
Declarative Security for GRID Applications:
ProActive

Denis Caromel, Arnaud Contes
www.inria.fr/oasis/ProActive

OASIS Team
INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis

1. Introduction to the GRID
2. ProActive: Remote Objects, Groups, Mobile Objects,

Graphical Interface (IC2D), XML Deployment,
3. Declarative Security
4. Demonstration

1. Grid and the Internet
GRID definition:

• GRID = electric network in the US
A gripping idea:

Like electricity, computer cycles cannot be stored, if not used they are lost
A definition:

Grid is a parallel and distributed system that enables the use, sharing,
selection, and aggregation of resources across multiple administrative domains
based on their availability and capability.

Not limited to cycles:
Computational GRID, Data GRID

Inter, Intra-company, but multi-locations Grid (computational, and data)

SECURITY ISSUES

Hierarchical Domains for Internet Grid

Issues at hand for Grid Security

Authentication of Computers, Users, and Applications
Authentication, Integrity and Confidentiality (AIC) of communications
Creation, connection to, and monitoring of activities
Hierarchical domains
Security Policies: Application, Domain, (sub-domain), … High-level!

Variation in Grid network links :
LAN, Wireless (Wifi, GPRS/UMTS), VPN, Internet, or … unknown !

Variation in deployment, but maintain as much as possible performance

2. ProActive:
A Java API + Tools for Parallel, Distributed Computing

• A uniform framework: An Active Object pattern
• A formal model behind: Prop. Determinism, insensitivity to deploy.

Main features:
• Remotely accessible Objects
• Asynchronous Communications with synchro: automatic Futures
• Group Communications, Migration (mobile computations)
• XML Deployment Descriptors
• Interfaced with various protocols: rsh,ssh,LSF,Globus,Jini,RMIregistry
• Visualization and monitoring: IC2D

In the www. ObjectWeb .org Consortium (Open Source middleware)
since April 2002 (LGPL license)

ProActive : Creating active objects
An object created with A a = new A (obj, 7);
can be turned into an active and remote object:

• Instantiation-based:
A a = (A)ProActive.newActive(«A», params, node);

The most general case.

JVM

foo (A a){
a.g (...);
v = a.f (...);
...
v.bar (...);

}

Standard system at Runtime

No sharing between activities

ProActive: Groups
Typed and polymorphic Groups of active and remote objects

V

A

A ag = newActiveGroup («A»,…,Nodes)
V v = ag.foo(param);
v.bar();

Typed Group Remote Object

ProActive : Migration of active objects

Migration is initiated by a primitive: migrateTo

The active object migrates with: pending requests, objects, futures

Automatic and transparent forwarding of: requests, replies

Remote references remain valid

ProActive : Migration of active objects

Migration is initiated by a primitive: migrateTo

The active object migrates with: pending requests, objects, futures

Automatic and transparent forwarding of: requests, replies

Remote references remain valid

ProActive : Migration of active objects

Migration is initiated by a primitive: migrateTo

The active object migrates with: pending requests, objects, futures

Automatic and transparent forwarding of: requests, replies

Remote references remain valid

direct

ProActive : Migration of active objects

Migration is initiated by a primitive: migrateTo

The active object migrates with: pending requests, objects, futures

Automatic and transparent forwarding of: requests, replies

Remote references remain valid

direct

direct

ProActive : Migration of active objects

Migration is initiated by a primitive: migrateTo

The active object migrates with: pending requests, objects, futures

Automatic and transparent forwarding of: requests, replies

Remote references remain valid

direct

direct

forwarder

ProActive : Migration of active objects

Migration is initiated by a primitive: migrateTo

The active object migrates with: pending requests, objects, futures

Automatic and transparent forwarding of: requests, replies

Remote references remain valid

direct

direct

forwarder

ProActive : Migration of active objects

direct

direct

forwarder

Migration is initiated by a primitive: migrateTo

The active object migrates with: pending requests, objects, futures

Automatic and transparent forwarding of: requests, replies

Remote references remain valid

ProActive: Abstract Deployment Model
A key principle:

• Abstract Away from source code:
• Machine names, Creation Protocols, Lookup and Registry Protocols

In program source:
• Virtual Node (VN, a string name):

In XML descriptors:
• Mapping of VN to JVMs (leads to Node in a JVM on Host)
• Register or Lookup VNs
• Create or Acquire JVMs

Program Source Descriptor (RunTime)
|----------------------------------| |---|
Activities (AO) --> VN VN --> JVMs --> Hosts

Runtime structured entities: 1 VN --> n Nodes in n JVMs

Hierarchical Domains for Internet Grid

Descriptors: Mapping Virtual Nodes
Component Dependencies:

Provides: … Uses: ...
VirtualNodes:

Dispatcher <RegisterIn RMIregistry, Globus, Grid Service, … >
RendererSet

Mapping:
Dispatcher --> DispatcherJVM
RendererSet --> JVMset

JVMs:
DispatcherJVM = Current // (the current JVM)
JVMset=//ClusterSophia.inria.fr/ <Protocol GlobusGram … 10 >

...

Example of
an XML file
descriptor:

Monitoring of RMI, Globus, Jini, LSF cluster
Nice -- Baltimore

IC2D

Width of links

proportional

to the number

of com-

munications

3. Declarative Security

What’s a secured ProActive application?

• Composed of ‘classic’ active objects, no change in sources
• Using

• Public Key Infrastructure, X.509 Identity Certificates, Access control lists
• XML description language

• PKI Certification chain to identify users, JVMs, objects
• User certificate => Application certificate =>active object certificate
• user private key used only once for generating application certificate

• Security policies set by deployment descriptors

• Mobility compliant

Security Rule

Entity -> Entity : Interactions # Security Attributes

Entities :
• Domain
• User
• Virtual Node
• Active Object

Each entity owns a
certificate and depends on
a Certification Authority.

Interactions :
• JVMCreation
• NodeCreation
• CodeLoading
• ActiveObjectCreation
• ActiveObjectMigration
• Request (Q)
• Reply (P)
• Listing

Attributes :
• Authentication (A)
• Integrity (I)
• Confidentiality (C)

Each attribute can be :
• Required (+)
• Optional (?)
• Disallowed (-)

Descriptors: Mapping Virtual Nodes
VirtualNodes:

Dispatcher <RegisterIn RMIregistry, Globus, Grid Service, … >
RendererSet

SECURITY:
VN [Renderer] -> VN [Dispatcher] : Q,P # [?A,?I,?C]
VN [Dispatcher] -> VN [Renderer] : Q,P # [?A,?I,?C]
Domain [CardPlus] -> VN [Dispatcher] : Q,P # [+A,?I,?C]

Mapping:
Dispatcher --> DispatcherJVM
RendererSet --> JVMset

JVMs:
DispatcherJVM = Current // (the current JVM)
JVMset=//ClusterSophia.inria.fr/ <Protocol GlobusGram … 10 >

Example of
an XML file
descriptor:

Certification Chain

main

obj1 obj2 obj3

obj4Generate
certificate
for

Hierarchical Security Domains

• Logical way to group many entities that have the
same security needs.

• Domains are hierarchical.

• Sub-domains inherits parent’s security policies.

• Default : Sub-domains cannot weaken parent’s
security policies.

• ‘Can override‘ : a domain authorizes an entity to
override its policies (doPrivileged)

Multi-level Policies

Dn

Accept Deny

D0

Accept Deny

Dn-1

Accept Deny

VN

Accept Deny
AO

Accept Deny

Application-level
policy

Computing a security policy
according all matching rules
from domains, Virtual Node
and Active Object.

Negotiated
Security
policyAdministrator-/

User-level policy

Combining Policies

• Search for the most specific rule in each domain (if exists).
• Retrieve all matching rules in the Domain hierarchy, the Virtual

Node and the Active Object.
• Compute policies according to security attributes.

Required (+)

Required
(+)

Optional
(?)

Disallowed
(-)

Optional (?)
Disallowed (-)

Sender
Receiver

+ +
+ ?

- -
-

invalid

invalid

Migration & Security

• Migration can invalidate negotiated policies :

• migration to a node of the same domain

• migration to a node of another domain

===> New Security Negotiation

4. Demonstration:
Declarative Security with Mobility

C3D : Collaborative 3D renderer in //
a standard ProActive application

with the IC2D monitor
IC2D: Interactive Control & Debug for Distribution

work with any ProActive application
Features:

Graphical and Textual visualization
Monitoring and Control

C3D : Collaborative 3D renderer in //

Comparisons with Related Work
• ProActive Basic Features

• Authentication of users and applications
• Authentication, integrity and confidentiality of communications
• Security model for fully mobile applications
• Dynamically negotiated policies, non-functional security
• Logical representation : security is easily adaptable to the deployment

• Security Frameworks
• .Net, Legion, Globus: no notion of application mobility
• Globus: Grid Security Infrastructure (GSI):

single sign on, delegation, and credential mapping,
but no high-level control, no easy encryption of communications

• Security in Agent platforms
• Ajanta, Mole, Aglets, MAP: limited code mobility (fixe host + mobile agent)

Conclusion
ProActive Perspectives :

• Group communication (key management, find common policy)
• Sandboxing of nodes
• Role-based access control
• Components (Distributed, Parallel, Hierarchical) and Security

General Perspectives:
• OGSA Security: Open Grid Services Architecture

• Globus new open architecture, Web Services based
• Security code no longer instantiated within the middleware:

the middleware (and applications) calls external Web Security Services

but high-level abstractions, still needed (domain, application-level)

	1. Grid and the Internet
	Hierarchical Domains for Internet Grid
	Issues at hand for Grid Security
	2. ProActive: A Java API + Tools for Parallel, Distributed Computing
	ProActive : Creating active objects
	Standard system at Runtime
	ProActive: Groups
	ProActive : Migration of active objects
	ProActive : Migration of active objects
	ProActive : Migration of active objects
	ProActive : Migration of active objects
	ProActive : Migration of active objects
	ProActive : Migration of active objects
	ProActive : Migration of active objects
	ProActive: Abstract Deployment Model
	Hierarchical Domains for Internet Grid
	Descriptors: Mapping Virtual Nodes
	Monitoring of RMI, Globus, Jini, LSF cluster Nice -- Baltimore
	3. Declarative Security
	What’s a secured ProActive application?
	Security Rule
	Descriptors: Mapping Virtual Nodes
	Certification Chain
	Hierarchical Security Domains
	Multi-level Policies
	Combining Policies
	Migration & Security
	4. Demonstration: Declarative Security with Mobility
	C3D : Collaborative 3D renderer in //
	Comparisons with Related Work
	Conclusion

