
Modular Extensions of Security Monitors for
Web APIs: The DOM API Case Study

José Fragoso Santos and Tamara Rezk

No Institute Given

Abstract. Client-side JavaScript programs often interact with the web
page on which they are included, as well as the browser itself, through
APIs such as the DOM API, the XMLHttpRequest API, and the W3C
Geolocation API. The continuous emergence and heterogeneity of dif-
ferent APIs renders the problem of reasoning precisely about JavaScript
security particularly challenging. To tackle this problem, we propose a
methodology for extending sound JavaScript information flow monitors.
This methodology allows us to verify whether a monitor complies with
the proposed noninterference property in a modular way. Thus, proving
that a monitor is noninterferent after extending it with a new API only
requires the proof that the API is itself noninterferent.
We show how to extend an information flow monitor-inlining compiler
so that it takes into account the invocation of arbitrary APIs and we
provide an implementation of such a compiler.
Using the proposed methodology, we present a group of monitor exten-
sions for handling a fragment of the DOM Core Level 1 API for which
we have studied information leaks not explored in previous work.

1 Introduction

Web application designers as well as its users are interested in isolation proper-
ties for trusted JavaScript code. In particular, they want to prevent information
flows from confidential/untrusted resources to public/trusted ones. The nonin-
terference property [13] provides the mathematical foundations for reasoning
precisely about isolation.

Although JavaScript can be used as a general-purpose programming lan-
guage, many JavaScript programs are designed to be executed in a browser in the
context of a web page. Such programs often interact with the web page in which
they are included, as well as the browser itself, through Application Program-
ming Interfaces (APIs). Some APIs are fully implemented in JavaScript, whereas
others are built with a mix of di↵erent technologies, which can be exploited to
conceal sophisticated security violations. Thus, understanding the behavior of
client-side web applications as well as proving their compliance with a given
security policy requires cross-language reasoning that is often far from trivial.
The size, complexity, and number of commonly used APIs poses an important
challenge to any attempt at formally reasoning about the security of JavaScript
programs [17]. To tackle this problem, we propose a methodology for extending

JavaScript monitored semantics. This methodology allows us to verify whether
a monitor complies with the proposed noninterference property in a modular
way. Thus, we make it possible to prove that a security monitor is still noninter-
ferent when extending it with a new API, without having to revisit the whole
model. Generally, an API can be viewed as a particular set of specifications that
a program can follow to make use of the resources provided by another par-
ticular application. For client-side JavaScript programs, this definition of API
applies both to: (1) interfaces of services that are provided to the program by
the environment in which it executes, namely the web browser (for instance, the
DOM, the XMLHttpRequest, and the W3C Geolocation APIs); (2) interfaces of
JavaScript libraries that are explicitly included by the programmer (for instance,
jQuery, Prototype.js, and Google Maps Image API). In the context of this work,
the main di↵erence between these two types of APIs is that in the former case
their semantics escapes the JavaScript semantics, whereas in the latter it does
not. The methodology proposed here was designed as a generic way of extending
security monitors to deal with the first type of APIs. Nevertheless, we can also
apply it to the second type whenever we want to execute the library’s code in
the original JavaScript semantics instead of the monitored semantics.

We model a fragment of the DOM Core Level 1 API that includes the cre-
ation, deletion, and insertion of DOM Element nodes, as well as flexible and
previously unmodeled ways of traversing the DOM forest. We show that the
presented DOM monitor extensions are compliant with the proposed noninter-
ference property exposing new security leaks related to tree-like structures that
complement those studied in [25].

We show how to extend an inforation flow monitor-inlining compiler so that it
also takes into account the invocation of APIs. Our extensible compiler requires
each API to be associated with a set of JavaScript methods that we call its IFlow
Signature, which describes how to handle the information flows triggered by its
invocation. The compiler is available online [1] and the user can trivially extend it
by loading new IFlow signatures. Using the compiler, we give realistic examples
of how to prevent common security violations that arise from the interaction
between JavaScript and the DOM API.

The contributions of the paper are the following: (1) a methodology for ex-
tending JavaScript monitors with API monitoring (Sect. 3.2), (2) an information
flow monitor that handles an important subset of the DOM API (Sect. 5), (3)
an implementation [1] of an information flow monitor-inlining compiler (Sect. 4)
that handles (3).

1.1 Related work

Security Policies for Client-Side JavaScript Programs. There are plenty of mech-
anisms that serve the purpose of preventing security violations spawned by
client-side JavaScript code. This is, however, a very hard goal to attain due to
the complexity of JavaScript semantics, as well as the numerous ways in which
JavaScript programs can interact with their runtime environment. For instance,
the Facebook Javascript Subset [14] that was intended to isolate trusted code

from code coming from untrusted sources, was shown to be breachable by Ma↵eis
and Taly [20]. Analogously, Politz et al. [22] have shown that the implementation
of Yahoo ADsafe [12], a sandboxing mechanism for isolating trusted JavaScript
code, is compromised by several bugs that can be exploited to encode security
violations. We refer the reader to [8] for a recent survey on enforcement mech-
anisms for securing client-side JavaScript programs, while focusing here on the
most closely related work. In contrast to other more adhoc isolation mechanisms,
noninterference is an expressive and elegant property that defines secure infor-
mation flow. The dynamic nature of JavaScript makes it a di�cult target for
static analysis. Therefore, we turn our attention towards dynamic mechanisms
for enforcing noninterference and refer the reader to [26] for a survey of the field.

Information Flow Monitors and Monitor-Inlining Compilers. Flow-sensitive
monitors for enforcing noninterference can be broadly divided into two classes:
those that are purely dynamic, such as [3], [4], and [5], and those (commonly
referred to as hybrid monitors) that mix runtime monitoring with static analysis,
such as [30], [16], and [27]. In contrast to hybrid monitors, which rely on static
analysis to reason about implicit flows that arise due to untaken execution paths,
purely dynamic monitors do not rely on any kind of static analysis. Instead, the
authors of [3], [4], and [5] propose three alternative strategies in designing sound
purely dynamic information flow monitors. The no-sensitive-upgrade strategy
forbids the update of public resources inside private contexts. The permissive-
upgrade strategy allows sensitive upgrades to take place, but marks the resources
upgraded in sensitive contexts and forbids the program to branch depending
on the content of these resources. Finally, the multiple facet strategy surpasses
the limitations of the first two (which can potentially abort the execution of
secure programs) by the use of multiple faceted values. The intuition behind
this strategy is that values must appear di↵erently to observers at di↵erent
security levels. Therefore, the security monitor simulates multiple executions
for di↵erent security levels. Russo et. al [24] show (for a WHILE language)
that purely dynamic monitors always reject executions that would have been
accepted using static enforcement mechanisms. In this work, we show how to
extend an arbitrary information flow monitor without making any assumption
on its particular design. However, the monitor extensions that illustrate the
applicability of our methodology follow the no-sensitive-upgrade discipline of [3].
Chudnov and Naumann [11] propose the inlining of a hybrid information flow
monitor for a simple imperative language. Simultaneously, Magazinius et al. [21]
also propose a monitor inlining transformation for an imperative language, with
the novel feature of performing inlining on the fly to allow for dynamic code
evaluation. In the implementation, we apply the techniques presented in [21]
and [11]. Hedin and Sabelfeld [18] are the first to propose a runtime monitor
for enforcing noninterference for JavaScript. The technique that we present for
extending security monitors can be trivially applied to this monitor, which is a
purely dynamic monitor and therefore liable to the limitations described in [24].
To account for these limitations, Birgisson et. al [9] show how to use tests in order
to boost the permissiveness of [18]. Each time a security error arises during a

test, the program is modified with an annotation that prevents the same error
from reoccurring. Despite targeting JavaScript, these two works, as our own,
do not model the reactive aspect of client-side web applications. Bohannon et
al. [10] present a definiton of noninterference for reactive programs such as web
scripts as well as a runtime monitor for enforcing it.

Securing Web APIs. Taly et al. [28] study the problem of API confinement.
They provide a static analysis designed to formally verify whether, when inte-
grating the code of an API in an arbitrary page, the integrator code cannot
interact with the API and cause it to leak its confidential resources. They use,
however, a more restrictive notion of a web API than the one used in this work,
in the sense that they use the term API only to refer to JavaScript libraries
whose code is explicitly included by the programmer and, therefore, available
for either runtime or static analysis.

The DOM API - Formal Semantics and Secure Information Flow Enforce-
ment. Russo et al. [25] present an information flow monitor for a WHILE lan-
guage with primitives for manipulating DOM-like trees and prove it sound. They
do not model references; instead, program configurations include the node on
which the program is operating. They point out this feature of their language as
the biggest di↵erence between their semantics and JavaScript DOM operations
because, in JavaScript, programs are allowed to store in memory references to
arbitrary nodes in the DOM forest. In fact,This feature of their semantics allows
them to avoid reasoning about complex aspects related to information flows trig-
gered by JavaScript DOM operations; for instance, the fact that a program can
append to the DOM forest a node that is already part of it. Gardner et al. [15]
propose a compositional and concise formal specification of the DOM. that they
call Minimal DOM. They further show that their semantics has no redundancy.
and that it is su�cient to describe the structural kernel of DOM Core Level 1,
meaning that the semantics of all the other unmodeled commands can be ob-
tained from that of the modeled ones. Additionally, they apply local reasoning
based on Separation Logic and prove invariant properties of simple JavaScript
programs. We choose to follow the DOM semantics given in [15]. However, our
DOM semantics is di↵erent from theirs in that we model DOM objects in the
same way we model JavaScript objects. Furthermore, our main concern lies with
the tracking of information flow in the DOM and not with the modeling of the
semantics itself.

2 Noninterference for JavaScript

2.1 JavaScript Memory Model

A memory µ : Ref 7! Str 7! Prim [Ref [F� is a mapping from references
to objects [2]. We model objects as partial functions mapping strings taken
from set Str to values taken from Prim [Ref [F�, where Prim is the set of
primitive values, Ref the set of references, and F� the set of parsed function
literals. Prim includes strings, numbers, and booleans, as well as, two special
values null and undefined . References can be viewed as pointers to objects, in the

sense that every expression that creates an object in memory yields a free non-
deterministically chosen reference that points to it. The strings in the domain
of an object are called its properties. Some properties cannot be changed by the
program. In the following, we assume that memories include a reference to a
special object called the global object pointed to by a fixed reference #glob, that
binds global variables.

The definitions given in this section make use of a small-step semantics of
JavaScript !JS that relates configurations of the form hµ, si, where µ is a
JavaScript memory and s the program to evaluate. The execution of a program
s on a memory µ is said to terminate in !JS if and only if there is a memory µ0

and a value v 2 Prim[Ref such that hµ, si !⇤
JS hµ0, vi, where !⇤

JS denotes the
reflexive-transitive closure of !JS . In the following, we assume that the binding
of variables is modeled using scope objects and that the evaluation of a function
literal triggers the creation of a function object that stores its parsed counterpart
and a reference to the scope object associated with the environment in which it
was evaluated [19]. In particular, we assume the existence of a relation RScope

that models the variable look-up procedure. If hµ, xi RScope v then v is the value
associated with variable x in memory µ. Observe that unlike the authors of [19],
we do not include a reference to the active scope object (the one that models the
current scope) in program configurations. We choose to do so in order to keep
configurations as simple as possible. One can design a small-step semantics of
JavaScript that fullfills this requirement by storing the reference pointing to the
active scope object in a fixed internal property of the global object.

We use the notation: (1) [p0 7! v0, · · · , pn 7! vn] for the partial function that
maps p0 to v0, ..., and pn to vn resp., (2) f [p0 7! v0, · · · , pn 7! vn] for the func-
tion that coincides with f everywhere except in p0, ..., pn, which are otherwise
mapped to v0, ..., vn resp., (3) f |P for the restriction of f to P (provided it is
included in its domain), and (4) f(r)(p) for (f(r))(p), that is, the application of
the image of r by f (which is assumed to be a function) to p.

2.2 Noninterference

Information flow policies, such as noninterference, are usually specified by la-
beling the observable resources of a program, such as properties and variables,
with security levels taken from a given security lattice. In the following, we make
use of a lattice L of security levels. We denote by ? the bottom element of the
lattice, by  its order relation, and by �0 t �1 the least upper bound between
security levels �0 and �1. In the examples, we use the lattice L = {H,L} with
L  H; meaning that resources labeled with level low L are less confidential
than resources labeled with level high H. Hence, after the execution of a pro-
gram, resources labeled with L cannot depend on resources originally labeled
with H, since that would entail a security violation.

Labeling variables or other resources in a program is frequently done stat-
ically via a mapping from statically referred resources to security levels. In
JavaScript, resources are dynamically created which makes it infeasible to refer
to them precisely at the static level.

Example 1 (Dynamic Resource Allocation in JavaScript). Consider the program
x = {};x[f()] = 1 where function f returns a stringm obtained by concatenating
arbitrary user input. Here, a reference to an object o is stored in variable x and
then m is added to o as a property. However, property m cannot be precisely
labeled at static time since its name is not known.

Hence, we consider security labelings that map object properties to security
levels. Formally, a security labeling is modeled as a pair h�,⌃i, where � : Ref 7!
Str 7! L maps references in Ref and properties in Str to security levels and
⌃ : Ref 7! L maps references to security levels. Therefore, given an object o
pointed to by a reference r, � (r)(p), if defined, is the security level associated
with o’s property p and ⌃(r), if defined, is the structure security level of o [18].
We say that memory µ is well-labeled by h�,⌃i if dom(�) = dom(⌃) ✓ dom(µ)
and for every reference r 2 dom(�), dom(� (r)) ✓ dom(µ(r)).

The need for the structure security level arises from the fact that, in JavaScript,
looking-up the value of an undefined property does not yield an error, but, in-
stead, undefined . Hence, one can encode information flows through the domain of
an object by creating (or deleting) properties in unobservable contexts and after-
wards testing whether the corresponding look-up yields undefined . The structure
security level of an object is, therefore, meant to model the security level of its
domain.

Example 2 (The need for the structure security level). Consider the following
program where object o does not initially have any properties: if(h) {o.p =
0}; l = o.p. Intuitively, the domain of o depends on the high variable h, because
property “p” is created in a branch of the IF statement that is taken depending
on the value of h. Therefore, variable l depends on a high variable as well,
since its final value will be 0 when h 62 {false, 0, null, undefined} and undefined
otherwise.

In contrast to previous works [3, 18] on dynamic information flow analysis,
we choose to separate the enforcement mechanism from the definition of non-
interference. This allows us to distinguish the class of secure programs that are
rejected by the enforcement mechanism (due to over-conservative constraints)
from the class of insecure programs. In addition, since the proposed noninter-
ference definition is independent from the enforcement mechanism, not only can
it be compared with other security properties, but it can also be used as the
soundness criterion for other security analyses. The definition of noninterference
depends on a notion of indistinguishability between memories that models the
power of an attacker that can only observe resources up to a security level �,
called low-equality and denoted by ⇡�,�. Informally, if two labeled memories
are low-equal at level �, then they coincide in the resources labeled with levels
 �. Hence, an attacker that can only observe resources up to level �, cannot
distinguish them. To account for the non-deterministic behavior of the memory
allocator, which can yield di↵erent references that point to the same resource in
di↵erent executions of the same program, we rely on a partial injective function
� : Ref ! Ref [6]. For every two executions, there is a function � relating the

observable references that point to the same resource. In the following, we always
assume � to be injective. A partial function � : Ref ! Ref is said to be proper
if it is injective and �(#glob) = #glob and �(#protObj) = #protObj.The low-
equality definition relies on a relation on observable values, named �-equality,
and denoted ⇠� . �-Equality: two objects are �-equal if they have the same do-
main and all their corresponding properties are �-equal, primitive values and
parsed function are �-equal if equal, and two references r0 and r1 are �-equal
if the latter is the image of the former. In the following, given a property la-
beling � , a reference r, and a security level �, we denote by � (r)|�, the set
of observable properties in � (r) at level � – {p | � (r)(p)  �}. Low-equality:
Two memories µ0 and µ1 are said to be low-equal with respect to labelings
h�0,⌃0i and h�1,⌃1i, a security level �, and a partial injective function �,
written µ0,�0,⌃0 ⇡�,� µ1,�1,⌃1, if µ0 and µ1 are well-labeled by h�0,⌃0i and
h�1,⌃1i respectively, and for all references r0, r1 2 dom(�), such that r1 = �(r0),
the following holds:

1. The observable domains coincide: P = �0(r0)|� = �1(r1)|�;
2. The objects coincide in the observable domain: µ0(r0)|P ⇠� µ1(r1)|P ;
3. If the structure security level of one of the two objects is observable, then

their domains entirely coincide:
�
⌃0(r0)  �_⌃1(r1)  �

�) dom(µ0(r0)) =
dom(µ1(r1)).

A program is said to be noninterferent if, whenever it is executed on two low-
equal memories, produces two low-equal memories and two �-equal values.
Hence, an attacker that can only see the low resources of a program cannot infer
anything about its high resources.

3 Modular Extensions for JavaScript Monitors

In this section, we give the definition of noninterferent JavaScript security mon-
itor and we show how to extend such a monitor so that it (1) takes into account
the invocation of web APIs and (2) remains noninterferent.

3.1 Noninterferent JavaScript Monitors

The proposed mechanism for extending security monitors expects as input a
monitored small-step semantics that relates configurations of the general form
µ, s,�!� pc,�,⌃,�!� , where (1) µ is the current memory, (2) s the current pro-h
gram to execute,

i
(3) �!� pc a sequence of security levels matching the reading

e↵ects of the expressions on which the original program branched to reach to

the current context, (4) h�,⌃i the current labeling, and (5) �!� a sequence of

security levels matching the reading e↵ects of the subexpressions of the expres-
sion being computed, which were already computed. The reading e↵ect [26] of
an expression is defined as the least upper bound on the security levels of the
resources on which the value to which it evaluates depends. Additionally, we
assume that the reading e↵ect of an expression is always higher than or equal
to the level of the context in which it is evaluated, t�!� pc. We use the notation
(1) t�!� for the least upper bound on the levels in �!� , (2) b�!� cn for the sequence
containing the last n elements of �!� , (3) |�!� | for the number of elements of �!� ,
(4) · for the concatenation of sequences, (5) ✏ for the empty sequence, and (6)
�(�!v) for the sequence of values that is obtained from �!v by applying to each
one of the elements of �!v either function � (provided it is in its domain), or the
identity function. In the following, we extend the definition of low-equality to
sequences of labeled values and to program configurations.

Informally, two sequences of labeled values are low-equal with respect to a
given security level �, if for each position of both sequences, either the two val-
ues in that position are low-equal, or the levels that are associated with both
of them are not observable. Hence, two sequences of values hv0, · · · , vni and
hv00, · · · , v0ki, respectively associated with two sequences of levels h�0, · · · ,�ni
and h�0

0, · · · ,�0
ki are low-equal w.r.t. a security level � and a function �, written

hv0, · · · , vni, h�0, · · · ,�ni ⇡�,� hv00, · · · , v0ki, h�0
0, · · · ,�0

ki, if, letting j = min(n, k),
either n = k = 0, or the following holds: (1) 8i  j ·(�i  � _ �0

i  �)) vi ⇠� v0i
and (2) (8j < i  n · �i 6 �) ^ (8j < i  k · �0

i 6 �).
Two program configurations hµ, s,�!� pc,�,⌃,�!� i and hµ0, s0,�!� 0

pc,�
0,⌃0,�!� 0i

are said to be low-equal w.r.t. a security level � and a function �, written
hµ, s,�!� pc,�,⌃,�!� i ⇡�,� hµ0, s0,�!� 0

pc,�
0,⌃0,�!� 0i, if µ,�,⌃ ⇡�,� µ0,� 0,�0 and

s,�!� pc,
�!� ⇡�,� s0,�!� 0

pc,
�!� 0. The low-equality between programs annotated with

two sequences of security levels relates the intermediate states of the execution
of the same original program in two low-equal memories.

Example 5 (Low-equal programs). Consider the program x = y, an original la-
beling h�,⌃i such that � (#glob)(x) = � (#glob)(y) = H, and two memories
µ0 and µ1 such that µi = [#glob 7! [x 7! undefined , y 7! i]], for i 2 {0, 1}. The
execution of one computation step of this program in memories µ0 and µ1 yields
the programs x = 0 and x = 1. Since, the reading e↵ects associated with the
values 0 and 1 are both H, the expressions x = 0 and x = 1 are low-equal.
Formally: x = 0, hLi, hHi ⇡id,L x = 1, hLi, hHi.

The design of the low-equality for programs is tightly related with the design
of the monitor. Therefore, we do not include it in the paper. Instead, we only
state the properties that it must verify for the results presented in this section
to hold:

1. Given two expression redexes (expressions that only have values as subex-
pressions) e and e0 and two pairs of sequences of values �!� pc and

�!� and �!� 0
pc

and �!� 0; if s,�!� pc,
�!� 6⇡�,� s0,�!� 0

pc,
�!� 0, for a security level � and a function

�, then (tb�!� cn)u (tb�!� 0ck) 6 � (where n and k correspond to the number
of subexpressions of e and e0 resp.).

2. For any two values v0 and v1 respectively associated with two security level �0

and �1, security level �, function �, and two sequences of security levels �!� 0
pc

and �!� 1
pc, if hv0i, h�0i ⇡�,� hv1i, h�1i, then: v0,�!� 0

pc, h�0i ⇡�,� v1,
�!� 1

pc, h�1i.

Definition 3 (Monitor Noninterference). A monitor !IF is said to be non-
interferent, written NImonitor(!IF), if and only if for every program s, memory
µ, and labeling h�, ⌃i, such that µ is well-labeled by h�, ⌃i, if hµ, s, ✏, �, ⌃, ✏i !⇤

IF

hµ0, v0, ✏,� 0,
�

⌃
0

0, �0i for some memory µ0, value v0, labeling h� 0, ⌃0i, and level �0,
then µ 2 NI

exec
(s, h�, ⌃

st
i,
ep
h� 0, ⌃0i). A monitor !IF is said to be step-wise non-

interferent, written NImonitor(!IF), if the application of the monitor on two
low-equal configurations produces two low-equal configurations.

3.2 Monitor Extensions

Formally, every API is modeled as a semantic relation, + JS
API of the form:

hµ,�!v i +JS
AP I hµ0, vi

Where µ is the memory in which the API is executed, µ0 is the memory resulting
from the execution of the API, �!v is the sequence of values corresponding to the
arguments of the API invocation, and v is the value to which the API invocation
evaluates. Accordingly, a monitored API relation, +API , has the following form:

hµ,�,⌃,�!v ,�!� i +API hµ0,� 0,⌃0, v,�i

Where h�,⌃i and h� 0,⌃0i are the initial and final labelings resp., �!� is the
sequence of security levels associated with the arguments of the API invocation,
and � is its corresponding reading e↵ect. The remaining elements preserve their
original meaning. We ommit the terms monitored/unmonitored when they are
clear from the context. We define a (monitored) API register as a function that
given a memory and a sequence of values, returns a (monitored) API semantic
relation.

Figure 1 defines a function E that, given a (monitored) small-step semantics,
!, produces a new (monitored) small-step semantics E(!, Intercept,RAPI)
that handles the invocation of the APIs in the range of the API register RAPI

Standard Execution
s 62 Intercept _ (s 2 Intercept ^ hµ, SubExpressions[[s]]i 62 dom(RAPI))

hµ, s,�!� pc,�,⌃,�!� i ! hµ0, s0,�!� 0
pc,�

0,⌃0,�!� 0i
hµ, s,�!� pc,�,⌃,�!� i !API hµ0, s0,�!� 0

pc,�
0,⌃0,�!� 0i

API Execution
s 2 Intercept hµ, SubExpressions[[s]]i 2 dom(RAPI)

|SubExpressions[[s]]| = n+ 1 �!� = �!� 0 · h�0, · · · ,�ni +API= RAPI(µ, SubExpressions[[s]])
hµ,�,⌃, Intercept(s), h�0, · · · ,�nii +API hµ0,� 0,⌃0, v0,�0i

hµ, s,�!� pc,�,⌃,�!� i !API hµ0, v0,�!� pc,�
0,⌃0,�!� 0 · �0i

Fig. 1. E(!, Intercept,RAPI) =!API

triggered by statements which are included in the set of intercepting points –
Intercept. When E receives as input a monitored small-step semantics and a
monitored API register, it generates a new monitored small-step semantics. In-
formally, a statement can trigger the evaluation of an API in the new small-
step semantics E(!, Intercept,RAPI) if: (1) it is an intercepting point (that
is, s 2 Intercept) and (2) the sequence of values to which its subexpressions
evaluate is in the domain of RAPI , in which case their image by RAPI corre-
sponds to the semantic relation that models the API to execute. We assume that
only expression redexes can be used as intercepting points. In the definition of
E , Rules [Non-Intercepted Program Construct] and [Intercepted Program

Construct - Standard Execution] model the case in which the new small-step
semantics executes the original rule. Rule [Intercepted Program Construct -

API Execution] models the case in which an API is executed. The definition
of E makes use of a syntactic function, SubExpressions, defined on JavaScript
expressions, such that SubExpressions[[s]] corresponds to the sequence compris-
ing all the subexpressions of s in the order by which they are evaluated. We
use the notation E⇤(!, Intercept,RAPI), for the reflexive-transitive closure of
E(!, Intercept,RAPI).

Example 7. Consider an API for creating and manipulating priority queues:

– queueAPI.queue(): creates a new priority queue;
– queueObj.push(el, priority): adds a new element to the queue;
– queueObj.pop(): pops the element with the highest priority.

This API is available for the programmer through the global variable queueAPI.
For the extended monitor to take into account the methods of this API, one
has to specify for each one of them the corresponding API semantic relation.
Additionally, one has to define method calls as an interception point of the
semantics (by adding method call redexes Intercept) and to extend the API
Register to make the invocation of these methods trigger the execution of the
corresponding APIs. To this end, the Queue API object (the one bound to

variable queueAPI) as well as the concrete queue objects are “marked” with a
special property (for instance, $q) and the API Register is extended accordingly:

RQ(µ, hr,m, · · ·i) =
8
<

:

+QU if m = “queue” ^ $q 2 dom(µ(r))
+PU if m = “push” ^ $q 2 dom(µ(r))
+PO if m = “pop” ^ $q 2 dom(µ(r))

where +QU , +PU , and +PO are the API relations corresponding to each one of
the methods of the Queue API.

3.3 Definition of NI(RAPI) for external interfaces

Assuming that the original monitor is noninterferent, for E(!IF , Intercept,RAPI)
to be noninterferent one must impose some constraints on the API relations in
the range of RAPI . Definitions 4 and 5 formalize noninterference for API rela-
tions. Definition 4 states that an API relation is confined if it only creates/up-
dates resouces whose levels are higher than or equal to the least upper bound
on the levels of its arguments. This constraint is needed because the choice of
which API to execute may depend on all of its arguments.

Definition 4 (Confined API Relation). An API relation +API is confined if
for any memory µ well-labeled by h�,⌃i, any sequence of values �!v resp. labeled
by a sequence of levels �!� , and any security level �, such that:

hµ, h�,⌃i,�!v ,�!� i +API hµ0, h� 0,⌃0i, v0,�0i
and t�!� 6 �, for some memory µ0, labeling h� 0,⌃0i, value v0, and security level
�0; then: µ,�,⌃ ⇡id,� µ0,� 0,⌃0 and �0 6 �.

Definition 5 states that an API relation is noninterferent if whenever it is
executed on two low-equal memories, it produces two low-equal memories and
two low-equal values. In order to relate the outputs of the API Register in two
low-equal memories, we extend the noninterference definition for API registers.
Informally, two API registers are said to be low-equal if whenever they are given
as input two low-equal memories and two low-equal sequences of values, they
output the same noninterferent API relation.

Definition 5 (Noninterferent Api Relation/Register). An API relation
+API is said to be noninterferent, written NI(+API), if it is confined and for
any two memories µ0 and µ1 respectively well-labeled by h�0,⌃0i and h�1,⌃1i,
any two sequences of values �!v 0 and �!v 1, respectively labeled by two sequences
of security levels �!� 0 and �!� 1, and any security level � for which there exists a
function � on Ref such that �!v 0,

�!� 0 ⇡�,�
�!v 1,

�!� 1, µ0,�0,⌃0 ⇡�,� µ1,�1,⌃1,
and:

hµ0,�0,⌃0,
�!v 0,

�!� 0i +API hµ0
0,�

0
0,⌃

0
0, v

0
0,�

0
0i

hµ1,�1,⌃1,
�!v 1,

�!� 1i +API hµ0
1,�

0
1,⌃

0
1, v

0
1,�

0
1i

there is a function �0 that extends � such that µ0
0,�

0
0,⌃

0
0 ⇡�0,� µ0

1,�
0
1,⌃

0
1 and

hv00i, h�0
0i ⇡�0,� hv00i, h�0

0i. We say that the API Register function (RAPI) is non-
interferent, written NI(RAPI), if all the API relations in its range are nonin-
terferent and for any memories µ and µ0, labelings h�,⌃i and h� 0,⌃0i, sequence

of values �!v , security level �, and function �, such that µ,�,⌃ ⇡�,� µ0,� 0,⌃0,
then RAPI(µ,

�!v) = RAPI(µ0,�(�!v)).

Example 8. Assume that the APIs given in Example 7 are noninterferent and
consider the following program that starts by computing two objects o0 and o1:

1 q = queueAPI.createQueue ();

2 if (h) { q.push(o0, 0); }

3 q.push(o1 , 1); l = q.pop();

If this program starts with memories µi (i 2 {0, 1}) using labeling h�,⌃i and
assuming that in both executions the invocations of all the APIs go through (the
execution is never blocked), then it must terminate with memories µ0

i labeled by
� 0,⌃:

µi =


(#glob, o0) 7! r0, (#glob, o1) 7! r1,

(#glob, h) 7! i

�
µ0
i =

2

4
(#glob, o0) 7! r0, (#glob, o1) 7! r1,

(#glob, h) 7! i, (#glob, l) 7! i,
(#glob, q) 7! rq

3

5

� =


(#glob, h) 7! H, (#glob, l) 7! L,
(#glob, o0) 7! L, (#glob, o1) 7! L,

�
� 0 =


(#glob, h) 7! H, (#glob, l) 7! H,
(#glob, o0) 7! L, (#glob, o1) 7! L,

�

Since the original memories are low-equal, µ0,�,⌃ ⇡id,L µ1,�,⌃ (where id is
the identity function on Ref), we conclude, using the hypothesis that all three
API relations are noninterferent, that the memories yielded by the invocation of
the API relations in lines 1, 2 (only for the execution that originally maps h to
1), and 3 are also low-equal. Since the value of l clearly depends on the value of
h in the execution that originally maps h to 1, we conclude that it is also the
case in the execution that originally maps h to 0.

Theorem 1 (Security). For any monitored semantics !IF , API register RAPI

and set of intercepting points Intercept, if NIstepmonitor(!IF) (hyp.1) and NI(RAPI)
(hyp.2), then NIstepmonitor(E(!IF , Intercept,RAPI)).

Proof. In order to show that E(!IF , Intercept,RAPI) is step-wise noninterfer-
ent we need to show that the low-equality relation for configurations is preserved
by every transition of the monitor. Hence, given a security level �, two memories
µ0 and µ1, two labelings h�0,⌃0i and h�1,⌃1i, two programs s0 and s1, and four
sequences of security levels �!� 0,

�!� 1,
�!� 0

pc, and
�!� 1

pc such that:

– µ0,�0,⌃0 ⇡�,� µ1,�1,⌃1 hyp.3
– s0,

�!� 0,
�!� 0

pc ⇡�,� s1,
�!� 1,

�!� 1
pc hyp.4

– hµ0, s0,
�!� 0

pc,�0,⌃0,
�!� 0i !API hµ0

0, s
0
0,
�!� 00

pc,�
0
0,⌃

0
0,
�!� 00i hyp.5

– hµ1, s1,
�!� 1

pc,�1,⌃1,
�!� 1i !API hµ0

1, s
0
1,
�!� 10

pc,�
0
1,⌃

0
1,
�!� 10i hyp.6

where we use !API for E(!IF , Intercept,RAPI). We need to show that:

hµ0
0, s

0
0,
�!� 00

pc,�
0
0,⌃

0
0,
�!� 00i ⇡�0,� hµ0

1, s
0
1,
�!� 10

pc,�
0
1,⌃

0
1,
�!� 10i

for some �0 extending �.
We start by considering the scenario in which t�!� 0

pc 6 � (hyp.7) that corre-
sponds to the case in which execution 0 gives a step in a high context. There are
four cases to consider:

– I - Both Executions perform a standard transition.
– II - Both Executions perform an API call.
– III - Execution 0 performs a standard transition and Execution 1 performs

an API call.
– IV - Execution 0 performs an API call and Execution 1 performs a standard

transition.

The proofs of cases III and IV are symmetric. Hence, we ommit case IV.

[Case I.] s0 62 Intercept _ hµ0, SubExpressions[[s0]]i 62 dom(RAPI) (hyp.8) and s1 62
Intercept _ hµ1, SubExpressions[[s1]]i 62 dom(RAPI) (hyp.9). It follows that:

– hµ0
0, s

0
0,
�!� 00

pc,�
0
0,⌃

0
0,
�!� 00i ⇡�,� hµ0

1, s
0
1,
�!� 10

pc,�
0
1,⌃

0
1,
�!� 10i

(I.1) - hyp.1 + hyp.3 - hyp.6 + hyp.8 + hyp.9

[Case II.] s0 2 Intercept _ hµ0, SubExpressions[[s0]]i 2 dom(RAPI) (hyp.8) and s1 2
Intercept _ hµ1, SubExpressions[[s1]]i 2 dom(RAPI) (hyp.9). It follows that:

– t�!� 1
pc 6 � (II.1) - hyp.4 + hyp.7

– µ0,�0,⌃0 ⇡id,� µ0
0,�

0
0,⌃

0
0 (II.2) - hyp.2 + hyp.3 + hyp.5 + hyp.8

– µ1,�1,⌃1 ⇡id,� µ0
1,�

0
1,⌃

0
1 (II.3) - hyp.2 + hyp.3 + hyp.6 + hyp.9

– µ0
0,�

0
0,⌃

0
0 ⇡�,� µ0

1,�
0
1,⌃

0
1 (II.4) - (II.2) + (II.3) + Lateral Transitivity of ⇡�,�

– hµ0
0, s

0
0,
�!� 00

pc,�
0
0,⌃

0
0,
�!� 00i ⇡�,� hµ0

1, s
0
1,
�!� 10

pc,�
0
1,⌃

0
1,
�!� 10i

(III.5) - hyp.4 + hyp.7 + (II.3) + (II.4)

[Case III.] s0 2 Intercept _ hµ0, SubExpressions[[s0]]i 2 dom(RAPI) (hyp.8) and s1 62
Intercept ^ hµ1, SubExpressions[[s1]]i 62 dom(RAPI) (hyp.9). It follows that:

– t�!� 1
pc 6 � (III.1) - hyp.4 + hyp.7

– µ0,�0,⌃0 ⇡id,� µ0
0,�

0
0,⌃

0
0

(III.2) - hyp.2 + hyp.3 + hyp.5 + hyp.8 Confinemed Semantic Transition
– µ1,�1,⌃1 ⇡id,� µ0

1,�
0
1,⌃

0
1

(III.3) - hyp.2 + hyp.3 + hyp.6 + hyp.9 Confinemed API Transition
– µ0

0,�
0
0,⌃

0
0 ⇡�,� µ0

1,�
0
1,⌃

0
1 (III.4) - (III.2) + (III.3) + Lateral Transitivity of ⇡�,�

– hµ0
0, s

0
0,
�!� 00

pc,�
0
0,⌃

0
0,
�!� 00i ⇡�,� hµ0

1, s
0
1,
�!� 10

pc,�
0
1,⌃

0
1,
�!� 10i

(III.5) - hyp.4 + hyp.7 + (III.3) + (III.4)

In the following, we assume that t�!� 0
pc  � (hyp.7) and we proceed by case

analysis on the possible transitions of NIstepmonitor for execution 0. There are three
cases three consider:

1. The extended monitor performs a transition corresponding to the original
monitor (Rule [Standard Execution]) because s0 62 Intercept;

2. The extended monitor performs a transition corresponding to the original
monitor (Rule [Standard Execution]) because hµ0, SubExpressions[[s]]i 62
dom(RAPI);

3. The extended monitor performs a transition corresponding to the invocation
of an API (Rule [API Execution]).

[Standard Execution - 1]. s0 2 Intercept (hyp.8). It follows that:

– t�!� 1
pc  � (1) - hyp.4 + hyp.7

– s0 ⌘ s1 (2) - hyp.4 + hyp.8
– s1 62 Intercept (3) - Correctness of the Interceptor

– hµ0
0, s

0
0,
�!� 00

pc,�
0
0,⌃

0
0,
�!� 00i ⇡�0,� hµ0

1, s
0
1,
�!� 10

pc,�
0
1,⌃

0
1,
�!� 10i for some �0 extending �

(4) - hyp.1 + hyp.3 - hyp.6 + hyp.8 + (3)

[Standard Execution - 2]. s0 2 Intercept (hyp.8) and hµ0, SubExpressions[[s0]]i 62
dom(RAPI) (hyp.9). It follows that:

– t�!� 1
pc  � (1) - hyp.4 + hyp.7

– s0 ⌘ s1 (2) - hyp.4 + hyp.7
– s1 2 Intercept (3) - Correctness of the Interceptor
– SubExpressions[[s0]], b�!� 0cn ⇡�,� SubExpressions[[s1]], b�!� 1cn, for some integer n (4)

- hyp.4 + hyp.7
– hµ1, SubExpressions[[s1]]i 62 dom(RAPI) (5) - hyp.2 + hyp.9 + (4)

– hµ0
0, s

0
0,
�!� 00

pc,�
0
0,⌃

0
0,
�!� 00i ⇡�0,� hµ0

1, s
0
1,
�!� 10

pc,�
0
1,⌃

0
1,
�!� 10i, for some �0 extending �

(6) - hyp.1 + hyp.3 - hyp.8 + (5)

[API Execution]. s0 2 Intercept (hyp.8) and hµ0, SubExpressions[[s0]]i 2 dom(RAPI)
(hyp.9). It follows that:

– t�!� 1
pc  � (1) - hyp.4 + hyp.7

– s0 ⌘ s1 (2) - hyp.4 + hyp.7
– s1 2 Intercept (3) - Correctness of the Interceptor
– SubExpressions[[s0]], b�!� 0cn ⇡�,� SubExpressions[[s1]], b�!� 1cn, for some integer n (4)

- hyp.4 + hyp.7
– hµ1, SubExpressions[[s1]]i 2 dom(RAPI) (5) - hyp.2 + hyp.9 + (4)

– hµ0
0, s

0
0,
�!� 00

pc,�
0
0,⌃

0
0,
�!� 00i ⇡�0,� hµ0

1, s
0
1,
�!� 10

pc,�
0
1,⌃

0
1,
�!� 10i, for some �0 extending �

(6) - hyp.2 + hyp.3 - hyp.8 + (5)

4 A Meta-Compiler for Securing Web APIs

There are two main approaches for implementing a monitored JavaScript se-
mantics: either one modifies a JavaScript engine so that it also implements the
security monitor (as in [18]), or one inlines the monitor in the original program
(as in [21] and [11]). In this section, we propose a way of extending an informa-
tion flow monitor-inlining compiler in order to take into account the execution
of arbitrary APIs. To this end, we assume the existence of two inlining compilers
specified by two functions Ce and Cs for compiling expressions and statements
respectively. The compilation function Cs makes use of the compilation function
Ce. The compiler Ce (Cs resp.) maps every JavaScript expression e (statement s
resp.) to a pair hs0, ii, where:
1. s0 is the statement that simulates the execution of e (s resp.) in the monitored

semantics;

2. i is an index such that, after the execution of s0, (1) the compiler variable
$v̂i stores the value to which e (s resp.) evaluates in the original semantics
and (2) the compiler variable $l̂i stores its corresponding reading e↵ect.

We assume that the inlining compiler works by pairing up each variable/prop-
erty with a new one, called its shadow variable/property [11, 21], that holds its
corresponding security level. Since the compiled program has to handle security
levels, we include them in the set of program values, which means adding them
to the syntax of the language as such, as well as adding two new binary operators
corresponding to  (the order relation) and t (the least upper bound). Besides
adding to every object o an additional shadow property $lp for every property
p in its domain, the inlined monitoring code is also assumed to extend o with a
special property $struct that stores its structure security level.

Example 9 (Instrumented Labeling). Given an object o = [p 7! v0, q 7! v1]
pointed to by ro and a labeling h�,⌃i, such that � (ro) = [p 7! H, q 7! L] and
⌃(ro) = L, the instrumented counterpart of o labeled by h�,⌃i is ô = [p 7!
v0, q 7! v1, $lp 7! H, $lq 7! L, $struct 7! L].

In order to introduce the notion of correct compiler, one must start by defin-
ing a similarity relation between labeled memories in the monitored semantics
and instrumented memories in the original semantics, denoted by S� . This re-
lation requires that for every object in the labeled memory, the corresponding
labeling coincides with the instrumented labeling and that the property values
of the original object be similar to those of its instrumented counterpart ac-
cording to a new version of the �-equality called C(�)-equality. This relation,
denoted by ⇠C(�), di↵ers from ⇠� in that it relates each parsed function with its
corresponding compilation and in that it allows the domain of an instrumented
object to be larger than the one of its original counterpart.

Definition 6 (Memory Similarity). A memory µ labeled by h�,⌃i is similar
to a memory µ0 w.r.t. �, written hµ,�,⌃i S� µ0, if and only if dom(�) = dom(µ)
and for every reference r 2 dom(�), if o = µ(r) and o0 = µ0(�(r)), then ⌃(r) =
o0($struct) and for all properties p 2 dom(o), o(p) ⇠C(�) o0(p) and � (r)(p) =
o0($lp).

We say that an inlining compiler is correct w.r.t. to a given monitored seman-
tics !IF if, whenever a program and its compiled counterpart are evaluated in
similar memories, the evaluation of the original one in the monitored semantics
terminates if and only if the evaluation of its compilation also terminates in the
original semantics, in which case the final memories as well as the computed
values are similar.

Definition 7 (Compiler Correctness). An inlining compiler C is said to be
correct if and only if for any two configurations hµ, s,�!� pc,�,⌃, ✏i and hµ0, s0i
and function �, such that hµ,�,⌃i S� µ0 and Chsi = hs0, ii, for some in-
dex i; there exists hµf , vf ,

�!� pc,�f ,⌃f ,�f i such that hµ, s,�!� pc,�,⌃, ✏i !⇤
IF

hµf , vf ,�pc,�f ,⌃f ,�f i i↵ there exists hµ0
f , v

0
f i such that hµ0, s0i !⇤ hµ0

f , v
0
f i, in

which case: (1) hµf ,�f ,⌃f i S�0 µ0
f , (2) vf ⇠C(�0) v

0
f , and (3) hµ0

f , $l̂ii RScope �f .

4.1 IFlow Signatures

In order to simulate the monitored execution of API relations, we propose that
each API relation be associated with three special methods – domain, check,
and label – that we call its IFlow Signature. Concretely, domain checks whether
or not to apply the API, check checks whether the constraints associated with
the API are verified, and label updates the instrumented labeling and outputs
the reading e↵ect associated with a call to the API. Functions check and label
must be specified separately because check has to be executed before calling the
API (in order to prevent its execution when it can potentially trigger a security
violation), whereas label must be executed after calling the API (so that it can
label the memory resulting from its execution). Formally, we define an IFlow
Signature as a triple h#check,#label,#domaini, where: #check, #label, and
#domain are the references of the function objects corresponding to the check,
label, and domain functions, respectively.

We require the existence of a runtime function that simulates the API Reg-
ister, which we denote by $apiRegister. The function $apiRegister makes use
of the methods domain of each API in its range to decide whether there is an
API relation associated with its inputs, in which case it outputs an object con-
taining the corresponding IFlow Signature, otherwise it returns null. Figure 2
presents a new meta-compiler, CAPI , that receives as input an inlining compiler
for JavaScript expressions, Ce, and outputs a new inlining compiler that can
handle the invocation of the APIs whose signatures are in the range of the API
register simulated by $apiRegister. Since only expression redexes can be used
as intercepting points, the compilation function for statements is left unchanged
except that instead of using the original compilation function for expressions,
it uses its image by the meta-compiler. The specification of the meta-compiler
makes use of a syntactic function Replace that receives as input an expression
and a sequence of values and outputs the expression that results from replacing
in the original expression each one of its subexpressions with the corresponding
sequence value. The set of expressions Intercept is assumed to contain all ex-
pressions that can reduce to an expression redex in Intercept. Each expression
that can be an intercepting point of the semantics is compiled by the compiler
generated by the meta-compiler to a statement, which: (1) executes the state-
ments corresponding to the compilation of its subexpressions, (2) tests whether
the sequence of values corresponding to the subexpressions of the expression
to compile is associated with an IFlow signature, (3 - true) if it is the case, it
executes the check method of the corresponding IFlow signature, an expression
equivalent to the original expression, and the label method of the corresponding
IFlow signature, (3 - false) if it is not, it executes the compilation of an ex-
pression equivalent to the compilation of the original one by the original inlining
compiler. For simplicity, we do not take into account expressions that manipu-
late control flow, meaning that the evaluation of a given expression implies the
evaluation of all its subexpressions. Therefore, we do not consider the JavaScript
conditional expression. This limitation can be surpassed by re-writing all condi-
tional expressions as IF statements before applying the compiler.

Intercepted Expression
SubExpressions[[e]] = he0, · · · , eni CAPIhCihe0i = hs0, i0i · · · CAPIhCiheni = hsn, ini

ê = Replace[[e, $v̂i0 , · · · , $v̂in]] Chêi = hŝ, ii

sapi =

8
>>>>>>>><

>>>>>>>>:

s0 · · · sn
$ifsig = $apiRegister($v̂i0 , · · · , $v̂in);
if($ifsig){

$ifsig.check($v̂i0 , · · · , $v̂in , $l̂i0 , · · · , $l̂in);
$v̂i = ê;
$l̂i = $ifsig.label($v̂i, $v̂i0 , · · · , $v̂in , $l̂i0 , · · · , $l̂in);

} else {ŝ}

s0 =

⇢
sapi if ê 2 Intercept

ŝ otherwise

CAPIhCihei = hs0, ii

Fig. 2. Extended Compiler - CAPI

The correcteness of the compiler generated by the meta-compiler depends on
the correctness of the compiler given as input and the correcness of the IFlow
signatures in the runtime API register. Definitions 8 and 9 formally specify the
conditions that the instrumented API register must verify in order for the gen-
erated compiler to be correct. Theorem 2 states that provided that the compiler
given as input to the meta-compiler is correct and the runtime API register is
correct, the generated compiler is also correct.

Definition 8 (Correct IFlow Signature). An IFlow Signature h#c,#l,#di
is correct w.r.t. an API +API if for any two memories µ0 and µ1, labeling
h�,⌃i, sequence of values �!v , and sequence of security levels �!� , such that
hµ0,�,⌃i S� µ1 for some function �, hµ0,�,⌃,�!v ,�!� i +API hµ0

0,�
0,⌃0, v0,�i

if and only if (1) hµ1,#c(�(�!v),�!�)i !⇤
JS hµ0

1, truei, (2) hµ0
1,�(

�!v)i +JS
API hµ00

1 , v1i,
and (3) hµ00

1 ,#l(v1,�(
�!v),�!�)i !⇤

JS hµ000
1 ,�i, in which case hµ0

0,�
0,⌃0i S�0 µ000

1

and v0 ⇠C(�0) v1, for some �0 extending �.

Definition 9 (Correct Runtime API Register). A runtime API register
corresponding to a function object pointed by #$apiRegister is correct w.r.t. an
API register RAPI if for any two memories µ0 and µ1, labeling h�,⌃i, sequence
of values �!v , such that hµ0,�,⌃i S� µ1 for some function �, RAPI(µ0,

�!v) = +API

if and only if (1) hµ1,#apiRegister(�(�!v))i !⇤
JS hµ0

1, rsigi, (2) hµ0,�,⌃i S�0 µ0
1

for some �0 extending �, and (3) hosig(“check”), osig(“label”), osig(“domain”)i is
a correct signature w.r.t. +API , where osig = µ0

1(rsig).

Theorem 2 (Correctness). Let C be correct w.r.t. !IF , then CAPIhCi is cor-
rect w.r.t. E(!IF , Intercept,RAPI) provided that the runtime API register is
correct w.r.t. RAPI .

Proof. In order to prove the claim of the theorem, we need to prove both sides
of the equivalence. Since they are analogous, we give the proof of the right-to-
left implication. Concretely, given a µ labeled by h�,⌃i and an instrumented
memory µ0 such that:

– hµ,�,⌃i S� µ0 (hyp.1)
– CAPIhCie = hs, ii (hyp.2)
– hµ0, $pci RScope t �!� pc = �pc (hyp.3)
– hµ, s,�!� pc,�,⌃, ✏i !⇤

IF hµf , vf ,�pc,�f ,⌃f ,�f i (hyp.4)
we have to prove that:

– hµ, si !⇤
JS hµ0

f , v
0
f i

– hµf ,�f ,⌃f i S� µ0
f

We proceed by induction on the number of API calls occuring in e - n.

[n = 0]. Let n = 0 (hyp.5) and SubExpressions[[e]] = he1, · · · , eki (hyp.6). We conclude:

– hµ, e1,�!� pc,�,⌃, ✏i !⇤
IF hµ1, v1,�pc,�1,⌃1,�1i, ...,

hµk�1, ek,
�!� pc,�k�1,⌃k�1, ✏i !⇤

IF hµk, vk,�pc,�k,⌃k,�ki (1) - hyp.4 + hyp.6
– hµ0, e1i !⇤

JS hµ0
1, v

0
1i, ..., hµ0

k�1, eki !⇤
JS hµ0

k, v
0
ki

(2) - Correctness of C + hyp.1-hyp.3
– hµk,�k,⌃ki S�k µ0

k, for some �k extending � (3) - Correctness of C + hyp.1-hyp.3
– hµ0

k,#apiRegister()i !⇤
JS hµ00

k , nulli (4) - Correctenss of the API register
– hµk,�k,⌃ki S�k µ00

k (5) - Correctenss of the API register
– hµk,Replace[[e, v1, · · · , vk]],�pc,�k,⌃k, h�1, · · · ,�kii !IF hµf , vf ,�pc,�f ,⌃f ,�f i

(6) - hyp.4 + hyp.6
– hµ0

k,Replace[[e, v
0
1, · · · , v0k]]i !JS hµ0

f , v
0
f i (7) - Correctness of C + (5) + (6)

– hµf ,�f ,⌃f i S�f µ0
f , for some �f (8) - Correctenss of the API register

[n = l+1]. We proceed by induction on the number of nested subexpressions - j.
Suppose that j = 0 (hyp.5). Since there are no nested subexpressions and the number
of API calls is greater than 0 it follows that the current expression triggers an API
call. We conclude that:

– n = 1 (1) - hyp.5 + n > 0
– hµ, e,�pc,�,⌃, ✏i !IF hµf , vf ,�pc,�f ,⌃f ,�f i (2) - hyp.4 + hyp.5 + n > 0
– hµ0,#apiRegister()i !⇤

JS hµ00, rsigi (3) - Correctenss of the API register
– hµ00,#c()i !⇤

JS hµ0
c, truei

hµ0
c, ✏i +JS

API hµ0
a, v

0
f i

hµ0
a,#l()i !⇤

JS hµ0
f ,�i (4) - Correctness for IFlow Signatures

– hµf ,�f ,⌃f i S�f µ0
f , for some �f (8) - Correctenss of the IFlow Signature

Suppose j = i+ 1 (hyp.5). There are two cases to consider: either e is intercepted or e
is not intercepted. Suppose that e is intercepted (hyp.6). Suppose SubExpressions[[e]] =
he1, · · · , eki (hyp.7). We conclude:

– hµ, e1,�!� pc,�,⌃, ✏i !⇤
IF hµ1, v1,�pc,�1,⌃1,�1i, ...,

hµk�1, ek,
�!� pc,�k�1,⌃k�1, ✏i !⇤

IF hµk, vk,�pc,�k,⌃k,�ki (1) - hyp.4 + hyp.6
– hµ0, e1i !⇤

JS hµ0
1, v

0
1i, ..., hµ0

k�1, eki !⇤
JS hµ0

k, v
0
ki

(2) - hyp.1-hyp.3 + ih (external induction hypothesis)
– hµk,�k,⌃ki S�k µ0

k, for some �k extending � (3) - Correctness of C + hyp.1-hyp.3
– hµk,�k,⌃ki S�k µ0

k, for some �k extending � (3) - Correctness of C + hyp.1-hyp.3
– hµ0

k,#apiRegister()i !⇤
JS hµ00

k , nulli (4) - Correctenss of the API register
– hµk,�k,⌃ki S�k µ00

k (5) - Correctenss of the API register
– hµk,Replace[[e, v1, · · · , vk]],�pc,�k,⌃k, h�1, · · · ,�kii !IF hµf , vf ,�pc,�f ,⌃f ,�f i

(6) - hyp.4 + hyp.6

– hµ0
k,Replace[[e, v

0
1, · · · , v0k]]i !JS hµ0

f , v
0
f i (7) - Correctness of C + (5) + (6)

– hµf ,�f ,⌃f i S�f µ0
f , for some �f (8) - Correctenss of the API register

An implementation of the presented meta-compiler as well as a proven correct
inlining compiler can be found in [1] together with an online testing tool and a
set of IFlow signatures that includes all those studied in the paper.

5 Securing Information Flow in the DOM API

Interaction between client-side JavaScript programs and the HTML document
is done via the DOM API [23]. In order to access the functionalities of this API,
JavaScript programs manipulate a special kind of objects, here named DOM
objects. There are several di↵erent kinds of DOM objects, for instance objects
to represent document elements, of type Element, and objects to represent the
attributes of document elements, of type Attribute. We partially model DOM El-
ement objects, whose behavior is established in the DOM Core Level 1 API [23].

In contrast to the ECMA Standard [2] that specifies in full detail the internals
of objects created during the execution, the DOM API only specifies the behavior
that DOM interfaces are supposed to exhibit when a program interacts with
them. Hence, browser vendors are free to implement the DOM API as they see
fit. In fact, in all major browsers, the DOM is not managed by the JavaScript
engine. Instead, there is a separate engine, often called the render engine, whose
role is to do so. Therefore, interactions between a JavaScript program and the
DOM may potentially stop the execution of the JavaScript engine and trigger a
call to the render engine. Thus, a monitored JavaScript engine has no access to
the implementation of the DOM API.

In modeling DOM Element objects, we do not include properties that can
be computed from properties that are already modeled, such as the length prop-
erty. Interestingly, by defining the property look-up as an extension point of the
semantics, we can easily model the behavior associated with the looking-up of
these extra properties. Concretely, each one of these properties is associated with
an API relation that is executed each time a program looks-up the corresponding
value in a DOM Element object. Hence, every time we want to extend the model
with a property that can be computed from the properties that are explicitly
modeled, we do not need to modify every rule that manipulates the DOM ob-
jects that are supposed to define this property (and the corresponding proofs of
noninterference). Instead, we only need to specify the API relation correspond-
ing to the looking-up of that property, include it in the API register (RAPI),
and prove it to be noninterferent. This approach to modeling the properties of
DOM objects has the clear advantage of allowing us to modularly reason about
the corresponding information leaks.

In the fragment of the DOM Core Level 1 API modeled in this work, we de-
part from the specification in that in our model the child nodes of a given DOM
Element node are directly accessed through their parent instead of through a
special object childNodes. Hence, instead of writing div1.childNodes[i] to ac-

cess the ith child of the DIV element bound to div1, we simply write div1[i].
Furthermore, we say that, provided that it is defined, i is an index of div1.

The special features of the DOM API spawn new implicit information flows
as the following examples illustrate.

Example 10 (Leak via removeChild - Order Leak). Suppose that in the original
memory there are two orphan DIV nodes bound to variables div1 and div2.

1 div1.appendChild(div2);

2 if(h) { div1.removeChild(div2); }

3 l = div1 [0];

After the execution of this program, depending on the value of the high variable
h, the value of l can be either div2 or undefined , meaning that the final level
associated with variable l must be H in both executions.

Example 11 (Leak via appendChild - Order Leak). Suppose that in the original
memory there are three orphan DIV nodes with low structure security level
bound to variables div1, div2, and div3.

1 div3.appendChild(div2);

2 if(h) { div1.appendChild(div2); }

3 div1.appendChild(div3); l = div1 [0];

After the execution of this program, depending on the value of the high variable
h, l can be either set to a reference pointing to div3 or to a reference pointing to
div2. Hence, for this example to be legal, the reading e↵ect of div1[0] must be
H no matter the value of the non-observable variable h. Notice that this kind of
leak cannot be directly expressed in the model of [25].

The examples above show that, when appending a new node to a given El-
ement node, its index depends on the indexes of the nodes that were already
appended. Analogously, when removing a node the new indexes of its right sib-
lings depend on the index of the node that is to be removed. To tackle this
problem, we specify the semantic relations corresponding to the DOM methods
removeChild and appendChild in such a way that for every DOM node the level
of the property through which it is accessed is always lower than or equal to the
levels of the properties corresponding to its right siblings.

We model DOM objects as standard JavaScript objects. Furthermore, we
assume that every memory contains a document object denoted doc, which is
accessed through the property “doc” of the global object and which is assumed
to be stored in a fixed reference #doc. Each DOM object is assumed to define
a property @tag that specifies its tag (for instance, hdivi, hhtmli, hai) and,
possibly, an arbitrary number of indexes 0, ..., n that point to each of its n+ 1
children. The DOM Element objects in memory form a forest, that is, a set of
trees of Element objects, such that the displayed HTML document corresponds
to the tree hanging from the object pointed to by #doc.

Figure 3 presents the labeled API relations with which we extend the JavaScript
semantics for interaction with DOM objects. In the specification of these API
relations we make use of the following four semantic functions:

– R#Children receives a memory µ as input and outputs a binary relation in
Ref ⇥ N, such that if hr, ni 2 R#Children(µ), then the DOM node pointed
to by r has n children (meaning that it defines the indexes 0, · · · , n� 1).

– RAncestor receives a memory µ as input and outputs a binary relation in
Ref⇥Ref , such that if hr0, r1i 2 RAncestor(µ), then the DOM node pointed
to by r0 is an ancestor of the DOM node pointed to by r1 in the DOM forest
stored in µ.

– RParent receives a memory µ as input and outputs a relation in Ref ⇥Ref ,
such that if hr0, r1i 2 RParent(µ), then the DOM node pointed to by r0
is the parent of the DOM node pointed to by r1 (meaning that there is an
index i such that µ(r0)(i) = r1).

– Orphan receives a memory µ as input and ouputs a set of references, such
that if r 2 Orphan(µ), then the DOM node pointed to by r is an orphan
node, that is, it does not have a parent in the DOM forest stored in µ.

In the specification of each API, when an element of the initial configuration
is not used in the premises of the corresponding rule, we denote it by . The
monitored API relations given in Figure 3 enforce the invariant on the indexes of
every DOM Element object discussed above. Indexes Invariant: for any memory
µ well-labeled by h�,⌃i, reference r 2 dom(µ) pointing to a DOM Element
object, and two indexes i, j 2 dom(� (r)) such that i < j, the following hold:
� (r)(i)  � (r)(j)  ⌃(r).

In the formal model, a DOM object does not define a property pointing to its
parent. However, the API relations are specified in such a way that the structure
security level of a DOM node functions as the level of a “ghost” property pointing
to its parent node. Hence, we strenghten the low-equality relation for DOM
objects in the following way: if µ0,�0,⌃0 ⇡�,� µ1,�1,⌃1, �(r0) = r1, hrp0 , r0i 2
RParent(µ0), and hrp1 , r1i 2 RParent(µ1), either (⌃0(r) t⌃1(�(r))  � ^ rp0 ⇠� rp1)

or ⌃0(r) u⌃1(�(r)) 6 �.
In the following, we give a brief explanation for each of the rules in Figure 3.

[createElement] The API relation +cre creates a new DOM Element node with
tag m and binds a free reference r to it. The structure security level of the newly
created node as well as the level of its property @tag are both set to �0t�1t�2

in order to verify the confinement property (Definition 4). [removeChild] The
API relation +rem removes the node pointed to by r2 from the list of children
of the node pointed to by r0, after checking that µ(r0) is in fact the parent
of µ(r2). The object µ(r0) is updated by shifting by �1 all the indexes equal
to or higher than i (the index of the object being removed) and by removing
index n. The levels of the indexes of the right siblings of the node to remove
are accordingly shifted by �1. The constraint of the rule prevents a program
from removing in a high context a node that was inserted in a low context (see
Example 10). [appendChild] The API relation +app has two di↵erent behaviors
depending on the fact that the node pointed to by r2 is or is not an orphan
node. If the node pointed to by r2 is an orphan node, the behavior of +app is the
following: (1) it first checks that the node to append (µ(r2)) is not an ancestor
of the node to which it is to be appended (µ(r0)); (2) it creates a new property

createElement
r 62 dom(µ) µ0 = µ [r 7! [@tag 7! m]] � 0 = � [r 7! [@tag 7! �0 t �1 t �2]] ⌃0 = ⌃ [r 7! �0 t �1 t �2]

hµ,�,⌃, hdoc, ,mi, h�0,�1,�2ii +cre hµ0,� 0,⌃0, r,�0 t �1 t �2i

removeChild
µ(r0)(i) = r2 hr0, n+ 1i 2 R#Children(µ) dom(o0) = dom(�0) = dom(µ(r0))\{n}
80j<i · o0(j) = µ(r0)(j) 8ij<n · o0(j) = µ(r0)(j + 1) o0(@tag) = µ(r0)(@tag)
80j<i · �0(j) = � (r0)(j) 8ij<n · �0(j) = � (r0)(j + 1) �0(@tag) = � (r0)(@tag)

µ0 = µ [r0 7! o0] � 0 = � [r0 7! �0] �0 t �1 t �2  � (r0)(i) u⌃(r2)

hµ,�,⌃, hr0, , r2i, h�0,�1,�2ii +rem hµ0,� 0,⌃, r2,�0 t �1 t �2i

appendChild - orphan node
hr2, ri 62 RAncestor(µ) r2 2 Orphan(µ) hr0, ni 2 R#Children(µ)

µ0 = µ [r0 7! µ(r0) [n 7! r2]] � 0 = � [r0 7! � (r0) [n 7! ⌃(r0) t⌃(r2)]] �0 t �1 t �2  ⌃(r0) u⌃(r2)

hµ,�,⌃, hr0, , r2i, h�0,�1,�2ii +app hµ0,� 0,⌃, r2,�0 t �1 t �2i

appendChild - non-orphan node
hrp, r2i 2 RParent(µ) hµ,�,⌃, hrp, , r2i, h�0 t⌃(r2),�1,�2ii +rem hµ0,� 0,⌃0, , i

hµ0,� 0,⌃0, hr0, , r2i, h�0,�1,�2ii +app hµ00,� 00,⌃00, , i �0 t �1 t �2  ⌃(r0) u⌃(r2)

hµ,�,⌃, hr0, , r2i, h�0,�1,�2ii +app hµ00,� 00,⌃00, r2,�0 t �1 t �2i

length
hr, ni 2 R#Children(µ) � = �0 t �1 t⌃(r)

hµ,�,⌃, hr, i, h�0,�1ii +len hµ,�,⌃, n,�i

parentNode

v =

⇢
rp if hrp, ri 2 RParent(µ)
undefined otherwise

hµ,�,⌃, hr, i, h�0,�1ii +par hµ,�,⌃, v,�0 t �1 t⌃(r)i

index

hv,�i =
⇢ hµ(r)(i),� (r)(i)i if i 2 dom(µ(r))
hundefined ,⌃(r)i otherwise

hµ,�,⌃, hr, ii, h�0,�1ii +ind hµ,�,⌃, v,�0 t �1 t �)i

nextSibling - non-Orphan Node
hrp, ri 2 RParent(µ) hrp, ni 2 R#Children(µ) µ(rp)(i) = r

hvi,�ii =
⇢ hµ(rp)(i+ 1),� (rp)(i+ 1)i if i+ 1 < n
hundefined ,⌃(rp)i otherwise

hµ,�,⌃, hr, i, h�0,�1ii +sib hµ,�,⌃, vi,�0 t �1 t �i t⌃(r)i

nextSibling - Orphan Node
r 2 Orphan(µ)

hµ,�,⌃, hr, i, h�0,�1ii +sib hµ,�,⌃, undefined ,�0 t �1 t⌃(r)i

Fig. 3. DOM APIs - Building and Traversing DOM Trees

n in µ(r0) and sets it to point to µ(r2) (where n is the previous number of
children of µ(r0)); (3) the level of the new index property n is set to the least
upper bound on the levels of the arguments and the level of its new left sibling
provided that it exists (in order to enforce the Indexes Invariant); (4) the least
upper bound on the level of the arguments must be equal to or lower than the
structure security level of µ(r0) because adding an index to a node changes its
domain; (5) the least upper bound on the level of the arguments must be equal

to or lower than the structure security level of µ(r2) (in order to enforce the
Parent Node Invariant). If the node pointed to by r2 is not an orphan node, the
behavior of +app is the following: (1) it removes µ(r2) from the list of children
of its current parent (using the +rem API relation); (2) the API relation +app

calls itself recursively. [length] The API relation +len evaluates to the number
of children of µ(r). The reading e↵ect of a call to this API must be higher than
or equal to the structure security level of µ(r) because it leaks information about
the domain of µ(r). Concretely, by calling this API relation, one finds out which
are the index properties that the node defines. [parentNode] The API relation
+par evaluates either to the reference that points to the parent of µ(r), or to
undefined if µ(r) is an orphan node. The reading e↵ect of a call to this API is
higher than or equal to the structure security level of µ(r) because it acts as the
level of a “ghost” property pointing to the corrresponding parent node. [index]
The API relation +ind evaluates to the ith child of µ(r). If µ(r) has less than i+1
children the call to this API returns undefined . Besides the security levels of the
arguments, the reading e↵ect of a call to this API must take into account either
the security level associated with index i (provided that it is defined), or the
structure security level of µ(r). [nextSibling] The API relation +sib evaluates
either to the reference that points to the right sibling of µ(r), or to undefined
if µ(r) does not have a right sibling. In the former case, the reading e↵ect of a
call to this API is higher than or equal to the security level associated with the
index pointing to the right sibling, whereas in the latter case it must be higher
than or equal to the structure security level of the parent node of µ(r). In order
for these API relations to be added to the semantics, one has to add them to
the the API register. Hence, we assume that the RAPI extends the API register
given in Figure 4.

RDOM
API (µ, hr,m, · · ·i) =8

>>>>>>>><

>>>>>>>>:

+cre if m = “createElement” ^ r = #doc
+app if m = “appendChild” ^@tag 2 dom(µ(r))
+rem if m = “removeChild” ^@tag 2 dom(µ(r))
+len if m = “length” ^@tag 2 dom(µ(r))
+par if m = “parentNode” ^@tag 2 dom(µ(r))
+ind if m 2 Number ^@tag 2 dom(µ(r))
+sib if m = “nextSibling” ^@tag 2 dom(µ(r))

Fig. 4. RDOM
API

Lemma 18 validates the hypothesis of Theorem 1 for RDOM
API , meaning that

the extension of the security monitor with the APIs in the range of RDOM
API does

not entail a violation of the security theorem.

Lemma 1 (Noninterference for the DOM API). NI(RDOM
API).

Proof. Applying Lemmas 3, 6, 9, 11, 13, 15, and 17, we conclude that all API
relations in the range of RDOM

API are noninterferent. It remains to prove that given
two memories µ and µ0, two labelings h�,⌃i and h� 0,⌃0i, a sequence of values�!v , a security level �, and a function �, such that µ,�,⌃ ⇡�,� µ0,� 0,⌃0 (hyp.1),
then RDOM

API (µ,�!v) = RDOM
API (µ0,�(�!v)). We proceed by case analysis:

– RDOM
API (µ,�!v) =+cre (hyp.2). We conclude that:�!v = h#doc, “createElement”i,

implying that �(�!v) = h#doc, “createElement”i (because � is proper), and
therefore that: RDOM

API (µ0,�(�!v)) =+cre.
– RDOM

API (µ,�!v) =+app (hyp.2). We conclude that: �!v = hr, “appendChild”i
and @tag 2 dom(µ(r)), implying that: �(�!v) = h�(r), “createElement”i,
@tag 2 dom(µ0(r0)) (Tag Invariant), and therefore that: RDOM

API (µ0,�(�!v)) =
+app. All the remaining cases are equivalent and therefore ommitted.

Figure 5 presents a possible IFlow signature for the API relation +rem, which
makes use of the two following runtime functions: (1) $check diverges if its
argument is di↵erent from true and returns true otherwise and (2) $shadow
receives as input a property name and outputs the name of the corresponding
shadow property.

check = function(o0,m, o2,�0,�1,�2){
var i = 0;
while(i  o0[“length”]){

if(o0[i] == o2) break;
}
$check(i < o0[“length”]);
o2[$index] = i;
return $check(�0 t �1 t �2  o0[$shadow(i)]);

}

domain = function(o0,m){
return o0[@tag] && (m == “removeChild”);

}

label = function(ret, o0,m, o2,�0,�1,�2){
var i = o2[$index];
var j = o0[“length”];
while(j > i){

o0[$shadow(j)] = o0[$shadow(j + 1)];
}
delete o0[$shadow(o0[“length”])];
delete o2[$index];
return �0 t �1 t �2;

}

Fig. 5. IFlow Signature of +rem

6 Conclusion

In summary, we have proposed a methodology for extending arbitrary monitored
semantics with secure APIs, which allows us to prove the security of the extended
monitor in a modular way. As a case study, we applied the methodology to an
important fragment of the DOM Core Level 1 API for which we have studied
information leaks not explored in previous related work. The proofs of the results
as well as an implementation that includes the IFlow signatures of the APIs
studied in the paper can be found in [1].

References

1. Information flow monitor-inlining compiler. http://www-sop.inria.fr/indes/ifJS.
2. The 5.1th edition of ECMA 262 June 2011. ECMAScript Language Specification.

Technical report, ECMA, 2011.
3. T. H. Austin and C. Flanagan. E�cient purely-dynamic information flow analysis.

In PLAS, 2009.
4. T. H. Austin and C. Flanagan. Permissive dynamic information flow analysis. In

PLAS, 2010.
5. T. H. Austin and C. Flanagan. Multiple facets for dynamic information flow. In

POPL, 2012.
6. A. Banerjee and D. A. Naumann. Secure information flow and pointer confinement

in a java-like language. In CSFW, 2002.
7. G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by self-

composition. Mathematical Structures in Computer Science, 21(6):1207–1252,
2011.

8. N. Bielova. Survey on javascript security policies and their enforcement mechanisms
in a web browser. Special Issue on Automated Specification and Verification of Web
Systems of JLAP, 2013. To appear.

9. A. Birgisson, D. Hedin, and A. Sabelfeld. Boosting the permissiveness of dynamic
information-flow tracking by testing. In ESORICS, 2012.

10. A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and S. Zdancewic. Reactive
noninterference. In ACM Conference on Computer and Communications Security,
2009.

11. A. Chudnov and D. A. Naumann. Information flow monitor inlining. In CSF,
2010.

12. D. Crockford. Adsafe. http://www.adsafe.org.
13. D. E. Denning. A lattice model of secure information flow. Communications of the

ACM, 19(5), 1976.
14. The FaceBook Team: FBJS. http://wiki.developers.facebook.com/index.php/FBJS.
15. P. Gardner, G. Smith, M. J. Wheelhouse, and U. Zarfaty. Dom: Towards a formal

specification. In PLAN-X, 2008.
16. G. Le Guernic. Confidentiality Enforcement Using Dynamic Information Flow

Analyses. PhD thesis, Kansas State University, 2007.
17. A. Guha, B. Lerner, J. Gibbs Politz, and S. Krishnamurthi. Web api verification:

Results and challenges. 2012.
18. D. Hedin and A. Sabelfeld. Information-flow security for a core of javascript. In

CSF, 2012.
19. S. Ma↵eis, J. C. Mitchell, and A. Taly. An operational semantics for javascript. In

APLAS, 2008.
20. S. Ma↵eis and A. Taly. Language-based isolation of untrusted javascript. In CSF,

2009.
21. J. Magazinius, A. Russo, and A. Sabelfeld. On-the-fly inlining of dynamic security

monitors. Computers & Security, 2012.
22. J. Gibbs Politz, S. A. Eliopoulos, A. Guha, and S. Krishnamurthi. Adsafety: Type-

based verification of javascript sandboxing. In USENIX Security Symposium, 2011.
23. W3C Recommendation. DOM: Document Object Model (DOM). Technical report,

W3C, 2005.
24. A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security analysis. In

CSF, 2010.

25. A. Russo, A. Sabelfeld, and A. Chudnov. Tracking information flow in dynamic
tree structures. In ESORICS, 2009.

26. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 2003.

27. P. Shro↵, S. F. Smith, and M. Thober. Dynamic dependency monitoring to secure
information flow. In CSF, 2007.

28. A. Taly, U. Erlingsson, J. C. Mitchell, M. S. Miller, and J. Nagra. Automated
analysis of security-critical javascript apis. In SP, 2011.

29. T. Terauchi and A. Aiken. Secure information flow as a safety problem. In SAS,
2005.

30. V. N. Venkatakrishnan, W. Xu, D. C. DuVarney, and R. Sekar. Provably correct
runtime enforcement of non-interference properties. In ICICS, 2006.

A Proofs of Section 5

Lemma 2 (Confinement for +cre). +cre is confined.

Proof. Observing that the reference of the newly created object is not in the
domain of µ, the result follows immediately.

Lemma 3 (Noninterference for +cre). NI(+cre).

Proof. Hypotheses:

– µ,�,⌃ ⇡id,� µ0,� 0,⌃0 hyp.1
– h , ,mi, h�0,�1,�2i ⇡�,� h , ,m0i, h�0

0,�
0
1,�

0
2i hyp.2

– hµ,�,⌃, h , ,mi, h�0,�1,�2ii +cre hµf ,�f ,⌃f , r,�0 t �1 t �2i hyp.3
– hµ0,� 0,⌃0, h , ,m0i, h�0

0,�
0
1,�

0
2ii +cre hµ0

f ,�
0
f , r

0,�0
0 t �0

1 t �0
2i hyp.4

We conclude that:

– r 62 dom(µ) (1) - hyp.3
– µf = µ [r 7! [@tag 7! m]] (2) - hyp.3
– �f = � [r 7! [@tag 7! �0 t �1 t �2]] (3) - hyp.3
– ⌃f = ⌃ [r 7! �0 t �1 t �2] (4) - hyp.3
– r0 62 dom(µ0) (5) - hyp.4
– µ0

f = µ0 [r0 7! [@tag 7! m0]] (6) - hyp.4
– � 0

f = � 0 [r0 7! [@tag 7! �0
0 t �0

1 t �0
2]] (7) - hyp.4

– ⌃0
f = ⌃0 [r0 7! �0

0 t �0
1 t �0

2] (8) - hyp.4

We consider two di↵erent cases: (I) �0 t �1 t �2  � and (II) �0 t �1 t �2 6 �.

Case: �0 t �1 t �2  � (hyp.5) and �0 = � [r 7! r0] (hyp.6):

– m = m0 (9) - hyp.2 + hyp.5
– �0

0 t �0
1 t �0

2  � (10) - hyp.2 + hyp.5
– Parent(µf , r) = Parent(µ0

f , r
0) = undefined (11) - (1) + (2) + (5) + (6)

–
⇣
⌃f (r)  � _⌃0

f (r
0)  �

⌘
)

⇢Parent(µf , r) ⇠�0 Parent(µ0
f , r

0)
⌃f (r) t⌃0

f (r
0)  �

(12) - hyp.5 + (4) + (8) + (9)

– µf ,�f ,⌃f ⇡�0,� µ0
f ,�

0
f ,⌃

0
f (13) - hyp.1 + hyp.6 + (1) - (8) + (10) + (12)

– r,�0 t �1 t �2 ⇡�,� r0,�0
0 t �0

1 t �0
2 (14) - hyp.2 + hyp.6

Case: �0 t �1 t �2 6 � (hyp.5):

– �0
0 t �0

1 t �0
2 6 � (9) - hyp.2 + hyp.5

– µ,�,⌃ ⇡id,� µf ,�f ,⌃f

(10) - hyp.3 + hyp.5 + Confinement for +cre (Lemma 2)
– µ0,� 0,⌃0 ⇡id,� µ0

f ,�
0
f ,⌃

0
f

(11) - hyp.4 + (9) + Confinement for +cre (Lemma 2)
– µf ,�f ,⌃f ⇡�,� µ0

f ,�
0
f ,⌃

0
f

(12) - hyp.1 + (10) + (11) + Lateral Transitivity of ⇡�,�

– r,�0 t �1 t �2 ⇡�0,� r0,�0
0 t �0

1 t �0
2 (13) - hyp.5 + (9)

Lemma 4 (Strong Cofinement for +rem). Let µ be a memory, h�,⌃i a
labeling, r0 and r2 two references, �0,�1,�2,� 2 L four security levels , such
that: (1) hµ,�,⌃, hr0, , r2i, h�0,�1,�2ii +rem hµ0,� 0,⌃0, r2,�0 t �1 t �2i for
some memory µ0 labeled by h� 0,⌃0i, (2) µ(r0)(i) = r2 for some index i, and (3)
� (r0)(i) 6 �; then: µ,�,⌃ ⇡id,� µ0,� 0,⌃0.

Proof. We conclude that there an integer n, an object o0, and a labeling object
�0, such that:

– hr0, n+ 1i 2 R#Children(µ) (1) - hyp.1 + hyp.2
– dom(o0) = dom(�0) = dom(µ(r0))\{n} (2) - hyp.1 + hyp.2
– 80j<i · o0(j) = µ(r0)(j), 8ij<n · o0(j) = µ(r0)(j + 1),

o0(@tag) = µ(r0)(@tag) (3) - hyp.1 + hyp.2
– 80j<i · �0(j) = � (r0)(j), 8ij<n · �0(j) = � (r0)(j + 1),

�0(@tag) = � (r0)(@tag) (4) - hyp.1 + hyp.2
– µ0 = µ [r0 7! o0] and � 0 = � [r0 7! �0] (5) - hyp.1 + hyp.2
– 8ijn · � (r0)(j) 6 � and ⌃(r0) 6 �

(6) - hyp.2 + (1) + Indexes Invariant
– µ,�,⌃ ⇡id,� µ0,� 0,⌃0

(7) - (2) - (5) + (6) + High Object Update Lemma

Lemma 5 (Cofinement for +rem). +rem is confined.

Proof. Hypotheses:

– hµ,�,⌃, hr0, , r2i, h�0,�1,�2ii +rem hµ0,� 0,⌃0, r2,�0 t �1 t �2i hyp.1
– �0 t �1 t �2 6 � hyp.2

From Hypothesis hyp.1, we conclude that there is an index i such that µ(r0)(i) =
r2. The semantics of +rem impose that: �0 t �1 t �2  � (r0)(i). Therefore, we
conclude that: � (r0)(i) 6 �. Applying the Strong Confinement Lemma for +rem

(Lemma 4), the result immediately follows.

Lemma 6 (Noninterference for +rem). NI(+rem).

Proof. Hypotheses:

– µ,�,⌃ ⇡�,� µ0,� 0,⌃0 hyp.1
– hr0, , r2i, h�0,�1,�2i ⇡�,� hr00, , r02i, h�0

0,�
0
1,�

0
2i hyp.2

– hµ,�,⌃, hr0, , r2i, h�0,�1,�2ii +rem hµf ,�f ,⌃f , r2,�0 t �1 t �2i hyp.3
– hµ0,� 0,⌃0, hr00, , r02i, h�0

0,�
0
1,�

0
2ii +rem hµ0

f ,�
0
f ,⌃

0
f , r

0
2,�

0
0 t �0

1 t �0
2i hyp.4

We conclude that there are four integers i, i0, n and n0, two objects o0 and o00,
and two labeling objects �0 and �0

0, such that:

– µ(r0)(i) = r2 and hr0, n+ 1i 2 R#Children(µ) (1) - hyp.3
– dom(o0) = dom(�0) = dom(µ(r0))\{n} (2) - hyp.3
– 80j<i · o0(j) = µ(r0)(j), 8ij<n · o0(j) = µ(r0)(j + 1),

o0(@tag) = µ(r0)(@tag) (3) - hyp.3
– 80j<i · �0(j) = � (r0)(j), 8ij<n · �0(j) = � (r0)(j + 1),

�0(@tag) = � (r0)(@tag) (4) - hyp.3
– µf = µ [r0 7! o0] and �f = � [r0 7! �0] (5) - hyp.3
– �0 t �1 t �2  � (r0)(i) (6) - hyp.3
– µ0(r00)(i

0) = r02 and hr00, n0 + 1i 2 R#Children(µ0) (7) - hyp.4
– dom(o00) = dom(�0

0) = dom(µ0(r00))\{n0} (8) - hyp.4
– 80j<i0 · o00(j) = µ0(r00)(j), 8i0j<n0 · o00(j) = µ0(r00)(j + 1),

o00(@tag) = µ0(r00)(@tag) (9) - hyp.4
– 80j<i0 · �0

0(j) = � 0(r00)(j), 8i0j<n · �0
0(j) = � 0(r00)(j + 1),

�0
0(@tag) = � 0(r00)(@tag) (10) - hyp.4

– µ0
f = µ0 [r00 7! o00] and � 0

f = � 0 [r00 7! �0
0] (11) - hyp.4

– �0
0 t �0

1 t �0
2  � 0(r00)(i

0) (12) - hyp.4

We immediately conclude from the Hypothesis hyp.2 that r2,�0 t �1 t �2 ⇡�,�

r02,�
0
0 t �0

1 t �0
2. We now proceed by case analysis.

Case: � (r0)(i)  � (hyp.5) and suppose, without loss of generality that n  n0

(hyp.6):

– �0 t �1 t �2  � (13) - hyp.5 + (6)
– r0 ⇠� r00 (14) - hyp.2 + (13)
– r2 ⇠� r02 (15) - hyp.2 + (13)
– 80ji · � (r0)(j) t � 0(r00)(j)  �

(16) - hyp.1 + hyp.5 + (14) + Indexes Invariant
– 80ji · µ(r0)(j) ⇠� µ0(r00)(j)

(17) - hyp.1 + hyp.5 + (14) + Indexes Invariant
– r2 ⇠� µ0(r00)(i) (18) - (1) + (17)
– µ0(r00)(i) = r02 (19) - (15) + (18)
– i = i0 (20) - (7) + (19) + DOM Integrity
– 8i<jn · µ(r0)(j),� (r0)(j) ⇡�,� µ0(r00)(j),�

0(r00)(j)
(21) - hyp.1 + hyp.6 + (14)

– 8n<jn0 · � 0(r00)(j) 6 � (22) - hyp.1 + hyp.6 + (14)

– µf ,�f ,⌃f ⇡�,� µ0
f ,�

0
f ,⌃

0
f

(23) - hyp.1 + (2) - (5) + (8) - (11) + (17) + (21) + (22) +
+ Low Object Update Lemma

Case: � (r0)(i) 6 � (hyp.5):

– � 0(r00)(i
0) 6 � (13)

Suppose � 0(r00)(i
0)  � (hyp.6):

• �0
0 t �0

1 t �0
2  � (13.1) - hyp.6 + (12)

• r0 ⇠� r00 (13.2) - hyp.2 + (13.1)
• r2 ⇠� r02 (13.3) - hyp.2 + (13.1)
• 80ji0 · � (r0)(j) t � 0(r00)(j)  �

(13.4) - hyp.1 + hyp.6 + (13.2) + Indexes Invariant
• 80ji0 · µ(r0)(j) ⇠� µ0(r00)(j)

(13.5) - hyp.1 + hyp.6 + (13.2) + Indexes Invariant
• µ(r0)(i0) ⇠� r02 (13.6) - (7) + (13.5)
• r2 = µ(r0)(i0) (13.7) - (13.3) + (13.6)
• i = i0 (13.8) - (1) + (13.7)
• � (r0)(i)  � (13.9) - (13.4) + (13.8)
• Contradiction (13.10) - hyp.5 + (13.9)

– µ,�,⌃ ⇡id,� µf ,�f ,⌃f

(16) - hyp.3 + hyp.5 + Strong Confinement for +rem (Lemma 4)
– µ0,� 0,⌃0 ⇡id,� µ0

f ,�
0
f ,⌃

0
f

(17) - hyp.4 + (15) + Strong Confinement for +rem (Lemma 4)
– µf ,�f ,⌃f ⇡�,� µ0

f ,�
0
f ,⌃

0
f

(18) - hyp.1 + (16) + (17) + Lateral Transitivity of ⇡�,�

Lemma 7 (Strong Cofinement for +app). Let µ be a memory, h�,⌃i a
labeling, r0 and r2 two references, and �0,�1,�2,� 2 L four security levels,
such that: (1) hµ,�,⌃, hr0, , r2i, h�0,�1,�2ii +app hµ0,� 0,⌃0, r2,�0 t �1 t �2i
for some memory µ0 and labeling h� 0,⌃0i and (2) ⌃(r0) t ⌃(r2) 6 �; then:
µ,�,⌃ ⇡id,� µ0,� 0,⌃0.

Proof. We proceed by case analysis.

Case: r2 2 Orphan(µ) (hyp.3). We conclude that there are is an integer n, such
that:

– hr0, ni 2 R#Children(µ) (1) - hyp.1 + hyp.3
– µ0 = µ [r0 7! µ(r0) [n 7! r2]] (2) - hyp.1 + hyp.3
– � 0 = � [r0 7! � (r0) [n 7! ⌃(r0)]] (3) - hyp.1 + hyp.3
– ⌃0 = ⌃ (4) - hyp.1 + hyp.3
– �0 t �1 t �2  ⌃(r0) u⌃(r2) (5) - hyp.1 + hyp.3
– µ,�,⌃ ⇡id,� µ0,� 0,⌃

(6) - hyp.2 + (2) - (4) + High Object Update Lemma

Case: r2 62 Orphan(µ) (hyp.3). We conclude that there is a reference rp, a

memory µ̂, a labeling h�̂ , ⌃̂i, such that hrp, r2i 2 RParent(µ):

– hµ,�,⌃, hrp, , r2i, h�0 t⌃(r0),�1,�2ii +rem hµ̂, �̂ , ⌃̂, , i
(1) - hyp.1 + hyp.3

– hµ̂, �̂ , ⌃̂, hr0, , r2i, h�0,�1,�2ii +app hµ0,� 0,⌃0, , i
(2) - hyp.1 + hyp.3

– �0 t �1 t �2  ⌃(r0) u⌃(r2) (3) - hyp.1 + hyp.3
– µ,�,⌃ ⇡id,� µ̂, �̂ , ⌃̂

(4) - hyp.2 + (1) + Confinement for +rem (Lemma 5)
– µ̂, �̂ , ⌃̂ ⇡id,� µ0,� 0,⌃0 (5) - hyp.2 + (2) + Case r2 2 Orphan(µ)
– µ,�,⌃ ⇡id,� µ0,� 0,⌃0 (6) - (4) + (5) + Transitivity of ⇡�,�

Lemma 8 (Cofinement for +app). +app is confined.

Proof. Hypotheses:

– hµ,�,⌃, hr0, , r2i, h�0,�1,�2ii +app hµ0,� 0,⌃0, r2,�0 t �1 t �2i hyp.1
– �0 t �1 t �2 6 � hyp.2

Both rules for +app impose that: �0 t �1 t �2  ⌃(r0) u ⌃(r2). Therefore, we
conclude that: ⌃(r0) 6 �. Applying the Strong Confinement Lemma for +app

(Lemma 7), the result immediately follows.

Lemma 9 (Noninterference for +app). NI(+app).

Proof. Hypotheses:

– µ,�,⌃ ⇡�,� µ0,� 0,⌃0 hyp.1
– hr0, , r2i, h�0,�1,�2i ⇡�,� hr00, , r02i, h�0

0,�
0
1,�

0
2i hyp.2

– hµ,�,⌃, hr0, , r2i, h�0,�1,�2ii +app hµf ,�f ,⌃f , r2,�0 t �1 t �2i hyp.3
– hµ0,� 0,⌃0, hr00, , r02i, h�0

0,�
0
1,�

0
2ii +rem hµ0

f ,�
0
f ,⌃

0
f , r

0
2,�

0
0 t �0

1 t �0
2i hyp.4

From hyp.2, it immediately follows that: r2,�0 t �1 t �2 ⇡�0,� r02,�
0
0 t �0

1 t �0
2,

for any function �0 extending �. We proceed by case analysis.

Case I: ⌃(r0) 6 � (hyp.5):

– µ,�,⌃ ⇡id,� µf ,�f ,⌃f

(1) - hyp.3 + Strong Confiment for +app

– µ0,� 0,⌃0 ⇡id,� µ0
f ,�

0
f ,⌃

0
f

(2) - hyp.4 + Strong Confiment for +app

– µf ,�f ,⌃f ⇡�,� µ0
f ,�

0
f ,⌃

0
f

(3) - (1) + (2) + Lateral Transitivity of ⇡�,�

Case II: r2 62 Orphan(µ) (hyp.5) and ⌃(r0)  � (hyp.6). We conclude that
there are is an integer n, such that:

– hr0, ni 2 R#Children(µ) (1) - hyp.3 + hyp.5
– µf = µ [r0 7! µ(r0) [n 7! r2]] (2) - hyp.3 + hyp.5
– �f = � [r0 7! � (r0) [n 7! ⌃(r0)]] (3) - hyp.3 + hyp.5

– ⌃f = ⌃ (4) - hyp.3 + hyp.5
– �0 t �1 t �2  ⌃(r0) u⌃(r2) (5) - hyp.3 + hyp.5
– r0 ⇠� r00 (6) - hyp.2 + hyp.6 + (5)
– r2 ⇠� r02 (7) - hyp.2 + hyp.6 + (5)
– ⌃0(r00) t⌃0(r02)  � (8) - hyp.1 + hyp.6 + (6) + (7)
– r02 2 Orphan(µ0) (9) - hyp.1 + hyp.6 + (7) + Parent Node Invariant
– hr00, ni 2 R#Children(µ0) (10) - hyp.1 + hyp.6 + (1) + (6)
– µ0

f = µ0 [r00 7! µ0(r00) [n 7! r02]] (11) - hyp.4 + (9) + (10)
– � 0

f = � 0 [r00 7! � 0(r00) [n 7! ⌃0(r00)]] (12) - hyp.4 + (9) + (10)
– ⌃0

f = ⌃0 (13) - hyp.4 + (9) + (10)
– µf ,�f ,⌃f ⇡�,� µ0

f ,�
0
f ,⌃

0
f

(14) - hyp.1 + hyp.6 + (2) - (4) + (8) + (11) - (13) +
+ Low Object Update

Case III: r2 62 Orphan(µ) (hyp.5) and ⌃(r0)  � (hyp.6). We conclude that
there is a reference rp, a memory µ̂, a labeling h�̂ , ⌃̂i, such that hrp, r2i 2
RParent(µ):

– hµ,�,⌃, hrp, , r2i, h�0 t⌃(r0) t⌃(r2),�1,�2ii +rem hµ̂, �̂ , ⌃̂, , i
(1) - hyp.3 + hyp.5

– hµ̂, �̂ , ⌃̂, hr0, , r2i, h�0,�1,�2ii +app hµf ,�f ,⌃f , , i
(2) - hyp.3 + hyp.5

– �0 t �1 t �2  ⌃(r0) u⌃(r2) (3) - hyp.3 + hyp.5
– r0 ⇠� r00 (4) - hyp.2 + hyp.6 + (3)
– r2 ⇠� r02 (5) - hyp.2 + hyp.6 + (3)
– ⌃0(r02) t⌃0(r00)  � (6) - hyp.2 + hyp.6 + (3)
– hr0p, r02i 2 RParent(µ0), and rp ⇠� r0p, for some r0p

(7) - hyp.5 + hyp.6 + (5) + (6) + Parent Node Invariant
– r02 62 Orphan(µ0) (8) - (7) + DOM Integrity

From hyp.4 + (8), we conclude that there is a memory µ̂0 and a labeling h�̂ 0, ⌃̂0i:
– hµ0,� 0,⌃0, hr0p, , r02i, h�0

0 t⌃0(r00) t⌃0(r02),�
0
1,�

0
2ii +rem hµ̂0, �̂ 0, ⌃̂0, , i

(9) - hyp.4 + (6)
– hµ̂0, �̂ 0, ⌃̂0, hr00, , r02i, h�0

0,�
0
1,�

0
2ii +app hµ0

f ,�
0
f ,⌃

0
f , , i

(10) - hyp.4 + (6)
– �0

0 t �0
1 t �0

2  ⌃0(r00) u⌃0(r02) (11) - hyp.4 + (6)
– hrp, , r2i, h�0 t⌃(r0) t⌃(r2),�1,�2i ⇡�,� hr0p, , r02i, h�0

0 t⌃0(r00) t⌃0(r02),�
0
1,�

0
2i

(12) - hyp.2 + hyp.6 + (6)
– µ̂, �̂ , ⌃̂ ⇡�̂,� µ̂0, �̂ 0, ⌃̂0, for some �̂ that extends �

(13) - hyp.1 + (1) + (9) + (12) + NI(+rem) (Lemma 6)
– µf ,�f ,⌃f ⇡�0,� µ0

f ,�
0
f ,⌃

0
f , for some �0 that extends �̂ (and therefore �)

(14) - hyp.2 + (2) + (10) + (13) + NI(+app) (Case II)

Lemma 10 (Cofinement for +len). +len is confined.

Proof. Since +len does not modify the memory, we conclude that it is confined.

Lemma 11 (Noninterference for +len). NI(+len).

Proof. Hypotheses:

– µ,�,⌃ ⇡�,� µ0,� 0,⌃0 hyp.1
– hr, i, h�0,�1i ⇡�,� hr0, i, h�0

0,�
0
1i hyp.2

– hµ,�,⌃, hr, i, h�0,�1ii +len hµ,�,⌃, n,�0 t �1 t⌃(r)i hyp.3
– hµ0,� 0,⌃0, hr0, i, h�0

0,�
0
1ii +len hµ0,� 0,⌃0, n0,�0

0 t �0
1 t⌃0(r0)i hyp.4

We conclude that:

– hr, ni 2 R#Children(µ) (1) - hyp.3
– hr0, n0i 2 R#Children(µ0) (2) - hyp.4

Since the invocation of this API relation does not modify the memory, one simply
has to prove that if either �0 t �1 t⌃(r)  � or �0

0 t �0
1 t⌃0(r0)  �, then:

– �0 t �1 t⌃(r) t �0
0 t �0

1 t⌃0(r0)  �
– n = n0

Without loss of generality, assume that �0t�1t⌃(r)  � (hyp.5). We conclude
that:

– r ⇠� r0 (3) - hyp.2 + hyp.5
– �0

0 t �0
1  � (4) - hyp.2 + hyp.5

– ⌃0(r0)  � (5) - hyp.1 + hyp.5 + (3)
– n = n0 (6) - hyp.1 + hyp.5 + (1) + (2) + (3)
– �0 t �1 t⌃(r) t �0

0 t �0
1 t⌃0(r0)  � (7) - hyp.5 + (4) + (5)

Lemma 12 (Cofinement for +par). +par is confined.

Proof. Since +par does not modify the memory, we conclude that it is confined.

Lemma 13 (Noninterference for +par). NI(+par).

Proof. Hypotheses:

– µ,�,⌃ ⇡�,� µ0,� 0,⌃0 hyp.1
– hr, i, h�0,�1i ⇡�,� hr0, i, h�0

0,�
0
1i hyp.2

– hµ,�,⌃, hr, i, h�0,�1ii +len hµ,�,⌃, v,�0 t �1 t⌃(r)i hyp.3
– hµ0,� 0,⌃0, hr0, i, h�0

0,�
0
1ii +len hµ0,� 0,⌃0, v0,�0

0 t �0
1 t⌃0(r0)i hyp.4

– hrp, ri 2 RParent(µ)) v = rp and r 2 Orphan(µ)) v = undefined hyp.5
– hr0p, r0i 2 RParent(µ0)) v0 = r0p and r0 2 Orphan(µ0)) v0 = undefined

hyp.6

Without loss of generality, assume that �0t�1t⌃(r)  � (hyp.7). We conclude
that:

– r ⇠� r0 (1) - hyp.2 + hyp.7
– �0

0 t �0
1  � (2) - hyp.2 + hyp.7

– ⌃0(r0)  � (5) - hyp.1 + hyp.7 + (1)

– �0 t �1 t⌃(r) t �0
0 t �0

1 t⌃0(r0)  � (6) - hyp.7 + (2) + (5)

We now proceed by case analysis.

Case I: hrp, ri 2 RParent(µ) (hyp.8). We conclude that:

– hr0p, r0i 2 RParent(µ0) and rp ⇠� r0p
(7) - hyp.1 + hyp.7 + hyp.8 + (1) + Parent Node Invariant

– v ⇠� v0 (8) - hyp.5 + hyp.6 + hyp.8 + (7)

Case II: r 2 Orphan(µ) (hyp.8). We conclude that:

– r 2 Orphan(µ) (7) - hyp.1 + hyp.7 + hyp.8 + (1) + Parent Node Invariant
– v ⇠� v0 (8) - hyp.5 + hyp.6 + hyp.8 + (7)

Lemma 14 (Cofinement for +ind). +ind is confined.

Proof. Since +ind does not modify the memory, we conclude that it is confined.

Lemma 15 (Noninterference for +ind). NI(+ind).

Proof. Hypotheses:

– µ,�,⌃ ⇡�,� µ0,� 0,⌃0 hyp.1
– hr, ii, h�0,�1i ⇡�,� hr0, i0i, h�0

0,�
0
1i hyp.2

– hµ,�,⌃, hr, ii, h�0,�1ii +ind hµ,�,⌃, v,�0 t �1 t �̂i hyp.3
– hµ0,� 0,⌃0, hr0, i0i, h�0

0,�
0
1ii +ind hµ0,� 0,⌃0, v0,�0

0 t �0
1 t �̂0i hyp.4

– i 2 dom(µ(r))) v = µ(r)(i) ^ �̂ = � (r)(i) hyp.5
– i 62 dom(µ(r))) v = undefined ^ �̂ = ⌃(r) hyp.6
– i0 2 dom(µ0(r0))) v0 = µ0(r0)(i0) ^ �̂0 = � 0(r0)(i0) hyp.7
– i0 62 dom(µ0(r0))) v0 = undefined ^ �̂0 = ⌃0(r0) hyp.8

Assume, without loss of generality, that �0 t �1  � (hyp.9). We conclude that:

– r ⇠� r0 (1) - hyp.2 + hyp.9
– i = i0 (2) - hyp.2 + hyp.9
– �0

0 t �0
1  � (3) - hyp.2 + hyp.9

We proceed by case analysis.

Case I: i 2 dom(µ(r)) (hyp.10). Assume, without loss of generality, that � (r)(i) 
� (hyp.11). We conclude that:

– i 2 dom(µ0(r0)), � 0(r0)(i)  �, µ(r)(i) ⇠� µ0(r0)(i)
(4) - hyp.1 + hyp.10 + hyp.11 + (1)

– v ⇠� v0 (5) - hyp.5 + hyp.7 + hyp.10 + (4)
– �0 t �1 t � (r)(i) t �0

0 t �0
1 t � 0(r0)(i)  �

(6) - hyp.9 + hyp.11 + (3) + (4)

Case II: i 62 dom(µ(r)) (hyp.10). Assume, without loss of generality, that
⌃(r)  � (hyp.11). We conclude that:

– dom(µ(r)) = dom(µ0(r0)) and ⌃0(r0)  � (4) - hyp.1 + hyp.11 + (1)
– i 62 dom(µ0(r0)) (5) - hyp.10 + (4)
– v = undefined (6) - hyp.6 + hyp.10
– v0 = undefined (7) - hyp.8 + (5)
– v ⇠� v0 (8) - (6) + (7)
– �0 t �1 t⌃(r) t �0

0 t �0
1 t⌃0(r0)  �

(6) - hyp.9 + hyp.11 + (3) + (4)

Lemma 16 (Cofinement for +sib). +ind is confined.

Proof. Since +sib does not modify the memory, we conclude that it is confined.

Lemma 17 (Noninterference for +sib). NI(+ind).

Proof. Hypotheses:

– µ,�,⌃ ⇡�,� µ0,� 0,⌃0 hyp.1
– hr, i, h�0,�1i ⇡�,� hr0, i, h�0

0,�
0
1i hyp.2

– hµ,�,⌃, hr, i, h�0,�1ii +sib hµ,�,⌃, v,�0 t �1 t⌃(r) t �̂i hyp.3
– hµ0,� 0,⌃0, hr0, i, h�0

0,�
0
1ii +sib hµ0,� 0,⌃0, v0,�0

0 t �0
1 t⌃0(r0) t �̂0i hyp.4

Assume, without loss of generality, that: �0 t �1 t⌃(r) t �̂  � (hyp.5), where
�̂ depends on the rule used in the derivation of hyp.1. We conclude that:

– r ⇠� r0 (1) - hyp.2 + hyp.5
– �0

0 t �0
1  � (2) - hyp.2 + hyp.5

– ⌃0(r0)  � (3) - hyp.1 + hyp.5 + (1)

We proceed by case analysis.

Case I: hrp, ri 2 RParent(µ) (hyp.6), for some reference rp. We conlcude that
there are two integers i and n such that:

– hrp, ni 2 R#Children(µ) (4) - hyp.3 + hyp.6
– µ(rp)(i) = r (5) - hyp.3 + hyp.6
– hr0p, r0i 2 RParent(µ0) and rp ⇠� r0p

(6) - hyp.1 + hyp.5 + hyp.6 + (1) + Parent Node Invariant
– Case I.1: i+ 1 < n (hyp.7):

• �̂ = � (rp)(i+ 1)  � (7) - hyp.3 + hyp.5 + hyp.7
• � (rp)(i)  � (8) - (7) + Indexes Invariant
• � 0(r0p)(i+ 1)  � (9) - hyp.1 + (6) + (7)
• � 0(r0p)(i)  � (10) - (9) + Indexes Invariant
• µ(rp)(i) ⇠� µ0(r0p)(i) (11) - hyp.1 + (6) + (8)
• v = µ(rp)(i+ 1) ⇠� µ0(r0p)(i+ 1) = v0 (12) - hyp.1 + hyp.3 + hyp.4 +
(6) + (7)

• �̂0 = � 0(r0p)(i+ 1)  � (13) - hyp.1 + (6) + (8)
• �0

0 t �0
1 t⌃0(r0) t �̂0  � (14) - (2) + (3) + (13)

– Case I.2: i+ 1 � n (hyp.7):
• �̂ = ⌃(rp)  � (7) - hyp.3 + hyp.5 + hyp.7

• � (rp)(i)  � (8) - (7) + Indexes Invariant
• � 0(r0p)(i)  � (9) - hyp.1 + (6) + (8)
• r = µ(rp)(i) ⇠� µ0(r0p)(i) = r0 (10) - hyp.1 + (6) + (8)
• ⌃0(r0p)  � (11) - hyp.1 + (6) + (7)
• hr0p, ni 2 R#Children(µ0) (12) - hyp.1 + (4) + (6) + (7)
• �̂0 = ⌃0(r0p)  � (13) - hyp.4 + (6) + (11) + (12)
• v = undefined (14) - hyp.3 + hyp.6 + hyp.7
• v0 = undefined (15) - hyp.4 + (6) + (12)
• v ⇠� v0 (16) - (14) + (15)
• �0

0 t �0
1 t⌃0(r0) t �̂0  � (17) - (2) + (3) + (13)

Case II: r 2 Orphan(µ) (hyp.6). We conlcude that:

– v = undefined (4) - hyp.3 + hyp.6
– r0 2 Orphan(µ0) (5) - hyp.5 + (1) + Parent Node Invariant
– v0 = undefined (6) - hyp.4 + (5)
– �̂ = �̂0 = ? (7) - hyp.3 + hyp.4 + hyp.6 + (5)
– �0

0 t �0
1 t⌃0(r0) t �̂0  � (17) - (2) + (3) + (7)

Lemma 18 (Confiment for the DOM API). RDOM
API is confined.

Proof. Corollary of Lemmas 2, 5, 8, 10, 12, 14, and 16.

Lemma 19 (Preservation of the Indexes Invariant). Let +API be an API
relation in rng(RDOM

API), µ a memory well-labeled by h�,⌃i, �!v a sequence of
values respectively labeled by the security levels in the sequence �!� , such that: (1)
hµ,�,⌃,�!v ,�!� i +API hµ0,� 0,⌃0, v0,�0i and (2) hµ,�,⌃i 2 WLDOM

indexes. Then,
hµ0,� 0,⌃0i 2 WLDOM

indexes.

Proof. We proceed by case analysis. The only DOM APIs that change the in-
dexes of DOM Element objects are: +rem and +app. Hence, it follows that:

– �!v = hr0, , r2i, for two references r0 and r2 (1) - hyp.1
– �!� = h�0, ,�2i, for two security levels �0 and �2 (2) - hyp.1

Case I: +API=+rem (hyp.3). We conclude that there are two integers i and n,
an object o0, and a labeling object �0, such that:

– µ(r0)(i) = r2 and hr0, n+ 1i 2 R#Children(µ)
(3) - hyp.1 + hyp.3 + (1) + (2)

– dom(o0) = dom(�0) = dom(µ(r0))\{n} (4) - hyp.1 + hyp.3 + (1) + (2)
– 80j<i · o0(j) = µ(r0)(j), 8ij<n · o0(j) = µ(r0)(j + 1),

o0(@tag) = µ(r0)(@tag) (5) - hyp.1 + hyp.3 + (1) + (2)
– 80j<i · �0(j) = � (r0)(j), 8ij<n · �0(j) = � (r0)(j + 1),

�0(@tag) = � (r0)(@tag) (6) - hyp.1 + hyp.3 + (1) + (2)
– µ0 = µ [r0 7! o0], � 0 = � [r0 7! �0], and ⌃0 = ⌃

(7) - hyp.1 + hyp.3 + (1) + (2)
– 80j<n� (r0)(j)  � (r0)(j + 1) and � (r0)(n)  ⌃(r0) (8) - hyp.2 + (3)

– 80j<n�1� 0(r0)(j)  � 0(r0)(j + 1) and � 0(r0)(n� 1)  ⌃(r0)
(9) - (6) - (8)

– hµ0,� 0,⌃0i 2 WLDOM
indexes (10) - hyp.2 + (7) + (9)

Case II: +API=+app (hyp.3) and r2 2 Orphan(µ) (hyp.4). We conclude that
there are is an integer n, such that:

– hr0, ni 2 R#Children(µ) (3) - hyp.1 + hyp.3 + hyp.4 + (1) + (2)
– µ0 = µ [r 7! µ(r0) [n 7! r2]] (4) - hyp.1 + hyp.3 + hyp.4 + (1) + (2)
– � 0 = � [r0 7! � (r0) [n 7! ⌃(r0) t⌃(r2)]]

(5) - hyp.1 + hyp.3 + hyp.4 + (1) + (2)
– ⌃0 = ⌃ (6) - hyp.1 + hyp.3 + hyp.4 + (1) + (2)
– 80j<n�1� (r0)(j)  � (r0)(j + 1) and � (r0)(n� 1)  ⌃(r0)

(7) - hyp.2 + (3)
– 80j<n� 0(r0)(j)  � 0(r0)(j + 1) and � 0(r0)(n)  ⌃0(r0) (8) - (5) - (7)
– hµ0,� 0,⌃0i 2 WLDOM

indexes (9) - hyp.2 + (4) - (6) + (8)

Case III: +API=+app (hyp.3) and r2 62 Orphan(µ) (hyp.4). We conclude that

there is a reference rp, a memory µ̂, a labeling h�̂ , ⌃̂i, such that hrp, r2i 2
RParent(µ):

– hµ,�,⌃, hrp, , r2i, h�0 t⌃(r0) t⌃(r2),�1,�2ii +rem hµ̂, �̂ , ⌃̂, , i
(3) - hyp.1 + hyp.3 + hyp.4 + (1) + (2)

– hµ̂, �̂ , ⌃̂, hr0, , r2i, h�0,�1,�2ii +app hµ0,� 0,⌃0, , i
(4) - hyp.1 + hyp.3 + hyp.4 + (1) + (2)

– hµ̂, �̂ , ⌃̂i 2 WLDOM
indexes (5) - hyp.2 + Case I

– hµ0,� 0,⌃0i 2 WLDOM
indexes (6) - (5) + Case II

