Bean Markup Language
(Version 2.3)

User’'s Guide

Sanjiva Weerawarana and Matthew J. Duftler
IBM TJWatson Research Center
Hawthorne, NY 10532.

September 22, 1999

http: //mww.al phaWor ks.ibm.comvfor mula/bm
mailto: bmler s@watson.ibm.com

ABSTRACT
Bean Markup Language (BML) is an instance of an XM L-based component configuration or wiring
language customized for the JavaBean component model. The language is designed to be directly
executable; i.e., processing a BML script will result in a running application configured as
described in the script. The BML language has elements that can be used to describe the creation
of new beans, accessing of existing beans, configuration of beans by setting/getting their
properties and/or fields, binding of events from beans to other beans, as well as calling arbitrary
methods in beans.

We provide two implementations of BML - a player which interprets a BML script to produce a
running bean and a compiler which translates a BML script to Java. The player is implemented
using Java reflection and is very small (approximately a 70K jar file). The compiler produces
reflection-free Java code similar to the code one would write by hand to implement the same
component structure described in the BML script it is compiling. The advantage of using BML and
the compiler to generate the Java code vs. writing the code directly is that the machine generable
BML language captures in afirst-class form the inter-component structure of the application which
can then be compiled away to avoid any run-time performance |oss.

This document is the user’s guide for the BML language, player, and compiler.

Table of Contents

L INTRODUCTION ittt e e e e e e e e e e 3
LI BML DESIGN GOALS ittt ittt et e ettt e e e e e 3
1.2 REQUIRED USER BACKGROUND .t ittt it e et e e et e e e e e e e e e e 3

2. THEBMUL LANGUAGE i e e e e e e 3
2.1 BEAN CREATION AND ACCESS t vttt vttt ettt et et et e e et e et e e e et e e 4

2.1 L CREATING A BEAN L ottt e s e e e e e e e e e e e e 4
2. 1.2 L00KING UP A BEAN .« ittt ittt ittt st e e e e e e e e e e e e 6
2.2 CREATING STRING BEANS ... e e e e e e 6
2.3 BEAN PROPERTY CONFIGURATION & ittt ittt et e e it et e e e et e et e et e ee e 7
2.4 BEAN FIELD CONFIGURATION 4ttt ettt e ettt ettt et ettt ettt et e ee e g
2.5 BEAN EVENT BINDING oottt ittt ettt e et e e e e e 1C
2.6 CALLING BEAN METHODS .ttt ittt st et et e et et e e et e e e e e e 11
2.7 EXPLICIT TYPE CONVERSIONS ittt ittt ettt e et et e et e et et et et et e i eea 12
2.8 CREATING BEAN HIERARCHIES .. ittt ittt i et et e e et iae s 12
2.9 DEFINING SCRIPTS vt ittt ittt ettt e ettt ettt e et et e e e e 13
2.10 BML PROCESSING INSTRUCTION ottt ittt ittt et e et e et et e et et e e e eaa 15

3. BML PROCESSING MODELttt e e e e e e e 1€

B LBML PROCESSOR vttt ittt it ettt e et e e e e e 1€
B LI THE CONTEXTURL &« o ot it e e e e s e e e s it e s e e e e i e e e e e 1€

4. BML PROCESSING- AND RUN-TIME ENVIRONMENTS e 17
4.1 BM L ENVIRONMENT & ittt ittt ettt et e et et e e e ettt 17
4.2 OBIECT REGISTRY 4ttt ittt et e et et e et e et e et e et e e e 1€
4.3 Type CoNVERTORS AND TYPE CONVERTOR REGISTRY ...ttt i et i e i e ea e 1€
4.4 EvenT ADAPTERS, EVENT PROCESSORS AND EVENT ADAPTER REGISTRY ..o v v i v n s 1<
4.4.1 DYNAMIC EVENT ADAPTER GENERATION & & 4 v v v v v v v v e e et e it e et ettt et e e eeaaas 21
4.5 ADDERS AND ADDER REGISTRY ..ottt i i i e et e e e e e 2z
4.6 XML PARSERL IAISON oottt it it et et e e e e 2z

5. EMBEDDING A BML PROCESSOR IN AN APPLICATION . . .\ e e e e e e e e e e e e e 24

6. BML PLAYER AND COMPILER BEANS 24
6.1 BM L PLAYER . it e e e e e 24

B.2 BM L COMPILER vttt ittt et e et e e e e e e e e e e e e e 24

1. INTRODUCTION

BML is an XML language for describing the structure of a set of interconnected beans. It is not an XMLized Java
syntax - it can only be used to describe how a set of beans are to be created, configured and interconnected. It isin
many ways a new kind of language - it is neither a Turing-complete programming language nor a full scripting
language; it is a language whose only functions are to describe how components relate to one another and how each
of those components is configured. It is however, not a modeling language - it is directly executable.

1.1 BML DesigN GoALs
The following goals were conscientiously observed during the design and devel opment of BML.:
¢ BML’slanguage elements will be aminimal basis of operators necessary to configure any set of beans (i.e., any
Java object should be operable on by BML)
e BML will not make any assumptions about the types of beansit can configure
e BML will not make any assumptions about the types of events that beans may throw and it will not provide any
preferential or built-in support for any specific set of event types
¢ BML will not make any assumptions about the data types of property and field values
e BML will not make any assumptions about the types of containers it can work with in its hierarchy creation
capability
¢ BML implementations will be easily embeddable in other software
e BML created/configured beans will interact well and easily with beans created/configured by other means
e BML architecture and implementations will be extensible to allow the addition of new wiring capabilities

1.2 ReouirReD User BACKGROUND
BML users are expected to have a working knowledge of XML, and a good understanding of the JavaBeans
component model.

2. THeE BML LANGUAGE

The BML language has been carefully designed to be easily machine generated as well as hand-crafted. The
language provides a first-class mechanism for capturing the structure of a component application, versus the Java
language which loses some of thisinformation in the syntax of the language. In addition, since BML is XML-based, it
opens up application development to all the tools now being developed to work with XML. For example, you can
start to think about using XSL to "style" applications, starting from an XML description of the program'’s functions
(or anindividual user's needs) and an XSL description of a user-interface framework, and generating BML to produce
arunning application. (In fact, thisideaiswhat got us started on the BML project in the first place!)

BML alows one to specify the desired configuration of a set of beans. This configuration is expressed in terms of
standard bean operations, including creation, event bindings, method calls and containment. These elements are
designed to be a concise, orthogonal set of operations with which one is able to specify any desired bean

configuration. The following table briefly defines the BML language elements:

Element Description

<bean> Create a new bean or look one up

<args> Specify constructor arguments

<string> Create a new string bean or look one up
<property> Set or get a bean property

<field> Set or get abean field

<event-binding> Bind an event from one bean to another
<call-method> Call abean method

<cast> Type convert a bean to be of another type
<add> Create a hierarchy of beans by adding one to another
<script> Defines a (BML or other) script to be used somewhere

BML processors also support a single processing instruction which can be used to load components to the
processor’ s runtime.

In this section we describe each of the elementsin BML and their interactions with one another.

2.1 BeaN CRrREATION AND ACCESS

The <bean> element is used to create new beans or to look up beans by name. Once the bean has been created or
looked up, the children of the bean element are processed with this bean as the default target of the operations
performed by the children. That is, if a <call-method> (see below) element were present as a child, for example,
unless otherwise stated in the <call-method> element, the call would occur on the bean identified by the containing
<bean> element. If there are no children elements, then processing the <bean> element simply resultsin that bean.

Note: Even if a child element changes its target bean by using the target attribute, the default target bean remains the
bean identified by the nearest enclosing <bean> element. For example,
<bean cl ass="Foo0” [id="foo-bean”]>
<property target="bar-bean” name="pl”>
<property name="potato”/>
</ property>
</ bean>
would result in the p1 property of bar-bean being set to the value of the potato property of foo-bean.

2.1.1 CREATING A BEAN

Creating a bean may result in the resurrection of a bean from a serialized file (a “.ser” file), the instantiation of a new
instance of a class, or the processing of an inner BML file. Regardless of the method of creation, the bean may
optionally be registered into BML's object registry which provides a name to object reference mapping (see BML
Processing and Run-time Environments sections). The different cases of using the <bean> element are listed below.

Case 1: Creating a bean by instantiating a class using its no-args constructor or by resurrection, and optionally

registering it:
Syntax:
<bean cl ass="cl ass-nane-or-.ser-file-name” [id="name-to-register-as”]>
other BML el enents to configure bean ...
</ bean>

Semantics: A new instance is created by either locating a serialized file (using the class loader in the current BML
environment (see Section 4.1)) with the given name or by creating a new instance from the class using its no-args
congtructor. If the “id” argument is present, the bean is registered into the object registry with that name asits key.

Examples:
<bean cl ass="j ava. awt . Panel ” i d="t opPanel ">
<add>
<bean cl ass="j ava. awt . Label ">
<property nane="text” val ue="Deno Label "/>
</ bean>
</ add>

<add>
<bean cl ass="nySavedButton”/>
</ add>
</ bean>

Case 2: Creating a bean by instantiating a class with a specific constructor and optionally registering it:
Syntax:
<bean cl ass="cl ass-name” [id="name-to-register-as”]>
<args>
constructor-arg-1
constructor-arg-2

constructor-arg-n
</ args>
other BML el enents to configure bean ...
</ bean>

Semantics: Each argument is evaluated using as the default target the bean containing the bean being created. After loading the
class, a constructor whose signature matches the types of the arguments (using the algorithm defined by the Java
language specification) is located and used to instantiate the bean. If the “id” argument is present, the bean is
registered into the object registry with that name as its key.

Examples:
<bean cl ass="j ava. awt . Di nensi on” >
<args>
<cast class="int"”><string>200</string></cast>
<cast class="int”"><string>100</string></cast>
</ args>
</ bean>

Case 3: Creating a bean by processing an inner BML file and optionally registering its return value:
Syntax:
<bean cl ass="URL-or-fil ename-of -BM.-file” [id="nane-to-register-as”]>
[<ar gs>
script-arg-1
script-arg-2

script-arg-n
</ args>]
other BML el enents to configure bean ...
</ bean>

Semantics: If an args element is present as the first element child of the <bean> element, then each argument is
evaluated using as the default target the bean containing the bean being created. Then, the values of the arguments are
registered using the special names “script:arg0”, “script:argl”, etc. in a special registry that is available to the inner
BML file. The inner file is then processed, and the return value is optionally registered. The inner file is processed in
the following manner:

e Theinner file will use asits default target the bean containing the bean being created.

* All lookups will cascade upwards.

* All registrations will be done locally. (The only value from the inner file that will be available to the outer fileis

the return value; that is, the outermost containing element of the inner file.)
* Inner BML files are processed basically the same way <script> elements are.

Examples:
<bean class="http://bm . watson.ibm com repos/fooFrane. bm ">
<ar gs>
<string val ue="Test Franme”/ >
</ args>

<add>
<bean cl ass="bar Text Fi el d. bm "/ >
</ add>
</ bean>

Explanation: The content of http: // bm . wat son. i bm coni repos/ f ooFrane. bml is retrieved and
processed. A string with the value “TestFrame”, referred to by the name “script:arg0”, will be available while
processing the f ooFr ane. bn script. Then, the content of

http://bm . wat son.i bm contf repos/ bar Text Fi el d. bm will be retrieved and processed; its return
value will be added to the outermost <bean>.

Note: When the value of the class attribute has the extension ".bml", it is first treated as a URL. If the value is not a
valid URL as specified, the contextURL (see section 3.1.1) is used as a base. If thistoo fails, afinal attempt is made at
resolving the location by treating the value as a file name. Some sample values for the class attribute are:

http://bm . wat son.i bm conf denps/ at ool . bm, d:\tenp\app. bm, myCust omvenuBar. bn ,

../ nyHel pMenu. b .

2.1.2 Looking Up A BEAN

The <bean> element aso allows one to look up beans previously registered in the object registry. A special feature
in the bean element allows one to look up the javalang.Class object representing some Java class. The different
cases of using the <bean> element are listed below.

Case 1: Looking up a previously registered bean:
Syntax:
<bean [cl ass="cl ass-of -regi st ered-bean”] source="previously-regi stered-nane”>
other BML el enents to configure bean ...
</ bean>

Semantics: The name is looked up in the object registry and if found that bean is used. The “class’ attribute is
optional, but required if this BML script is being compiled and if the bean itself is unavailable at compile-time. In this
case, without this information the BML compiler would have no information about the bean in order to compile the
script. If the class attribute is specified on alookup, then it must match the class of the bean; otherwise an exception
isthrown.

Examples:
<bean source="topPanel " >
other BML el enents to configure bean ...
</ bean>

<bean source="myBean” cl ass="cl ass- of - nyBean” >
other BML el enents to configure bean ...
</ bean>

Case 2: Looking up a class bean:
Syntax:
<bean source="cl ass: nane- of -cl ass-to-find">
other BML el enents to configure bean ...
</ bean>

Semantics: The class of name “name-of-classto-find” is loaded and the instance of java.lang.Class object
representing it is returned. Special recognition has been given to the names “boolean”, “byte”, “char”, “short”, “int”,

“long”, “float” and “double’ to enable access to the class objects representing the primitive types. For example,
setting the source attribute to “class:int” would retrieve the object int.class. This can be used to make static method

cals.

Examples:
<bean source="cl ass:j ava. | ang. Syst enf >
<cal | -net hod name="currentTimeM I lis"/>
</ bean>

<bean cl ass="j ava. awmt . Button” >
<event - bi ndi ng name="acti on” >
<scri pt>

<cal | -net hod target="nyActi onHandl er” nane="dolt”>
<bean source="bm :argl”/>
</ cal | - met hod>
</script>
</ event - bi ndi ng>
</ bean>

2.2 CREATING STRING BEANS
String beans (i.e., instances of java.lang.String), unfortunately, have to be treated specially because of both Java and
XML. Java strings are immutable objects - so you have to create a string with its value and live with it forever. That
means that the only way to create a (hon-empty) string is to use a <bean> element to create it by invoking a specific
constructor which requires a string argument (see case 2 of Section 2.1.1). Syntactically that would be approximately:
<bean cl ass="java.lang. String”>
<args>... sonething to give value..</args>
</ bean>
The question now becomes how does one indicate the string value in BML? One option is to make the <args>
element be of mixed content - i.e., it has other elements (such as <bean> etc. which are needed to call arbitrary
constructors) aswell asliteral text. Syntactically that would be approximately:
<bean cl ass="java.lang. String”>
<args>Hel | o There</args>
</ bean>
This would work reasonably well, except that XML is whitespace sensitive. Hence, if one were to (seemingly)
reformat the above script as shown below, the behavior would be different because the value of the string would be
“\n Hello Theré\in “ instead of just “Hello There”:
<bean cl ass="java.lang. String”>
<ar gs>
Hell o There
</ args>
</ bean>
The situation is worse - suppose that one wished to invoke a constructor that required two strings. This approach
would simply not allow that case to be handled.

The solution that BML takes is to introduce a new element, the <string> element. This element is used to create
string beans. There are two cases of usage:

Case 1: Creating a string with a non-empty value:

Syntax:

<string [val ue="val ue-of -string”] > val ue-of-string]</string>

Semantics: An instance of class java.lang.String is returned with the value “value-of-string”. If the value attribute is
given, the the value of that attribute is used as the value of the string. If not, the entire contents between the open
and close tags are used as the value (including any whitespace). The content of <string> is mixed XML content; i.e.,
it consists of any number of inter-mixed CDATA sections and text.

Examples:
<bean cl ass="j ava. awt . Di nensi on” >
<ar gs>
<cast class="int”"><string>200</string></cast>
<cast class="int”><string val ue="100"/></ cast >
</ args>
</ bean>

Case 2: Creating an empty string:
Syntax:

<string/>

Semantics: Thisis entirely equivalent to <bean class=" java.lang.Sring” />.

Examples:
<bean source="cl ass:j ava. | ang. Syst enf >
<cal | - net hod name="get Property”>
<string>user. name</string>

<string/>
</ cal | - met hod>
</ bean>

2.3 BeaN ProreRTY CONFIGURATION

The <property> element allows one to get the value of a property or to set the value of a property to some value. The
value may be immediate or the return value of some other appropriate BML element. The property setting or getting is
performed on the default target bean (i.e., the bean identified by the <bean> element within which this element is
contained), unless otherwise specified in this element. Properties which are of primitive types (int, float etc.) are also
supported by the <property> element. The different cases of using the <property> element are listed below.

Case 1: Setting a property value with an immediate value:
Syntax:
<property [target="alternate-bean”] nane="property-nane” [index="nunf]
[id="nane”] val ue="property-value”/>

Semantics: Thisis a syntactic short-cut for:
<property [target="alternate-bean”] nane="property-nane” [index="nunf]
[id="nanme”] >
<string>property-val ue</string>
</ property>
See the case below for its semantics.

Examples:
<bean cl ass="j ava. awt . Label ">
<property name="text” value="Hello There!”/>
</ bean>

Case 2: Setting a property value with an indirect value:
Syntax:
<property [target="alternate-bean”] nane="property-nane” [index="nunf]
[id="nanme”] >
a bean, string, field, property, call-nethod, cast or script elenment
</ property>

Semantics: Sets the value of the property to the given value. The value is obtained by evaluating the single child
element and obtaining the return value (bean). If the target attribute is present, then the operation is performed on the
bean with that name instead of the default (i.e., containing) bean by first looking up that name in the object registry
and then setting the value of the property. If the index attribute is present, then property must be indexed and the
num’th indexed property is set. If the type of the value and the type of the property do not match (or are not
assignable), a type conversion will be necessary. For example, setting the background color of an AWT component
to blue would require a convertor to convert the string “0x0000ff” to the appropriate java.awt.Color object
representing that color. BML uses aregistry of available type convertors (TypeConvertor Registry) which provides a
reference to a TypeConvertor object that can handle the necessary conversion. The convertor is dynamically
invoked with the value to be converted and the result used as the value of the property. Type convertors and the
type convertor registry are discussed in Section 4.3. If the id attribute is present, then the value is registered in the
object registry with that name.

Examples:
<bean cl ass="j ava. awt . Frame” >
<property name="| ayout” >
<bean cl ass="j ava. awt . Bor der Layout "/ >
</ property>
</ bean>

Case 3: Getting a property value:
Syntax:
<property [target="alternate-bean”] nane="property-nane” [index="nunf]
[id="nane"]/>

Semantics: Returns the value of the named property as a bean. If the target attribute is present, then the operation is
performed on the bean with that name instead of the default (i.e., containing) bean by first looking up that name in the
object registry and then getting the value of the property. If the index attribute is present, then property must be
indexed and the num’th indexed property value is retrieved. If the id attribute is present, then the value is registered
in the object registry with that name.

Examples:
<bean cl ass="j ava. awt . Label ">
<property nane="text”>
<property target="nyDat aFi el d” nanme="1|abel String”/>
</ property>
</ bean>

2.4 BeaN FiELD CONFIGURATION

The <field> element allows one to get the value of afield or to set the value of afield to some value. The value may
be immediate or the return value of some other appropriate BML element. The field setting or getting is performed on
the default target bean (i.e., the bean identified by the <bean> element in which this element is contained), unless
otherwise specified in this element. Static fields may be manipulated by setting the target bean to the class object
which owns the field (see Section 2.1.2). The <field> element semantics are amost exactly the same as those of the
<property> element and are included here for the sake of completeness. The primary difference between <field> and
<property> is that fields may be static. Fields which are of primitive types (int, float etc.) are also supported by the
<field> element. The different cases of using the <field> element are listed below.

Case 1: Setting afield value with an immediate value:
Syntax:
<field [target="al ternate-bean”] nane="fiel d-nanme” [id="nane"]
val ue="fi el d-val ue”/ >

Semantics: Thisis a syntactic short-cut for:
<field [target="al ternate-bean”] name="fiel d-nane” [id="nanme”]>
<string>field-val ue</string>
</field>
See the case below for its semantics.

Examples:
<bean cl ass="nyC ass” >
<field name="si ze” val ue="100"/>
</ bean>

Case 2: Setting afield value with an indirect value:
Syntax:

<field [target="al ternate-bean”] name="property-nane” [id="nane”]>

a bean, string, field, property, call-nethod, cast or script elenment
</field>

Semantics: Sets the value of the field to the given value. The value is obtained by evaluating the single child element
and obtaining the return value (bean). If the target attribute is present, then the operation is performed on the bean
with that name instead of the default (i.e., containing) bean by first looking up that name in the object registry and
then setting the value of the field. If the type of the value and the type of the field do not match (or are not
assignable), a type conversion will be necessary. BML uses a registry of available type convertors
(TypeConvertorRegistry) which provides a reference to a TypeConvertor object that can handle the necessary
conversion. The convertor is dynamically invoked with the value to be converted and the result used as the value of
the field. Type convertors and the type convertor registry are discussed in Section 4.3. If the id attribute is present,
then the value is registered in the object registry with that name.

Examples:
<bean cl ass="nyC ass” >
<field name="size">
<string>100</string>
</field>
</ bean>

Case 3: Getting afield value:
Syntax:

<field [target="al ternate-bean”] nane="property-nanme” [id="nanme"]/>

Semantics: Returns the value of the named field as a bean. If the target attribute is present, then the operation is
performed on the bean with that name instead of the defaullt (i.e., containing) bean by first looking up that name in the
object registry and then getting the value of the field.

Examples:
<bean cl ass="j ava. awt . Label ">
<property name="alignnment"> <!-- center the | abel -->

<field target="cl ass:java. awt. Label " name="CENTER"/ >
</ property>
</ bean>

2.5 BeaN EVENT BINDING

The <event-binding> element supports binding of events from a bean to something else. The JavaBeans event model
states that if abean (“source”) can generate an event of type XEvent, then any listener (“target”) must implement the
XListener interface. Beans that implement the listener interface for an event can be registered as a listener of that
event at the source bean. The listener interface defines a set of methods via which the event may be delivered by the
event source to the event listener. The <event-binding> element supports both this form of event binding as well as
binding events to a <script> (see Section 2.9). The different cases of using the <event-binding> element are listed
below.

Case 1: Binding an event from a source to a recipient bean which implements the appropriate listener interface:
Syntax:
<event-binding [target="alternate-bean”] nane="event-set-nane” [filter="filter"]>
<bean ../>
</ event - bi ndi ng>

Semantics: Makes the child bean alistener of “event-set-name” events from the target bean. If the target attribute is
present, then the operation is performed on the bean with that name instead of the default (i.e., containing) bean by
first looking up that name in the object registry and then using that. The filter attribute is unsupported in the current
version of BML (it is a place-holder for JDK 1.2 property change and vetoable property change events support in
BML). The child bean must implement the necessary listener interface or this operation will fail. Note: the use of

10

“event-set-name” above instead of “event-name” is intentiona - the distinction between event set name and event
name is subtle in JavaBeans and is best explained by the beans spec or various books.

Examples:
<bean cl ass="j ava. awmt . Button” >
<event - bi ndi ng name="acti on” >
<bean source="nmnyActi onHandl er”/>
</ event - bi ndi ng>
</ bean>

<bean cl ass="java. awt . Text Fi el d" >
<event - bi ndi ng name="text”>
<bean source="nyText Handl er”/ >
</ event - bi ndi ng>
</ bean>

Case 2: Binding an event from a source to some script:
Syntax:
<event-bi ndi ng [target="alternate-bean”] name="event-set-nane” [filter="filter”]>
<script ../>
</ event - bi ndi ng>

Semantics: Causes the child script to be invoked when event “event-set-name” fires in the target bean. If the target
attribute is present, then the operation is performed on the bean with that name instead of the default (i.e,
containing) bean by first looking up that name in the object registry and then using that. The filter attribute is used to
indicate a specific method in the listener interface (except for property change and vetoable change events where the
filter identifies a specific property) via which the event must be received for the script to be invoked. The value of the
filter attribute (if any - or null) and the arguments of the method via which the event was delivered are made available
to the script using the special names “event:arg0” (for the filter), “event:argl”, “event:arg?”, etc.. How one accesses
these names from within a script is described later in Section 2.9.

In order for this binding to succeed, an appropriate event adapter for the event type must be available via the BML
event adapter registry. See Section 4.4 for discussion about event adapters.

Examples:
<bean cl ass="j ava. awt . Text Fi el d" >
<event - bi ndi ng nane="action">
<script>
<property target="bml :argl” nane="source” id="the-text-field"/>
<property target="cal cul ator" nane="a">
<cast class="int">
<property target="the-text-field” name="text”/>
</ cast>
</ cal | - met hod>
</script>
</ event - bi ndi ng>
</ bean>

<bean cl ass="j ava. awmt . Button” >
<event - bi ndi ng name="acti on” >
<scri pt>
<cal | -net hod target="juggler” name="start”/>
</script>
</ event - bi ndi ng>
</ bean>

11

<bean cl ass="j ava. awt . Frame” >
<event - bi ndi ng nanme="w ndow’ filter="w ndowC osi ng” >
<scri pt>
<cal | -net hod target="cl ass:java.l ang. Systenf name="exit”>
<cast class="int”><string>0</string></cast>
</ cal | - met hod>
</script>
</ event - bi ndi ng>
</ bean>

2.6 CALLING BEAN METHODS

The <call-method> element can be used to call methods on beans. Calling a method involves identifying the name of
the method to call, the bean on which to call that method and the arguments to the method. The actual method to call
is determined using the types of the arguments and applying the Java language method resolution algorithm to find
the precise method. (The return type is not necessary to identify the method as Java does not allow overloading of
return types.)

Syntax:
<cal | -nethod [target="alternate-bean”] nane="nethod-nane” [id="nane”]>
zero or nore bean, string, field, property, call-nmethod, cast or script
el ements ...

</ cal | - met hod>

Semantics: Calls the named method on the target bean. If the target attribute is present, then the operation is
performed on the bean with that name instead of the defaullt (i.e., containing) bean by first looking up that name in the
object registry and then using that. The sequence of arguments to the call is created by evaluating al the child
elements in order. The signature of the method to search for is defined by the types of the arguments. The method
itself is determined using the Java language method resolution logic to find the method with the best matching
signature in the target bean’s class. The static methods can be invoked via <call-method> by setting the target
object to the class object of the desired class (see Section 2.1.2). Return bean of the method call (if any) is the value
of this element. If theid attribute is present, then the return value is registered in the object registry with that name.

Examples:
<bean cl ass="j ava. awt . Franme” >
<cal | - net hod name="pack”/ >
<cal | - net hod name="show’/ >
</ bean>

<bean cl ass="j ava. awt . Panel " >
<cal | - net hod nane="set Bounds" >
<cast class="int"”><string>100</string></cast>
<cast class="int”"><string>100</string></cast>
<cast class="int"><string>20</string></cast>
<cast class="int"><string>50</string></cast>
</ cal | - met hod>
</ bean>

2.7 ExpLiciT TyrE CONVERSIONS

As has been mentioned above, BML's <property> and <field> elements may implicitly invoke a type convertor to
convert one type to another. The <cast> element allows one to explicitly convert one type to another. The <cast>
may be purely declarative (i.e., smply arelabelling of the bean to be considered to be of one of its supertypes instead
of itstype) or actual (where atype conversion is performed).

Syntax:

<cast class="class-to-convert-to” [value="string-to-convert”]>
[... a bean, string, field, property, call-nethod, cast or script elenment ...]

12

</ cast >

Semantics: If no content is found and if the value attribute is missing, then this is the same as
“(class-to-convert-to)null”; i.e., the null value of the appropriate type. If the “value” attribute is present, then a string
bean of that value is type converted to the target class (actualy or by re-labeling if strings are assignable to the
target class). If no value attribute is present and if a child element is found, then the bean resulting from evaluating
that element is type converted to the target class (actually or by re-labeling if the value is assignable to the target
class). A common use of the <cast> element is to affect the method selection process of <call-method>. BML uses a
registry of available type convertors (TypeConvertor Registry) which provides a reference to a TypeConvertor object
that can handle the necessary conversion. The convertor is dynamically invoked with the value to be converted and
the result used instead. Type convertors and the type convertor registry are discussed in Section 4.3.

Examples:
<bean source="cl ass:j ava. | ang. Syst enf >
<cal | - net hod name="get Property”>
<string>user. name</string>
<cast class="java.lang.String”/>
</ cal | - met hod>
</ bean>

<bean cl ass="j ava. awt . Panel " >
<cal | - net hod nane="set Bounds" >
<cast class="int” val ue="100"/>
<cast class="int"><string val ue="100"/></ cast >
<cast class="int"><string>20</string></cast>
<cast class="int” val ue="50"/>
</cal | - met hod>
</ bean>

2.8 CREATING BEAN HIERARCHIES

The <add> element is used to create a hierarchy or collection of beans. The <add> element abstracts the process of
creating bean hierarchies by allowing the use of a single element to “add” a contained bean to some container bean.
The motivation for the <add> element came from the importance of hierarchies in user interface beans. However, the
concept is well defined for any bean which may serve as a container of some sort for other beans, including vectors,
hashtables, aswell as visual containers such as java.awt.Panel.

The generic “add” concept isimplemented by aregistry of type-specific adders (see Section 4.4).

Syntax:

<add [target="al ternate bean”]>

one or nore bean, string, field, property, call-nethod, cast or script
el enents ...
</ add>

Semantics: Adds one item to a container bean. If the target attribute is present, then the operation is performed on the
bean with that name instead of the default (i.e., containing) bean by first looking up that name in the object registry
and then adding to that bean. An Adder is searched for in the Adder Registry to implement the task of “adding” to the
container bean. The Adder is searched for using the type of the container bean. The semantics of the children of
<add> are defined by the specific adder. Adders and the adder registry are discussed in Section 4.4.

Examples:
<bean cl ass="j ava. awt . Panel " >
<add>
<bean cl ass="java.awt.Button”/>
</ add>

13

</ bean>

<bean cl ass="j ava. awt . Panel " >
<property name="| ayout” >
<bean cl ass="j ava. awt . Bor der Layout "/ >
</ property>
<add>
<bean cl ass="java.awt.Button”/>
<string>Center</string>
</ add>
</ bean>

<bean cl ass="java. util.Hashtable” id="aliasTable">
<add>
<string>l s</string>
<string>ls -Fa</string>
</ add>
<add>
<string>j</string>
<string>jobs -I</string>
</ add>
</ bean>

2.9 DEFINING SCRIPTS

The <script> element can be used to define a sequence of statements in BML or in some supported scripting
language. To add support for languages other than BML, visit http://www.al phaWorks.ibm.com/tech/bsf. For each
language desired, 2 things are necessary: the driver, and the language jar. For convenience (and for historical
reasons), some of the documentation in this guide refers to JavaScript and NetRexx. Support for these languages is
not built in; fileswill still need to be retrieved from the BSF (Bean Scripting Framework) site (see URL above).

Evaluating a <script> results in a bean. For BML scripts, the bean is the value of the last element contained in the
script. For ascript in anon-BML language, the return value is defined by that language. Typically, the return valueis
the result of evaluating the last statement of the script.
Syntax:
<script [language="scri pt-I|anguage] >
[<ar gs>
script-arg-1
script-arg-2

script-arg-n
</ ar gs>]
content based on val ue of script-language attribute ...
</script>

Semantics: Defines a new script in the indicated language. The valid values for the language attribute are “bml”, or
the name of another supported scripting language (such as “javascript” or “netrexx”). If the language attribute is
missing, the default value of “bml” is used. Scripts can be given arguments, which are the beans produced by
evaluating BML elements in the <args> element. If an args element is present as the first element child of the script
element, then each argument is evaluated using as the default target the bean containing the script element. Then, the values
of the arguments are registered using the special names “script:arg0”, “script:argl”, etc. in a specia registry that is
available to the script. How one accesses these named objects within the script is dependent on the scripting
language used; see the following table for details.

L anguage M ethod of Access
bml Use BML's bean lookup mechanism (i.e., <bean source="script:arg0” > etc.).

14

javascript Use the special global object “bsf” to access them by calling the method “lookupBean”
on that object, giving the name of the bean as an argument. That is, the bean named
“script:arg0” would be accessed in JavaScript using ‘ bsf.lookupBean (“script:arg0”)’
€efc..

netrexx Use the special global object “bsf” to access them by calling the method “lookupBean”
on that object, giving the name of the bean as an argument. That is, the bean named
“script:arg0” would be accessed in NetRexx using ‘ bsf.lookupBean (“script:arg0”)’ etc..

Note: All script elements specifying the “javascript” language share asingle global context. That is, anything created
within a JavaScript script will be available to later JavaScript scripts. Thisis not the case for BML and NetRexx.

For scripts written in BML (ie., language="bml"), the script element basically defines a nested, local namespace for
the object registry. That is, if an object islooked up from within the script, it isfirst searched for in the script’s object
registry. If not found, then it is searched for in the containing element’s object registry and so on. However, any
names registered within a script are purely local - one cannot register a name within a script so that it is visible
outside of the context of the script.

For non-BML languages, the script itself is the content of <script> beginning immediately following <args> (if it
exists). The content of <script>ismixed XML content; i.e., it consists of any number of inter-mixed CDATA sections
and text. If the scripting language is non-XML (e.g., JavaScript) and the script contains any XML-illegal characters
(such as “<"), then the script code must be enclosed in an XML CDATA section. For non-XML scripts, the practice
of always enclosing the script in a CDATA section is probably a safe practice, as this avoids the useless, cryptic
messages generated by XML parsers when XML-sensitive characters are found in non-XML text.

There is an important semantic difference between a <script> contained directly within an <event-binding> and one
contained elsewhere. Within an <event-binding>, it is processed at the time of the event-firing (i.e. its execution is
delayed). In other cases, it is processed immediately (i.e. its execution isimmediate).

Examples:
<bean cl ass="j ava. awt . Text Fi el d" id="TF-prod">
<event - bi ndi ng nane="propertyChange" filter="prod" target="cal cul ator">
<script>
<property target="TF-prod" name="text">
<property target="bml :argl" nane="newal ue"/>
</ property>
</script>
</ event - bi ndi ng>
</ bean>

<bean cl ass="j ava. awt . Text Fi el d”" >
<property name="text”>
<script |anguage="javascript”>5*10</script>
</ property>
</ bean>

<bean cl ass="java.awt . TextFiel d” id="tf">
<event - bi ndi ng nane="action”>
<script |anguage="javascript”>
<args><property target="tf” name="text"/></args>
<! [CDATA[
current Text = bsf.| ookupBean (“script:arg0”);
event Cbj = bsf.| ookupBean (“event:argl”);
event Obj . get Source().setText (currentText + “ “ + currentText);
11>

</script>

15

</ event - bi ndi ng>
</ bean>

<bean cl ass="java.awm . TextFiel d” id="tf">
<event - bi ndi ng name="acti on” >
<script |anguage="netrexx”>
<args><property target="tf" nane="text"/></args>

<! [CDATA[
current Text = java.lang. String bsf. | ookupBean(“script:arg0”);
event Cbj = java.awt.event. Acti onEvent bsf. | ookupBean(“event:argl”);

sourceField = java. awmt . Text Fi el d event Qbj . get Source();
sour ceFi el d. set Text (current Text “ “ current Text);
11>
</script>
</ event - bi ndi ng>
</ bean>

2.10 BML PROCESSING |NSTRUCTION
BML processors support a processing instruction that may be used to instruct the processor to load components
such as type convertors, adders and event adapters (see Section 4.4 for details of these).

Syntax:

<?bm regi ster nane-of-regi sterabl e-cl ass?>

Semanticss. The class of name “name-of-registerable-class’ must implement the interface
comibm bm . BM.Sel f Regi st er abl e, which is defined as follows:

public interface BM.Sel f Regi sterable {
public void register (BMLEnvironnment env);

}

The BML processor instantiates this class and then calls its register method with the processor’s environment (see
Section 4.1) as an argument. The body of the register method can register anything into that environment. This
processing instruction may appear either within the document element or outside of it.

Examples:
<?bm register Register Stuff?>

<bean cl ass="com sun.j ava. swi ng. JFrane" >
bm code that assumes the things registered by the above ...
</ bean>

where the RegisterMyStuff classis as follows:

public class RegisterMStuff inplenents BM.Sel f Regi sterabl e {
public void register (BM.Environment env) {
Adder ad = new Adder () {
a new adder
i
env. adder Regi stry.register (..., ad);
}
}

3. BML Processine M obEL

16

A BML script is an XML document whose document element is a <bean> element. Arbitrary configurations of this
and other beans can be expressed within this element using combinations of the above elements. When aBML script
is evaluated in textual order, the bean defined by the document element is produced and configured according to the
specifications inside that element. The specifications can of course include creating other beans and adding to
container beans.

We have two implementations of BML: the player and the compiler. The player uses Java reflection to evaluate a
BML script at startup-time of an application. The compiler is a static tool that generates Java code that, at
startup-time, will produce a bean configuration equivalent to that described in the script. During compilation, the
compiler may temporarily instantiate some beans to learn their properties, events and methods, but these beans are
discarded afterwards.

In JavaBeans, configuration-time is when a bean can put up its configuration user interfaces etc.. BML views this
configuration time as a process that occurs in some environment which produces BML to express a desired

configuration. Per-bean configuration can also be saved into serialization (.ser) files. If BML is generated by some
batch process, then the configuration-time of beans may never occur.

BML views the process of executing the bean configuration specification as processing-time. This always occurs at
startup in BML-based applications and once configuration is complete, run-time proper starts. How the configuration
is actually implemented is different depending on whether the player or the compiler does the work: If it is the player,
then it is done using reflection. If it isthe compiler, then the generated Java code doesiit.

3.1 BML Processor

Both the player and the compiler inherit from a common base class called com i bm b . BMLPr ocessor . This
allows one to treat both the processors in a similar manner, except of course each provides different customizable
properties which must be dealt with as the specific type of processor (com i bm bni . pl ayer. BMLPI ayer or
com i bm bm . conpi | er. BML.Conpi | er). The DemoMgr class in the demos/applettool directory provides an
example of using the two in a unified manner. The BML Processor classis defined as follows:

public abstract class BM.Processor ({
prot ect ed BMLEnvi ronnent env;

public BM.Processor () {
env = new BMLEnvironnent ();

}

public BMLProcessor (BM.Environnent env) {
this.env = env;

}

public void set BMLEnvi ronment (BM.Environnment env) {
this.env = env;

}

publ i ¢ BMLEnvi ronnent get BMLEnvi ronnment () {
return env;

}

public abstract Object processDocunent (Docunment doc) throws BM.Exception;

public abstract Object processDocunent (Docunment doc, URL context URL)
t hrows BMLExcepti on;

17

A comibm bnl . BMLEnvi ronnent (see below) can be passed as a constructor argument to a
BMLPr ocessor ; if the no-arg constructor is used, a default BMLEnvi r onnent will be created.

3.1.1 THe conTEXTURL

In addition to being given a or g. w3c. dom Docunent to process, a BMLPr ocessor can optionally be given a
contextURL from which to resolve relative URL s (effectively a document base). The contextURL is updated to reflect
the file currently being processed.

Example:

If file http://bm .watson.ibm coniapp. bni is being processed, the contextURL s
http://bm . wat son.i bm com If this file refers to http://w3.i bm comf nyMenuBar. b , the
contextURL (while processing nyMenuBar . b) will be ht t p: //w3. i bm com This means that any references
within nmyMenuBar . bm will be resolved relative to http://w3.ibmcom not
http://bm . watson.i bmcom

For more information on the way a BMLPr ocessor will resolve URL and file locations, see the section on creating
<bean>s.

Note: Calling pr ocessDocunent (doc) isequivaent to calling pr ocessDocunent (doc, null).

In the next section we discuss the processing-time and run-time environments of BML.

4. BML ProcessiNG- AND RUN-TIME ENVIRONMENTS

The processing-time and run-time components of BML consist of a set of registries that provide references to
various objects and services. In this section we describe each component and itsrole.

41 BML ENvVIRONMENT

The entire environment of a BML processor (the player or the compiler) is represented by the class
com i bm bm . BMLEnvi r onnent . This class contains references to each of the registries (object registry, type
convertor registry, adder registry and event adapter registry), the BSFManager (used for scripting language support),
the class loader and the XML ParserLiaison used throughout BML. The BMLEnvi r onnent is a property of a BML
processor and can be configured fully within an instance of a processor.

public class BM.Environnent inplements Cl oneable {

public ObjectRegistry objectRegistry =

BMLA obal Envi ronment . obj ect Regi stry;
public TypeConvertorRegi stry typeConvertorRegistry =

BMLA obal Envi ronnent . t ypeConvert or Regi stry;
public Adder Regi stry adderRegistry =

BMLA obal Envi ronment . adder Regi stry;
publ i c Event Adapter Regi stry event Adapt er Regi stry =

BM_A obal Envi ronment . event Adapt er Regi stry;
publ i ¢ BSFManager BSFmgr = (BM.A obal Envi ronnment . BSFngr == nul |)

? new BMLBSFManager (this)
BM_A obal Envi ronment . BSFngr ;
public C assLoader classLoader = (BM.Q obal Envi ronnment . cl assLoader == nul |)
? getd ass ().getC assLoader ()
BMLA obal Envi ronnent . cl assLoader ;

publ i c XM_.ParserLi ai son parserLiai son = BM.A obal Envi ronnent . par ser Li ai son;

}

The default environment is represented by the class com i bm bni . BMLA obal Envi r onment , which has
(public) static fields containing the initial values for the itemsin the BMLEnvi r onnment class. One may change the

18

default global environment which every new instance of BMLEnvi r onnent (and hence every new player / compiler
instance) inherits by assigning new values to the public fields of the BMLA obal Envi r onnent class:

public class BM.d obal Envi ronment {
public static ObjectRegistry objectRegistry = new ObjectRegistry ();
public static TypeConvertorRegi stry typeConvertorRegistry =
new TypeConvertorRegi strylml ();
public static AdderRegistry adderRegistry =
new Adder Regi strylnpl ();
public static Event AdapterRegi stry event AdapterRegistry =
new Event Adapt er Regi strylnpl ();
public static BSFManager BSFngr = null;
public static C assLoader classLoader = null;
public static XM.ParserLiaison parserLiaison = new XM.Par ser Li ai sonl npl ();

}

Each registry is defined by an interface (except the ObjectRegistry, which is a class) which is used by all of BML to
interact with the registry. The BML distribution comes with default implementations of these registries, but the
defaults can be replaced easily to provide customized functionality. The default value of null for the class loader
property effectively makes BML use the system class loader for loading classes. In the rest of this section, we

describe each of the registries used in BML, and the XML ParserLiaison interface.

4.2 OgJecT REGISTRY

The obj ect Regi stry (comibm bm . Obj ect Regi stry) provides a string name to object reference
mapping. If a parent Obj ect Regi stry is provided at construction time, lookups will cascade upwards.
Registrations, on the other hand, are always done locally. This registry serves three primary purposes:
communication of object handles between different parts of BML scripts, communication of object handles between
Java code and BML scripts, and communication of object handles between BML and scripts defined in scripting
languages such as JavaScript or NetRexx. The Obj ect Regi st ry isdefined asfollows:

public class ObjectRegistry {

Hasht abl e reg = new Hashtable ();

oj ect Regi stry parent = null;

public ojectRegistry () {

}

public ObjectRegistry (ObjectRegistry parent) {
this. parent = parent;

}

public void register (String nane, Object obj) {
reg. put (nanme, obj);

}

public void unregister (String nane) {
reg. renove (nane);

}
public Object |ookup (String nane) throws |11 egal Argunent Exception {
hj ect obj = reg.get (nane);
if (obj == null && parent !'= null) {
obj = parent.|ookup (nane);
}
if (obj == null) {
throw new ||| egal Argunent Exception ("object '" + nane + "' not in registry");
}
return obj;
}

}

19

One can replace the default object registry simply by extending this class and updating the BMLEnvi r onnment
property of the BML processor as follows:

BMLProcessor p = new BM.Player (); // or new BM.Conpiler ();
BMLEnvi ronnent env = p.get BMLEnvironnent ();
env. obj ect Regi stry = new bjectRegistry () {
public void register (String nane, Object obj) {
do whatever you want to do to register the obj with the given name ...
}
public void | ookup (String nane) {
do whatever you want to do to | ookup the nane in the registry ...
}
b
/1 now use this processor
p. processDocunent (doc);

4.3 Typre CoNVERTORS AND TYPE CONVERTOR REGISTRY
Type convertors are objects that know how to convert an object of one type to an object of another type. Type
convertorsimplement thecom i bm brl . TypeConvert or interface which is defined as follows:

public interface TypeConvertor ({
public Ooject convert (Cass from Cass to, Object obj);
public String getCodeGenString ();

}

The convert method is given the object to convert and the source and target types of the conversion and must return
anew object of the target type. The getCodeGenString method must return a piece of Java code (a full method except
without the name of the method) that can be placed into the generated code by the compiler when a BML document
is compiled to not use the BML registries at runtime. An example convertor to convert from any object type to String
is shown below:

TypeConvertor tc = new TypeConvertor () {
public Object convert (Cass from Cass to, Object obj) {
return (obj == null) ? "(null)" : obj.toString ();
}

public String getCodeGenString () {
return "(Cass from Cass to, Object obj) {\n" +
"return (obj == null) ?2 \"(null)\" : obj.toString ();\n" +
"
}
s
/1 register the new type convertor to ny player/conpiler
BMLProcessor p = new BM.Conpiler ();
BMLEnvi ronnent env = p.get BMLEnvironnent ();
env.typeConvertorRegistry.register (Ooject.class, String.class, tc);

The type convertor registry (com i bm bml . TypeConvert or Regi st ry) provides a registration and look up
service for type convertors. The TypeConvertorRegistry interface is defined as follows:

public interface TypeConvertorRegistry {
public void register (Cass from dass to, TypeConvertor convertor);
public TypeConvertor |ookup (Class from Cass to) throws BM.Exception;

}

20

The built-in implementation of this registry is used by default by BML processors. This implementation uses asimple

hashtable as its registry. The built-in registry comes with convertors for the following types:

e all primitives types to primitive object wrapper types (e.g., int to/from java.lang.Integer)

e stringsto al primitive types (e.g., java.lang.String to float)

e any type to javalang.String (which is used as a backup convertor if the target type is string and if no other
convertor is available)

e javalang.String to java.awt.Font

e javalang.String to java.awt.Color

One can replace the default type convertor registry simply by providing another implementation of this interface and
updating the BMLENnvi r onnment property of the BML processor as done in Section 4.2 for the object registry.

4.4 EveNT ADAPTERS, EVENT PROCESSORS AND EVENT ADAPTER REGISTRY

BML supports “extended” event bindings to an arbitrary script without making any assumptions about the types of
events that may be thrown by beans. This capability is supported by event adapters, event processors and an event
adapter registry. Basically, the model consists of an event-type specific adapter that receives the event from the
source, forwards it to a generic event processor which then runs the script. Event-type specific event adapters are
located from the event adapter registry. The figure below illustrates the standard and extended binding architecture.

Conventional Event Binding

Source Target bean
bean (Implements listener)

Non-conventional Event Binding

Source Event Event .
adaptor processor ——*| Script

Event adapters must implement thecom i bm c¢s. event . Event Adapt er interface to be part of the BML event
architecture. Thisinterface is defined as follows:

public interface Event Adapter {
public void setEvent Processor (EventProcessor eventProcessor);

}

A base implementation of this interface is available in com i bm cs. event . Event Adapt er | npl that event
adapters may choose to extend. The code for EventAdapterlmpl is as follows:

public class Event Adapterlnpl inplenents Event Adapter {
prot ected Event Processor event Processor;

public void setEvent Processor (Event Processor eventProcessor) {
this. event Processor = eventProcessor;

}
}

21

For each type of event (actually, for each listener type), an event adapter must be implemented and available from the
event adapter registry. For example, the following event adapter is included in the default event adapter registry for
adapting java.awt.event.KeyEvent events to the BML event architecture:

public class java_awt _event KeyAdapter extends Event Adapter| npl
i mpl enents KeylLi stener {
public void keyTyped (KeyEvent e) {
event Processor. processEvent ("keyTyped", new Object[]{e});
}
public void keyPressed (KeyEvent e) {
event Processor. processEvent ("keyPressed", new bhject[]{e});
}
public void keyRel eased (KeyEvent e) {
event Processor. processEvent ("keyRel eased", new Cbject[]{e});
}
}

When the BML runtime creates event adapters and adds them as listeners to the event sources, it tells the adapter

what event processor to forward (delegate) events to. Event processors are the entry point to the BML runtime and
are responsible for delivering the event to the intended recepient script. The
com i bm cs. event. Event Processor interface is defined as follows:

public interface Event Processor {
public void processEvent (String filter, Cbject[] eventlnfo);
public void processExcepti onabl eEvent (String filter, bject[] eventlnfo)
throws Exception;

}

When an event adapter receives an event from an event source, it delegates the event to its event processor using
one of the above two methods. If the event method may throw an exception, then it should delegate it via the
processExcept i onabl eEvent method, otherwise via the pr ocessEvent method. The filter argument isin
genera the name of the method via which the event was recelved. The exception to this is for
j ava. beans. Propert yChangelLi stener and |ava. beans. Vet oabl eChangelLi stener event
listener types, where the filter is the name of the property. The BML player uses a single event processor that
actually delivers the event to a script and runs the script. The compiler can generate customized event processors
that perform that task, or it may in fact completely bypass this entire mechanism and simply generate customized
event adapters that directly deliver the event to the user's script. If the compiler is run in the “generate
BML-independent code” mode, then it in fact does this. However, when it generates code that uses the BML runtime,
it does use this architecture. The latter is necessary when the generated code uses the BML runtime for its operation
(for example, the applettool demo in the demos directory).

The event adapter registry (com i bm b . Event Adapt er Regi st ry) provides a registration and look up
service for event adapters. The EventAdapterRegistry interface is defined as follows:

public interface Event AdapterRegistry {
public void register (Cass |listenerType, O ass event Adapterd ass);
public Class |ookup (Class |istenerType) throws BM.Excepti on;

}

The built-in implementation of this registry is used by default by BML processors. This implementation uses asimple
hashtable as its registry. The lookup algorithm of this implementation first looks for the adapter in its own hashtable.
If not found, then it tries to load an event adapter from the com i bm cs. event . adapt er s package by
converting the event listener type's package qualified name using the following rules:

e theword “Listener” is dropped from the package qualified name

e each".” character (package level separator) isreplaced withthe“ " character

22

e thestring“com i bm cs. event . adapt er s” is prepended to the result

e thestring “Adapter” is appended to it

For example, for the java.awt.event.KeyListener event |listener type, the name

comibmcs. event. adapters.java _awm event KeyAdapt er is generated. The resulting name is

used as the name of the event adapter class and the class loader is used to load that class. If the loading fails, then

the event adapter is deemed unavailable and an exception is thrown. The bmlextensions.jar file contains adapters that

conform to these rules for the following event types:

e dljava.awm . event.* eventlistener types

* java. beans. PropertyChangelLi stener and j ava. beans. Vet oabl eChangelLi st ener event
listener types

One can replace the default event adapter registry simply by providing another implementation of this interface and
updating the BMLEnvi r onnment property of the BML processor as done in Section 4.2 for the object registry.

441 Dynamic EVENT ADAPTER GENERATION

This extension eliminates the need to write event adapters by automatically generating the class files (not via
compilation from source, but directly) for event adapters on demand. Since the BML event adapaters are relatively
straight forward and highly stylized (see the architecture discussion above), it is possible to easily generate the
bytecodes for event adapters directly without going through a compilation stage. The dynamic event adapter
generator performs this function.

The dynamic event adapter genrerator is made available to BML users as an alternate event adapter registry. The
demo driver includes this functionality if you use the “-dynamic” switch. In that case, the BML processor's
environment’s event adapter generator is changed to a new instance of
com i bm b . ext ensi ons. gener at or. Dynam cEvent Adapt er Gener at or . This registry
automatically invokes the event adapter generator to produce a new event adapter class if the event listener type has
not been seen previously.

4.5 ADDERS AND ADDER REGISTRY

Adders and the adder registry are the components that implement the containment model enabled by the <add>
element in BML. An adder is an object that implements the com i bm bm . Adder interface which is defined as
follows:

public interface Adder {
public void add (O ass parentC ass, hject parent, Cbject[] args);
public String getCodeGenString ();

}

An adder is an object that knows how to add to some type(s) of container bean(s). The add method is invoked with
the type of container, the container bean as well as the beans resulting from evaluating the children elements of the
<add> element. The adder defines the semantics of the argument beans (i.e., those contained within the <add>
element) and implements actual task of “adding” to the container. For example, for a Vector container, the adder
would require exactly one bean to be present inside the <add> element and would add that bean to the vector using
the “addElement” method. For a Swing JFrame container, the adder would call the “getContentPane” method on the
JFrame and then add to the content pane by calling the “add” method on that with one or two arguments depending
on the contents of the <add> element. Such a Swing adder is shown below:

Adder ad = new Adder () {
public void add (C ass parentC ass, hject parent,Object[] args) {
com sun. j ava. sw ng. Root PaneCont ai ner rpc =
(com sun. j ava. swi ng. Root PaneCont ai ner) parent;
Cont ai ner ¢ = rpc. get Cont ent Pane();

if (args.length == 2) {

23

c.add ((Conmponent)args[0], args[1]);
} else if (args.length == 1) {
c.add ((Conmponent)args[0]);
} else {
Systemerr.println ("ERROR " + " Root PaneAdder takes 1" + " or 2 args");
}
}

public String getCodeGenString () {
return "(d ass parentC ass, Object parent,Object[] args)\n" +
“{\n" +
"com sun. j ava. swi ng. Root PaneCont ai ner rpc =\n" +
"(com sun. j ava. swi ng. Root PaneCont ai ner) parent;\n" +
"Contai ner ¢ = rpc.get ContentPane();\n" +

"\n" +
"if (args.length == 2)\n" +
“{\n" +

"c.add((Component)args[0], \n" +
"args[1]);\n" +

"I\n" +

"else if (args.length == 1)\n" +
“{\n" +

"c. add((Conponent)args[0]);\n" +
"I\n" +

"el se\n" +

“{\n" +

"Systemerr.println (\"ERROR \" + \" Root PaneAdder takes 1\"" +
"+ \" or 2 args\");\n" +
"I\n" +
"
}

1)

/1 register the new adder to ny player/conpiler

BM_Processor p = new BM_.Conpiler ();

BM_Envi ronnent env = p.get BMLEnvironnent ();

env. adder Regi stry. regi ster (com sun.java. sw ng. Root PaneCont ai ner. cl ass, ad);

This adder can now be used with any Swing container type that implements the RootPaneContainer interface. These
include JFrame, JTabbedPane, and JPanel.

The adder registry (com i bm b . Adder Regi st ry) provides registration and look up service for adders. The
AdderRegistry interface is defined as follows:

public interface AdderRegistry {
public void register (O ass parentd ass, Adder adder);
public Adder |ookup (Cl ass parentC ass) throws BM.Excepti on;

}

When processing an <add> element, the target bean’s type is used as the key to find the adder. If an adder is not
found for that specific type, the search is continued up the type hierarchy of the container. For example, if the
container’s type is java.awt.Frame, then if an adder is not found for java.awt.Frame, then the search is continued for
javaawt.Window and then java.awt.Container, the super classes of java.awt.Frame. If the root class
(javalang.Object) is reached before an adder is located, an exception is thrown to indicate the absence of an adder.

The Java type system is more complicated however - while a class may inherit code from exactly one other class, it
may inherit behavior from any number of other types (by implementing multiple interfaces). The adder search

24

algorithm in the built-in adder registry implementation first searches for adders in interfaces implemented by the
container type and then in the superclass. The algorithm is as follows:

- is there an adder for container type? If yes, return that

for each interface the container inplenents,

- recursively look for an adder for the interface type

- if found done, else |ook at next interface type

- end for

recursively look for an adder for container’'s superclass type

- if after all recursive processing an adder is not found, throw exception

The built-in implementation of the adder registry is used by default by BML processors. This implementation uses a
simple hashtable as its registry. The built-in registry comes with adders for the following container types:

e java.awt.Container

e javadtil.Dictionary (and hence for types such as java.util.Hashtable)

e javautil.Vector

One can replace the default adder registry simply by providing another implementation of this interface and updating
the BMLEnvironment property of the BML processor as done in Section 4.2 for the object registry.

46 XMLPARSERLIAISON
XML parser liaisons are used throughout BML to retrieve a or g. w3c. dom Docunent from a Reader . XML
parser liaisonsimplement thecom i bm cs. uti | . XMLPar ser Li ai son interface which is defined as follows:

public interface XM.ParserLiaison {
publ i c Document readStream (String sourceDesc, Reader reader);

}
The default implementation, which uses IBM’s XML4J parser, is defined as follows:

public class XM.ParserLiaisonlnpl inplements XM.ParserLiaison {
public Docunent readStream (String sourceDesc, Reader reader) {
return new comibm xm . parser. Parser (sourceDesc).readStream (reader);
}
}

Thisimplementation is used by default by BML processors. One can replace the default XML parser liaison (so asto
use a different XML parser) smply by providing another implementation of this interface and updating the
BMLENnvi r onnment property of the BML processor as donein Section 4.2 for the object registry.

5. EmBEDDING A BML PROCESSOR IN AN APPLICATION

BML processors have been carefully designed to support embedding into other applications. Both the player and the
compiler are well-behaved beans and their run/processing-time contexts are exposed via their BMLEnvi r onnment
property. The following illustrates how to embed the player (for example) into a Java application:

BMLPI ayer player = new BM.Pl ayer ();
/'l every new instance of a player/conpiler gets a new BM.Environment which
/1 gets defaults fromthe BM.A obal Envi ronment cl ass (see Section 4.1)

/1 modify the environnment if necessary
BMLEnvi ronnent env = pl ayer. get BMLEnvi ronnment ();
env. event Adapt er Regi stry = new Dynam cEvent Adapt er Regi stry ();
env. obj ect Regi stry = new bjectRegistry () {
/1 inplenment register() and | ookup()
}

25

/'l pre-register any special things into the various registries
env. obj ect Regi stry.register (“foo”, ...);

1

/1 process BM. documents:
Docunment d = call-xm-parser (XM. URL);
oj ect o = player.processDocunent (d [, contextURL]);

/1 process object o
do-sonet hing-with-result (0);

6. BML PLAYER AND ComPILER BEANS
The player and compiler are both standard beans which inherit from the com i bm bm . BMLPr ocessor base
class (see Section 3). In this section we list the properties of these beans.

6.1 BML PLAYER

Property Name Type Accessibility Description
BML Environment BMLEnvi Read/Write The runtime environment of the player. Default isa
ronment new instance of BMLEnvironment which gets

default registry etc. values from the
BML Global Environment class.

6.2 BML ComPILER

Property Name Type Accessibility Description
BMLDep boolean Read/Write Turns on/off dependency of generated code on
BML runtime. Default is on.
BMLEnvironment BMLEnvi Read/Write The runtime environment of the compiler. Default is
ronment new instance of BMLEnvironment which gets

default registry etc. values from the
BML Global Environment class.

className String Read/Write Fully-qualified name of Java classto generate.
Defaultis“ Test”.
codeDesc String Read/Write Nameto use in status/ error messages. Default is
<STDIN>.
formatOutput boolean Read/Write Turns on/off formatting of generated Java code (e.g.
word-wrapping, indentation). Default is on.
methodName String Read/Write Name of the method to execute in the generated code

to get the bean described by the BML script (the
“service method”). Default is " exec”.

OutputWriter Writer Write Sets the target for the generated code stream.
Default is javalang.System.out.

showStatus boolean Read/Write Turns on/off status reporting during compilation.
Default is on.

useDefaultEnvironment | boolean Read/Write Turns on/off the assignment of the globa

environment to the BMLEnvironment in the
generated code (when BML dependent code is
generated). Default is on.

errorCount int Read Number of errors during last compilation.

26

29

