
INFORMATION SOCIETY TECHNOLOGIES

(IST)

PROGRAMME

Project IST-2001-33562 MoWGLI

LATEX - based authoring tool
(first prototype)

Author: Romeo Anghelache

Project Acronym: MoWGLI



Project full title: Mathematics On the Web: Get it by Logic and Interfaces
Proposal/Contract no.: IST-2001-33562 MoWGLI

2



MoWGLI, IST-2001-33562 3

1 Introduction

The automatic (with no manual, content oriented, input from the author)
and complete (arbitrary mathematical expressions) conversion into Content-
MathML from a presentation oriented authoring system as LATEX is, in prin-
ciple, impossible: there are many representations with the same meaning.

The authoring tool described here is created to support automatic gen-
eration of Content-MathML. It also can achieve a more general goal: adding
and recovering semantic depth and clarity to LATEX written documents,
which makes it relevant to e-publishing and digital libraries, as a method
of recovering and storing scientific content that can go beyond mathematics
(e.g. it can be extended to cover ChemicalML, SVG etc.). A natural name
for a tool with such a goal is Hermes, an we will use it from now on.

The first Hermes prototype provides, as output, an XML file with a
typical structure of an article, containing Content-MathML islands; this
structure is entirely determined by the LATEX source, the semantic depth of
the output depends essentially on using the macros Hermes provides.

2 Description

Hermes complements the LATEX system: it enables the authors of scientific
articles making explicit the semantics of their work, preserving a high quality
rendering. It is written from scratch.

The first prototype implementation of Hermes has the following com-
ponents:

• a set of helper LATEX macros, which allows the author to disambiguate
the meaning of the mathematical expressions he writes, while allowing
some choices for the presentation; this set is included by the author in
the originally written LATEX document (it resides in the ’definitions’
file in the Hermes distribution, detailed in 4.1). A LATEX run on the
macro-enriched document will output a ’semantic dvi’ file (a dvi file
containing ’special’ annotations of various combinations of graphical
and nongraphical symbols in the source).

• a scanner, written in flex, which extracts from the resulting dvi file the
semantic tokens seeded by the macro collection above and sends them
to the parser below (the ’hermes.l’ file in the Hermes distribution,
detailed in 4.2).



MoWGLI, IST-2001-33562 4

• a parser, written in bison, which is a grammar that performs a seman-
tic action when a structured set of tokens is recognized (the ’hermes.y’
file in the Hermes distribution, detailed in 4.3); the semantic action
is the creation of parts of the XML output; the parser and the scanner
compile into a ’semantic dvi’ compiler called ’the Hermes compiler’.

The first Hermes prototype handles consistently only those mathemat-
ical expressions in LATEX which contain structures covered by the current
Content-MathML standard (MathML version 2.0). A subset of these struc-
tures can be and are already inferred from the unaltered LATEX source (at
the cost of losing semantic depth), the rest are provided as supplementary
macros; they reside and are briefly commented in the ’definitions’ file.

3 Architecture

Hermes as a program needs a well documented input and does not replace
nor modify the functionality of the TEX engine, thus, it does not restrict the
set of macros used while authoring the original document: it uses the dvi
format as input.

Hermes is content oriented, therefore an emphasis is put on generating
Content-MathML. Generating content requires a high degree of accuracy in
fitting the output structures with the authored input as it is intended for ma-
chine consumption (search engines, mathematical computation): therefore
it has a compiler structure (it strictly flags ambiguous input as errors in the
process of conversion and stops). The first prototype handles exclusively
Content-MathML covered structures, it is in ’beta’ stage of development
along this direction.

Hermes is also document oriented. It aims at generating the semantic
information available typically in a legacy scientific article (text, keywords,
references, author information, document structure etc.) or supplementary
layers of metadata for the newly created documents. The first prototype is
in ’alpha’ stage of development along this direction.

Hermes preserves the presentational output of the original source doc-
uments. This is achieved by TEX macros which leave the graphical objects
unmodified while attaching semantics to them in the background. The first
prototype is in ’beta’ stage of development along this direction.

Hermes needs to let the author the freedom to add semantics wherever
necessary, but should also be prepared to convert a legacy source document
with no manual intervention. In the latter case only a subset of Content-
MathML and only the already specified (e.g. citations, author name, key-



MoWGLI, IST-2001-33562 5

words, abstract) metadata subset will be generated; the arbitrary math-
ematical symbols encountered (e.g. Q+) will generate only Presentation-
MathML if nothing else (no author specified metadata and no Hermes
macro is explicitely used) makes their meaning precise. This feature enables
gradual annotation of scientific work and allows adding semantic depth (e.g.
improving its reachability on the Internet or its compatibility with a new
mathematical software tool). The first prototype is in ’alpha’ stage of de-
velopment along this direction.

4 Source code distribution

The Hermes first prototype’s source distribution consists of 3 files: the
semantic macros, the token vocabulary and the grammar. The first is nec-
essary to author content-oriented documents, the last two are necessary to
create the Hermes compiler, which is aware of the content oriented macros
above.

For compiling an example, this source distribution comes also with a
stylesheet (’pre.xsl’) which prepares the XML output of the Hermes com-
piler for rendering as XHTML with MathML islands (this, in turn, ob-
tained by filtering this output through the generic MathML stylesheet,
’mathml.xsl’, from w3.org), and a makefile which automates the creation of
the Hermes compiler and creates a renderable example Content-MathML
out of an example LATEX source.

4.1 Definitions

Recovering or adding semantics is achieved by leaving appropriate traces into
the dvi file using the LATEX ’special’ command (at low level, by activating
some of the characters or simply prefixing the old LATEX command with a
’special’ string); these traces are enabled by a set of macros residing in the
’definitions’ file. The way they should be used is mostly self-explanatory:
some of them decorate the corresponding old TEX ones (the author simply
uses the same TEX commands), the rest are supplying the structures needed
to cover Content-MathML mahematical expressions (the author needs to
use these ones if he wants to enable Content-MathML output, they usually
start with a capital letter), and all of them are commented.

The semantic traces are tokenized by the scanner.



MoWGLI, IST-2001-33562 6

4.2 Scanner

The scanner uses regular expressions and context conditions to recover the
tokens from the dvi file; it understands all the dvi commands and also keeps
track of the current font and coordinates trough an internal stack.

The handled tokens are the ones defined by the macros described above
and all the bytecodes typically present in the dvi file are dealt with. The first
prototype ignores most of the presentation oriented information available
in the dvi, but does not preclude further enhancements to enable a more
accurate rendering too.

The way the scanner source is organized makes it easy to understand the
categories of tokens it tackles: basic tokens (e.g. letter ’L’), TEX tokens (e.g.
’PLUS’, ’SQRT’), structured tokens (e.g. ’BMoment’ and ’EMoment’, along
with ’BMomentDeg’ and ’EMomentDeg’ etc.) that come in pairs (prefixes
Begin=B, End=E) wrapping the structure inside.

A ’C’ variable (’drop’) is used in the scanner to decide when to forward
the next token to the parser or simply ignore it. This is useful in simplifying
the process of writing or reading the content oriented grammar (it is used
to neglect some of the graphical glyphs where there is enough semantic
information to render it precisely), but it will have to disappear when the
presentation oriented code will be implemented, and the burden of handling
them will be handed out to the parser.

4.3 Parser

The parser expects various combinations of semantic tokens from the scan-
ner. When a structure is recognized, the appropriate XML output string of
characters is built. The first prototype of Hermes recognizes LATEX inline or
display mathematical areas and builds the corresponding Content-MathML
code.

Some of the operators or variables in the source documents are recognized
implicitly (e.g. ’VEE’ or ’OVER’), in these cases there is no need for any
Hermes provided macro to create the appropriate Content-MathML code
(e.g. <or/> or, respectively, <divide/>).

Others are provided by Hermes as explicit complementary macros (e.g.
’Laplacian’ or ’Listl’ in the ’definitions’) which also have associated with
them a specific rendering in a normal (pdf)LATEX run.

The accented letters or greek symbols give a Presentation-MathML code
which is embedded in Content-MathML.

The rest of the parser is made of ’C’ routines. Some of them put the



MoWGLI, IST-2001-33562 7

corresponding XML tags in the right place, based on usual mathematics
precedence rules or the nature of the mathematical entity under treatment.
Other routines, executed at the end of a structure recognition, prepare the
intermediary string for a final ordering; yet other routines are simple helpers
for the above or do the pretty printing of the XML output.

5 To do

In the real world, authors need, along with the most usual symbols, or Her-
mes provided macros, arbitrary mathematical expressions they feel most
appropriate for rendering a particular meaning; some of their choices be-
come de facto standards (e.g.

√
x) so Hermes has no difficulty in generat-

ing the appropriate content oriented XML, others remain ambiguous from
a machine point of view (e.g. Q+), i.e. there is not enough information for
a machine to infer what their meaning were.

There is no realistic (i.e. easily acceptable by the user) alternative so-
lution to the problem above but to convert those arbitrary symbols into
Presentation-MathML and let the author complement the source of the ar-
bitrary symbol with simple annotations if he feels the need to do so (and not
forcing him to obey a non-standard, external to his way of thinking, set of
conventions); these annotated Presentation-MathML structures, along with
the Content-MathML, enable a potential reader to locate mathematical ex-
pressions on the web by their meaning and not by their particular rendering
(which, obviously, cannot be known before accesing the document itself).

Therefore, a truly viable and complete Hermes system should go beyond
converting from LATEX to Content-MathML, that is, should be prepared to
convert and annotate arbitrary mathematical expressions, not yet covered
by the current Content-MathML or OpenMath standards, into Presentation-
MathML.

This is how we interpret ’refining and extending’ the Hermes prototype,
as expressed in the MoWGLI proposal.


