

A nation wide Experimental Grid

Franck Cappello INRIA fci@lri.fr With all participants

Action Concertée Incitative [ACI] Globalisation des Ressources Informatiques et des Données [GRID]

Agenda

Motivation

Grid'5000 project

Grid'5000 design

Grid'5000 developments

Conclusion

Grid raises research issues but also methodological challenges

Grid are complex systems:

Large scale, Deep stack of complicated software

Grid raises a lot of research issues:

Security, Performance, Fault tolerance, Scalability, Load Balancing, Coordination, Message passing, Data storage, Programming, Algorithms, Communication protocols and architecture, Deployment, etc.

How to test and compare?

- Fault tolerance protocols
- Security mechanisms
- Networking protocols
- etc.

Grid'5000

Tools for Distributed System Studies

To investigate Distributed System issues, we need: 1) Tools (model, simulators, emulators, experi. Platforms)

Existing Grid Research Tools

- SimGRid and SimGrid2
 - Discrete event simulation with trace injection
 - Originally dedicated to scheduling studies
- GridSim

'5000

- Australian competitor of SimGrid
- Dedicated to scheduling (with deadline)
- Titech Bricks
 - Discrete event simulation for scheduling and replication studies
- MicroGrid
 - •Emulator with MPI communications
 - Not dynamic

→No emulator or real life experimental platform
→These tools do not scale (limited to ~100 grid nodes)
→They do not consider the network issues (almost)

We need Grid experimental tools

In the first $\frac{1}{2}$ of 2003, the design and development of two Grid experimental platforms was decided:

NAREGI Middleware Development Infrastructure

• Installation in Dec. 2003

- 3 SMPs, 128 procs total
- 6 x 128-proc clusters, with different interconnects
- 1 File Server
- Multi-gigabit networking to simulate Grid Environment
- NOT a production system (c.f. TeraGrid) Mainly geared towards R&D, but could be used partially for experimental production
- ~5 Teraflops
- To form a Grid with the IMS NAREGI application testbed infrastructure (~ 10 Teraflops, March 2004), and other national centers(voluntary basis) via SuperSINET

DAS3 →2005

Agenda

Rational

Grid'5000 project

Grid'5000 design

Grid'5000 developments

Conclusion

The Grid'5000 Project

- Building a nation wide experimental platform for Grid researches (like a particle accelerator for the computer scientists)
 - 8 geographically distributed sites
 - every site hosts a cluster (from 256 CPUs to 1K CPUs)
 - All sites are connected by RENATER (French Res. and Edu. Net.)
 - RENATER hosts probes to trace network load conditions
 - Design and develop a system/middleware environment for safely test and repeat experiments

2) Use the platform for Grid experiments in real life conditions

- Address critical issues of Grid system/middleware:
 - Programming, Scalability, Fault Tolerance, Scheduling
- Address critical issues of Grid Networking
 - High performance transport protocols, Qos
- Port and test applications
- Investigate original mechanisms
 - P2P resources discovery, Desktop Grids

^{*} Funding & Participants

Funding:

- 1) ACI GRID (Hardware)
- 2) INRIA (Hardware, Engineers)
- 3) CNRS (AS, Engineers, etc.)
- 4) Regional councils (Hardware)

Steering Committee (11):

-Franck Cappello (animateur)
-Thierry Priol (Directeur directeur ACI Grid)
-Brigitte Plateau (Directrice CS ACI Grid)
-Dany Vandrome (Renater)
-Frédéric Desprez (Lyon)
-Michel Daydé (Toulouse)
-Yvon Jégou (Rennes)
-Stéphane Lantéri (Sophia)
-Raymond Namyst (Bordeaux)
-Pascale Primet (Lyon)
-Olivier Richard (Grenoble)

Jean-Luc ANTHOINE Jean-Claude Barbet Pierrette Barbaresco Nicolas Capit Eddy Caron **Christophe Cérin Olivier Coulaud** Georges Da-Costa **Yves Denneulin Benjamin Dexheimer** Aurélien Dumez **Gilles Gallot David Geldreich** Sébastien Georget **Olivier Gluck Claude Inglebert** Julien Leduc **Cyrille Martin** Jean-Francois Méhaut Jean-Christophe Mignot **Thierry Monteil Guillaume Mornet** Alain Naud Vincent Néri **Gaetan Peaquin** Franck Simon Sebastien Varrette Jean-Marc Vincent

. .

(28)

Technical Committee

Grid'5000 Sites

Agenda

Rational

Grid'5000 project

Grid'5000 design

Technical developments

Conclusion

Grid'5000 foundations: Collection of experiments to be done

• Networking

- End host communication layer (interference with local communications)
- High performance long distance protocols (improved TCP)
- High Speed Network Emulation
- Middleware / OS
 - Scheduling / data distribution in Grid
 - Fault tolerance in Grid
 - Resource management
 - Grid SSI OS and Grid I/O
 - Desktop Grid/P2P systems
- Programming
 - Component programming for the Grid (Java, Corba)
 - GRID-RPC
 - GRID-MPI
 - Code Coupling
- Applications
 - Multi-parametric applications (Climate modeling/Functional Genomic)
 - Large scale experimentation of distributed applications (Electromagnetism, multi-material fluid mechanics, parallel optimization algorithms, CFD, astrophysics
- 2004 Medical images, Collaborating tools in virtual 3D environment

[•] Grid'5000 foundations: Collection of properties to evaluate

Quantitative metrics :

- Performance
 - Execution time, throughput, overhead
- Scalability
 - Resource occupation (CPU, memory, disc, network)
 - Applications algorithms
 - Number of users
- Fault-tolerance
 - Tolerance to very frequent failures (volatility), tolerance to massive failures (a large fraction of the system disconnects)
 - Fault tolerance consistency across the software stack.

Grid'5000 Design goal: Experimenting all layers of the Grid software stack

Application
Programming Environments
Application Runtime
Enabling Middleware
Operating System
Networking

Grid'5000 Vision

Grid'5000 is NOT a production Grid!

Grid'5000 should be:

an instrument
 to experiment and observe phenomena
 in all levels of the software stack involved in Grid.

Grid'5000 will be:

 a low level testbed harnessing clusters (a nation wide cluster of clusters), allowing users to fully configure the cluster nodes (including the OS) for their experiments (deep control)

** Grid'5000* * * * Grid'5000 as an Instrument

Technical issues:

- Remotely controllable Grid nodes (installed in geographically distributed laboratories)
- A « Controllable » and « Monitorable » Network between the Grid nodes → (may be unrealistic in some cases)
- 3) A middleware infrastructure allowing users to access, reserve and share the Grid nodes
- 4) A user toolkit to deploy, run, monitor, control experiments and collect results

Scientific issues:

- 1) Monitorable experimental conditions
- 2) Control of a running experiment (suspend/restart)

Agenda

Rational

Grid'5000 project

Grid'5000 design

Grid'5000 developments

Conclusion

Security design

- Grid'5000 nodes will be rebooted and configured at kernel level by users (very high privileges for every users);
 → Users may configure incorrectly the cluster nodes opening security holes
- How to secure the local site and Internet?
- → A confined system (no way to get out; access only through strong authentication and via a dedicated gateway)
- Some sites want private addresses, some others want public addresses
- Some sites want to connect satellite machines
- \rightarrow Access is granted only from sites
- \rightarrow Every site is responsible to following the confinement rules

Grid'5000 Security architecture: A confined system

8 x 7 VLANs in Grid'5000 (1 VLAN per tunnel)

Control design

- User want to be able to install on all Grid'5000 nodes some specific software stack from network protocols to applications (possibly including kernel)
- Administrators want to be able to reset/reboot distant nodes in case of troubles
- Grid'5000 developers want to develop control mechanisms in order to help debugging, such as "step" by "step" execution (relying on checkpoint/restart mechanisms)
- → A control architecture allowing to broadcast orders from one site to the others with local relays to convert the order in actions

Usage modes

- Shared (preparing experiments, size S)
 - No dedicated resources (users log in nodes and use default settings, etc.)
- Reserved (similar to Planet lab, size M)
 - Reserved resources but un coordinated (Users may change node's OS on reserved ones)
- Batch (automatic, size L ou XL)
 - Reserved and coordinated resources experiments run under batch/automatic mode)
- All these modes with calendar scheduling
- + compliance with local usages (almost every cluster receives funds from different institutions and several projects)

Control Architecture

In reserved and batch modes, admins and users can control their resources G5k site G5k site Users/ admin Control (ssh loggin **Master** + password) Control Control commands Slave -rsync (kernel,dist) -orders (boot, reset) G5k site LAB/Firewall Router Control **Slave** Firewall/nat Cluster Controler: (Boot server + dhcp) Lab's Network Site 3 System kernels and distributions 10 boot partitions Cluster are downloaded from a boot server. on each node (cache) They are uploaded by the users as system images. 2004 25

Grid'5000 prototype

Grid'5000 prototype

Agenda

Rational

Grid'5000 project

Grid'5000 design

Grid'5000 developments

Conclusion

Summary

- Grid'5000 will offer in 2005:
 - 8 clusters distributed over 8 sites in France,
 - about 2500 CPUs,
 - about 2,5 TB memory,
 - about 100 TB Disc,
 - about 8 Gigabit/s (directional) of bandwidth
 - about 5 à 10 Tera operations / sec
 - the capability for all uses to reconfigure the platform [protocols/OS/Middleware/Runtime/Application]
- Grid'5000 will be opened to Grid researchers in early 2005
- Could be opened to other researchers (ACI « Data Masse », CoreGrid European project members, etc.)
- Beyond an Instrument Grid'5000 has federated a strong community: this is a human adventure!

Q&A