Exceptional Continuationsin JavaScript

Florian Loitsch

Inria Sophia Antipolis
2004 route des Lucioles - BP 93
F-06902 Sophia Antipolis, Cedex,
France

http://www.inria.fr/mimosa/Florian.Loitsch

ABSTRACT

JavaScript, the main language for web-site developmemeis dot
feature continuation. However, as part of client-servenicwini-
cation they would be useful as a means to suspend the cyrrentl
running execution.

In this paper we present our adaption of exception-basetinten
tions to JavaScript. The enhanced technique deals withrdesind
features improvements that reduce the cost of the workraéor
the missinggoto-instruction. We furthermore propose a practical
way of dealing with exception-based continuations in thaext of
non-linear executions, which frequently happen due tdeaks.

Our benchmarks show that under certain conditions cortiions
are still expensive, but are often viable. Especially cdenpitrans-
lating to JavaScript could benefit from static control flovalgses

to make continuations less costly.

1. Introduction

Xml-http-requestare an integral part of Ajax and the now called
“Web 2.0". Basically they allow JavaScript (standardizesdEx-
maScript (ECMA-262 1999)) programs to interactively conmiau
cate with the server: a request is sent to a given URL and drece t
server returns, a callback is invoked. Both synchronousaayd-
chronous forms exist, but usually only the asynchronoum fisr
usabld]

Due to the asynchronous naturexafL.-http-requests program-
mers need to determine the work that needs to be done afte-the
guests returns, and pack it into the callback function. {Doations
could free developers from this work. Some languages (dwer8e
(Kelsey et al 1998)) feature first class continuations gven sim-
ple one-shot continuations (suspend/resume) would becigurfi
for our taskd

1Whenxml-http-requests are used synchronously they block the User
Interface until the call is finished. A usually unacceptéiddavior.

2 An efficient suspend/resume implementation is also interesting for co-
operative threading (see for example Fair Thre)).

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titisenand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright© ACM [to be supplied)]. .. $5.00.

JavaScript does not feature any construct similar to coatin
tions, though. Most interpreters carry the necessary niméion
to efficiently implement them, but as far as we know only Rhino
) gives access to its continuationsgéneral
continuations need to be implemented on top of JavaSchifils
level constructs.
Continuation Passing Style (CPS) lends itself for this taskl
with sufficiently high level features (in particular clossj CPS
can be implemented as a simple source code transformagen (s
for example[(Stedle 1976)). A program in CPS form, as the name
suggests, passes the current continuation directly asampier
to every function and the continuation is hence always aksl
This technique does indeed work in JavaScript, and some sys-
tems such as Linkd_(Cooper et al_2006) actually use it. Irks.in
the continuations are not exposed to the developers eitigr,
are used internally for threading and transparent asyncs
xml-http-requests.
CPS’s efficiency is however largely dependent on the speebbof
sure creation and tail call handling. Neither are fast imextrmain-
stream JavaScript implementations and two handwritterctben
marks fib andnested) were 30 and 130 times slower than the
native versions in our test setup. CPS transformed progfams
thermore change the call convention which makes it cumbezso
to interface with existing JavaScript code. We therefookéal for
different techniques without these drawbacks. Our focesally
concentrated on an exception-based technique similaret@rie
presented by Tad_(Tdo 2001) or Sekiguehial. (Sekiguchi et &l.
[2001). Their work does not present full fledged continuatibnot
only a way of suspending and resuming executions. In thepingt
of the next section we will show how to adapt the technique to
JavaScript. One of our motivations for this work was a Scheme
to-JavaScript compiler where we need full-fledged contiona to
supportcall/cc. In the second part we show how we extended
the given technique for this more general form of contiraradi
Work in this direction on a minimal language without sidéeefs
has already been publish 005).

1.1 Organization

Sectior? presents exception-based continuations and atiz@s
the work that has been done in this area. In Se€idiZP, 21[Z@n
we show how to adapt these existing techniques to JavaS8ept
tion[3d then shows how we can implemesntll/cc using similar
techniques. In Sectidd 4 we discuss some optimizations s\Way
handle callbacks are proposed in Secfibn 5. Seflion 6 preten
result of our benchmarks. Related work is discussed in Gedi
and we finally conclude in Sectifh 8.

http://www.inria.fr/mimosa/Florian.Loitsch

2. Suspend/Resumewith Exceptions

This section summarizes existing work on exception-based e
uations by Taol(Tab_2001) and Sekiguetial. (Sekiguchief .
[2001). In both cases the technique has been developedriepaa
ent migration and checkpointing, and uses Java/JVM andiar C
as target-language. As our work is targetted at JavaScepwily
use JavaScript for all code samples, though. Also, we areggoi
ignore JavaScript's higher-order functions during theéiahisum-
mary. A discussion of this property is delayed to Sedfioivthére
we evolve the summarized technique for higher order langgiag

21 ldea

1: function sleep(ms) {

2 suspend (function (resume) {

3: setTimeout (resume, ms);
4

5

s

Figure 1: Sleep implemented through suspend/resume

The goal ofsuspend/resume is to save the current state of an ex-
ecution and to be able to resume it later on. We propose ayibra
function suspend which, similarly to Scheme’'sall/cc takes a
function as parametesuspend executes the given procedure in
turn with a reified version of the current continuation asapae-
ter. Independent of the outcome of this call (in particulacep-
tions are ignored), it then halts the execution. The progisaef-
fectively stopped, until an external event invokes the icarattion

to resume execution. Once resumed the continuation hasdserv
its purpose and becomes invalid, so it can not be invokedimult
ple times. Figur€ll shows hosuspend would be used to create
the missingsleep function in JavaScriptsuspend starts by ex-
ecuting the anonymous function of lirf® This procedure passes
the given continuatiomesume to JavaScript'setTimeout, which
prepares a timeout with the continuation as callback. Tiwgn
mous function then returns, asdspend halts the execution. After
ms milliseconds JavaScript triggers the timeout-event andkes
the stored callback (theesume-continuation), which resumes the
execution.

The implementation of theuspend function is not local and its
presence requires the instrumentation of all other funsti@cach
function needs to be able to save its current activation drélar
cal variables, and current position within the code) andetsiare

it from this data. Contrary to CPS where the continuationlis a
ready given as parameter, we create the continuation ongnwh
the suspend function is called from inside the programuspend
raises a special exceptfbwhich triggers the saving in each live
function. The important work during suspension is hencesdmn
each function separately.

As expected, restoration rebuilds the call-stack by askiagh
function to rebuild its activation frame. Once the callesthas been
rebuilt the continuation continues normally.

Although suspend and resume are tightly coupled we present
them in separate sections. This makes sense becausesiend
code might be used independently (see Sefidn 4.3).

2.2 Suspend

During suspension the whole call-stack needs to be saved. As

JavaScript does not give access to the stack itself, alltifum

3The exception starting the saving gives the whole technigugame, but
is itself not essential. Another convention could use aigpeeturn-value
to trigger the saving. Depending on the interpreter (or tliedmpiler) this
could even be faster.

suspend: [e.h = h; throw e;

g:| try { .. suspend(h) .. } catch(e) { save; throw e; }
f: try { ... g() ... } catch(e) { save; throw e; }
toplevel: try { () } catch(e) { save; throw e; }

l try { toplevel () } catch(e) { e.h(continuation); } l

Figure 2: A global view of saving mechanism.

are instrumented so they can save their activation frame.stim
of all these activation frames represents the completestadk.
To simplify the description (and implementation) we wrap top-
level into a function. The new top-level hence consists dfrgpke
call to a function which contains the original top-level.

Saving is initiated by theuspend function when it throws a special
exception. The exception triggers the saving code in eauttifun.
Figurel2 presents a high level view of the suspension mesmani
Whensuspend is called with paramets, it stores the given pro-
cedure in a special exception. It subsequently throws thepgion
which is intercepted by the first (youngest) function on ttaels.
After having saved its activation frame the function thethrews
the exception. The same exception is then intercepted bypeke
function, until finally at the bottom a global exception hkenctap-
tures the exception. The handler builds a proper contionaibject
out of the saved data, and passes it taitfienction which had been
given tosuspend. Whenh returns the execution is halted.

1: function sequence(f, g) {
2 print(’1: ’ + £0));

3: return gQ);
4

Figure 3: Running example

1: function sequence(f, g) {

2 var tmpl;

3: var index = 0;

4: try {

5: index = 1; tmpl = £(0);

6: print(’1: > + tmpl);

7: index = 2; return g();

8: } catch(e) {

9% if (e instanceof ContinuationException) {
10: var frame = new Object();

11: frame.index = index; // save position
12: frame.f = f; frame.g = g;

13: frame.tmpl = tmpl;

14: e.pushFrame (frame) ;

58 }

16: throw e;

17: }

18: }

Figure 4: with suspension code

Figure[3 takes a closer look at a single instrumented funciibe
original non-instrumented version can be found in Figliren&d-
dition to the previously mentionetky/catch, anindex variable
has been introduced which represents the instruction groiNbte
that only calls potentially leading to suspend (dubbed “unsafe
calls”) need to be indexed. The call faint is safe, and there-
fore doesn’t update théndex variable. The correct identification

of safefunction calls needs be determined by static analyses (see

SectioZB). Theatch part responsible for saving starts at lie
A new frame object is constructed and filled with the localakles

and the index variable. In this example the exception itseffes
as container for the continuation data, and the frame olgéence
stored in the exception. Finally the exception is rethrown.

2.3 Resume

At the end of suspension the global exception handler irsvdike
function h which had been given teuspend (see SectiofL22),
but then halts the execution. The program can only resunae if
external event triggers the invocation of the continuatidsually
h registers the continuation (which has been given as paesjrast
call-back. In the example of Figuk® 1 the continuation wasest
as call-back for the timeout-event.

1: function sequence(f, g) {

2 var tmpl, goto = false;

3: if (RESTORE.doRestore) {

4: var frame = RESTORE.popFrame() ;
B8 index = frame.index;

6: f = frame.f; g = frame.g;

7: tmpl = frame.tmpil;

&is goto = index; // emulate a jump
9: }

10: . <suspension-code omitted>
11: switch (goto) {

12: case false:

13: case 1: goto = false;

14: tmpl = £(0);

15: print(’1: ’ + tmpl);
16: // fall-through

17: case 2: goto = false;

18: return g();

19: }
20: . <suspension-code omitted>
21: }

Figure 5: with restoration code

When the continuation is invoked it starts by setting a dloba
restoration flagRESTORE.doRestore. Subsequently it calls the
last (oldest) function of the saved stack (in our case thdaogl).
Each function is then responsible for restoring its origactiva-
tion frame, and calling the next function of the initial dtadhe
global flag serves as switch for restoration mode. The saved a
tivation frame itself too is accessible through a globaliatle.
Figure[® shows the instrumented version of our running examp
(Figure[3). A test first checks if the program is in restonmatay
normal execution mode. In the first case it restores the saltithe
local variables, and jumps to the saved position. Eventulad ex-
ecution arrives at the saved location and invokes the nexitifon
(still in restoration mode), which in turn restores itseitiacalls the
next function. The restoration is finished when #wpend func-
tion is reachedsuspend clears the restoration flag and returns.
The execution then continues normally.

In our example awitch-statement was introduced to emulate the
jump to the target given by thindex variable. In general blocks
are converted intewitch statements and branching constructions
are modified so they reenter the saved branch. Function aals
transformed into A-normal for [al1993), sodh
ready calculated parameters are not executed multiplestifig-
ure[@ gives some examples of these transformations. Additio
material can be found irl_(Tlo 2001) and (Sekiguchilst al.1p001
The goto emulation makes code examples more difficult to read
and we will from now use an informaléto index;” form, too.
Figure[T shows the completequence-function with suspension
and restoration instrumentation.

1: { 1: switch (goto) {
2: safel; 2: case false: // default mode.
3: safe2; 3: // mo restoration
As unsafe(); 45 safel; safe2;
5: safe3; 5: // jump to unsafe statement
6: } 6: case 1: goto = false;
s unsafe() ;
8: safe3;
9: }
1: if (test) { 1: if ((goto && goto <= 2) ||
2: umsafel(); 2: ('goto && test)) {
3: umnsafe2(); 3: switch (goto) {
4: } else A8 case 0: case 1:
5: unsafe3(); 5s goto = false;
6: unsafel();
s case 2: goto = false;
8: unsafe2();
9: } else {
10: goto = false;
11: unsafe3();
12: }
Figure 6: Goto examples
1: function sequence(f, g) {
2 var tmpl;
3: var index = 0;
4: var goto = false;
5: if (RESTORE.doRestore) {
6: var frame = RESTORE.popFrame() ;
78 index = frame.index;
8: f = frame.f; g = frame.g;
9: tmpl = frame.tmpl;
10: goto = index;
11: }
12: try {
13: switch (goto) {
14: case false:
15: case 1: goto = false;
16: index = 1; tmpl = £();
17: print(’1: ’ + tmpl);
18: case 2: goto = false;
19: index = 2; return g();
20:
21: } catch(e) {
22: if (e instanceof ContinuationException) {
23: var frame = new Object();
24: frame.index = index; // save position
255 frame.f = f; frame.g = g;
26: frame.tmpl = tmpl;
27: e.pushFrame (frame) ;
28: }
29: throw e;
30: }
s B

Figure 7: with suspension and restoration code

2.4 Suspend/Resumein JavaScript

The previous sections give an overview sifspend/resume in
first-order languages like C++ or Java/JVM. JavaScript, évex,

is a higher order language and hence features functionssas fir
class citizens. In this section we will discuss the implimas of
this property.

JavaScript's functions have semantics similar to Schenoeepr
dures. That is, free variables are lexically scoped andnhduttie
creation of functions the current environment is saved endio-
sure. Closures contain hence references to variables ivhtan
framed] This however poses problems when the original call-stack
is destroyed by a call teuspend. A similar call-stack is rebuilt
during theresume, but the closure’s references are still referenc-
ing variables of the old stack. The following example dent@iss
such a case:

g0 ; // should print 3, 2

1: function £() {

2: var x = 1; var y = 2;

9 var g = function() { print(x, y); };
4: suspendCall();

5: x = 3;

6

e

}
When the program reaches lidghe stack structure resembles the
diagram of Figurdld8a. The call-stack contains a list of atitn
frames withf’s activation frame on top. The frame contaifis
three local variableg, y andg. The variableg points to a function
which in turn captures’s x andy. For explanatory purposes we
have marked locations of this original call-stack with star
During the call tosuspendCall the continuation mechanism
throws an exception and saves the variables of all stackefsa
When the execution is resumed a similar stack is reconstiuct
This new stack can be seen in Figlite 8b. The restored cal-ita
(as intended) similar to the original call-stack, but thesdreg still
references variables of the old call-stack. This does net Emy
problem for constant variables like but is incorrect for all others.
In our example thex of the new frame is changed, bgitwill still
reference the unchangedand hence incorrectly prirt

Call-stack: Restored Call-stack:

f: x:1 12 H Closure : q . :
i\" y: J [} Iﬁ"‘ I f: x:1 ‘ y:2 ‘ g |> Closure
(a) before (b) after

Restored Call-stack:

L[]]

f:

(c) boxed
Figure 8: Call-stacks before and after callcc-call.

Our solution is to box all non-constant escaping variabéesan-
servative super set of the concerned variables). The dosiit
still reference an outdated variable, but the referenceddbdhe
escaped variables will be in sync with the equivalent véeslof
the new stack-frame (see Figlle Hc).

41n fact, most JavaScript implementations currently justesthe call-stack
itself in the closure.

5Scheme (and other) compiler writers will not be surprisedhgysolution.
Boxing of escaping variables is a common practice in Scheonepiders
[[1986), but usually for entirely different reas.

Another subtle difficulty is introduced by pointers to fuiocis
(which could appear in C++ to0). If the variable that holds ¢all-
target is modified the call will not work as expected. Fiduae®n-
tains an example which demonstrates how this can be a problem

1: function() {
2 var g = function() {
3: g = false;
4 suspendCall();
5: Y
6: g0
"
(a) call-target g is modified
1: function() {
2: var g = function() {
3: g = false;
4 suspendCall() ;
&g g
6: var tmp = g;
7: tmp () ;
8: }

(b) call-target is constant

Figure 9: modified call-target

The call at line6 depends on the local varialgenhich is modified
after the invocation. During restoratignis correctly restored to
false and the program then jumps to the call location. Just calling
g again is however not possible anymore. The solution to this
problem is simple. One just needs to introduce additionaallo
variables so that calls do not depend on variables that anegetl
outside their scope. Figuf¢ 9b shows the corrected version.

3. Call/cc

Suspend/Resume is sufficient for asynchronous communication
and cooperative threading. In the context of Scheme (aret tth-
guages) full fledged continuations are however needed SEcison
presents the changes to evobiespend/resume to call/cc.
Suspend/resume basically pauses the control flow. Instead of
returning, suspend aborts the execution until an event invokes
the resume-continuations. With the exception of event-handling
code, the program continues semantically as if no instvndtiad
been executed between the end of swepend-function and its
continuation.

Call/cc-continuations, on the other hand, are more flexible. They
can be invoked at any time and multiple times. In particuksers
are free to execute code between the returrzafl/cc and the
invocation of the captured continuation. This raises anoirgmt
question: what happens to (stack-)variables that are neddifiter
the continuation has been captured? Semantically theréware
possibilities: - either these variables are restored tovéthee they
had when the continuation was captured; - or they should fbe le
at their new value. Whereas the first choice could be useful fo
checkpointing, etc. it is the latter one which is generatipgted.
Similar to Scheme we want hence modifications to variablesine
when continuations are executed.

The function in Figur€l0a, for instance, would yield diéfet re-
sults depending on the chosen semantics. After the firstatian

of the continuation therint in line 4 should obviously printt,

but more importantly (due to the assignment in the followling)
other invocations could then either continue printingvalue at
time of suspension) or could then priat 3, etc. We would like
our technique to print the incrementing sequence, but oevipr
ous suspension technique ignores modifications that happten

1: function () { 1: function () {
2: var x = 1; 2: // restoration code
3: callccCall(); 3 // producing ’frame’
4: print(x); 4 500
5: X =x + 1; 5: callccCall();
6: } 6: print(x);
7: x =x + 1;
(a) call/cc example 8: if (frame)
9: frame.x = x;
10: }

(b) update at the end

1: function () {

2: var x;

& var frame = false;

A if (RESTORE.doRestore) {
5: frame = RESTORE.popFrame() ;
6: index = frame.index;

7 x = frame.x;

8: goto index;

9: }

10: try {

11: x =1;

12: gotoTargetl: callccCall();

13: print(x);

14: x=x+1;

15: } catch (e) {

16: /* save-code */

17: } finally {

18: if (frame) { frame.x = x; }
19:

20: }

(c) complete version with update in finally

Figure 10: Call/cc with side-effects

stack-variables after the continuation has been saveauldhave
printed1 all the time: ax does not escape it is not boxed (see Sec-
tion[Z24) and during the construction of the continuatios saved
with value1. Every restoration of the original call-stack would sub-
sequently restore this value. There are (at least) two waybt
tain the chosen behavior. One can either box all muted Vesaly
track the changes and update the continuation. Boxing isreias
implement but for efficiency reasons we use the second tgaani
Supposerame is the name of the continuation structure that holds
all local variables. We could then just add a new line updgtire
continuation at the end of the function as in Figrk 10b.

If the function has already been suspended once, thefirthee
variable is notfalse and the value foxk is updated in line. The
program now correctly outputs, 2, etc. In general just updating
at the end of the function is however incorrect. There areyman
means to exit a function, and only few go through the last line
of a function. We therefore use #inally clause of atry/-
catch (which incidentally has to be used for continuation support
anyway). This way variables are always updated beforergeiie
function. The complete version (still without suspensiode&) can

be found in Figur&lOc.

4. Suspend/Resumeand Call/cc Optimizations

This section presents some optimizations to the previopsty
sented implementation. All important technical aspecteehal-
ready been discussed in previous sections, and we will hemlye
focus on implementation and efficiency issues. The teclesiqu
shown in this section do not add any functionality but suddee

reducing the modifications to the original source code thaking

the code lighter and faster. In the remainder of the chapgewil

usecall/cc andsuspend/resume indifferently as all optimiza-
tions apply for both scenarios.

We will first present our hoisting- and tail-call optimizatis in

separate sections and then discuss miscellaneous ogtongzan

the following section.

4.1 Hoisting Instructions

During the restoration of the call-stack the program needsxe-
cute a jump to the saved target which is an expensive operatio
JavaScript. The following optimization moves the targetsater
locations (thereby skipping instructions) which gengraéiduces
the cost of the jumps. The skipped instructions are dugitat the
jump-origin, and are executed before the jump.

As discussed in Sectidn 2.3 JavaScript does not featurgatry
instruction, and the body of functions has to be transforrnwed
emulate jumps. Most constructs surrounding a jump-targetirio
test if they are executing an emulatgsto or if they are executed
normally. We therefore define the cost of a jump-target totbe i
nesting-level. The more nested a target is, the more it ¢egés in
normal operation, as the tests have to be done all the time).

The goal of this optimization is to reduce the cost of jumigeéss. It
basically copies code from the jump-target to the jumpiorighe
copied instructions are then already executed before thp,jand
the jump-target can be advanced so it skips the copied cdue. T
moved jump-target might leave constructs, thereby redutie
nesting-level, and as a result one could avoid its instruatiem.

In Figure[T1 we demonstrate on an example the impact this opti
mization can have. In the first code-snippet we informalesthe
need for a jump to the unsafe call (labeled with “target:'heBec-
ond code-sample shows the expensive transformations theéede
emulate thigoto-instruction. As the unsafe call is embedded in a
while-loop and anif, both constructs need to be transformed for
the emulated jump. In Figufell1lc we copied the targets statem
to the jump-origin in lined. The call of linel5is therefore already
executed before the jump, and the jump-target has been @etyan
to the instruction following the call. Thef-statement is finished,
and the next instruction would thus be the test of th&le-loop
(line 9) which is equivalent to thehile-construct itself. The new
jump-target is hence just before tiieile-statement. Both the loop
and theif-statement do not contain any jump-targets anymore and
can hence be left untransformed (Fighre 11d).

The suspension code is left nearly untouched. The sole ehang
rectifies the scope of the suspensiaty/catch. As the restoration
code now contains calls to unsafe locations too, it is necgss
enlarge the exception-handler so thattlrg-keyword is before the
if-statement in the beginning of the function.

Due to implementation-specific reasons we currently resthie
copied code to be at most the targeted call and a potentiginass
ment of its return-value. In the future we would like to reradkis
limit and experiment with bigger copies.

Concluding this section we would like to point out that thigie
mization is not always beneficial. Blocks containing jurapgets
are generally transformed taritch-statements, with one excep-
tion: when there is only one jump-target and the target ist (@&
the first statement. In this case the block can be left untedichhe
presented optimization however advances jump-targetscanld
move the target from the first statement to the second stateme
In this case the previously untouched block would then bestra
formed into aswitch-statement. Our implementation does not yet
take into account this special case.

done when it was suspended. Functfoould hence restore itself

if (RESTORE.doRestore) { if (RESTORE.doRestore) { and then reexecute the callgoln the optimized versioti should
. e callh (a function which might not even be visible £ directly to
goto target; goto = 1; skip g.

In this section we continue evolving our continuation teghe
print(’before’); switch (goto) { so that a tail-call optimization becomes possible. In the mer-
Qi (sl case falge: sion functions save a pointer to themselves in addition &r th

gilxzzésigc;p {) : Caﬁznﬁ(before’); activation-frame data. This pointer is then looked up dyréstora-
T feSemrre ~ while (goto == 1 || test1) { tion to retrieve the next function. Tail-calling fur_lctloase simply
} else { switch (goto) { skipped during saving and are hence removed in the resttaekl s
print (Pif’); case false: print(’loop’); Inourrunning example, the tail-callingwould not save its frame
target: unsafeCall(); // fall through and would hence not appear in the saved continuation dataadu
} case 1: restoration functions must not just call the same next foncas
if (goto == 0 && test2) before, but have to retrieve the function pointer in the riexine.
print (*after’); ld°s°mething5 The functionf would retrieveh’s frame (asg did not register its
. e frame), and therefore cailas next function.
(&) gote-example iiegn (o) o The benefits of this optimization are twofold: the number cti-a
case false:
0 ot (Ci); vation fr_am(_es is _reduced, and t_he instrumentation f_orctaiil-lo-
// fall through cations is simplified. Indeed, tail-calling functions wilbt be re-
case 1: goto = false; stored, and it is hence unnecessary to add jump-emulatchgir
unsafeCall(); tail-call locations.
}

}

print (’after’);

1: function sequence(f, g) {
2 var tmpl, index = 0, isTail = false;
3 if (RESTORE.doRestore) {
4: var frame = RESTORE.popFrame() ;
. . Ok index = frame.index;
(b) jump to the call itself = f = frame.f; g = frame.g;
7 tmpl = frame.tmpl;
8

D ®

1: if (RESTORE.doRestore) if (RESTORE.doRestore) { // restore remaining stack:

2 { ce var callCcTmp = RESTORE.callNext();

&g goto = 1; 10: switch (index) {

4: unsafeCall(); switch (goto) { 11: case 1: tmpl = callCcTmp; break;

5: goto target; 1: unsafeCall(); break; 12: }

6: } 13: goto index;

7: print(’before’); } 14: }

8: target: switch (goto) { 15: try {

9: while (testl) { case false: 16: index = 1; tmpl = £(0);

10: print (’loop’); print (’before’); 17: gotoTargetl: print(’1: > + tmpl);

11: if (test2) { case 1: goto = false; 18: isTail = true; return g();

12: doSomething; while (testl) { 19: } catch(e) {

13: } else { print(’loop’); 20: if (e instanceof ContinuationException &&
14: print(’if’); if (test2) { 21: lisTail) {

15: unsafeCall(); doSomething; 22: var frame = new Object();

16: } } else { 23: frame.index = index; // save position
17: } print(°if’); 24: frame.f = f; frame.g = g;

18: print(’after’); unsafeCall(); 25: frame.tmpl = tmpi;

. . o 26: e.pushFrame(frame, this, arguments.callee);
(c) unsafe call copied to jump-origii } 27: 1
print(’after’); 28: throw e;
29: }

(d) with goto-emulation
Figure 12: complete version with assignment in restoratimte.
Figure 11: jump to before and after the call.

Figure[I2 shows the new (suspension and restoration) code of
. o the sequence-example (Figur€l3). We will first focus on the sus-
4.2 Tail-call Optimization pensic?n code, and hence skip the restoratitrfor now. As al-
The continuation-technique which has been presented oo ready mentioned in the summary a pointer to the currently run
ensures that a restored call-stack is similar to the origina. Like ning function is saved during suspension. In JavaScriptghinter
the original stack the restored stack would have the saméeum is readily available as a combination of tkais-keyword and

of activation frames and each activation frame would hagesttme thearguments.callee (line 26). The tail-call optimization itself
values as the original stack. Often not all of these framesstll can be seen in lind8 and line21. Tail-calls are now specially
needed, though. Suppose&allsg which in turn tail-callsh. When marked (theisTail-variable is set tecrue), and if a function is
the continuation has been captured durjig tail-call, then the tail-calling then it skips itself during saving (due to ttestin line
restoration could skig if £ calledh directly. In practice changing 21). Tail-calling functions are hence ignored during saviagd it
the £'s call target is however not that easy. Each function restor is the restoration part’s responsibility to determine axecete the
itself and is then responsible to reexecute shenecall as it had next non-skipped function. The necessary informationsgiethe

saved continuation through the means of the function-pantn-
stead of calling the same previous call as before one justcas
retrieve the next function of the continuation-state arnoke it in-
stead. In order to clarify the code we hide this operation wea
method-call RESTORE. callNext) in line 9 instead.
The result is then assigned to their respective variabfeangi).
Thanks to the hoisting-optimization this task is simplifithe
original call in the body is left untouched, and the copied
simply replaced by the temporary variakkel 1CcTmp which holds
the result of theallNext-call: whereas we previously would have
hadtmp1=f () ; in line 11, we now havetmpl=callCcTmp;.
We want to point out that this optimization is not a subsgtut
for (expensive) proper tail-recursion handling (as presnn

I 7)). Frames are only discarded wihen
tinuations are taken or invoked, which is clearly not sudiintifor
proper tail-recursion (as required for Scheme). The maimefit is
hence not the removal of the frames but the removal of ingnim
tation for tail-calls. In some cases the optimization caoiévthe
complete instrumentation for functions: if a function’ssafe calls
are only at tail-call-locations, then it does not need asgriimen-
tation at all.

4.3 Miscellaneous Optimizations

This section groups several optimizations that are eitheismall
to merit a separate section, or are not yet sufficiently expl¢and
hence subject for future work).
As call/cc is usually only present in few locations, most calls
do not (and often even can not) reach amy1/cc. An optimiz-
ing compiler should hence use standard compilation teci@siq
[1997) to reduce the number of unsafe call-locetio
We dub “unsafe” call-location calls that might eventualgach a
call/cc. In JavaScript one can modify global variables through
several ways, most of which are difficult to detect (amongsers
theeval-function, and the globahis-object). JavaScript itself is
hence difficult to optimize in this area. Even though it is gfen
ally possible to mark most local functions as safe, callsltba
functions need to be considered unsafe. However, when dapaS
is used as compilation target for a different language, theh
an analysis can be often much more effective. We have imple-
mented an ad-hoc analysis in our Scheme-to-JavaScriptilsmp
(Scm2Js). Even though Scheme is highly dynamic this analysis
was able to detect the absence of continuations in 10 out of 11
benchmarks. The remaining benchmark (a meta circulapratsr
making heavy use of higher-order functions) had about 759%s of
functions instrumented.
One should also consider handling functions by hand. Eafeci
libraries are possible candidates for this special treatniéthe
library itself does not use continuations then only expbftigher-
order functions need to be instrumented. To keep librareerdc
we usually export both versions of these functions (one -unin
stremented and one instrumented). As a bonus even corndinuat
heavy programs might prefer calling the uninstrementecd:-fun
tion when they can prove that the sent parameter does ndténvo
call/cc. In Scm2Jsimportant functions likefor-each, map and
others have been implemented this way. The closures semde t
functions are often small anonymous lambdas that can béyeasi
analyzed.
In a similar vein it can be beneficial to create versions witho
restoration-code (and hence withgutto-emulation). This version
is sufficient in all but one context: during stack restonatibe
full version is needed. The switch to full version can happén
several occasions: during saving a function might save tifle f
version instead of itself; or theal1Next method of theRESTORE-
object could translate the original version to the full vensand
call the latter. Even without this optimization the codewtto is

already extensive and we therefore have not yet implemehted

technique. Initial tests omak (one of our benchmarks) showed
potential, though. The new version was about twice as fathes
old one.

5. Callbacks

Using our call/cc-framework the top-level is responsible for
catching the suspension-exception. In web-browserdyazkk oc-
cur however outside the dynamic extent of the original myel.

A call/cc inside a callback would hence fail. In this section we
review the importance of callbacks, and discuss our salutighis
issue.

JavaScript is usually used in web-browsers where it is resipte

for the user-interface. Web-browsers provide a (mostlghaard-
ized way, the Document Object Model (DO 000),
for accessing visual elements through JavaScript. A rexupat-
tern involves the use of callbacks to react to events. Celitbare
functions stored in the DOM which are then invoked when ameve
occurs. Another form, not involving the DOM, can be found ig-F
ure[d where the timeout-callback had been used to resumexthe e
ecution of the suspended program. As already mentioneddn Se
tion[Z2 suspended programs can only be awaken throughmekter
callbacks. Due to the ubiquity of callbacks it is hence int@or to
allow call/cc to work inside callbacks with minimal effort for the
programmer.

The solution we adopted is completely transparent. ddie./cc-
exception handler signals through a global ftagLCC.handler

its presence (or absence). Every function starts by testiadlag.

If the handler is present the execution continues normltlye flag

is not set, though, then the function is not inside the dyaxrient

of a call/cc exception handler. In the latter case the function
creates the exception handler itself before continuing.

1: function callCcHandler(f, f_this, args) {
2: try {

3: " CALLCC.handler = ’present’;

4: f.apply(f_this, args);

5: } catch (e) {

6: 000

7: } finally {

8: CALLCC.handler = ’absent’;

9: }

0:

~

}

Figure 13:callCcHandler creates &all/cc-exception handler.

To avoid code duplication we have implemented the function
callCcHandler (Figure[IB) which contains thery/catch orig-
inally found in the top-level. It takes a function as paragnet
and invokes it inside thery/catch. Functions that are invoked
through the handler, are hence inside a dynamic extentaeia/-
cc-exception handler.

Initially CALLCC.handler is set t0o’absent’. The first function
that is executed will hence encounter titesent-state and there-
fore execute theallCcHandler function.callCcHandler cre-
ates atry/catch and set€£ALLCC.handler t0 ’present’. The
following functions are then protected and do not need tbthal
handler again. When the top-level is lefal1CcHandler sets
CALLCC.handler to absent again. Callbacks that occur afterward
encounter the absent ’-state again and will hence reinvoke the
callCcHandler.

Figure[I# shows the few lines that are added to each function.
If the function has been invoked outside the dynamic extémrt o
continuation-try/catch (as it happens for the top-levehdhe case

1: function £(...) {

2: if (CALLCC.handler === ’absent’) {

3: return callCcHandler(arguments.callee,
e this,

5: arguments) ;

6: }

s soa

Figure 14:Try/catch is triggered on demand.

of callbacks) then the function invokes11CcHandler which cre-
ates an exception-handler. The functia1CcHandler would set
CALLCC.handler to ’present’ and invoke the given function.
The variablesarguments.callee (a pointer to the running func-
tion), this andarguments contain enough information to restart
the function.

6. Benchmarks

Firefox trampolines & call/cc

Bl Suspend/Resume2 Calllcc2

Bague = ; ‘1154 ‘ !
Fib S 13§
Mb100 = 4P 1
Mbrot = 501
Nested = = 13 0
Quicksort = 1%
Sieve = Ilois
Tak = : : : 3.4 4.1
Towers = %%
Even/Odd [® 13 ‘ ‘
Ewal iy
(a) Firefox
Opera suspend & call/cc
Bl Suspend/Resume2 Callicc2

1 2 3 4 5 6 7 8 9 10
Bague = " " I % 4‘ T ‘ T ‘ T l T T T T
Fib = \8.2
Mb100 = 59,2
Mbrot = 350
Nested = L2477
Quicksort ~ |Sm———C , ,
Sieve = = .8
et S— I I I I I I \.E I i 116.9
Towers = =
Even/Odd = }51 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Ewal 547 .)))

(b) Opera

Konqueror trampolines & call/cc

Ml Suspend/Resume2 Call/icc2

1 2 3 4 5
Bague p—

Fib = 138
Mb100 = L%

Mbrot = L9

Nested = 1222

Quicksort = Lhog

Sieve = = 1.7

Tak = ‘ 20, 13,1
Towers = %>
Even/Odd = 18

Ewal tP

(c) Konqueror

Figure 15: Impact of suspend/resume and call/cc instruatient
Raw code is the 1.0 mark. Lower is better.

Exception-based continuations instrument the originalecand
thus slow down the program even when continuations are never
used. The impact however is largely dependent on the given pr
gram. A sequential program without function calls is neany
affected, whereas small functions with many function calte
significantly slowed down. A static analysis (like thatlofnfns
(1991)) is usually able to reduce the number of instrumefitad-
tions, but if continuations are heavily used then such aryana
sis does not help either. Links_(Cooper dtial. 2006), forainsg,
uses continuations to implement threading. Due to the huge n
ber of possible suspension points, nearly all functionstrhasn-
strumented. When, on the other hand, continuations are tased
simulate synchronous client-server communication on f@sgn-
chronousml-http-requests then only functions reaching these
requests need to be modified. In this case the penalties dimto
tinuations are furthermore usually insignificant compatedhe
time spent on the communication itself.

Our benchmarks are intended to measure realistic worst-szes
narios for the latter use-case. In particular we are notésted by
the cost of the actual continuation-construction and -¢ation but
we want to determine the slow-down due to the instrumentatio
(even when not reaching argll/cc).

We have added continuation support toM2Js, our Scheme-to-
JavaScript compilel_(Loitsch and Serridno 2007). As a typiags
eliminated all instrumentation for all but onesal) benchmark we
modified the original benchmarks to disturb the typing altton.
The benchmarks still make no use of the continuation suppaott
the typing pass is not able to prove this anymore. As a resoft m
(but not all) functions are now instrumented. We left ouiriimg
pass activated too, which reduces the stress on very smatidns.
To evaluate the impact of continuation instrumentation are sur
benchmarks under three Internet browsers:

e Firefox 2.0.0.3,
e Opera 9.20 build 638, and
e Konqueror 3.5.7

All benchmarks were run on an Intel Pentium 4 3.40GHz, 1GB,
running Linux 2.6.21. Each program was run 5 times, and the
minimum time was collected. The time measurement was doae by
small JavaScript program itself. Any time spent on the praan
(parsing, precompiling, etc.) was hence not measured. dhdts

are shown in Figurgl5.

We have noticed tremendous differences between the thoesérs.
Konqueror seems to be the least affected, but as it was npfagr

in the beginning, the time penalties are important. Opdralgavior
largely depends on the benchmarks, but one can see thatonti
ation support can be expensive. Even though Firefox hasewors
values than Konqueror one should note that Firefox was up to
ten times faster than Konqueror. Compared to the uninstntede
version continuation-enabled code was however up to 4.gstim
slower.

Despite these apparently bad results we think that corttonsare
viable, as most benchmarks have been modified to exhibittwors
case scenarios. Even the most realistic benchmearkl) repre-
sents a non-optimal example for exception-based contongatlts
high number of anonymous functions and closures makesfit dif
cult to analyze.

7. Related Work

Our work is an adaption and evolution of the suspension agdami
tion techniques presented in Tao’s thesis|(Tao2001) anidy ek
et al’s paperl(Sekiguchi et Al. 2001). Pettyjobiral. later extended
this technique forcall/cc (Pettyiohn et all_ 2005) and formally

showed the correctness of their approach on a minimal lggua
without side-effects.
Several other projects implemented continuations in JavetS
using different techniques: Narrative JavaScript_[Mix} adjax

r) both unnest all constructs and explicitipdia the
control-flow. Code is within ahile (true)-loop and aswitch-
statement. Narrative JavaScript stores local variablesinbject,
whereas djax creates a closure at each invocation. In tiee tatse
all local variables are declared outside the scope of theken
function, and are thereby captured.
jwacs [Wright) and Links[(Cooper efldl. 2006) both use CPS to

implement continuations.

8. Conclusion

We have presented exception-based continuations for dapaS
Starting with an implementation ofuspend/resume for C++,
Java or JVM we have adapted the technique to JavaScript. Vée ha
then extended the techniquedsl1/cc. We have presented several
optimizations that, most of which reduce the cost of geeo-
emulation. Finally we have discussed our implementatiodeal
with non-linear execution as happens with callbacks.

Our benchmarks show that full fledged continuations cah k=il
expensive, but are now usable in many scenarios. Espegibiyn
using JavaScript as target-language, static analysesatpnrh-
proving the speed of exception-based continuations.

References

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop.
Links: Web programming without tiers. submitted to ICFP @00
URL http://groups.inf.ed.ac.uk/links/papers/-
links-icfp06/links-icfp06.pdf, 2006.

ECMA. ECMA-262: ECMAScript Language Specificatiobhird
edition, 1999.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias
Felleisen. The essence of compiling with continuations. In
Proceedings ACM SIGPLAN 1993 Conf. on Programming Lan-
guage Design and Implementation, PLDI'93, Albuguerque, NM
USA, 23-25 June 199%olume 28(6), pages 237-247. ACM
Press, New York, 1993.

Hamish Friedlander. djax. URhttp://djax.mindcontrol-
dogs.com/.

A. Le Hors, P. Le Hegaret, G. Nicol, J. Robie, M. Champion, and
S. Byrne (Eds). “Document Object Model (DOM) Level 2 Core
Specification Version 1.0”. W3C Recommendation, 2000.

R. Kelsey, W. Klinger, and J. Rees. Revisaéport on the algo-
rithmic language Scheméligher-Order and Symbolic Compu-
tation, 11(1), August 1998.

David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudakegam
Philbin, and Norman Adams. Orbit: an optimizing compiler
for scheme. INSIGPLAN ’'86: Proceedings of the 1986 SIG-
PLAN symposium on Compiler constructiqgmages 219-233,
New York, NY, USA, 1986. ACM Press. ISBN 0-89791-197-
0.

Florian Loitsch and Manuel Serrano. Hop client-side coatpmh.

In TFP 2007: Draft Proceedings of the 8th Symposium on Trends
in Functional ProgrammingApril 2007.

Neil Mix. Narrative javascript. URLhttp://neilmix.com/-
narrativejs/.

Mozilla Foundation. Rhino. URhttp://www.mozilla.org/-
rhino/.

S. Muchnick.Advanced Compiler Design & Implementatidvor-
gan Kaufmann, 1997. ISBN 1-55860-320-4.

Greg Pettyjohn, John Clements, Joe Marshall, Shriram Kash
murthi, and Matthias Felleisen. Continuations from gehera
ized stack inspection. limternational Conference on Functional
Programming, ICFP 2005September 2005.

Tatsurou Sekiguchi, Takahiro Sakamoto, and Akinori Yomeza
Portable implementation of continuation operators in impee
languages by exception handlind.ecture Notes in Computer
Science2022:217+, 2001.

Manuel Serrano, Frédéric Boussinot, and Bernard Serpett
Scheme fair threads. RPDP '04: Proceedings of the 6th ACM
SIGPLAN international conference on Principles and preetf
declarative programmingpages 203-214, New York, NY, USA,
2004. ACM Press. ISBN 1-58113-819-9.

Olin Grigsby Shivers. Control-Flow Analysis of Higher-Order
Languages or Taming LambdaPhD thesis, Carnegie Mellon
University, May 1991.

Guy L Steele. Lambda: The ultimate declarative. Technigpbrt,
Massachusetts Institute of Technology, Cambridge, MA, USA
1976.

Wei Tao. A portable mechanism for thread persistence and mi-
gration. PhD thesis, University of Utah, 2001. Adviser-Gary
Lindstrom.

James Wright. jwacs.
index.html.

URhttp://chumsley.org/jwacs/-

	Introduction
	Organization

	Suspend/Resume with Exceptions
	Idea
	Suspend
	Resume
	Suspend/Resume in JavaScript

	Call/cc
	Suspend/Resume and Call/cc Optimizations
	Hoisting Instructions
	Tail-call Optimization
	Miscellaneous Optimizations

	Callbacks
	Benchmarks
	Related Work
	Conclusion

