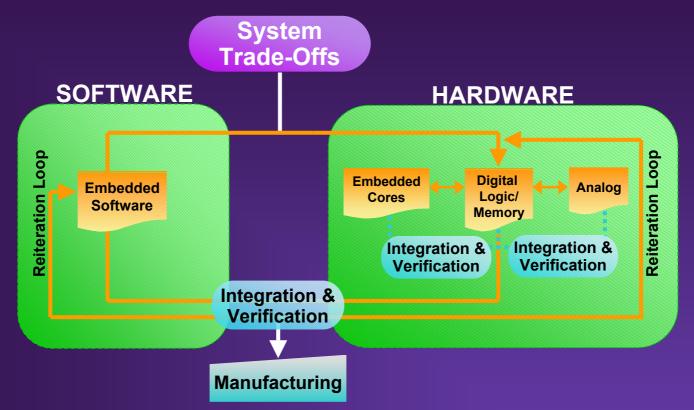
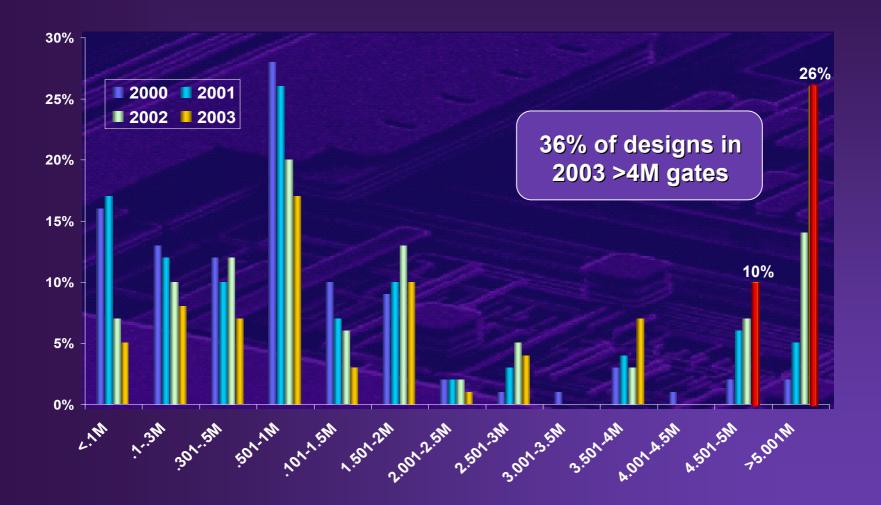
Who drives SoC Chips: Applications or Silicon ?


Pierre Bricaud Director, R&D Solutions Group Synopsys, Inc. Sophia Antipolis

> Your Design Partner


SoC is not just HW, its HW+SW+Application

- Multiple Technologies Hardware/Software, Analog/Digital
- Multiple Teams Hardware (Analog/Digital), Software, System
- Multiple Embedded Systems IP Cores

Average Gate Count Continues to Grow

Data from Synopsys SNUG San Jose 2003 seminar survey

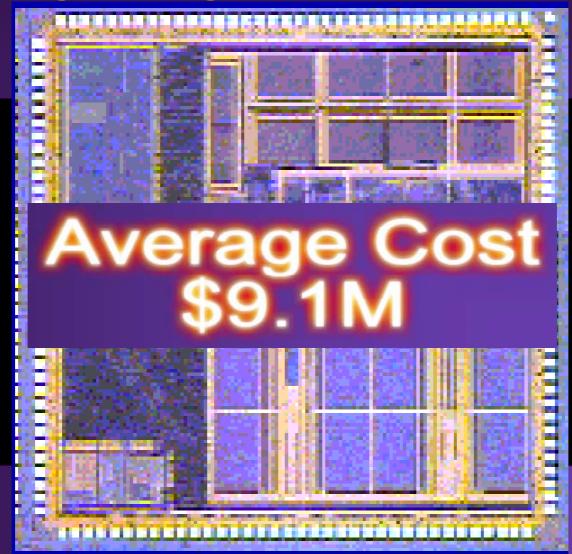
© 2003 Synopsys, Inc. (3)

Design Keeps Getting More Complex

		180nm	130nm	90nm	65nm
Computing	Parallelism				
	64 Bits				
IP	IP	30%	50%	70%	90%
Flow	Hierarchy	Large designs			
	Database	Partial	Partial	Integrated	Integrated
	API	Proprietary	Open	Open	Open
S, P&R	S, P&R	S&P - R	S&P - R	Integrated	Integrated
	Handoff	Placed Gates	Placed Gates	Layout	Layout
Timing	ТС				
	SI				
	L for Busses		1.5GHz	1.5GHz	1.5GHz
Clocking	Cycles across Chip	1	Few	Few	Many
	Clocking	Sync	Sync	Sync/Async	Sync/Async
	IR drop	Power	Power	Power	Power&Signal

Design Keeps Getting More Complex

		180nm	130nm	90nm	65nm
Power	Clock Gating				
	Multi Vdd				
	Multi Vth (leakage)				
Test	Scan				
	Mem Bist				
	Logic Bist				
	Design for Debug				
RET	OPC				
	PSM				
	DR for RET				
DFM	Statistical Timing				
	PD for DFM				
Analog	P&R	Manual	Semi-Auto	Semi-Auto	Semi-Auto
	Synthesis	Manual	Manual	Semi-Auto	Semi-Auto
Package	Spice Chip/Pack.				
	P&R Chip/Pack.				



Wafer Fabs Keep Getting Pricier

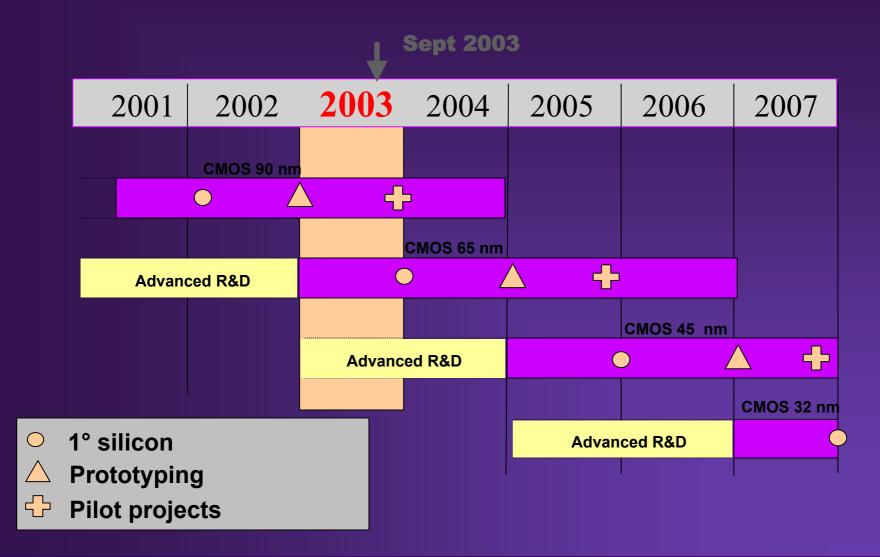
© 2003 Synopsys, Inc. (6)

Resulting in large NRE Costs

Source: IBS

Alliance between STMicroelectronics Philips and Motorola

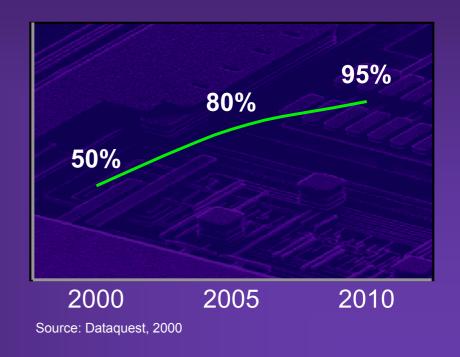
Crolles2 Alliance 300mm Pilot Line


Henri-Alain Rault General Manager Philips Crolles SAS

Crolles2 300mm

© 2003 Synopsys, Inc. (8)

CMOS Technology in Crolles2



© 2003 Synopsys, Inc. (9)

Solution: Increasing Volumes, Increasing Use of IP

<u>Volume (2002)</u>	<u>M Units</u>
Cable modem	111
Digital Cable Set-Top Boxes	48
xDSL modems/Line card	67
Cellular Phones (only 2.5G, 3G)	25
Satellite Set-Top Boxes	23
WLAN 802.11b	15
Video surveillance	15
Digital Still Cameras	10
Laser Printers	8
Auto display / dashboard control	6
Digital Camcorders	5
Auto Navigation	4
Digital TV Sets	4
Digital Copiers	2
WLAN 802.11a	2

IP Blocks as % of an SoC

Agenda

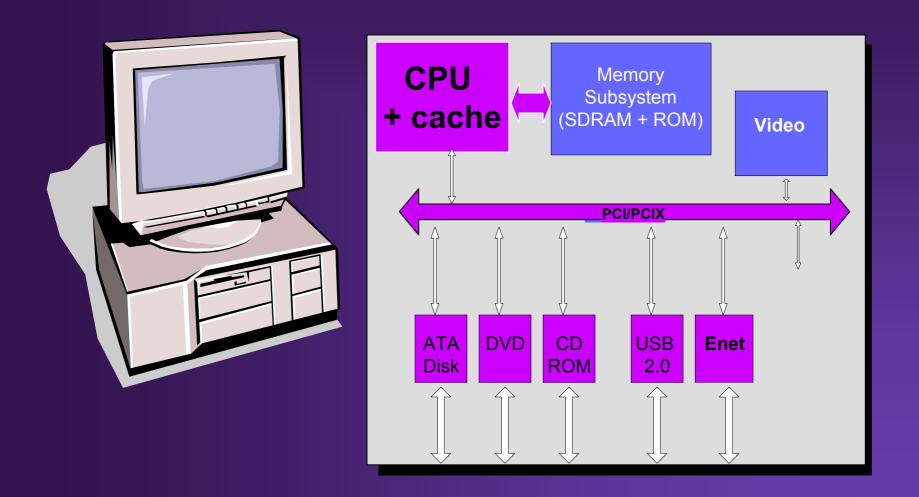
- A glimpse backward: models that have worked in the past
 - The PC Paradigm
 - Standards
 - Examples
- A glimpse forward:
 - More complex IP
 - Platforms
- Conclusions

What Works

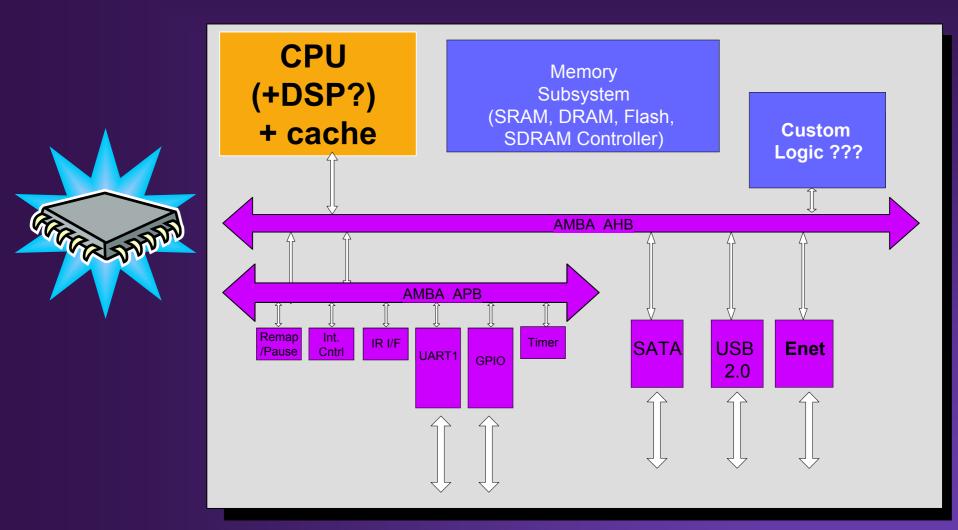
Semiconductors	\$141B
Micros, DSP	\$43.4B
Memory	\$30.8B
ASIC, ASSP	\$37.8B
Analog, Discrete	\$28.0B

PCs Scalable by Sticking to Standards

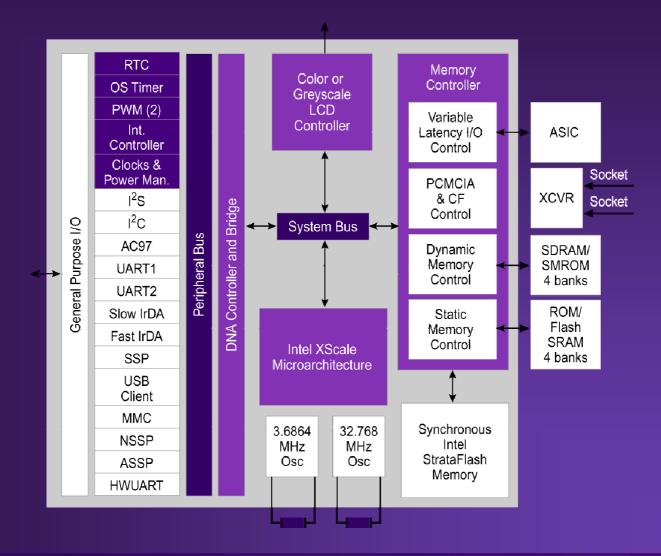
Name
Year
CPU
I/O Ports
OS
Graphic Modes


IBM PC AT 1984 Intel 80286 six-16 bit & two 8-bit ISA MS DOS EGA: 640x350

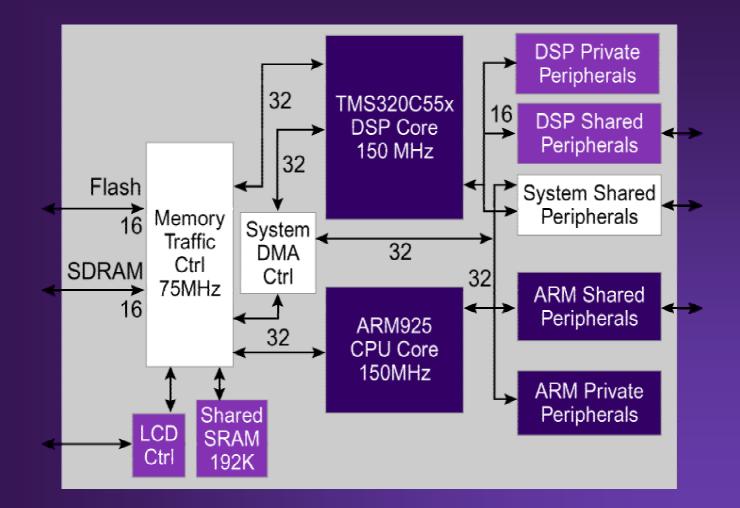
Name Year CPU I/O Ports OS Graphic Modes Dell Inspiron 5150 2003 Intel Pentium4 IEEE 1394, USB 2.0, 10/100 Ethernet Windows XP SXGA+



What's in the Box?

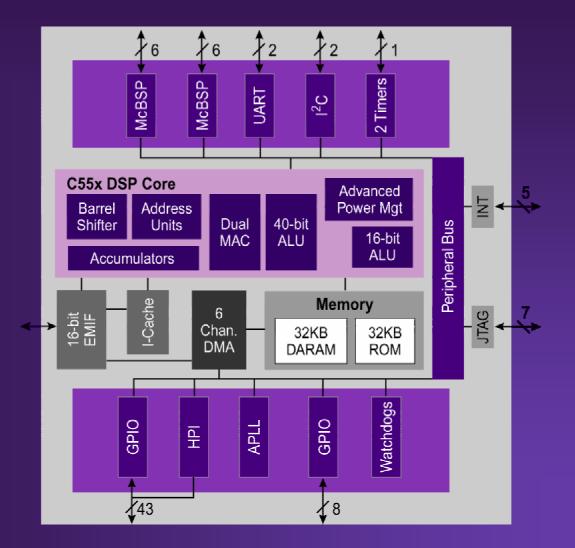


What's in an SoC?


Intel's XScale Architecture

SYNOPSYS[®]

TI OMAP 5910

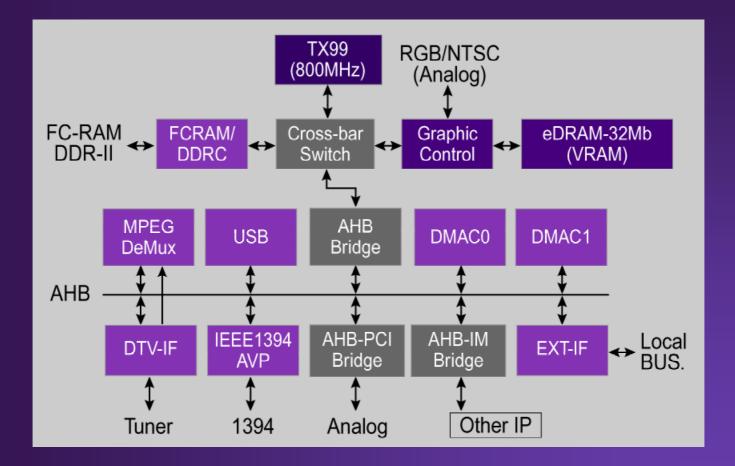


© 2003 Synopsys, Inc. (17)

Source: Microprocessor Report, Sept.. 2002

SYNOPSYS[®]

TI DSP C5501

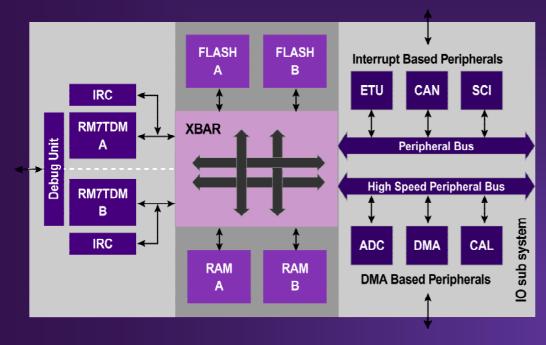


SYNOPSYS[®]

Source: Microprocessor Report, Jan. 2003

© 2003 Synopsys, Inc. (18)

Toshiba MIPs-based SoC



© 2003 Synopsys, Inc. (19)

Source: Microprocessor Report, Nov.2002

SYNOPSYS[®]

SoC Automotive Transmission Controller

- Transmission controller
- CPU: ST10

- On-chip RAM
- Embedded 4Mbits Flash
- Transmission controller
- CPU: ST10
- On-chip RAM
- Embedded 4Mbits Flash
- Dual ARM architecture
- Embedded Flash
- Internal cross bar switch

Convergence of Hardware Architectures

- Processors
 - ARM and DSP
- Memory
 - Over half the chip
- 10
 - Driven by (a few) standards
 - Sometimes processor-based (recursive)

Convergence of IP Market

Processors

- ARM and MIPS
- DSP not yet sorted out

Memory

Virage, Artisan, Mosys

• 10

Synopsys and ARC and Mentor

Agenda

- A glimpse backward: models that have worked in the past
 - The PC Paradigm
 - Standards
 - Examples
- A glimpse forward:
 - More complex IP
 - Platforms
- Conclusions

Critical IP Aspects

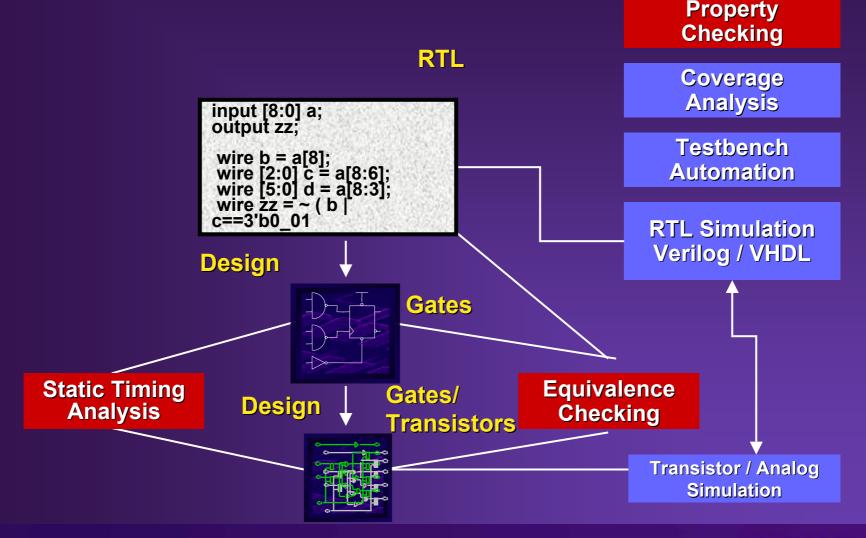
P design makes Soc design battle Development in a Won or loss of block in the sof block distant the sof block Poor IP desi

Good IP design makes

Bevelopment time and performance predictab

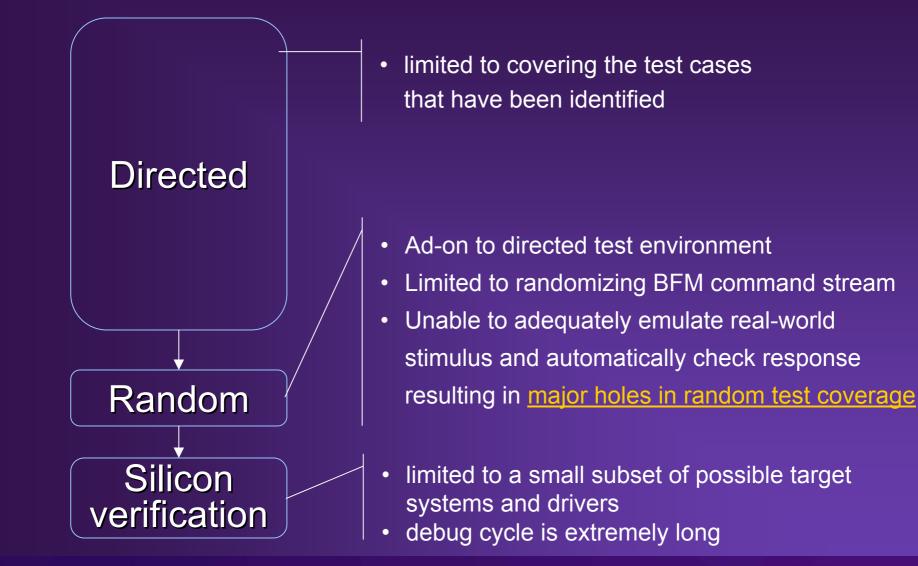
Integration effort linear with the # of blocks

© 2003 Synopsys, Inc. (24)

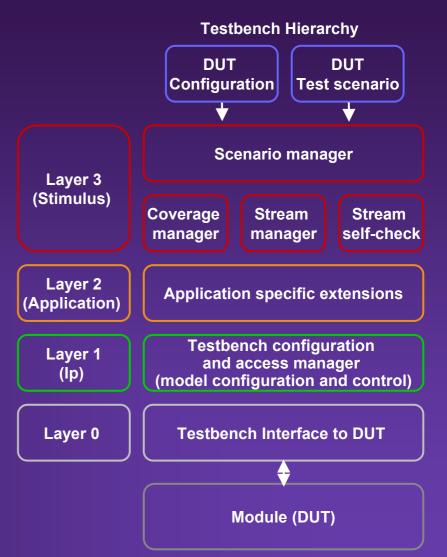

Critical IP Aspects

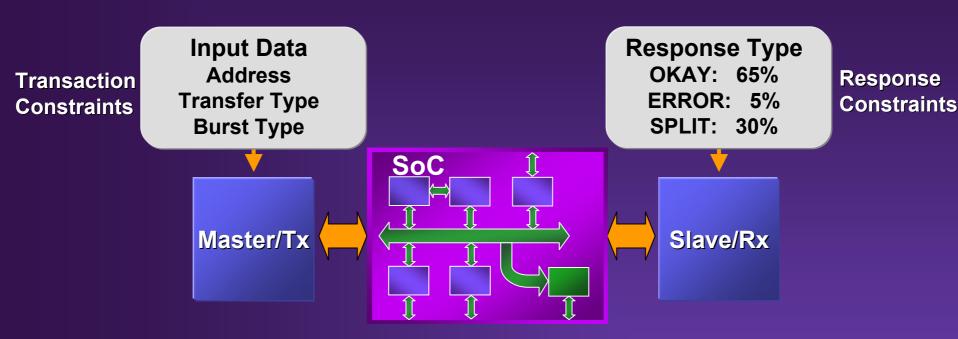
Functional Correctness – Complex design

- Across configuration space
- In any design context
- Interoperability Standards
 - Plug and Play in your design
- Configuration/Integration
 - Consistent, legal configuration
 - Tool flows supported cleanly
 - Complete deliverables



Functional Verification Includes Simulation and Formal Techniques


Typical Verification Methodology


"Smart" Verification Platform

- "Smart" test environment
 - Speeds up test authoring
- Self-checking architecture
- Reuse from sub-system to system level testing
- Reuse for other projects
- Resilient to design changes
 - e.g. only need layer-1 modifications
- Quantitative quality metrics
 - Code coverage
 - Functional coverage

Constrained Random Finds More Bugs

Many test scenarios with few commands

Finds complex sequences impossible with directed test

Optimal CRV Is Essential Because...

- ... it's the only way to find bugs that occur exclusively under complex combinations of
 - Bus traffic
 - Configurations
 - Parameters
 - Timing windows
- ... it is humanly impossible to think of all the cases CRV generates!!!

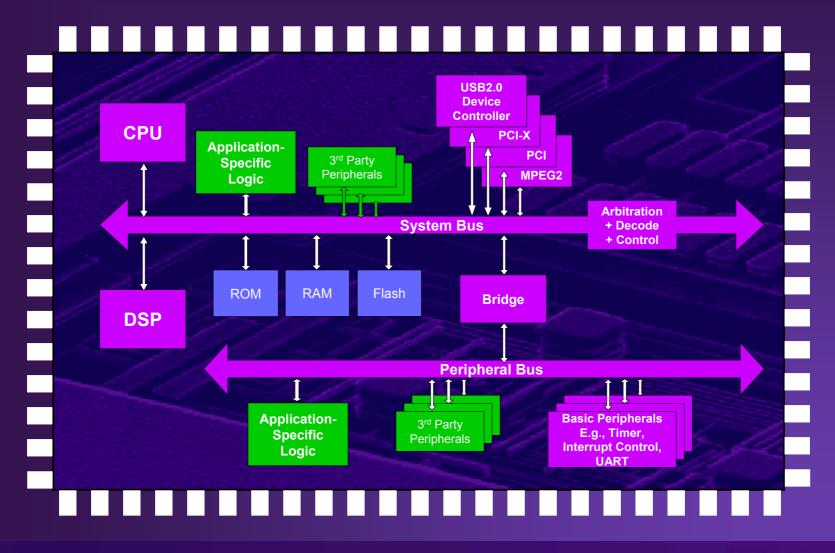
Experience Shows That It Works

- 3 "mature" cores reverified
 - In production from 6 months-3 years
 - Passed all compliance testing
 - Scores of tapeouts
- Optimal CRV found average 20-30 bugs
- 15-20% severe, no workaround

IP Products

Basic Library	Verification Library	Standard Cores	Star IP
 Data path Memory OCB/AMBA Building Blocks DW Verification Library 	 Ver. Suites AMBA PCI, PCI-X USB OTG Memory Models 	 USB1.0, 2.0, PCI, PCI-X, Ethernet 10/100, Bluetooth USB PHY 	 MIPS 4KE TriCore1 C166S V850E PPC 440
 Complete SoC infrastructure IP Improved QoR Smart Verification 	 Smart Verification Standard protocol verification Verification farms 	 Connectivity IP Interoperability Time to market 	 Partner licenses Synopsys supports

An SoC Perspective On Platform-based Design


- A Platform
 - An essentially defined architecture*: increased complexity & cost
- VSIA Established DWG On Platform-based Design
 - Platform-based design : "an integration-oriented approach emphasizing systematic reuse, for developing complex products based on platforms and compatible hardware and software VCs, to reduce development risks, costs, and TTM"
 - Observation: bottom-up to date by chip makers intent on reuse

*Gary Smith

From IP to Platforms

© 2003 Synopsys, Inc. (34)

The Future

- IP reuse up to 99%
- IP complexity comparable to SoC
- Standards are key
- Verification IP
- Platforms
- More functionality in SW

Economics: Standards-based IP

- Initial development
 - Understand the standard
 - Functional spec, architecture design
 - Implementation, verification, flow testing
 - Certification (test chips, boards, lab, …)
 - Documentation
 - Packaging & release

The typical core development project today takes roughly 5-20 person years to complete

Economics: Standards-based IP

Maintenance

- Bugs / enhancements
- Track standard
- Add new interfaces
 - -> Initial development
- Run regressions

The typical core maintenance today runs at roughly 1-2 person years per year

Strong Forces for Consolidation In IP Providers

Small vendors are just too high risk

Multiple vendors on one chip brings multiple challenges

Elements for greatly reducing risk:

- Choose widely used, trusted cores
- Inspect reuse methodology
- Insist on advanced verification technology

IP Providers

						Cumulative
Rank	Company	2001 (\$M)	2002 (\$M)	Growth	Share	Share
1	ARM	168.0	184.9	10%	20%	20%
2	Rambus	107.3	97.4	-9%	10%	30%
3	Synopsys *	45.0	73.2	63%	8%	38%
4	TTP Com	39.5	58.0	47%	6%	44%
5	ParthusCeva *	40.9	51.2	25%	5%	50%
6	Virage Logic	34.8	47.5	36%	5%	55%
7	Artisan	27.8	43.7	57%	5%	60%
8	MIPS Technologies	70.2	43.1	-39%	5%	64%
9	Mentor Graphics	30.4	25.7	-15%	3%	67%
10	Monolithic System Technology	9.5	24.9	162%	3%	70%
11	ARC International	16.5	17.7	7%	2%	71%
12	LogicVision	17.3	15.6	-10%	2%	73%
13	Nurlogic	15.1	15.4	2%	2%	75%
14	LEDA Systems	16.2	15.3	-5%	2%	76%
15	Imagination Technologies	11.4	15.3	35%	2%	78%
16	Newlogic Technologies	7.0	15.0	114%	2%	80%
17	Tensilica	21.1	12.8	-40%	1%	81%
18	Cadence Design Foundry	15.5	12.4	-20%	1%	82%
19	Virtual Silicon	13.7	10.1	-26%	1%	83%
20	Sarnoff	7.0	9.6	38%	1%	84%
	Total Top 20	714.0	788.8	10%	84%	84%
	Others *	177.4	145.0	-18%	16%	100%
	Total	891.5	933.8	5%	100%	100%

Source Gartner Dataquest April 2003

SYNOPSYS®

IP Market Segments and Growth

	2001	2002	Growth
Microprocessor and DSP Cores	301.4	273.4	-9%
Platforms	98.7	127.2	29%
Signal Processing	33.3	36.9	11%
Networking	44.4	42.6	-4%
Block Libraries	54.3	54.2	0%
Bus Interfaces	30.9	31.6	2%
Chip Infrastructure and Test IP	25.3	24.2	-4%
Other	73.2	85.6	17%
Memory	64.6	93.8	45%
Physical Libraries	32.9	39.5	20%
Analog Mixed Signal	25.3	27.3	8%
Rambus	107.3	97.4	-9%
Total IP	891.5	933.8	5%

Summary

- IP diversity matters
 - It is kept in check by standards
 - IP needs to work together platforms
- IP vendor size matters
 - IP needs to be certified by the vendor
 - The user certifies the vendor
- Consolidation is unavoidable

SYNOPSYS[®]

ightarrow Your Design Partner