, σ〉; true)
→ (comAcc c1 σ k f)→ (comAcc (if b then c1 else c2) σ k + 1 f)

accIf false : (b : BExp; c1, c2 : Command;σ : State;
k : N; f : Command→ State→ State)(〈b, σ〉; false)
→ (comAcc c2 σ k f)→ (comAcc (if b then c1 else c2) σ k + 1 f)

accWhile true : (b : BExp; c : Command;σ : State;
k : N; f : Command→ State→ State)(〈b, σ〉; true)
→ (comAcc c σ k f)→ (comAcc (while b do c) (F k

f c σ))
→ (comAcc(while b do c) σ k + 1 f)

accWhile false : (b : BExp; c : Command;σ : State;
k : N; f : Command→ State→ State)(〈b, σ〉; false)
→ (comAcc (while b do c) σ k + 1 f).

Ce prédicat d’accessibilité caractérise les points du domaine du programme
de façon paramétrique par rapport aux arguments k et f . Pour obtenir une
définition du domaine indépendante nous devons quantifier par rapport à
ces paramètres. La quantification est existentielle par rapport à k, parce
que si une instruction et un état sont accessibles en k étapes, alors ils sont
accessibles en un nombre supérieur d’étape. La quantification est universelle
par rapport à f parce que nous ne voulons pas que le résultat dépende du
choix de la fonction de base.

comDom : Command→ State→ Set
(comDom c σ) = Σk : N.∀f : Command→ State→ State.(comAcc c σ k f)

La fonction d’évaluation des instructions est donnée de la façon suivante:

[[]] : (c : Command;σ : State; f : Command→ State→ State)
(comDom c σ)→ State

[[c]]〈k,h〉
σ,f = (F k

f c σ)

Nous pouvons maintenat démontrer la correspondance exacte entre la sé-
mantique opérationnelle et la sémantique dénotationnelle donnée par l’opérateur
d’interprétation [[·]].

A.2 Preuve par réflexion en sémantique 111

Theorem A.2.

∀c : Command.∀σ, σ′ : State.
〈c, σ〉; σ′ ⇔ ∃H : (comDom c σ).∀f : Command→ State→ State.[[c]]Hσ,f = σ′.

La combinaison de la technique d’itération et de prédicats d’accessibilité
a un potentiel important qui dépasse le cadre cette application à la séman-
tique dénotationnelle. Non seulement elle fournit un chemin vers l’implémentation
et le raisonnement sur les fonction partielle et les définitions récursive sans
utiliser d’induction-récursion simultanée ; elle donne une analyse de grain
plus fin sur la convergence des opérateurs récursifs. Comme nous l’avons
souligné, elle ne fournit pas seulement un point fixe, mais le point fixe min-
imal.

A.2 Preuve par réflexion en sémantique

Dans la section précédente nous avons vu une approche pour décrire la sé-
mantique d’un langage de programmation comme une fonction qui envoie
les programmes et leurs entrées vers leurs sorties. Cette fonction peut être
utilisée pour calculer le résultat de l’exécution d’un programme donné sur
une entrée donnée, mais elle n’est pas adaptée pour raisonner sur des pro-
grammes en utilisant des informations venant du context. Il y a un moyen
de rendre cette approche fonctionnelle plus puissante, de manière à ce qu’elle
utilise aussi les informations du contexte.

Nous utilisons l’expression ”sémantique fonctionnelle”plutôt que ”séman-
tique dénotationnelle”parce que notre travail ne vien pas avec le bagage usuel
de théorie des domaines ou des ordres partiels complets.

Pour simuler l’execution d’un program à l’aide de la sémantique fonction-
nelle, nous avons seulement besoin d’appliquer la fonction à un programme
et à ses entrées et à provoquer la réduction du terme jusqu’au résultat. En ce
sens, la sémantique fonctionnelle ouvre la possibilité de preuve par réflexion
[8, 36, 21], car elle permet de représenter à la fois la sémantique et une procé-
dure de preuve. Mais l’outil de preuve que nous obtenons reste très faible
parce qu’il ne permet de réduction jusqu’à une valeur adéquate que pour les
programmes clos pour lesquels aucune information contextuelle n’est néces-
saire. Notre prochain objectif est d’obtenir une procédure de preuve plus
puissante que les méthodes de preuve conventionnelles.

Le résultat le plus important est une technique qui aide à raisonner sur
des metavariables, en d’autres termes, des expressions et des instructions
symboliquement représentées. Cette technique est systématique et générale.

Les méthodes les plus communes pour automatiser la recherche de preuve
sont basées sur l’unification et la résolution. Une preuve peut être vue
comme un but à résoudre étant donné un contexte d’hypothèses. Une procé-
dure basée sur l’unification et la résolution recherche dans le contexte local

112
Sémantique en théorie des types pour les langages de

programmation

et cherche à faire correspondre le but avec la concusion de l’une des hy-
pothèses. En cas de succès, l’opération retourne un sous-but pour chacune
des prémisses de l’hypothèse choisie.

Les inconvénients de cette méthode sont d’abord que la stratégie générale
de recherche n’est pas concentrée sur le problème et perd beaucoup de temps
à explorer un espace de recherche étendu et ensuite que cette méthode ne
dispose pas de moyens de calcul. On peut se retrouver dans une situation
où, même si le contexte contient assez d’information pour avancer dans le
calcul, le calcul n’a pas lieu. Nous montrons un tel exemple.

Les assistants de preuve basés sur la théorie des types comme Coq [33]
fournissent des fonctions et plusieurs notions de réduction sont fournies pour
calculer avec ces fonctions. Les fonctions calculent sur des données. Dans les
preuves formelles, les connaissances reliées aux calculs sont fournies comme
des assertions, qui sont en fait des relations entre des données, mais pas
elles-mêmes des données. Pour permettre le calcul de preuve par des fonc-
tions, nous utilisons la réflection. Nous récoltons les données fournies dans
les différentes connaissances et les plaçons dans plusieurs tables. Plutôt que
de chercher des hypothèses dans un contexte local, comme nous le ferions
dans une approche basée sur l’unification et la résolution, nous consultons
les tables à l’aide de fonctions. Cette approache fonctionelle est plus con-
centrée sur l’objectif car les fonctions effectuent un meilleur choix des tables
reliées aux questions posées. L’évaluation des fonctions est effectuée par la
réduction de termes et le raisonnement sur es prexpressions contenant des
inconnues demande un soin particulier. Nous décrivons une solution pour
contourner ce problème.

Nous Defendons deux résultats principaux. Premièrement, l’utilisation
de la réflexion et d’une approche fonctionnelle pour automatiser la recherche
de preuve fournit un moyen plus facile et meilleur que la technique courante
d’unification et de résolution. Deuxièmement, et de façon plus impor-
tante, nous présentons une nouvelle méthode systématique pour gérer les
expressions inconnues, différentes des techniques de résolution et permet-
tant d’intégrer les calculs (et les calculs concernant des méta-variables) dans
la théorie des types. Ci dessous nous donnons une description rapide de ce
travail.

Dans les assistants de preuve comme Coq ou Isabelle/HOL, l’exécution
d’instruction peut être vue comme la preuve de lemmes, où les faits néces-
saires pour permettre l’exécution sont fournis comme des hypothèses. Par
exemple, nous voudrions montrer que que l’exécution d’une séquence de
deux instructions i1 et i2 à partir d’un état σ produira un état final σ′′, en
sachant que l’exécution de i1 à partir de l’état σ retourne un état σ′ et que
l’exécution de i2 à partir de l’état σ′ retourne σ′′.

Lemma A.1. ∀σ, σ′, σ′′ : State.∀i1, i2 : Inst.

A.2 Preuve par réflexion en sémantique 113

(〈i1, σ〉I ; σ′)→ (〈i2, σ′〉I ; σ′′)︸ ︷︷ ︸
facts

→ (〈i1; i2, σ〉I ; σ′′)︸ ︷︷ ︸
goal

.

Pour automatiser la preuve de cet énoncé, qui est similaire à la séman-
tique opérationnelle de la séquence, des difficultés apparaissent pour constru-
ire les résultats intermédiaires, l’état σ′ dans notre cas, qui n’apparaissent
pas déjà dans la conclusion du but. Habituellement, ce type de preuve est
effectué par résolution et unification, comme dans les interprètes Prolog, et
les valeurs manquantes sont remplacées par des variables existentielles pour
instantiation ultérieure à l’aide de l’unification. Pour notre exemple dans
Coq, une procedure basée sur l’unification et la résolution, appelée EAuto,
trouve la correspondance avec eval scolon et remplace σ′ par une variable
existentielle ?1. Elle trouve ensuite une autre correspondance dans le con-
texte des deux sous-buts et est amenée à instantier ?1 avec σ′, ce qui résout
le but. En revanche, une procedure basée sur l’unification et la résolution
échoue quand un calcul est nécessaire. Par exemple, on peut consider le
lemme suivant:

Lemma A.2. ∀σ : State.∀v : Z.
(lookup σ v 1)︸ ︷︷ ︸

facts

→ 〈while 3 ≤ v do skip, σ〉I ; σ︸ ︷︷ ︸
goal

.

Etand donné que la variable v est associée à la valeur 1 dans l’état σ,
nous devons prouver que l’exécution de la boucle ”while” ne changera pas
l’état. Nous disposons d’assez d’information pour établir que l’expression
booléenne 3 ≤ 1 sera évaluée en false, mais une telle preuve n’existe pas
dans le contexte et il est nécessaire de la calculer. Une procédure basée
sur l’unification et la résolution n’a pas les moyens de calculs pour ceci.
Un moyen de résoudre ce problème est d’utiliser des fonctions au lieu de
relations.| Les fonctions peuvent aussi obtenir des résultats intermédiaires,
ce qui permet de résoudre aussi le lemmeA. 1.

Comme nous l’avons déjà mentionné, les résultats déjà calculés sont
disponibles sous forme d’assertions, mais les fonctions calculent sur des don-
nées pas sur des assertions dans le contexte. Les procédures basées sur
l’unification et la résolution utilisent le contexte dans leur recherche de
preuves. Pour utiliser des fonctions, nous avons besoin de construire des
données qui représentent fidèlement le contexte. Nous montrons comment
satisfaire ce besoin.

Pour gardre les informations sur les expressions arithmétiques, nous
créons une table Tr

AExp (lire : liste des résultats donnés pour les expres-
sions arithmétiques). Cette table est une liste de triplets où chaque triplet
regroupe un état une expression arithmétique et la valeur de cette expression
dans cet état.

De façon similaire nous créons des tables différentes pour les différents
types d’information provenant du contexte. Nous avons des résultats pour
les recherches dans l’état mémoire, les mise à jour de l’état mémoire, les éval-

114
Sémantique en théorie des types pour les langages de

programmation

uations d’expressions booléennes et les exécutions d’instructions. Nous les
écrivons Tr

lookup,T
r
update,T

r
BExp et Tr

Inst, respectivement. Nous nous assurons
que ces tables sont cohérentes avec le contexte à l’aide d’une collection de
fonctions de vérifications, [[·]]clookup, [[·]]cupdate, [[·]]cBExp and [[·]]cInst, respec-
tivement.

Pour évaluer une expression, nous vérifions d’abord dans la table corre-
spondante si le résultat est déja connu. Dans le cas négatif, nous suivons
simplement la sémantique usuelle.

A.2.1 Preuves par réflexion

Dans les preuves formelles habituelles, les hypothèses sur les calculs sont
représentées par des assertions indiquant qu’une certaine relation est satis-
faite entre certaines données. Les mécanismes de recherche de preuve fouil-
lent le contexte pour retrouver ces assertions et vérifier si le but peut être
résolu directement comme conséquence directe.

Dans les systèmes de preuve basés sur la théorie des types comme Coq,
les fonctions sont aussi fournies et la réduction peut être utilisée pour calculer
avec ces fonctions [27]. L’idée de la réflection est d’utiliser ces fonctions pour
effectuer la recherche de preuve. Mais les fonctions calcuent normalement
sur des données et les hypothèses du contexte ne sont pas des données au
niveau de ces fonctions, mais seulement des données au niveau du système
de preuve.

Pour prouver qu’une propriété P donnée est satisfaite pour un argument
t en utilisant la réflexion.

Pour prouver qu’une propriété P donnée est satisfaite par un terme t
à l’aide de la réflection on procède comme suit: on utilise un assistant de
preuve où l’on peut à la fois décrire et prouver des programmes, on écrit un
programme qui prend t comme entrée et qui retourne la valeur true seulement
lorsque P (t) est satisfait. On prouve donc Q(t) = true⇒ P (t) et ensuite on
utilise le programme Q pour prouver des instances de P .

Dans notre cas, nous voulons montrer que 〈σ, i〉I ; σ′ est satisfait étant
données une collection d’hypothèses Γ. Il nous faut donc écrire une fonction
Q qui prend en arguments des données représentant Γ, σ et i et qui retourne
σ′ seulement lorsque 〈σ, i〉I ; σ′ est satisfait dans l’environnement Γ. Nous
devons donc prouver Q(σ, i, arguments des données représentant Γ) = σ′ ⇒
Γ→ 〈σ, i〉I ; σ′. Pour les besoins de la reflexion, nous avons déjà construit
des données pour représenter les hypothèses au niveau où les fonctions peu-
vent calculer.

Nous avons déjà décrit deux problèmes qui doivent être résolus par les
moteurs de recherche de preuve pour construire des preuves en sémantique.
Le premier problème est de trouver des valeurs intermédiaires au cours des
calculs. Celui-ci est résolu de façon naturelle par le calcul de fonctions. Le
second problème est d’intercaler des calculs arithmétiques avec des opéra-

A.2 Preuve par réflexion en sémantique 115

tions de recherche de preuve. Celui-ci peut aussi être résolution si les fonc-
tion d’évaluation de programmes peuvent appeler les fonctions arithmétiques
adaptées. Pour ces problèmes les outils de preuve basés sur l’évaluation de
fonctions sont meilleurs que les outils de preuves basés sur l’unification et
la résolution. L’évaluation de fonctions est également mieux guidée que la
recherche de preuve et donc plus efficace. De plus, ce procédé peut devenir
extrêmement puissant lorsque des mécanismes de réduction rapide sont im-
plantés dans les systèmes de preuve [19].

Une nouvelle difficulté apparait lorsque nous raisonnons sur des expres-
sions inconnues. Considérons l’énoncé suivant:

Lemma A.3. ∀σ : State.∀v : Z.(lookup σ v 3)→
〈σ, (while v ≤ 1 do skip)〉I ; σ.

Dans ce cas l’état mémoire est représenté par une variable σ quantifiée
universellement. Dans la section A.1, nous avons décrit l’état comme un
type inductif avec deux constructeurs, l’un décrit le cas lorsque la liste est
vide et l’autre décrit le cas lorsque la liste nést pas vide. Mais aucun de ces
constructeurs n’indique quoi que ce soit lorsque l’on ne sait rien sur cette
liste, en d’autres termes, lorsque cette liste est décrite par une métavariable,
comme σ dans notre exemple précédent.

Dans les assistants de preuve basés sur la théorie des types, l’évaluation
des fonctions est effectuée par la réduction de termes, mais cette réduction
ne progresse que si la donnée observée correspond à des règles de réduction.

Le contexte peut malgré tout contenir assez d’informations reliées aux
métavariables pour rendre l’exécution des instructions prévisible comme
dans le lemme A.3. Pour cette raison, nous avons besoin d’un moyen pour
raisonner sur elles. La solution est d’attacher un nombre aux métavariables
comme σ. Nous le faisons de manière systématique. Nous définissons un
nouveau type inductif appelé n state (en anglais named state) qui contient
un constructeur supplémentaire pour ces termes numérotés.

n State : Set
[]n : n State
[· 7→ ·, ·]n : Z→ Z→ n State→ n State
metavariables : N→ n State

Une fois que nous avons affecté un nombre aux métavariables, nous de-
vons garder leur origine. Nous le faisons en créant des tables supplémentaires
où nous avons des entrées mettant en correspondance les métavariables et
leur numéro. Nous avons autant de tables qu’il y a de types, donc quatre
tables pour les métavariables représentant les états, les expressions arith-
métiques, les expressions booléennes et les instructions. Une fois que nous
avons affecté un nom à chaque expression booléenne nous définitions de
nouvelles tables de résultats qui ont un rôle et une structure similaire aux
tables résultats que nous utilisions dans les exemples précédentas, mais qui

116
Sémantique en théorie des types pour les langages de

programmation

contiennement maintenant des expressions nommées.
De manière similaire, nous avons besoin de changer les fonctions de véri-

fication de cohérence pour travailler sur les expressions nommées. Cette
approche est sytématique. La structure du type inductif et les fonctions sur
ce type sont pratiquement inchangées. Il n’y a que deux différences impor-
tantes. Premièrement nous remplaçons les entrées par leur correspondant
nommé, deuxièmement nous ajoutons une règle de réduction pour prendre
en compte les métavariables.

Nous démontrons que cette fonction d’évaluation est en accord avec la
sémantique opérationnelle décrite par la relation 〈·, ·〉; · (tous les théorèmes
ont été vérifié formellement dans une preuve assistée par ordinateur).

Cette technique d’affectation de noms aux métavariables a un grand
potentiel. Elle est systématique et ne dépend pas vraiment du langage.
Notre méthode essaie d’optimiser le potentiel d’automatisation: nous avons
développé une tactique résout avec succès des buts complexes. Nous espérons
appliquer cette technique pour des langages plus larges et les utiliser dans
des preuves sur des compilateurs. Les raison pour croire à cette applica-
tion proviennent du caractère systématique des operations. Dans un travail
récent sur un langage de programmation plus complet avec des procédures,
nous avons pu observer que l’approche fonctionnelle se reporte agréablement
à un langage de programmation plus large, bien que la sémantique requièrent
des propositions inductives définies mutuellement.

Avec la présentation traditionnelle basée sur des prédicats inductifs, le
raisonnement par récurrence repose sur le principe de récurrence qui est
fourni pour prédicat inductif. Ce principe de récurrence correspond à ce
que Winskel appelle rule induction dans [38]. Cette technique de preuve par
récurrence est une approximation de la récurrence sur la taille des dérivations
pour les preuves d’exécution, parce que les hypothèses de récurrence ne sont
fournies que pour les sous-dérivations directes.

A.3 Un compilateur

Dans l’industrie où les méthodes formelles, les preuves de programmes véri-
fiés par ordinateur, la vérification de modèles (en anglais model-checking),
etc, sont utilisées pour certifier la qualité du logiciel, c’est en général le
code source qui est certifié. Mais le code qui est effectivement par la ma-
chine, engendré par un compilateur, n’est pas vérifié formellement. Si nous
voulons élever le niveau de certification, le compilateur devient un maillon
faible entre le code source vérifié formellement et le micro-processeur vérifié
formellement. George C. Necula et Peter Lee [25] on proposé de vérifier des
compilateurs pour vérifier le résultat de chaque compilation plutôt que de
vérifier le compilateur à partir de son propre code source. Un compilateur
certifiant ne produit pas seulement un code machine, mais également une

A.3 Un compilateur 117

preuve de correction pour le code machine donné. Le compilateur lui-même
n’a pas besoin d’être certifié.

Une solution alternative est d’utiliser un compilateur certifié. La notion
de compilateur certifié est proche mais distincte de la notion de compilateur
certifiant utilisée dans le contexte de code-avec-preuve (en anglais proof-
carrying-code). Un compilateur certifié possède une preuve de correction
qui est valide pour tous les programmes qu’il accepte.

En général, la majeure partie du code source pour le logiciel produit
dans l’industrie est écrit en C [24]. A notre connaissance, les compilateurs C
ne sont jamiais vérifiés formellement. Une solution réaliste serait de vérfier
formellement un compilateur qui accepte un langage utilisable en pratique
(par exemple le sous-ensemble de C utilisé pour programmer les systèmes
embarqués) et qui produit du code pour un micro-processeur RISC réelle-
ment utilisé dans le monde industriel, avec des optimisations courantes. Un
groupe de chercheurs s’est réuni pour aborder ce problème, dans le cadre
d’une action de recherche appelée l’ARC Concert. L’objectif de Concert est
de réaliser un compilateur qui est complet et modérément optimisé.

Dans ce projet nous devons définir la sémantique formelle des langages
sources, du langage intermédiaire, et du langage cible. En particulier, une sé-
mantique praticable pour un sous-ensemble de C sur une machine réaliste est
nécessaire. Les utilisations possibles de cette description sémantique devrait
comprendre l’utilisation dans les systèmes de preuve et l’exécution symbol-
ique de façon à permettre le test des spécifications sur des programmes ex-
emples. Enfin, nous avons besoin d’écrire un compilateur, directement sous
la forme de fonctions Coq. En d’autres termes, un style purement fonction-
nel doit être suivi, avec toutes les récursions répondant soit au schéma de
la récursion primitive, soit au schéma de la récursion bien fondée. Ces con-
traintes dans l’écriture du compilateur permettent d’assurer qu’il termine.

L’architecture générale d’un compilateur est bien connue et n’a pas
changé beaucoup au cours des 30 dernières années. Après l’analyse syn-
taxique et éventuellement une phase de vérification des types, une série de
transformations de programmes mène le programme du langage source vers
le langage cible, en passant par un ou plusieurs langages intermédiaires.

Parmi ces langages intermédiaires, le langage le plus utilisé est de la forme
RTL (en anglais Register Transfer Language) aussi connu sous le nom anglais
de 3 code addresses. C’est un langage impératif dont les constructions de
base correspondent à des instructions de procésseur, sauf qu’elles opèrent
sur un ensemble de pseudo-registre de taille arbitraire. Des formes plus
contraintes de RTL, comme par exemple la forme SSA (en anglais single
static assignment) ou les graphes de flôt de contrôle, sont aussi utilisées.

Certaines transformations passent d’un langage à un autre langage plus
près des instructions d’un processeur: explicitation de v-tables (pour un lan-
gage à objets), sélection d’instructions (production de RTL), allocation de
registres (RTL avec des pseudo-registres vers RTL avec des registres réels),

118
Sémantique en théorie des types pour les langages de

programmation

génération de code machine. D’autres tranformations (les optimisations)
restent dans le même langage intermédiaire mais rendent le code plus ef-
ficace: propagation de constantes, invariants de boucles, déroulement de
boucles, élimination de variables d’induction. Le langage de transfert de
registres est décrit comme un graphe et une dernière phase de linéarisation
permet de revenir à une forme de séquence d’instructions.

Dans le projet Concert, dont l’objectif principal est de réaliser un com-
pilateur certifié qui est complet et modérément optimisé, mon objectif est
de fabriquer un traducteur qui construit le graph de flot de contrôle RTL à
partir des programmes écrit en Cminor. Un autre objectif est de réaliser ce
traducteur dans un style le plus proche possible du style de programmation
en Caml, pour garder la modularité des programmes tout en surmontant
les contraintes imposées par la théorie des types. La façon dont nous avons
écrit le compilateur pour construire le graphe de flôt de contrôle à partir des
programmes Cminor facilite probablement les preuves de correction, bien
que ces preuves de correction ne fassent pas partie de notre travail.

Dans ce mémoire, nous présentons le langage source Cminor qui a été
choisi pour notre compilatur. Cminor est un sous-ensemble de C, qui exclut
certaines des constructions les plus complexes de C, par exemple setjmp et
longjmp. Cminor est assez riche pour encoder la majorité des programmes
C. Nous présentons ensuite le langage de transfert de registres. Enfin, nous
décrivons la façon de construire les graphes de flôt de contrôle RTL à partir
des des programmes Cminor.

Plutôt que de décrire le compilateur en détail, nous prenons un exemple
pour comprendre comment le graphe RTL est construit, les problèmes que
nous rencontrons pour modéliser le compilateur en théorie des types et les
procédures que nous suivons pour surmonter ces problèmes. Pour construire
le graphe RTL à partir de l’expression Cminor Ebinop OPaddint e1 e2, qui
est une opération d’addition de deux entiers qui sont les résultats de deux
expressions e1 et e2 nous appelons une fonction transl expr. L’un de nos
objectifs principaux est de conserver la modularité dans le code compilé. La
fonction transl expr est une fonction générale pour construire le graphe pour
n’importe quelle expression Cminor. Ci-dessous, nous donnons la définition
de type pour cette fonction dans l’assistant de preuve Coq.

Fixpoint transl_expr [envir:env; expr1:expr]:
Reg.T-> Graph.key -> (env*Graph.key)

La fonction transl expr prend en argument l’environnement de compila-
tion pour l’expression Cminor, le registre où le résultat de l’évaluation de
cette expression devrait être stocké et le nœud du graphe correspondant à
l’instruction par laquelle l’exécution va continuer (précisément, ce nœud de-
vrait être exécuté après le graphe RTL correspondant à l’expression que nous
considérons). La fonction transl expr retourne le nouvel environnement de

A.3 Un compilateur 119

compilation and un pointeur vers l’instruction qui doit être exécuté pour
commencer l’exécution de l’expression considérée.

Idéalement on devrait disposer d’une procédure pour transformer les
opérations binaires de Cminor dans le graphe RTL de façon générale. Cette
procédure devrait d’abord décider l’opération RTL choisie, elle devrait égale-
ment retourner la liste des sous-expressions qui devraient être traitées égale-
ment par transl expr. Cette procédure devrait également allouer des reg-
istres pour le stockage des résultats de ces sous-expressions, enfin elle de-
vrait ajouter un nœud dans le graphe de flôt de contrôle appeler la fonc-
tion transl expr pour chacune des sous-expressions. Cette procédure devrait
avoir la forme suivante.

(Ebinop binop e1 e2) =>
let (reg_fn, opel) = (select_binop binop e1 e2) in
let (op’, el) = opel in
let (envir’, rl) = (alloc_regs envir el) in
let (envir’’, no) =
(add_instr envir’
(mkinstr (Iop op’) (eval_reg_list_trans reg_fn rl)

(Some Reg.T rd)) (cons nd (nil Graph.key))) in
(transl_subexprs envir’’ rl el no)

La fonction select binop décide l’opération RTL et décompose l’expression
Cminor en une liste de sous-expressions. Dans la fonctions transl subexprs la
fonction transl expr est appelée sur chacun des éléments de la liste d’expression
el. Bien qu’en réalité nous appelons effectivement la fonction récursive sur
des arguments qui sont des sous-termes de l’argument initial de transl expr,
la liste d’expressions retournée par select binop n’apparait pas comme un
sous-terme de l’argument initial vis-à-vis des conditions de gardes imposées
pour la programmation récursive structurelle. En d’autre termes, la procé-
dure ci-dessus n’est pas bien formée.

Pour conserver la modularité et la bonne formation, nous utilisons une
fonction d’ordre supérieur, une technique que nous avons déjà exploitée dans
le section A.1. Dans l’approche précédente la fonction transl expr était
la seule fonction à construire des graphes RTL. Dans le nouveau schéma,
nous appelons la fonction transl binop pour construire le graphe pour les
opérations binaires. Les fonctions transl expr et transl binop sont inter-
dépendantes puisque la fonction transl expr construit le graphe pour cha-
cune des sous-expressions d’une expression binaire. Dans notre exploita-
tion d’une fonction d’ordre supérieur, nous supposons l’existence d’une fonc-
tion transl expr au moment de définir la fonction transl binop: cette fonc-
tion transl expr est passée en argument. La fonction transl expr est en-
suite définie en appelant la fonction transl binop en lui donnant la fonction
transl expr en argument. Voici la définition de la procédure de construction

120
Sémantique en théorie des types pour les langages de

programmation

de graphe pour le cas des opérations binaires: il est bien formé et conserve
la modularité du code:

(Ebinop binop e1 e2) =>
(transl_binop transl_expr

[op’,rl,envf]
(add_instr envf (mkinstr (Iop op’) rl (Some Reg.T rd))

(cons nd (nil Graph.key)))
envir binop e1 e2)

Pour toute opération binaire nous avons besoin d’ajouter un nœud dans
le graphe qui contient l’opération effectuée. Ce besoin est commun à toutes
les opérations binaires et nous réduisons la quantité de code du compilateur
si nous définissons une fonction transl binop pour prendre en charge toute
la partie commune. Le système Coq facilite ce type de programmation
modulaire. Ci-dessous nous montrons comment le graphe de flôt de contrôle
est construit pour l’opération d’addition.

Section SELECT_BINOP.

Variable transl_expr: env -> expr -> Reg.T
-> Graph.key -> (env*Graph.key).

Variable f: operation -> (list Reg.T)
-> env -> (env*Graph.key).

Definition transl_binop
[envbinop:env; binop:binary_operation;

expbinop1,expbinop2:expr]:
(env*Graph.key):=

...

| OPaddint e1 e2 =>
let (envbinop’,r1) = (alloc_reg envbinop e1) in
let (envbinop’’,r2) = (alloc_reg envbinop’ e2) in
let (envbinop’’’,n2) =
(f Oadd
(eval_reg_list_trans reg_id

(cons r1 (cons r2 (nil Reg.T))))
envbinop’’) in

let (envbinop’’’’,n1) =
(transl_expr envbinop’’’ e2 r2 n2) in

(transl_expr envbinop’’’’ e1 r1 n1)
...

A.3 Un compilateur 121

End SELECT_BINOP.

En résumé, pour construire le graphe de flôt de contrôle pour l’expression
Cminor qui contient une expression binaire, nous appelons la fonction transl expr,
cettte fonction appelle transl binop, la fonction transl binop décompose
l’expression en quelques sous-expressions et alloue des registres pour cha-
cune de ces sous-expression. Esuite la fonction transl binop appelle la fonc-
tion f qui décide l’opération RTL qui est employée et ajoute un nœud pour
cette opération dans le graphe. Finallement, la fonction transl binop appelle
transl expr pour construire le graphe pour chacune des sous-expressions.

Dans cette thèse, nous avons donc étudiés différentes approches pour
utiliser des fonctions dans la description de langages de programmation
et d’outils pour les langages de programmation. Nous montrons plusieurs
techniques pour représenter les constructions de programmation avec de la
récursion mutuelle et de la récursion imbriquée en théorie des types. Nos
techniques sont déjà utiles pour la démonstration de compilateurs dans le
cadre du projet Concert.

122
Sémantique en théorie des types pour les langages de

programmation

Bibliography

[1] Antonia Balaa and Yves Bertot. Fix-point equations for well-founded
recursion in type theory. In Harrison and Aagaard [20], pages 1–16.

[2] Antonia Balaa and Yves Bertot. Fonctions récursives générales par
itération en théorie des types. JFLA, 13:27–42, 2002.

[3] G. Barthe, M. Ruys, and H. P. Barendregt. A two-level approach to-
wards lean proof-checking. In S. Berardi and M. Coppo, editors, Types
for Proofs and Programs (TYPES’95), volume 1158 of LNCS, pages
16–35. Springer, 1995.

[4] Yves Bertot. Filters on coinductive streams an application to eratos-
thenes’ sieve. Unpublished Mansucript, 2004.

[5] Yves Bertot, Venanzio Capretta, and Kuntal Das Barman. Type-
theoretic functional semantics. In Victor Carreño, César Muñoz, and
Sofiène Tashar, editors, Theorem Proving in Higher Order Logics: 15th
International Conference, TPHOLs 2002, volume 2410 of Lecture Notes
in Computer Science, pages 83–98. Springer-Verlag, 2002.

[6] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Pro-
gram Development, Coq’Art: The Calculus of Inductive Constructions.
Springer Verlag, 2004.

[7] Yves Bertot and Ranan Fraer. Reasoning with executable specifications.
In International Joint Conference of Theory and Practice of Software
Development (TAPSOFT/FASE’95), volume 915 of LNCS. Springer-
Verlag, 1995.

[8] Samuel Boutin. Using reflection to build efficient and certified decision
procedures. In Mart́ın Abadi and Takayasu Ito, editors, Theoretical As-
pects of Computer Software. Third International Symposium, TACS’97,
volume 1281 of LNCS, pages 515–529. Springer, 1997.

124 Bibliography

[9] A. Bove. Simple general recursion in type theory. Nordic Journal of
Computing, 8(1):22–42, Spring 2001.

[10] Ana Bove and Venanzio Capretta. Nested general recursion and par-
tiality in type theory. In Richard J. Boulton and Paul B. Jackson,
editors, Theorem Proving in Higher Order Logics: 14th International
Conference, TPHOLs 2001, volume 2152 of Lecture Notes in Computer
Science, pages 121–135. Springer-Verlag, 2001.

[11] Claudio Sacerdoti Coen. Knowledge Management of Formal Mathe-
matics and Interactive Theorem Proving. PhD thesis, University of
Bologna, 2003.

[12] Nancy A. Day and Jeffrey J. Joyce. Symbolic functional evaluation. In
Yves Bertot, Gilles Dowek, André Hirschowits, Christine Paulin, and
Laurent Théry, editors, Theorem Proving in Higher Order Logics: 12th
International Conference, TPHOLs ’99, volume 1690 of Lecture Notes
in Computer Science, pages 341–358. Springer-Verlag, 1999.

[13] Catherine Dubois and Véronique Viguié Donzeau-Gouge. A step to-
wards the mechanization of partial functions: domains as inductive
predicates. Presented at CADE-15, Workshop on Mechanization of
Partial Functions, 1998.

[14] Peter Dybjer. A general formulation of simultaneous inductive-recursive
definitions in type theory. Journal of Symbolic Logic, 65(2), June 2000.

[15] Simon Finn, Michael Fourman, and John Longley. Partial functions in a
total setting. Journal of Automated Reasoning, 18(1):85–104, February
1997.

[16] J. Giesl. Termination of nested and mutually recursive algorithms.
Journal of Automated Reasoning, 19:1–29, 1997.

[17] Michael Gordon and Tony Melham. Introduction to HOL. Cambridge
University Press, 1993.

[18] Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh
LCF : A Mechanized Logic of Computation. Springer Verlag (LNCS 78),
1979.

[19] Benjamin Grégoire and Xavier Leroy. A compiled implementation of
strong reduction. Proceedings of ICFP - ACM Sigplan, 37(9):235–246,
2002.

[20] J. Harrison and M. Aagaard, editors. Theorem Proving in Higher Order
Logics: 13th International Conference, TPHOLs 2000, volume 1869 of
Lecture Notes in Computer Science. Springer-Verlag, 2000.

Bibliography 125

[21] Dimitri Hendriks. Proof reflection in coq. Journal of Automated Rea-
soning, 29(3–4):277–307, 2002.

[22] A. Heyting. Intuitionism, an Introduction. North-Holland, 1956.

[23] Glles Kahn. Natural semantics. In Franz-Josef Brandenburg, Guy
Vidal-Naquet, and Martin Wirsing, editors, STACS, volume 247 of Lec-
ture Notes in Computer Science, pages 22–39. Springer, 1987.

[24] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Lan-
guage, Second Edition. Prentice Hall, 1988.

[25] George Necula and Peter Lee. The design and implementation of a
certifying compiler. Proceedings of PLDI - ACM Sigplan, 33(5):233–
244, 1998.

[26] Tobias Nipkow. Winskel is (almost) right: Towards a mechanized se-
mantics textbook. In V. Chandru and V. Vinay, editors, Foundations
of Software Technology and Theoretical Computer Science, volume 1180
of LNCS, pages 180–192. Springer, 1996.

[27] C. Paulin-Mohring. Inductive Definitions in the System Coq - Rules
and Properties. In M. Bezem and J.-F. Groote, editors, Proceedings of
the conference Typed Lambda Calculi and Applications, volume 664 of
LNCS, 1993. LIP research report 92-49.

[28] Christine Paulin-Mohring and Benjamin Werner. Synthesis of ML pro-
grams in the system Coq. Journal of Symbolic Computation, 15:607–
640, 1993.

[29] Lawrence C. Paulson. Proving termination of normalization functions
for conditional expressions. Journal of Automated Reasoning, 2:63–74,
1986.

[30] Lawrence C. Paulson. The foundation of a generic theorem prover.
Journal of Automated Reasoning, 5(3):363–397, 1989.

[31] G. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Computer Science Department, Aarhus Univer-
sity, Denmark, 1981.

[32] Gordon Plotkin. A powerdomain construction. In SIAM Journal on
Computing, volume 5(3), pages 452–487, 1976.

[33] The Coq Development Team. LogiCal Project. The Coq Proof Assis-
tant. Reference Manual. Version 7.2. INRIA, 2001.

[34] K. Slind. Another look at nested recursion. In Harrison and Aagaard
[20], pages 498–518.

126 Bibliography

[35] Morten Heine B. Sørensen and P. Urzyczyn. Lectures on the curry-
howard isomorphism. Available as DIKU Rapport 98/14, 1998.

[36] Kumar Neeraj Verma and Jean Goubault-Larrecq. Reflecting bdds in
coq. Technical report, INRIA RR-3859, 2000.

[37] Freek Wiedijk and Jan Zwanenburg. First or-
der logic with domain conditions. Available at
http://www.cs.kun.nl/~freek/notes/partial.ps.gz, 2002.

[38] Glynn Winskel. The Formal Semantics of Programming Languages, an
introduction. Foundations of Computing. The MIT Press, 1993.

Index

β-reduction, 11
δ-reduction, 11
ι-reduction, 11, 15
ζ-reduction, 11

accessibility, 36
arrow types, 10
atomic types, 10
axiomatic semantics, 9

bounded recursion, 19

call by value, 12
Coq, 10

denotational semantics, 6, 28
dependent types, 13
domain, 8

EAuto, 45

fix, 16
fix-point, 6
fixpoint, 16
functional interpretation, 31

guardedness condition, 91, 97

IMP, 27
inductive predicates, 17
inductive type, 14
iter, 31, 53
iteration, 21

lazy, 12
Ltac, 55

metavariable, 49

natural semantics, 5

operational semantics, 3, 28

partial order, 7
Prop, 12

recursion, 19
recursive type, 15
reflection, 48

Set, 12
simul. induction-recursion, 37
structural operational semantics, 4

Type, 12

well founded recursion, 20

Abstract

Semantics of programming languages gives the meaning of program con-
structs. Operational and denotational semantics are two main approaches
for programming languages semantics. Operational semantics is usually
given by inductive relations. Denotational semantics is given by partial
functions. Implementing the denotational semantics inside type theory is
difficult as the type theory expects total functions.

In this dissertation we develop a functional semantics for a small imper-
ative language inside type theory and show its equivalence with operational
semantics. We then exploit this functional semantics to obtain a more direct
proof search tool, while developing a way to describe and manipulate un-
known expressions in the symbolic computation of programs for formal proof
development. In a third part, we address the problem of encoding complex
programs inside type theory and we show how to circumvent the limita-
tions of guardedness conditions as the are used in the Calculus of Inductive
Constructions.

Key words: Type Theory, CIC, Coq, Semantics, Reflection, Compiler

Résumé

La sémantique des langages de programmation donne la signification
des constructions de programme. Les sémantiques opérationnelle et dénota-
tionelle sont les deux principales approches pour la sémantique de langages
de programmation. La sémantique opérationnelle est habituellement donnée
par des relations inductives. La sémantique dénotationelle est donnée par
des fonctions partielles. Mettre en application la sémantique dénotationelle
à l’intérieur de la théorie des types est difficile car cette théorie ne supporte
que les fonctions totales.

Dans cette thèse nous développons une sémantique fonctionnelle pour
un petit langue impératif à l’intérieur de la théorie des types et montrons
son équivalence avec la sémantique opérationnelle. Nous exploitons ensuite
cette sémantique fonctionnelle pour obtenir un outil plus direct de recherche
de preuve, tout en développant une manière de décrire et manipuler des
expressions inconnues dans le calcul symbolique des programmes pour le
développement formel de preuve. Dans une troisième partie, nous adressons
le problème de coder des programmes complexes à l’intérieur de la théorie
des types et nous montrons comment éviter les limitations des conditions de
garde telle qu’elles sont employés dans le calcul des constructions inductives.

Mot clés: Théorie des types, CIC, Coq, Sémantique, Réflexion, Compila-
teur

