On Global Induction Mechanisms in a μ -Calculus with Explicit Approximations

Christoph Sprenger

Swedish Institute of Computer Science, Kista, Sweden sprenger@sics.se

Mads Dam

Royal Institute of Technology, Kista, Sweden mfd@it.kth.se

FICS '02 Workshop, Copenhagen

July 20, 2002

Motivation

	Local Induction	Global Induction
derivations	trees	graphs
soundness	internal, local induction rules	external, discharge condition
tradition	"classical" logics	modal/temporal logics
μ -calculi	Park's induction [Kozen]	sequent calculus [Dam/Gurov]
	fixed point tagging [Winskel]	model checking [Sti/Wal,Bra]

Programme: relate local and global inductive reasoning (proof translations) **This work:** compare global discharge conditions in context of μ -calculi

Overview

- 1. Gentzen-style proof system for first-order μ -calculus
 - (a) μ -Calculus with explicit approximations
 - (b) Local proof rules and graph-shaped derivations (pre-proofs)
- 2. Induction discharge conditions:
 - (A) semantical: runs [Dam/Gurov]
 - (B) syntactical: traces
 - (C) automata-theoretic

Theorem For a given pre-proof (A), (B) and (C) are equivalent.

μ -Calculus with Explicit Approximations (1)

Syntax first-order logic + (approximated) fixed points

$$\phi$$
 ::= FOL formula $| \Phi_X(\overline{t})$ formulas
 Φ_X ::= $X | \mu X(\overline{x}).\phi | \mu^{\kappa} X(\overline{x}).\phi$ abstractions

Remarks

- individual, predicate and ordinal variables
- ${\ }$ both X and \overline{x} are bound in $\mu X(\overline{x}).\phi$ and $\mu^\kappa X(\overline{x}).\phi$
- Isual syntactic monotonicity condition restricts fixed point formation

μ -Calculus with Explicit Approximations (2)

Models $\mathcal{M} = (\mathcal{A}, \rho) \mathcal{A}$ a first-order structure, ρ a valuation

Semantics interpretation in lattice of predicates with point-wise ordering

$$\|\mu X(\overline{x}).\phi\|_{\rho}^{\mathcal{A}} = \mu \Psi \qquad \|\mu^{\kappa} X(\overline{x}).\phi\|_{\rho}^{\mathcal{A}} = \mu^{\rho(\kappa)} \Psi$$

where $\Psi = \lambda P. \lambda \overline{a}. \|\phi\|_{\rho[P/X, \overline{a}/\overline{x}]}^{\mathcal{A}}$ monotone predicate transformer

Proposition

1.
$$\mu \Psi = \bigvee_{\alpha} \mu^{\alpha} \Psi$$

2. $\mu^{\alpha} \Psi = \bigvee_{\beta < \alpha} \Psi(\mu^{\beta} \Psi)$

Sequents and Validity

Sequents are of the form

 $\Gamma \vdash_{\mathcal{O}} \Delta$

where $\mathcal{O} = (|\mathcal{O}|, \leq_{\mathcal{O}})$ is a finite partial order on ordinal variables recording ordinal constraints

Validity sequent $\Gamma \vdash_{\mathcal{O}} \Delta$ is valid if

$$\bigwedge \Gamma \to \bigvee \Delta$$

true in all models (\mathcal{A}, ρ) where ρ respects \mathcal{O} , i.e. $\rho(\kappa) \leq \rho(\kappa')$ whenever $\kappa \leq_{\mathcal{O}} \kappa'$

Local Proof Rules for Fixed Points

$$(\mu - \mathsf{L}) \qquad \frac{\Gamma, (\mu X(\overline{x}).\phi)(\overline{t}) \vdash_{\mathcal{O}} \Delta}{\Gamma, (\mu^{\kappa} X(\overline{x}).\phi)(\overline{t}) \vdash_{\mathcal{O}'} \Delta} \qquad \mathcal{O}' = \mathcal{O} \cup \{\kappa\}$$

$$(\mu - \mathsf{R}) \qquad \frac{\Gamma \vdash_{\mathcal{O}} (\mu X(\overline{x}).\phi)(\overline{t}), \Delta}{\Gamma \vdash_{\mathcal{O}} \phi[\mu X(\overline{x}).\phi/X, \, \overline{t}/\overline{x}], \Delta}$$

$$(\mu^{\kappa} - \mathsf{L}) \quad \frac{\Gamma, (\mu^{\kappa} X(\overline{x}).\phi)(\overline{t}) \vdash_{\mathcal{O}} \Delta}{\Gamma, \phi[\mu^{\kappa'} X(\overline{x}).\phi/X, \overline{t}/\overline{x}] \vdash_{\mathcal{O}'} \Delta} \quad \mathcal{O}' = \mathcal{O} \cup \{(\kappa', \kappa)\}$$

$$(\mu^{\kappa} - \mathsf{R}) \quad \frac{\Gamma \vdash_{\mathcal{O}} (\mu^{\kappa} X(\overline{x}).\phi)(\overline{t}), \Delta}{\Gamma \vdash_{\mathcal{O}} \phi[\mu^{\kappa'} X(\overline{x}).\phi/X, \, \overline{t}/\overline{x}], \Delta} \quad \kappa' <_{\mathcal{O}} \kappa$$

Derivation Trees and Pre-Proofs

Derivation tree $\mathcal{D} = (\mathcal{N}, \mathcal{E}, \mathcal{L})$ sequent-labeled, consistent with proof rules

Repeat $R = (M, N, \sigma)$ leaf $N(\Gamma' \vdash_{\mathcal{O}'} \Delta')$, σ -instance of $M(\Gamma \vdash_{\mathcal{O}} \Delta)$ rightarrow more precisely: $\Gamma \sigma \subseteq \Gamma'$, $\Delta \sigma \subseteq \Delta'$ and $\mathcal{O} \sigma \subseteq \mathcal{O}'$

 $\ensuremath{\operatorname{scalled}}$ repeat node and M its companion

Pre-proof $\mathcal{P} = (\mathcal{D}, \mathcal{R})$ pair of derivation tree \mathcal{D} and set of repeats \mathcal{R} \iff every non-axiom leaf appears in exactly one repeat of \mathcal{R} \iff pre-proof graph: $\mathcal{G}(\mathcal{P}) = \mathcal{D}$ + repeat edges

Runs – Semantic Discharge (1)

Run of Pre-Proof \mathcal{P} (rooted) path of $\mathcal{G}(\mathcal{P})$, labeled by valuations:

$$\Pi = (N_0, \rho_0) \cdots (N_i, \rho_i) \cdots$$

labels: ρ_i respects \mathcal{O}_i , and

tree edge: $(N_i, N_{i+1}) \in \mathcal{E}$ implies ρ_{i+1} agrees with ρ_i on all free variable common to N_{i+1} and N_i , and repeat: $(N_{i+1}, N_i, \sigma) \in \mathcal{R}$ implies $\rho_{i+1} = \rho_i \circ \sigma$

Proofs – Semantic Discharge (2)

Proof pre-proof \mathcal{P} such that all runs of \mathcal{P} are finite

proof = pre-proof + well-foundedness

reference discharge condition to which we compare others

Theorem (Soundness) If there is a proof for $\Gamma \vdash_{\mathcal{O}} \Delta$ then $\Gamma \vdash_{\mathcal{O}} \Delta$ is valid.

Traces – Syntactic Discharge (1)

Trace path of $\mathcal{G}(\mathcal{P})$ labeled by ordinal constraints:

$$\tau = (N_0, (\kappa_0, \kappa'_0)) \cdots (N_i, (\kappa_i, \kappa'_i)) \cdots$$

labels: $\kappa'_i \leq_{\mathcal{O}_i} \kappa_i$ where $N_i(\Gamma_i \vdash_{\mathcal{O}_i} \Delta_i)$, and

tree edge: $(N_i, N_{i+1}) \in \mathcal{E}$ implies $\kappa'_i = \kappa_{i+1}$, and

repeat: $(N_{i+1}, N_i, \sigma) \in \mathcal{R}$ implies $\kappa'_i = \sigma(\kappa_{i+1})$

Example – Syntactic Discharge (2)

corresponding trace fragment:

 $(N_0, (\delta, \varepsilon))$ $(N_1, (\alpha, \beta))$ $(N_2, (\beta, \gamma))$ $(N_3, (\gamma, \gamma))$ $(N_4, (\kappa, \kappa))$ repeat companion repeat companion

Progress – Syntactic Discharge (3)

Progress

trace τ progresses at i if $\kappa'_i <_{\mathcal{O}_i} \kappa_i$ (strict decrease),is progressive if it progresses at infinitely many positions

path π is progressive if there is a progressive trace along a suffix of π

Condition (T-DC): all infinite paths of $\mathcal{G}(\mathcal{P})$ are progressive

Theorem A pre-proof \mathcal{P} satisfies (T-DC) iff it is a proof.

Normal Traces – Automata-Theoretic DC (1)

Observation any trace au can be transformed into a normal trace $\hat{ au}$ progressing at most at repeat nodes and with equivalent progress characteristics

Automata-Theoretic Discharge (2)

Idea construct two Buechi automata, B_1 and B_2 , over the alphabet \mathcal{R} s.t.

- $\Im B_1$ recognises sequences of repeats as traversed by paths of $\mathcal{G}(\mathcal{P})$,
- $\blacksquare B_2$ recognises a sequences of repeats potentially connected through a normal trace (provided the sequence is also accepted by B_1)
- $rightarrow L(B_1) \subseteq L(B_2)$ characterises previous discharge conditions

Automata-Theoretic Discharge (3)

Automaton B_2 Details

States $\{(\kappa, R, \lambda) \mid R = (M, N, \sigma) \text{ and } \sigma(\lambda) \leq_{\mathcal{O}_N} \kappa \} \cup \{\clubsuit\}$ Accepting (κ, R, λ) with $\sigma(\lambda) <_{\mathcal{O}_N} \kappa$ (progress)Transitions $(\kappa, R, \lambda) \xrightarrow{R} (\lambda, R', \iota)$

Example \mathcal{B}_2 Transition

Main Result and Summary

Theorem Let \mathcal{P} be a pre-proof. Are equivalent:

- (1) \mathcal{P} is a proof (all runs of \mathcal{P} are finite)
- (2) \mathcal{P} satisfies (T-DC) (all infinite paths of $\mathcal{G}(\mathcal{P})$ are progressive)

(3) $L(B_1) \subseteq L(B_2)$ (ditto, using normal traces)

The latter can be checked in time $2^{\mathcal{O}(n^3 \log n)}$, where $n = |\mathcal{N}|$.

Related and Future Work

Gentzen-style proof systems

- subsume Rabin-like syntactic conditions by [Sch/Sim] and [Dam et al.]:
 - obtained by restricting B_2 to states (κ, R, κ) (no renaming)
 - complexity drops to $2^{\mathcal{O}(n^2 \log n)}$ (time vs. space)
- but: do the new conditions provide more proof power?

Games (modal μ -calculus)

rightarrow generalisation of μ -/ ν -traces [Walukiewicz]