
A Reactive Behavior framework for dynamic virtual worlds �

Frédéric Boussinot and Jean-Ferdinand Susini
INRIA EMP-CMA/MIMOSA

2004 route des Lucioles BP 93 06902
F-Sophia Antipolis FRANCE

ffrederic.boussinot, jean-ferdinand.susinig@sophia.inria.fr

Frédéric Dang Tran and Laurent Hazard
France Telecom R&D DTL/ASR

38-40 rue du Géréral Leclerc
92794 Issy Moulineaux Cedex 9 FRANCE

ffrederic.dangtran, laurent.hazardg@francetelecom.fr

Abstract

This paper presents a Java-based reactive programming framework
well adapted to the construction of complex behaviors for CG ob-
jects within virtual environments. This reactive approach is based
on an instantaneously broadcast event model and a semantically-
sound synchronous/reactive formalism. The reactive framework de-
gree of expressiveness is illustrated through several examples of be-
haviors which range from low-level animation of virtual creatures
to high-level control of autonomous creatures’ actions.

Keywords: virtual world, behavior, reactive systems, animation

1 Introduction

Building rich and entertaining 3D virtual environments accessible
over the Internet involves not only the definition of a “modelling
language” defining how objects look (or sound) and how they are
organized spatially but also how they behave either as the result
of events occuring in their environment (say a collision) or spon-
taneously (“bots”). In this regard, the VRML2.0 standard, with its
behavior and scripting capabilities, has gone a long way towards
providing means to describe dynamic 3D worlds. The VRML2.0
standard, proper, does not enforce a particular scripting system or
programming language but just describes an execution model and
an access protocol for external scripting languages. So far sim-
ple scripting languages (e.g. Javascript) or general-purpose object-
oriented programming languages (e.g. Java) have been used to de-
fine VRML worlds’ behaviors. Programming complex behaviors in
VRML2.0 in this context beyond simple animation control of 3D
objects is not necessarily easy.

The present paper proposes the use of a Java-based reactive ap-
proach for associating complex behavior to graphical entities within
3D virtual worlds. More precisely a reactive programming and ex-
ecution model is proposed that fulfills the following requirements:

� It is semantically sound: there exists a formal semantics of
proposed programming primitives yielding deterministic and
reproducible execution.

�The work presented in this paper has been carried out within the scope
of the IST Project IST-1999-11488 PING (Platform for Interactive Net-
worked Games)[10]

� It has efficient implementations capable of coping with a large
amount of concurrent behaviors and events.

� It is expressive enough in order to allow fine control over be-
haviors and the definition of complex synchronization con-
straints, for example:

– the ability to preempt the execution of a behavior by
presence of an event (“move toward the target until you
receive an order to abort your mission”)

– the ability to react to an arbitrary combination of event
occurrences or non-occurences (“move forward if the
door is opened and no abort mission signal is received”)

� it allows the incremental construction of complex behaviors
by the combination (and reuse) of more elementary behaviors.

� it allows highly dynamic systems in which new behaviors and
events can be added at run-time without restrictions.

� it is not tied to a modelling langage or rendering system and
can be used for non-graphical simulations (e.g. for multi-user
virtual world systems in which the computation of object be-
haviors is performed by non-graphical servers).

The structure of the paper is as follows: section 2 gives an
overview of the reactive approach and of Junior, a Java based for-
malism for reactive programming. The application of this reactive
framework for designing behaviors of objects in virtual worlds is
considered in section 3. Section 4 describes the use of broadcast
events for coding physical laws. Section 5 explains how the reac-
tive framework has been integrated or can coexist with the VRML
model. Related work is considered in section 6. Future work is
covered in the following section. Finally we conclude.

2 Reactive Approach

The reactive approach proposes a flexible paradigm for program-
ming reactive systems [4], especially those which are dynamic (that
is, the number of components and their connections can change dur-
ing execution). Reactive programming provides programmers with
concurrency, broadcast events, and several primitives for gaining
fine control over reactive programs executions. At the basis of re-
active programming is the notion of a reaction: reactive programs
are reacting to activations issued from the external world. Program
reactions are often called instants. The two main notions are re-
active instructions whose semantics refer to instants, and reactive
machines whose purpose is to execute reactive instructions in an
environment made of instantaneously broadcast events.

Junior [6] is a Java-based language for programming reactive
behaviors. Basically, programming with Junior means:

� Writing a reactive instruction, which describes an application
program.



� Declaring a reactive machine, to run the program.

� Adding the program into the machine.

� Running the machine; this is usually performed using a non
terminating loop, which cyclically makes the machine and the
program react.

Programming in Junior has a dynamic aspect: machine programs
can be augmented by new reactive instructions added during ma-
chine execution. New instructions added to a machine do not have
to wait for the termination of the actual program, but are run con-
currently with it.

Junior concurrent reactive instructions can communicate using
broadcast events that are processed by reactive machines. Broad-
casting is a powerful and fully modular means for communication
and synchronization of concurrent components. Broadcasting in Ju-
nior has a special coherency property: during a machine reaction,
the same event cannot be tested both present and absent, even by
two distinct concurrent instructions.

Junior defines primitive constructs allowing for code (reactive
instruction) migration over the network. This aspect will not be
considered here.

Junior is pure Java. It is provided with an API named Jr[7]. Us-
ing Jr, programmers can define reactive instructions and reactive
machines, and have possibility to run them. Junior is a program-
ming language, defining constructs for reactive programming. It
can also be seen as a Java programming framework. From this last
point of view, Junior provides Java programmers with an alterna-
tive to the standard threading mechanism. The benefit is that Junior
gives solutions to some well-known problems of Java threads (see
[8] for a description of these problems, and [2] for a comparison of
Java threads with the related SugarCubes formalism).

2.1 Reactive Instructions

Reactive instructions are state-based statements, run (one also says,
activated) by reactive machines. Some cyclic instructions are never
ending across instants, while others are reaching a final state after
several activations; in this case, one says that they are completely
terminated. Because states are embbeded in them, reactive instruc-
tions are not reentrant: they must be copied, in order to get new
execution instances.

Reactive instructions are composed from a small set of basic
constructors. For example, the constructor Seq puts two reactive
instructions A and B in sequence: A is executed up to complete
termination (remember that it may take several machine reactions),
and then B is executed. The associated state of Seq encodes termi-
nation of the first component: the state changes when the first com-
ponent completely terminates; then, following executions directly
go to the second component, without considering the first one.

Reactive instructions are Java objects implementing the Pro-
gram interface. They are built using static methods of class Jr1.
For example, to define the sequence of two reactive instruction A,
B, one writes:

Program p1 = Jr.Seq(A,B);

Syntax for constructors is very basic; for example, to put three
instructions A, B, and C in sequence is not directly possible with
one unique call of the Seq constructor, which must be called twice:

Program p2 = Jr.Seq(A,Jr.Seq(B,C));

1To simplify, one also calls “constructors” the static methods of Jr which
call constructors of Junior classes.

Among the reactive instructions are the ones, called atoms, used
to interface with Java. Basically, an atom executes an action which
possibly performs some interaction with the Java environment. The
action is executed once and the atom immediately terminates after
first reaction. Execution of an atom is atomic: once started, exe-
cution of an atom always terminates without any interference with
other atoms.

2.2 Reactive Machines

Reactive machines implement interface Machine. A reactive in-
struction can be given at construction; when it is the case, it be-
comes the initial program of the machine. Reactions of reactive
machines (often simply called “machine”, for short) are obtained
using the react method of interface Machine. One can now
gives a minimalist example of Junior code:

public class HelloWorld
{

public static void main(String[] args){
Machine machine = Jr.SyncMachine();
machine.add(Jr.Atom(

new Print("hello, world!")));
for (int i = 0; i < 3; i++){

System.out.print("instant "+i+": ");
machine.react();
System.out.println("");

}
}

}

The main method defines a reactive machine (instance of class
SyncMachine), and adds in it a program to print a message (using
action Print); finally, the reactive machine is activated 3 times (a
trace shows the sequence of machine reactions). One obtains out-
put:

instant 0: hello, world!
instant 1:
instant 2:

The message is printed at first instant, that is during the first ma-
chine reaction. The two next reactions are empty, as the machine
program is completely terminated at the end of first reaction.

The Stop instruction is the basic way to delay execution for
the next instant. Executing a Stop terminates execution for cur-
rent instant; however, execution is not completely terminated at this
stage, and the Stop instruction becomes the new starting point for
next instant. The state associated to Stop encodes end of the cur-
rent instant: it changes at the end of the first instant of execution,
indicating that instruction is completely terminated. Replacing in
HelloWorld the added program by:

Jr.Seq(Jr.Atom(new Print("hello, ")),
Jr.Seq(Jr.Stop(),
Jr.Atom(new Print("world!"))))

would produce:

instant 0: hello,
instant 1: world!
instant 2:

Now, the Stop instruction splits execution in two distinct instants:
“hello,” is printed during the first one, while “world!” is
printed during the second one.



2.3 Events

Event are non persistent data with a binary status present or absent,
possibly changing at each instant. An event becomes present dur-
ing one instant as soon as it is generated by a program component
during this instant. A strong coherency property holds: during one
instant, the same event cannot be tested as present by one compo-
nent and as absent by another component. In other words: events
are broadcast.

A way to implement the coherency property of Junior machines
is as follows:

� A new unknown event status is introduced; the machine as-
signs it to all events at the beginning of each instant.

� The status of an event is changed to present as soon as it is
generated.

� When the machine detects that no new event can be gener-
ated, it changes to absent the status of all unknown events and
decides the end of current instant.

Note that end of instant and absence of events are decided together,
in the same step; this has important consequence, which are not
discussed here (see [7] for details).

Values can be associated to events, during generations. Values
generated during the same instant for one event are collected during
the instant and stored in a table associated to the event. All collected
values are available at next instant.

The Jr API gives several ways to deal with events. In the simplest
one, events are identified by strings. For example, to generate an
event named e, one writes: Jr.Generate("e") and to wait for
it: Jr.Await("e"). In this last instruction, control is stopped
while event e is not generated, and the instruction is completely
terminated when e becomes present. The Await instruction has an
associated state which codes for termination, that is, for the awaited
event generation.

2.4 Concurrency

Junior owns a concurrency constructor, named Par (for paral-
lelism) which puts two reactive instructions A and B in parallel:
A and B are executed at each instant, and the parallel construct is
completely terminated when both A and B are. The state of Par is
the union of the state of A and of the state of B. The order in which,
at each instant, A and B are executed is left unspecified.

Reactive instructions added to a machine are put in parallel with
the machine program. However, to simplify programming and rea-
soning about reactive programs, an instruction added to a machine
during the course of a reaction is not immediately run by the ma-
chine; actual adding of the instruction to the machine program is
delayed to the beginning of the next instant. Actually, this is quite a
general attitude in Junior: to avoid interferences, program changes
issued by the external world are systematically delayed to next in-
stant.

2.5 Implicit Java Object

Interfacing reactive instructions with Java is made easier using im-
plicit Java objects set by link instructions. The implicit Java object
set by a link instruction can be directly accessed and transformed
by atoms executed by the link body.

The Jr.Link(object,body) reactive instruction defines
object as being the implicit Java object associated to the reac-
tive instruction body.

Actions executed by atoms (see 2.1) must implement the ex-
ecute method with signature void execute(Environment
env) and the implicit Java object (if defined) is returned by method
linkedObject of env.

2.6 Preemption and Control

Junior defines two operators to get fine control over reactive in-
structions; one is the Until preemption operator which forces a
reactive instruction to terminate when an event is present; the other
one, called Control, allows a reactive instruction to execute ac-
cording to presence of an event.

Instruction Until has the form:

Jr.Until("event",body,handler)

where body and handler are two reactive instructions. Ex-
ecution of body is abandoned (one says, it is preempted) as soon
as event becomes present; in this case, control directly goes to
handler which is then executed.

The Control instruction gives a way to execute a reactive in-
struction only at instants where a given event is present. At others
instants, the reactive instruction just stays in the same state, with-
out executing anything. Actually, the Control instruction can be
seen as “filtering” instants for its body: the body can proceed only
when Control let instants reach it.

3 Reactive Behaviors for VWs

Objects in VWs combine a graphical aspects (usually 3D) and a be-
havior. Behaviors are often composite, combining standard behav-
iors (for example, ability to process collisions) with specific ones
(for example, a pursuit behavior). In this section, one considers the
two basic inertia and collision behaviors, and the way to combine
behaviors to get more complex ones.

3.1 Defining Reactive Behaviors

There are three levels when defining reactive behaviors for VW ob-
jects:

� Pure data processing; it is implemented by object methods
accessing object data.

� Interface between data processing and reactive behavior; it is
implemented by atoms calling object methods.

� Reactive behavior; it is a reactive instruction executing previ-
ous atoms.

A Link instruction (see 2.5) is used to link the reactive behavior
to a particular VW object. Then, the linked reactive behavior can
be added to a reactive machine to be run by it. Existence of one or
more reactive machine in the system depends on the VW considered
(typically there is one reactive machine per process).

All reactive behaviors added in a machine share the same instants
and are run at each instant; this has important consequences:

� When modeling physics, it is natural to identify instants with
the basic time step dt appearing in equations.

� One gets a “fair” execution strategy, in which all object have
globally same possibility to execute. Note that this property is
not directly given by threading mechanisms, even preemptive
ones.

3.2 Inertia

An object with an inertia behavior tends to maintain its speed. More
precisely, inertial objects have data for position at current instant (x
and y), and for speed (speedx and speedy). Method inerti-
aAction translates the object according to its speed; it is the basic
data processing method of inertial objects:



public void inertiaAction(){
x += speedx; y += speedy;

}

An action is defined for interfacing data processing with reactive
behavior:

public class InertiaAction implements Action
{
public void execute(Environment env){
((InertialIcobj)env.linkedObject()).

inertiaAction();
}

}

Inertial behavior consists in executing action InertiaAction at
each instant; thus, to give it to an object O, one just has to add the
following reactive instruction to the reactive machine:

Jr.Link(O,Jr.Loop(
Jr.Seq(

Jr.Atom(new InertiaAction()),
Jr.Stop())))

Then, method inertiaAction of object O is called at each in-
stant, which gives O an inertial behavior.

3.3 Collision

To process collisions is more complicated than to simply get an
inertial behavior, because an object must know what are the oth-
ers objects it collides. A solution is to have a global workspace in
which objects are registered. The list of registered objects is re-
turned by method elements of workspace. Here is method for
determining which objects are involved in collisions:

public void collideAction(){
Enumeration list = workspace.elements();
while(list.hasMoreElements()){

Icobj other = (Icobj)list.nextElement();
if (other == this) continue;
if (collisionCondition(other)){

collide((InertialIcobj)other);
}

}
}

Methods collisionCondition which detects actual colli-
sions, and method collide which performs collision are not
given here.

3.4 Combinations of Behaviors

Parallelism is the basic operator for combining behaviors. For ex-
ample, to get both inertial and collision behaviors, one simply put
in parallel the two previous behaviors2:

Jr.Par(
Jr.Loop(Jr.Seq(

Jr.Atom(new InertiaAction()),
Jr.Stop()))),

Jr.Loop(Jr.Seq(
Jr.Atom(new collideAction()),
Jr.Stop())))

)

2Class of collision objects extends class InertialIcobj of inertial
objects.

More complex behaviors can be obtained using reactive primi-
tives presented in section 2. For example, consider the following
behavior:

Jr.Par(
inertia(),
Jr.Seq(

Jr.Until("revenge",
runAway(),
Jr.Repeat(50,Jr.Stop())),

pursuitAndDestroy()))

It corresponds to an object with an inertial behavior (returned by
method inertia), which runs away until event revenge be-
comes present. When it is the case, object ends to run away, and, af-
ter 50 instants, it starts a new pursuit behavior (returned by method
pursuitAndDestroy).

3.5 Robots Demo

This 2D demo program makes use of the behaviors described pre-
viously to construct a virtual arena in which autonomous robots are
pitted against one another. Four robots are placed in a rectangle
arena. These 4 robots have in common an inertia+collision behav-
ior; moreover:

� Robot Zaku can launch bombs that explodes after 50 instants.

� Robot Gouf can launch webs that, after 50 instants, can cap-
ture other robots.

� Two similar robots Gundam have the run away/pursuit behav-
ior described in section 3.4. Moreover, just before being killed
by a bomb, they generate event revenge.

Strategy for Zaku consisting to kill one Gundam robot, then the
other, is very dangerous; indeed, there is risk for Zaku to be de-
stroyed by the remaining Gundam, as it has received event re-
venge. A safe strategy for killing both Gundam robots is first to
capture one of them using Gouf, then to kill the other using Zaku,
and finally to kill the captured robot. The following figure shows a
situation where one Gundam robot has been captured by Gouf:

4 Use of broadcast events

In this section we show that instantaneously broadcast events are
well suited for coding physical laws, such as gravity or attraction,
and also superpositions of such laws.

Actually, we consider event generations with associated values
(see 2.3), and we use a particular mechanism, called “event lis-
tener” to process generated values (event listeners are presently not
part of Junior, but are implemented in the new version of Sugar-
Cubes). Basically, an event listener for an event E reacts during
current instant to all values generated for E; listener reaction to a



generation consists in executing an atom, giving it the associated
value as argument. Note that, in this way, the atom is executed
during an instant as many time as E is generated during this very
instant.

4.1 Gravity

Gravity can be seen as an interaction initiated by a Ground object
which applies the same attraction vector to all objects present in the
VW. One can thus imagine that, at each instant, Ground generates
a gravity event representing the interaction, with an associated
value which is the attraction vector. To be attracted, an object runs
a behavior with a parallel component which is a loop that listen to
gravity and calls an atom to fall on the ground.

Use of a broadcast event ensures that gravity can be seen by
each object in the system, with same attraction vector, and at same
instants. For example, one object will never receive gravity sev-
eral time while an other one will not receive it. Therefore, it be-
comes unnecessary to introduce any particular time stamping tech-
niques or synchronization protocol to ensure that every objects in
the system have the same coherent vision of the world.

In this approach, each object in the system is responsible of its
own state, and modifies it according to its own behavior or in re-
sponse to other objects requests sent through broadcast events. For
example, one can introduce in the system “phantom” objects which
do not obey to gravity law; introduction of these new objects does
not imply any change to Ground or to something else in the sys-
tem.

4.2 Attraction

Now, in a little bit more complex scenario, a planet Earth is gen-
erating an event called attraction (different from gravity of
the previous example); attraction is generated at each instant
by Earth behavior, and position and mass of the planet are the
values associated to it.

Let us consider a meteor object with an inertial behavior (de-
scribed in section 3.2) and suppose that it also responds to at-
traction by applying the model of planet attraction (it calculates
the attraction vector according to its own position and mass, and to
position and mass of the attracting object; then it updates its speed
accordingly). The result of the parallel combination of the inertial
behavior and of the response to attraction automatically fits
the physical principle of superposition of physics: the meteor ob-
ject is attracted by the earth object, and, with appropriate values, it
can be put in orbit around it.

This example shows the benefit of using instantaneous broadcast
events:

� The behavior of a simple inertial object can be simply en-
hanced to respond to planet attraction law just by putting the
corresponding behavior in parallel with the inertial one.

� A planet doesn’t have to worry about which objects are really
attracted. So, it can attract meteors, but also other planets,
spatial ships, etc.

� A meteor doesn’t have to take care about the object which
is attracting it; it can be a planet, a star, another meteor, or
anything else which generates the attraction event.

� If an other planet is introduced in the system, the event model
automatically ensures that objects listening attraction
will see two occurrences of it, at each instant; thus, they will
behave accordingly to presence of the two planets, without
anything to be changed in them.

4.3 Jurassic Park Demo

This 3D demo illustrates the use broadcast events to coordinate in-
teractions between 4 dinosaurs moving in a scene with 100 trees.
Dinosaurs are under control of the user. Here is a snapshot of the
demo:

The demo has the following characteristics :

� Each object (dinosaur and tree) in the VW has its own specific
behavior.

� There is no central control component (as the workspace of
3.3) knowing all the objects present of the simulation.

� Instantaneous broadcast events is the only means for commu-
nication between objects.

� Collisions are handled by events : each object in the system
generates at each instant a dedicated event carrying its coor-
dinates, its speed, and its volume (which, in a first attempt, is
a sphere centered around the object).

� Collection of objects for 3D rendering uses instantaneous
broadcast events : each camera in the world generates event
display here to collect objects it will render at the end of
the instant; then, objects can decide, according to their needs,
their positions, or whatever else, if they register for rendering
or not.

This techniques allow us to easily build several perfectly syn-
chronized views of the same world.

The instantaneously broadcast event model provided by Junior
is a very powerful mean in order to express objects behaviors in
VWs, especially in the modeling of physical interactions between
objects. In addition, it increases modularity in the design of ob-
jects by increasing independence between the implementation of
an object and of its behavior, and the rest of the VW. Object are
more reusable and expendable, communication between objects be-
ing clearly concentrated in the event model.

5 Integration with VRML and Java3D

The reactive programming framework presented in this paper is
in the process of being integrated with VRML and Java3D. The
current implementation relies on the VRML loader on top of the
Java3D API. The following figure shows the software architecture
of the platform.



Java3D behavior
scheduler

VRML Execution Engine

���
�

��
����

�

�
�

Reactive Execution Engine

�
�

�
�

The Reactive Execution Engine is responsible for the execution
of the reactive program which is the aggregation of all reactive pro-
grams attached to virtual world entities (shown as grey circles). It
embeds an instance of a reactive machine as described in section
2.2 . This engine is implemented as a Java3D behavior with an
appropriate wake-up criterion (typically one activiation per frame
or one activation per period of time). The wake-up of the engine
entails a machine reaction.

The two execution models, the reactive one proposed here and
the VRML one, can be considered as complementary.

The VRML event model [12] relies on an explicit routing of
event between event producers and consumers. One-to-one, one-to-
many (fan-out) and many-to-one (fan-in) communication patterns
are possible. One logical instant in the VRML execution model
corresponds to one cascade of events along these routes. The re-
active approach proposed here instead relies on a broadcast event
model. This communication model can be compared to radio com-
munication. In broadcast communication emiters and listeners do
not have to know about each other. The only requirement is that
they communicate on the same frequency, using the same protocol.

The execution model of VRML is under-specified when it comes
to script execution. In particular it allows asynchronous scripts
which can create their own activities (threads typically). On the
contrary, the proposed architecture allows a tight coupling between
the (reactive) execution engine and the behavior programs that it
supports. Concurrency and premption are described using high-
level primitives providing by the reactive framework.

In our platform, the VRML machinery is not connected to the
Java3D scheduler but is triggered by individual reactive objects
within a reactive program. For example, VRML TimeSensor nodes
used to animate elements of the scene graph are activated through
calls to the simTick(time) method. Within the same reactive instant,
all TimeSensors are activated with the same time value which al-
lows fine grained synchronization between different objects.

6 Related Work

The reactive approach described in this paper has been used in sev-
eral contexts beyond behavior control of 3D objects. One of them
is called icobj programming; it proposes a new fully graphical pro-
gramming technique, which has been used for designing several
reactive applets available on the Web [11].

Junior is closely related to SugarCubes[1] and is a descendant
of it. Actually, Junior is the kernel of SugarCubes, with a formal
semantics expressed using rewriting rules[6]. SugarCubes is com-
pared to Java threads in [2]; comparison remains valid, replacing
SugarCubes by Junior.

Actually, Junior and SugarCubes belongs to the family of syn-
chronous/reactive formalisms. The common point of these for-
malisms is the presence of instants and of a synchronous parallel
operator (synchronous because all parallel components are run at
each instant). Well-known synchronous languages include Esterel,
Lustre, and Signal (see [3] for a survey of these languages), and
Statecharts[5]. These languages put the focus on verification and
validation of embedded systems; for that purpose, they forbid all
forms of dynamicity.

The aim of reactive formalisms is basically to add dynamicity to
the synchronous approach. Note that dynamicity is mandatory in
the context of VWs, where new objects can appear at any time.

7 Future work

As part of the European IST PING project[10], we are in the process
of integrating the reactive programming framework presented in
this paper within an infrastructure for large-scale multi-user VWs.

PING will follow and enhance an approach based on a dis-
tributed reactive programming model. This is a hybrid syn-
chronous/asynchronous model in which synchronous groups of ob-
jects (i.e., sets of reactive objects sharing the same logical instant as
envisaged so far in this paper) communicate with one another asyn-
chronously. This model is well suited for large-scale distributed
environments, where a tight synchronisation between the active ob-
jects in the system seems hopeless. This model is also well adapted
for the programming of object behaviours in a shared virtual world:
synchronous groups of active objects can be set dynamically ac-
cording to the grouping and interaction models of the virtual envi-
ronment (e.g., objects whose perception and influence capabilities
are quantified by ”auras”).

A distributed reactive object is made up of several replicas, each
being hosted by a simulation process. One of these replicas is dis-
tinguished as a “master replica”. In this context, the problem is
to maximize coherency of local simulations while minimizing syn-
chronizations between masters and their replicas (because network
is involved). The reactive behavior of the logical object can be split
in arbitrary fashions between the master and its replicas.

One possible solution to this problem is called dead-
reckoning[13]; it consists in predicting objects moves using ex-
trapolation. We plan to investigate how dead-reckoning strategies
can be implemented at object behavior level, and not, at lower
level, by platform. This should lead to flexible systems capa-
ble for example of a certain kind of reflexivity for solving the co-
herency/synchronization problem. Our approach has some similar-
ities with the work carried out within the DIS-Java-VRML working
group [14] though we are not tied to the DIS protocol.

For example, consider master objects with an inertial+collision
behavior, and replicas with only an inertial behavior. This falls
into the family of dead-reckoning strategies because replicas can
be seen as extrapolating master movements, which is completely
safe in absence of collision. A solution to deal with collision would
be to force synchronization of replicas each time a master detects
a collision. Despite the fact that replicas would not actually pro-
cess collisions, they would be forced by masters to behave as if
they where doing so. This is an example where replicas can have
“lighter” behaviors while preserving coherency.



8 Conclusion

We have presented a new approach for programming behaviors of
VW objects based on a reactive and synchronous formalism allow-
ing to get fine control over behaviors with a clear and sound seman-
tics. Reactive behaviors reactions are defined as instants and inter-
behavior communication is achieved according to an instantaneous
broadcast model. Reactive programming has several advantages for
programming behaviors of objects in VWs:

� Instants naturally match the basic discretization time step dt

appearing in models of physical phenomena.

� Broadcast events are a powerful and modular means for syn-
chronizing behaviors and for establishing communication be-
tween them.

� Reactive programming allows users to get fine control
over behaviors, without suffering problems of Java threads.
This, for example, allows to program new specific behavior
scheduling algorithms.

The reactive programming framework proposed here can be con-
sidered as complementary to the behavior support in VRML which
is strongly biased toward the control of the graphical apperance of
VW objects. We are convinced that the reactive programming ap-
proach allows programmers to concentrate on the semantics of the
application rather than on its graphical appearance and provides a
cleaner support for application-level events that correspond to an
arbitrary logic.

References

[1] F. Boussinot, J-F. Susini, The SugarCubes Tool Box - A reac-
tive Java framework, Software Practice & Experience, 28(14),
1531-1550, 1998.

[2] F. Boussinot, J-F. Susini, Java threads and SugarCubes, Soft-
ware Practice & Experience, 30(5), 545-566, 2000.

[3] N. Halbwachs, Synchronous Programming of Reactive Sys-
tems, Kluwer Academic Pub., 1993.

[4] D. Harel, A. Pnueli, On the Development of Reactive Systems,
in K. R. Apt (ed.) Logics and Models of Concurrent Systems,
NATO ASI Series F, Vol. 13, pp. 477-498, Springer-Verlag,
New York, 1985.

[5] D. Harel, StateCharts: A Visual Approach to Complex Systems,
Science of Computer Programming, 8(3), 1987.

[6] L. Hazard, J-F. Susini, F. Boussinot, The Junior reactive kernel,
Inria Research Report 3732, July 1999.

[7] L. Hazard, J-F. Susini, F. Boussinot, Programming with Junior,
available at http://www.inria.fr/mimosa/rp/Junior, July 2000.

[8] JavaSoft, Why JavaSoft is Deprecating Thread.stop,
Thread.suspend and Thread. resume, JavaSoft Documentation,
available at URL: http://java.sun.com/products/jdk/1.2/docs/-
guide/misc/threadPrimitiveDeprecation.html.

[9] http://www.inria.fr/mimosa/rp

[10] http://www.arttic.com/projects/ping/

[11] http://www.inria.fr/mimosa/rp/Icobjs

[12] VRML97 International Standard ISO/IEC 14772-1:1997, the
VRML Consortium, 1997.

[13] IEEE Standard for Distributed Interactive Simulation-
Application Protocols, IEEE Std 1278.1-1995.

[14] Distributed Interactive Simulation DIS-Java-VRML Working
Group: http://www.web3D.org/WorkingGroups/vrtp/dis-java-
vrml


