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Abstract. We present a JavaScript compiler that instruments code with information flow constraints.
We prove that the compiler generates secure code w.r.t a noninterference property. We provide libraries
that represent information flow specifications of DOM and other customary external interfaces. Using
the compiler, we give realistic examples of JavaScript code and show how to encode common security
flows in the web such as cookie stealing. The compiler is the result of inlining a new information flow
monitor for JavaScript that uses a labeling that makes code instrumentation more efficient.

1 Introduction

Web application security violations represent a major risk [9]. Violations are mainly due to the permissive
JavaScript semantics and integration of code coming from different origins, such as advertisement scripts.
As an example of such a risk Jang et al. [19] study, using an enhanced browser, 50000 JavaScript-based
websites and show that several sites, including Alexa global top-100, present privacy violating information
flows vulnerabilities. This critical security situation has led to an increasing interest in sound and practical
mechanisms to enforce JavaScript secure information flow.

Recent works on JavaScript security focus on dynamic mechanisms such as monitoring [17], secure multi-
execution [12], and multi-facets [3]. These mechanisms are browser-dependent. Either browser code or the
JavaScript machinery must be modified or a plugin must be installed in order for the mechanism to be
applicable.

In this work we focus on a browser-independent information flow control mechanism because it can
immediately be adopted in practice, JavaScript rewriting techniques are still subject to attacks [25, 29], and
previous works dealing rigorously with the subject [32, 10, 27, 28] study simple languages limited to static
variable references. We study a JavaScript subset without this restriction and extend it to external interfaces
including part of the DOM API [18]. We propose how to extend the proofs of the security theorem of the
compiler in a modular way by defining a lemma for each new external interface that is handled. In order
to instrument JavaScript programs in an efficient manner, we consider a new JavaScript information flow
monitor that departs from previous work [17] in what concerns dynamic labeling. We show that our labeling
is more suitable for inlining information flow since it allows for less constraints enforcements at run-time
and more efficient techniques to handle labels in compiled code. Finally, we discuss how the new monitor is
compatible with standard static labeling and can be used to extract an information flow type system.

In summary, our contributions are:

– A new labeling semantics for JavaScript and noninterference property associated with it. The new labeling
is suitable for efficient code instrumentation and compatible with static analyses.

– A sound JavaScript monitor for information flow with simplified constraints, compared to previous works.
– A compiler specification that generates information flow instrumented JavaScript code. A proof of correct-

ness and security regarding termination-insensitive noninterference for a JavaScript subset not restricted
to static variable references. We extend the instrumentation to external JavaScript interfaces, includ-
ing DOM interfaces, and present a general method to obtain modular proofs of security for external
interfaces.

– A prototype of the compiler available online as a web application [1] together with case studies encoding
common web vulnerabilities, such as cookie stealing.



Related work There are many mechanisms to prevent attacks coming from JavaScript code. For example
the Facebook Javascript Subset (FBJS) [14] was intended to prevent user-written gadgets to attack trusted
code but it did not succeed in its goals as shown in recent work by Maffeis and Taly [26]. Google Caja [30]
is similar to FBJS. A recent proof (2010) [25] shows that a subset of Caja has an isolation property called
capability safety, a property less expressive than information flow properties. Yahoo ADsafe [11] statically
validates JavaScript programs for security but as shown in Krishnamurthi et al. (2011) [29] its implementa-
tion reveals several bugs and other weaknesses. In contrast to other more ad-hoc isolation mechanisms, there
are elegant techniques to define information flow mechanisms that can be proved sound and effectively help
to prevent confidentiality and integrity attacks. In web applications there is a need for dynamic mechanisms
(see LeGuernic thesis for an excellent survey on the subject [20]) for information flow control due to the
dynamic nature of the JavaScript language. Austin and Flanagan [3] and Hedin and Sabelfeld [17] study
runtime monitors for noninterference in JavaScript-like languages. The monitor we propose is substantially
simpler than that of Hedin and Sabelfeld since labeling properties allows to have less security labels and sim-
pler constraints. In particular, labeling properties makes it unnecessary to have an existence security level.
Our monitor allows for more efficient code instrumentation as explained in the following section. Bohannon
et al. [7] propose reactive noninterference, a noninterference property for reactive programs such as web
scripts to replace the Same Origin Policy in browsers. Bielova et al. [6] later propose a an enforcement mech-
anism for reactive non-interference based on secure multi-execution [12] and implement it in Featherweight
Firefox browser model. Venkatakrishnan [32] is the first to present a hybrid technique that relies on runtime
information-flow tracking augmented with static analysis to reason about implicit flows that arise due to
unexecuted paths in a program. Chudnov and Naumann [10] propose monitor inlining of an information
flow-sensitive monitor for a simple imperative language. In parallel, Magazinius et al. [27] propose monitor
inlining for an imperative language with eval with the novel feature of performing inlining on the fly to
handle eval. In a follow up paper, Magazinius et al. [28] present automatic code rewriting for [27].

2 Interplay between Labeling and Instrumentation

Information flow policies are specified by labeling with security levels the observable resources of a program.
In general, to check conformance with an information flow security property, labels from a security lattice
are needed on intermediate interfaces such as properties and local variables. In the following, we assume
given a lattice L of security levels. In the examples, we use L = {H,L} with L ≤ H. Labeling variables or
other resources in a program is frequently done statically via a mapping from statically referred resources to
security labels. In JavaScript, resources are dynamically created which makes it infeasible to refer to them
precisely at the static level as illustrated by the following JavaScript program:

x = {};x[f()] = 1

Here f is a function that returns a string s obtained by concatenation of arbitrary user input. In this program,
a reference to an object o is stored in variable x and then s is added to o as a property. Clearly, property s
cannot be labeled before runtime since its name is not known. Hence, instead of considering static labelings,
we consider dynamic labelings that map each property in every object to a security level. Existing works [17]
opt for dynamically store the security level on the value of the property of an object. Consider the following
example where as many different properties as the value of n are dynamically created:

1 while (n) {

2 o[n] = n;

3 n--}

Listing 1.1. Example 1 - Transformed

If security labels are assigned to values as in [17], we obtain the following code instrumentation that is
semantically equivalent to the original program (if the original program is secure):
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1 _pc = _lat.lub(_pc , n.level);

2 while(n.value) {

3 _lat.leq(_lat.lub(o.level , n.level , _pc), o.value.struct);

4 o[n.value] = {value: n.value , level: _lat.lub(o.level , n.level , _pc)};

5 _lat.leq(_pc , n.level); n.value --}

Listing 1.2. Example 1 - Transformed

Note that in line 4 the program creates a new object for each value of n, that acts as an ”envelope” that
contains the value of the new property and its security label (obtained by computation of a least upper bound
lat.lub(o.level, n.level, pc)). In our approach, we rather associate the security label directly to the property

of the object. Naturally, since every variable is semantically modeled as a property of a given scope object,
dynamic labelings also map resources to security levels, as in the static case. Variables and object properties
are thus treated uniformly. Instrumentation of the same original program using our approach gives:

1 _pc = _lat.lub(_pc , _lab[’n’]);

2 while (n) {

3 _lat.leq(_lat.lub(_lab[’o’], _lab[’n’], _pc), o.struct);

4 o[n] = n;

5 o.lab[n] = _lat.lub(_lab[’o’], _lab[’n’], _pc);

6 _lat.leq(_pc , _lab[’n’]);

7 n--}

Listing 1.3. Example 1 - Transformed

The resulting program is not creating new objects but only a new property in object o, modified at line
5, that corresponds to the labeling of the properties added to o with their corresponding security level.

3 JavaScript Labeling

We present JavaScript semantics extended with the computation of a dynamic labeling. The syntax of the
JavasScript subset considered is given in Figure 1.

Objects and Memory. Objects, taken from Obj, are modeled as partial functions from Str to Val. The
strings in the domain of anObj object are deemed its properties. Some properties cannot be changed by
the program, for clarity those properties are prefixed with an “@”. In order to create a new object, the
programmer must use the keyword new. References can be viewed as pointers to objects, in the sense that
every expressions that creates an object in memory does not yield the object itself, but a free reference
that points to it (that it is nondeterministically chosen). Since functions are executed in the environment
on which they are defined, their internal representation must include a reference to the scope object that
was active when the corresponding function literal was evaluated. Thus, at the semantic level, functions are
represented as function objects. A function object has the following two properties:

– @code: stores the internal representation of the function literal;
– @fscope: stores a reference to the scope object that was active when the corresponding function literal

was evaluated.

Consequently, the evaluation of a function literal triggers the creation of a new function object and yields
the reference that points to it. A memory is a mapping from references to objects and the set of all memories
is denoted by Mem. In the following, we assume that memories include references to two special objects:

– The global object is the object that is at the bottom of every scope chain. Formally: [@this 7→ #global,@proto 7→
null,@scope 7→ null] ≤ global (where we use ≤ for function extension). For every memory, we use #global
as the reference to the global object.

– The prototype object is the object that is at the bottom of every prototype chain. Formally: protObj =
[@proto 7→ null].
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e ::= x identifier
| v primitive values
| this this keyword
| {m1 : e1, . . . ,mn : en} object literal
| function(x){s} function literal
| e1[e2] member selector
| x = e variable assignment
| e1[e2] = e3 property assignment
| new e1(e2) constructor call
| e1(e2) function call
| e1[e2](e3) method call
| (e1 op2 e2) binary operations

s ::= s1; s2 sequence of statements
| var x variable declaration
| if(e){s1}else{s2} conditional
| while(e){s} while loop
| upgVar(x, σ) extended syntax: variable upgrade
| upgProp(o, p, σ) extended syntax: property upgrade
| upgStruct(o, σ) extended syntax: property upgrade

v ::= n number
| m string
| b boolean b ∈ {true, false}
| null null
| undef undefined
| r reference
| λx.s function runtime value

Fig. 1. JavaScript Core Syntax and Extension for Security Upgrades

Labelings. A security labeling is a function Γ : (Ref 7→ Str) ∪ Ref 7→ L that maps references and
properties from Str to security labels. The set of security labeling is denoted Additionally, labelings map
references of objects to their corresponding structure security level to keep track of dynamically added
properties. To illustrate this point, consider the following program from [17] where object o does not initially
have any properties:

if(h) {o[”p”] = 0}; l = o[”p”] (1)

Intuitively, the structure of object o depends on high variable h, because property ”p” is created in a context
that depends on h. Therefore, variable l depends on a high variable as well: its final value will be 0 if h is true
or undef otherwise. The reading effect is an upper bound on the levels of all the resources that are read during
the evaluation of s. The computed dynamic security labeling must correctly reflect the actual dependencies
entailed by the execution of the program. A dynamic security labeling establishes what resources are visible
at each security level. Hence, after the execution of the program the level of each resource must correspond
to the upper bound of the levels of the resources on which it depends. Although dynamic security labelings
are constructed at runtime, the programmer must be able to specify at the static level which security levels
are to be assigned to the resources that are created during execution. To this end, we extend the JavaScript
syntax with three additional constructs:

– upgVar(x, σ) upgrades the level of variable x to the least upper bound between its current level and σ.
– upgProp(o, p, σ) upgrades the level of property p of the object referenced by variable o to the least upper

bound between its current level and σ.
– upgStruct(o, σ) upgrades the structure security level of the object referred by o to the least upper bound

between its current level and σ.
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Scope Look-up. Scope is modelled via scope objects. A scope object is an object that maps the formal
argument of the function that is currently executing to its current value. The only way to establish a new
scope is through a function call, method call or constructor call. Since JavaScript is syntactically scoped,
functions are executed in the scope on which they are defined. Therefore, scope objects have a special
property @scope which stores the reference of the scope object that was active when the function that is
being executed was stored in memory. The sequence of scope objects that can be accessed from a given scope
object through the respective @scope properties is deemed a scope chain. In order to determine the value
associated with a given variable, one has to inspect all the objects in the scope chain starting from the active
scope object (that is, the one at the top of the scope chain). This behaviour is modeled by the semantic
relation RScope which is presented in Definition 1. The relation RScope relates triples in Mem×Ref × Str
with elements of Ref . Informally, 〈µ, r1,m〉 RScope r2 means that reference r2 points to the scope object
that is closest to the one pointed by r1 in the corresponding scope chain (that is stored in memory µ) and
which defines a binding for m.

Definition 1 (RScope).

Null

〈µ, null,m〉 RScope null

Base
m ∈ dom(µ(r))

〈µ, r,m〉 RScope r

Look-up
m 6∈ dom(µ(r)) 〈µ, µ(r,@scope),m〉 RScope r′

〈µ, r,m〉 RScope r′

Prototype Look-up. In JavaScript every object has a prototype and stores a reference to it in an internal
property here denoted by @proto. When a program tries to access a property m of an object o, JavaScript
first checks if o has a property named m (that is, if m ∈ o). If it does not, JavaScript checks if the prototype
of object o has a property named m and so forth. The sequence of objects that can be accessed from a
given object through the respective @proto properties is deemed a prototype chain. The prototype chain
look-up process is emulated by the semantic relation RProto, presented in Definition 2, that relates tuples
in Mem × Ref × Str × Lab with pairs in Ref × L. If 〈µ, r,m, Γ 〉 RProto 〈r′, σ〉, then r′ is the closest
reference to r in its corresponding prototype chain that defines a binding for m. Additionally, σ corresponds
to the security level of the look-up process, which takes into consideration the whole prototype chain that is
inspected and not only the security level associated with the searched property.

Definition 2 (RProto).

Null

〈µ, null,m, Γ 〉 RProto 〈null,⊥〉

Base
m ∈ dom(µ(r))

〈µ, r,m, Γ 〉 RProto 〈r, Γ (r,m)〉

Look-up
m 6∈ dom(µ(r)) r′

.
= µ(r,@proto) 〈µ, r′,m, Γ 〉 RProto 〈r′′, σ〉 σ′

.
= Γ (r,@proto) t Γ (r) t σ

〈µ, r,m, Γ 〉 RProto 〈r′′, σ′〉

Semantics Relation. Figures 2, 3, and 4 present the big-step semantics relation that computes the security
labeling. The relation has the following form:

rs, pc ` 〈µ, s, Γ 〉 ⇓ 〈µ′, v, Γ ′, σ〉

where rs corresponds to the current scope object (also called active scope object), µ and µ′ denote the
original and the final memories respectively, s denotes the program to be executed and v the value to which
the program evaluates, pc the security level of the program counter, Γ and Γ ′ the original and final labelings,
and σ the reading effect of s. We use f [d 7→ v] to denote a function f ′ that coincides with f everywhere
except in d of the domain where f ′(d) = v. We use

.
= for equality in the semantics.

Legal labelings. Given a memory µ, not all labelings Γ are legal labelings for µ. Particularly, we only
consider those that assign a security level to every property of every object in the corresponding memory.
Furthermore, a labeling only assigns security levels to existing properties of existing objects. Definition 3
formalizes the notion of well labeled memory, whereas Definition 4 extends this notion to big step transitions.
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Property Update
rs, pc ` 〈µ, e1, Γ 〉 ⇓ 〈µ1, r1, Γ1, σ1〉 rs, pc ` 〈µ1, e2, Γ1〉 ⇓ 〈µ2,m2, Γ2, σ2〉

rs, pc ` 〈µ2, e3, Γ2〉 ⇓ 〈µ3, v3, Γ3, σ3〉 m2 ∈ µ3(r1)
Γ4

.
= Γ3 [(r1,m2) 7→ σ1 t σ2 t σ3] µ4

.
= µ3 [(r1,m2) 7→ v3]

rs, pc ` 〈µ, e1[e2] = e3, Γ 〉 ⇓ 〈µ4, v3, Γ4, σ3〉

Property Creation
rs, pc ` 〈µ, e1, Γ 〉 ⇓ 〈µ1, r1, Γ1, σ1〉 rs, pc ` 〈µ1, e2, Γ1〉 ⇓ 〈µ2,m2, Γ2, σ2〉

rs, pc ` 〈µ2, e3, Γ2〉 ⇓ 〈µ3, v3, Γ3, σ3〉 m2 6∈ µ3(r1) µ4
.
= µ3 [(r1,m2) 7→ v3]

Γ4
.
= Γ3 [(r1,m2) 7→ σ1 t σ2 t σ3, r1 7→ Γ3(r1) t σ1 t σ2]

rs, pc ` 〈µ, e1[e2] = e3, Γ 〉 ⇓ 〈µ4, v3, Γ4, σ3〉

Property Lookup
rs, pc ` 〈µ, e1, Γ 〉 ⇓ 〈µ1, r1, Γ1, σ1〉 rs, pc ` 〈µ1, e2, Γ1〉 ⇓ 〈µ2,m2, Γ2, σ2〉

〈µ2, r1,m2, Γ2〉 RProto 〈r′, σ′〉
rs, pc ` 〈µ, e1[e2], Γ 〉 ⇓ 〈µ2, µ2(r′,m2), Γ2, σ1 t σ2 t σ′〉

Variable
〈µ, rs, x〉 RScope rx rx 6= null

rs, pc ` 〈µ, x, Γ 〉 ⇓ 〈µ, µ(rx, x), Γ, Γ (rx, x) t pc〉

Assignment - 1
rs, pc ` 〈µ, e, Γ 〉 ⇓ 〈µ1, v1, Γ1, σ1〉 〈µ, rs, x〉 RScope rx rx 6= null

Γ2
.
= Γ1 [(rx, x) 7→ σ1] µ2

.
= µ1 [(rx, x) 7→ v1]

rs, pc ` 〈µ, x = e, Γ 〉 ⇓ 〈µ2, v1, Γ2, σ1〉

Assignment - 2
rs, pc ` 〈µ, e, Γ 〉 ⇓ 〈µ1, v1, Γ1, σ1〉 〈µ, rs, x〉 RScope null
Γ2

.
= Γ1 [(#global, x) 7→ σ1] µ2

.
= µ1 [(#global, x) 7→ v1]

rs, pc ` 〈µ, x = e, Γ 〉 ⇓ 〈µ2, v1, Γ2, σ1〉

Function Literal
of

.
= [@fscope 7→ rs,@code 7→ λx.s, prototype 7→ #objProt] rf 6∈ dom(µ) µ′

.
= µ [rf 7→ of ]

Γ ′
.
= Γ [(rf ,@fscope) 7→ pc, (rf ,@code) 7→ pc, (rf , prototype) 7→ pc]

rs, pc ` 〈µ, function(x){s}, Γ 〉 ⇓ 〈µ′, rf , Γ ′, pc〉

Fig. 2. Instrumented Semantics of JavaScript Expressions - 1
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Function Call
rs, pc ` 〈µ, e0, Γ 〉 ⇓ 〈µ0, r0, Γ0, σ0〉 rs, pc ` 〈µ0, e1, Γ0〉 ⇓ 〈µ1, v1, Γ1, σ1〉
pc′

.
= Γ1(r0,@fscope) r′s

.
= µ1(r0,@fscope) λx.s

.
= µ1(r0,@code)

r′′s 6∈ dom(µ1) Γ ′
.
= Γ1 [(r′′s , x) 7→ σ1, (r

′′
s ,@scope) 7→ pc′ t σ0, r′′s 7→ pc′ t σ0]

os
.
= [x 7→ v1,@scope 7→ r′s] µ′

.
= µ1 [r′′s 7→ os] r′′s , pc

′ t σ0 ` 〈µ′, s, Γ ′〉 ⇓ 〈µ′′, v, Γ ′′, σ′〉
rs, pc ` 〈µ, e0(e1), Γ 〉 ⇓ 〈µ′′, v, Γ ′′, σ′〉

Method Call
rs, pc ` 〈µ, e0, Γ 〉 ⇓ 〈µ0, r0, Γ0, σ0〉 rs, pc ` 〈µ0, e1, Γ0〉 ⇓ 〈µ1,m1, Γ1, σ1〉
rs, pc ` 〈µ1, e2, Γ1〉 ⇓ 〈µ2, v2, Γ2, σ2〉 〈µ2, r0,m1, Γ2〉 RProto 〈rm, σm〉

pc′
.
= Γ2(rm,@fscope) r′s

.
= µ2(rm,m1)(@fscope) λx.s

.
= µ2(rm,m1)(@code)

os
.
= [x 7→ v2,@scope 7→ r′s,@this 7→ r0] r′′s 6∈ dom(µ2) µ′

.
= µ2 [r′′s 7→ os]

σ′
.
= pc′ t σ0 t σ1 t σm Γ ′′

.
= Γ ′ [(r′′s , x) 7→ σ2, (r

′′
s ,@scope) 7→ σ′, (r′′s ,@this) 7→ σ0, r

′′
s 7→ σ′]

r′′s , σ
′ ` 〈µ′, s, Γ ′′〉 ⇓ 〈µ′′, v, Γ ′′′, σ′′〉

rs, pc ` 〈µ, e0[e1](e2), Γ 〉 ⇓ 〈µ′′, v, Γ ′′′, σ′′〉

Constructor Call
rs, pc ` 〈µ, e0, Γ 〉 ⇓ 〈µ0, r0, Γ0, σ0〉 rs, pc ` 〈µ0, e1, Γ0〉 ⇓ 〈µ1, v1, Γ1, σ1〉

pc′
.
= Γ1(r0,@fscope) r′s

.
= µ1(r0,@fscope) λx.s

.
= µ1(r0,@code) rp

.
= µ1(r0, prototype)

σp
.
= Γ1(r0, prototype) o

.
= [@proto 7→ rp] ro 6∈ dom(µ1) r′′s 6∈ dom(µ′)

os
.
= [x 7→ v1,@scope 7→ r′s,@this 7→ ro] µ′

.
= µ1 [ro 7→ o, r′′s 7→ os]

Γ ′
.
= Γ1 [(ro,@proto) 7→ pc t σp, ro 7→ σ0, (r

′′
s , x) 7→ σ1, (r

′′
s ,@scope) 7→ σ0, (r

′′
s ,@this) 7→ σ0, r

′′
s 7→ σ0]

r′′s , pc
′ t σ0 ` 〈µ′, s, Γ ′〉 ⇓ 〈µ′′, v, Γ ′′, σ′〉

rs, pc ` 〈µ, new e0(e1), Γ 〉 ⇓ 〈µ′′, v, Γ ′′, σ′〉

This - 1
@this ∈ µ(rs) rthis

.
= µ(rs,@this)

σthis
.
= Γ (rs,@this)

rs, pc ` 〈µ, this, Γ 〉 ⇓ 〈µ, rthis, Γ, pc t σthis〉

This - 2
@this 6∈ µ(rs)

pc, rs ` 〈µ, this, Γ 〉 ⇓ 〈µ,#global, Γ, pc〉

Bin Operator
rs, pc ` 〈µ, e1, Γ 〉 ⇓ 〈µ1, v1, Γ1, σ1〉 rs, pc ` 〈µ, e2, Γ 〉 ⇓ 〈µ2, v2, Γ2, σ2〉

rs, pc ` 〈µ, e1 op2 e2, Γ 〉 ⇓ 〈µ2,⇓op2 (v1, v2), Γ2, σ1 t σ2〉

Value

rs, pc ` 〈µ, v, Γ 〉 ⇓ 〈µ, v, Γ, pc〉

Fig. 3. Instrumented Semantics of JavaScript Expressions - 2
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Variable Upgrade
〈µ, rs, x〉 RScope rx 6= undef

rs, pc ` 〈µ, upgVar(x, σ), Γ 〉 ⇓ 〈µ, undef, Γ [(rx, x) 7→ Γ (rx, x) t σ] , pc〉

Property Upgrade
〈µ, rs, o〉 RScope ros 6= undef 〈µ, µ(ros , o), p, Γ 〉 RProto 〈rp, σ′〉

rs, pc ` 〈µ, upgProp(o, p, σ), Γ 〉 ⇓ 〈µ, undef, Γ [(rp, p) 7→ Γ (rp, p) t σ] , pc〉

Structure Upgrade
〈µ, rs, o〉 RScope ros 6= undef ro

.
= µ(ros , o)

rs, pc ` 〈µ, upgStruct(o, σ), Γ 〉 ⇓ 〈µ, undef, Γ [ro 7→ Γ (ro) t σ] , pc〉

Seq

rs, pc ` 〈µ, s1, Γ 〉 ⇓ 〈µ1, v1, Γ1, σ1〉 rs, pc ` 〈µ1, s2, Γ1〉 ⇓ 〈µ2, v2, Γ2, σ2〉
rs, pc ` 〈µ, s1; s2, Γ 〉 ⇓ 〈µ2, v2, Γ2, σ2〉

If - 1
rs, pc ` 〈µ, e, Γ 〉 ⇓ 〈µ, v′, Γ ′, σ′〉 v′ 6∈ {0, false, undef, null}

rs, pc t σ′ ` 〈µ′, s1, Γ ′〉 ⇓ 〈µ′′, v′′, Γ ′′, σ′′〉
rs, pc ` 〈µ, if(e){s1}else{s2}, Γ 〉 ⇓ 〈µ′′, v′′, Γ ′′, σ′′〉

If - 2
rs, pc ` 〈µ, e, Γ 〉 ⇓ 〈µ, v′, Γ ′, σ′〉 v′ ∈ {0, false, undef, null}

rs, pc t σ′ ` 〈µ′, s2, Γ ′〉 ⇓ 〈µ′′, v′′, Γ ′′, σ′′〉
rs, pc ` 〈µ, if(e){s1}else{s2}, Γ 〉 ⇓ 〈µ′′, v′′, Γ ′′, σ′′〉

While-1
rs, pc ` 〈µ, e, Γ 〉 ⇓ 〈µ′, v′, Γ ′, σ′〉 v′ ∈ {0, false, undef, null}

rs, pc ` 〈µ,while(e){s}, Γ 〉 ⇓ 〈µ′, undef, Γ ′, pc〉

While-2
rs, pc ` 〈µ, e, Γ 〉 ⇓ 〈µ′, v′, Γ ′, σ′〉 v′ 6∈ {0, false, undef, null}

rs, pc t σ′ ` 〈µ′, s, Γ ′〉 ⇓ 〈µ′′, v′′, Γ ′′, σ′′〉 rs, pc ` 〈µ′′,while(e){s}, Γ ′′〉 ⇓ 〈µ′′′, v′′′, Γ ′′′, σ′′′〉
rs, pc ` 〈µ,while(e){s}, Γ 〉 ⇓ 〈µ′′′, v′′′, Γ ′′′, σ′′′〉

Fig. 4. Instrumented Semantics of JavaScript Statements
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Definition 3 (Well Labeled Memory). A memory µ is said to be well-labeled by labeling Γ iff the fol-
lowing hold:

(r, p) ∈ dom(Γ )⇒ r ∈ dom(Γ )

r ∈ dom(Γ )⇒ r ∈ dom(µ)

∀r ∈ dom(µ) dom(µ(r)) = dom(Γ |r) ∧ r ∈ dom(Γ )

@scope ∈ dom(µ(r)) Γ (µ(r,@scope)) ≤ Γ (r,@scope) = Γ (r)

(@scope,@code ∈ dom(µ(r)) ∧ Γ (r,@code) = Γ (r,@scope)) ∨@scope,@code 6∈ dom(µ(r))

Definition 4 (Well Labeled Big Step Transition). A transition rs, pc ` 〈µ, s, Γ 〉 ⇓ 〈µ′, v, Γ ′, σ〉 is said
to be well labeled if µ is well labeled by Γ , µ′ is well labeled by Γ ′ and Γ (rs) ≤ pc.
Lemma 1 (Well Labeling Preservation). Given a transition rs, pc ` 〈µ, s, Γ 〉 ⇓ 〈µ′, v, Γ ′, σ〉 such that
µ is well labeled by Γ ′ and Γ (rs) ≤ pc, then µ′ is well labeled by Γ ′.

Relation to JavaScript semantics. When labeling annotations are erased from the rules, the semantics rules
that define ⇓ are compliant with JavaScript semantics. We use ⇓JS to refer to JavaScript semantics [13]. The
following lemma states this compliance, where we assume for simplicity that the allocator of fresh references
in memory is deterministic:

Lemma 2. Let rs be a scope reference, µ a memory, s a statement that is syntactically equal to statement
s′ except for possible upgrade statements. Let Γ, Γ ′ be labelings and σ a security level. Then

rs, pc ` 〈µ, s′, Γ 〉 ⇓ 〈µ′, v, Γ ′, σ〉 if and only if rs ` 〈µ, s〉 ⇓JS 〈µ′, v〉

The dynamic labeling is used only for defining the noninterference property and is not needed for the
code instrumentation of Section 6; the semantics does not impose any constraints (constraints are added in
Section 5) but just propagates security levels according to the dynamic dependencies in the program.

Example. Program (1) starting with µ1 and Γ1 ends with µ′1 and Γ ′1:

µ1 =

[
(#global, h) 7→ 1, (#global, o) 7→ undef,

(#global, l) 7→ undef

]
Γ1 =

[
(#global, h) 7→ H, (#global, l) 7→ L,

(#global, o) 7→ L,#global 7→ L

]
µ′
1 =

 (#global, h) 7→ 1, (#global, o) 7→ #o,
(#global, l) 7→ 0

(#o, p) 7→ 0

 Γ ′
1 =

 (#global, h) 7→ H, (#global, l) 7→ H,
(#global, o) 7→ L, (#o, p) 7→ H,

#o 7→ H,#global 7→ L

 (2)

4 Non-interference

In contrast to previous works [17, 2] on dynamic information flow analysis, we choose to separate the con-
straints for enforcing noninterference from the dynamic labeling. This allows us to distinguish the class of
secure programs but rejected by the enforcement method due to conservative constraints from the class of
insecure programs. In order to introduce the definition of noninterference, we first define low equality for
JavaScript memories. As is standard in low equality relations in information flow security [5] , we rely on a
mapping β that relates references of objects that are equally observable in two different memories. In the
following, let β be a partial injective function β : Ref ↪→ Ref mapping references to references. We let Prim
be the set of primitive values including all values ranged by v in Figure 1 except references and function
runtime values.

Definition 5 (β-Equality). The following rules define the β-equality relation:

object
dom(o1) = dom(o2) = P ∀p ∈ P o1(p) ∼β o2(p)

o1 ∼β o2

reference
r1, r2 ∈ Ref r1 = β(r2)

r1 ∼β r2

prim
v1, v2 ∈ Prim v1 = v2

v1 ∼β v2

fun
s1 = s2

λx.s1 ∼β λx.s2

9



Definition 5 states that objects are beta related if their set of properties is the same, if references are related
by β, primitive values are equal, and the body of function runtime values in memory are syntactically equal.
Notice that we can relax the notion of β-equality by requiring semantics equivalence between function values.

The low equality definition relies on the β-equality for values that are visible in each object. If f is a
function and V is a set of elements included in its domain, let f |V be a new function defined as f but
restricted to domain V .

Definition 6 (Low equality). Two memories µ1 and µ2 are said to be low equal with respect to Γ1 and
Γ2, a security level σ, and a partial injective function β : Ref ↪→ Ref , written µ1, Γ1 ≈β,σ µ2, Γ2, if µ1 and
µ2 are well labeled by Γ1 and Γ2 respectively, and for all references r ∈ dom(β), the following holds:

1. {p ∈ dom(µ1(r)) | Γ1(r, p) ≤ σ} = {p ∈ dom(µ2(β(r))) | Γ2(β(r), p) ≤ σ} = P

2. Γ1|r,P = Γ2|β(r),P
3. µ1(r)|P ∼β µ2(β(r))|P
4.
(
Γ1(r), Γ2(β(r)) ≤ σ ∧ dom(µ1(r)) = dom(µ2(β(r)))

)
∨ Γ1(r), Γ2(β(r)) 6≤ σ

Low equality relates every two objects in the memories whose references are related by β. Bullet 1 requires
that the names of the visible properties of the two objects are equal, that is those whose labeling is ≤ σ.
Bullet 2 requires that the two labelings map the properties in P to the same security levels. Bullet 3 requires
that the two objects, obtained by projecting the original objects onto their visible properties P , µ1(r) |P and
µ2(β(r)) |P , be β equal. Finally, bullet 4 requires that either the structure security level in the two objects
is visible and their set of properties the same or the structure level is not visible.

We say a memory µ is well labeled by Γ if for every reference r in µ, Γ is defined in r and for every property
p of object µ(r), Γ (r, p) is defined. We use the notation β(Γ ) for a labeling Γ ′ such that Γ ′(β(r), p) = Γ (r, p)
and Γ ′(β(r)) = Γ (r) for every reference r in the domain of Γ .

The noninterference property requires that execution of the program preserves low equality. A partial
function β : Ref ↪→ Ref is said to be proper if it is injective and β(#global) = #global and β(#protObj) =
#protObj.

Definition 7 (JavaScript Noninterference). A program s is noninterferent for Γ , µ0, µ1, pc, and β
proper denoted NI(s, Γ, µ0, µ1, β, pc), if whenever µ0, Γ ≈β,σ µ1, β(Γ ), r, pc ` 〈µ0, s, Γ 〉 ⇓ 〈µ′0, v0, Γ ′0〉, and
β(r), pc ` 〈µ1, s, β(Γ )〉 ⇓ 〈µ′1, v1, Γ ′1〉 for some r, then µ′0, Γ

′
0 ≈β′,σ µ′1, Γ ′1 for some β ≤ β′. A program s is

noninterferent for Γ , denoted NI(s, Γ ), if for all µ0, µ1, pc, β, NI(s, Γ, µ0, µ1, β, pc).

Low Equatility Properties. In the following, we present some useful properties of the low equality relation.

5 Information Flow Monitor

This section introduces the semantics relation ⇓IF , called monitor semantics, that extends relation ⇓ with
constraints to enforce noninterference. Semantics rules of ⇓IF coincide with those of ⇓ except for constraints
added to the rules where existing security labels are possibly upgraded: [Prop Update], [Prop Creation],
[Assign-1], [Assign-2], [Variable Upgrade], [Property Upgrade]and [Structure Upgrade]. Es-
sentially, these restrictions are intended to forbid the so called sensitive upgrades [2] (visible changes in non
visible contexts). We present the complete set of constraints added to the rules of ⇓ in order to define ⇓IF :

[Prop Update] σ1 t σ2 ≤ Γ3(r1,m2). Levels σ1 and σ2 correspond to the reading effects of expressions
evaluated in order to update property m2. The constraint prevents flows of information from the reading
effects visible at the level of m2. Note that reading effect levels are higher than the level of the context in
which they are obtained, hence the constraint also prevents sensitive upgrades.

[Prop Creation] σ1 t σ2 ≤ Γ3(r1). Levels σ1 and σ2 correspond to the reading effects of expressions
evaluated in order to create property m2. The constraint prevents flows from the reading effects to the
structure level of the object being extended.

[Assign-1] pc ≤ Γ1(rx, x). The constraint prevents sensitive upgrades by requiring that the level of
variable x be higher than the level of the context (pc).
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[Assign-2] pc ≤ Γ1(#global). This rule is applied if variable x is not previously defined and thus is added
to the global object. The constraint prevents sensitive upgrades by requiring that the structure security level
of the global to be higher than the level of the context (pc).

[Variable Upgrade] pc ≤ Γ (rx, x) which prevents a sensitive upgrade.
[Property Upgrade] pc t Γ (ros , o) t σ′ ≤ Γ (rp, p). The constraint prevents the upgrade of the level of

a property p via an object referred by a higher property o. (Notice however that the same property p can be
upgraded from an alias of reference in o which level is lower).

[Structure Upgrade] pc t Γ (ros , o) ≤ Γ (ro). The constraint prevents a structure upgrade via a an
object referred by a higher property o.

The complete semantics can be checked in Appendix A.
In the following, we use r, pc ` 〈µ, s, Γ 〉 6⇓IF to denote program divergence (Note that for our semantics

style, divergence means that there is not a final configuration such that a semantics derivation exists). If
a constraint of the monitor is not satisfied, we say the program diverges. The following lemma relates the
labeling and monitor semantics.

Lemma 3. If pc, r ` 〈µ, s, Γ 〉 ⇓IF 〈µ′, v, Γ ′, σ〉 then pc, r ` 〈µ, s, Γ 〉 ⇓ 〈µ′, v, Γ ′, σ〉.

Below we present the confinement lemma of the monitor that states that monitored executions of a
program, starting with low equal memories, always produce low equal final memories if the level of the
initial program counter is not observable.

Lemma 4 (Confinement). Given a JS program s, a memory µ, a labeling Γ , a security level pc and a
reference rs such that:

rs, pc ` 〈µ, s, Γ 〉 ⇓IF 〈µ′, v, Γ ′, σ〉
for some memory µ′, value v, labeling Γ ′ and security level σ; then for every security level σ′ ∈ L such that
pc 6≤ σ′: µ, Γ ≈id,σ′ µ

′, Γ ′, where id is the identity function defined on the domain of µ.

Proof. Given an arbitrary σ′, if pc ≤ σ′ the result holds vacuously. Consider, therefore, an arbitrary σ′ such
that pc 6≤ σ′, the proof proceeds by induction on the structure of the derivation of:

pc, rs ` 〈µ, s, Γ 〉 ⇓IF 〈µ′, v, Γ ′, σ〉.

Base cases. For the base cases, [Variable], [Value], [This-1]and [This-2]and [Function Literal], it
suffices to note that µ ≤ µ′ and Γ ≤ Γ ′, then applying Lemma 16, we conclude that µ, Γ ≈id,σ′ µ, Γ .

Inductive cases. We distinguish four types of inductive cases:

1. Those that do not directly change the heap: [Prop Look-up], [Bin Operator], [If-1], [If-2], [While-
1], [While-2], and [Seq-1].

2. Those that directly change the heap by allocating a new object: [Function Call], [Method Call],
and [Constructor Call].

3. Those that directly change the heap either by creating a new property or by updating the value of an
existing property of an object: [Prop Update], [Prop Creation], [Assign-1], and [Assign-2].

4. Those that only change the labeling: [Variable Upgrade], [Property Upgrade], and [Structure
Upgrade].

[Prop Look-up]. By hypothesis, there exist µ′, v, Γ ′ and σ such that:

rs, pc ` 〈µ, e1[e2], Γ 〉 ⇓IF 〈µ′, v, Γ ′, σ〉

By inspection of the rule [Prop Look-up], we conclude that there must exist two intermediate configura-
tions: 〈µ1, r1, Γ1, σ1〉 and 〈µ2,m2, Γ2, σ2〉, such that:

rs, pc ` 〈µ, e1, Γ 〉 ⇓IF 〈µ1, v1, Γ1, σ1〉 (3aa)

rs, pc ` 〈µ1, e2, Γ1〉 ⇓IF 〈µ2, v2, Γ2, σ2〉 (3ab)
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where Γ ′ = Γ2 and µ′ = µ2. Applying the induction hypothesis to equations 3aa and 3ab, it follows respec-
tively:

µ, Γ ≈id,σ′ µ1, Γ1 (3ac)

µ1, Γ1 ≈id,σ′ µ
′, Γ ′ (3ad)

By the transitivity of ≈id,σ′ (Lemma 15), it follows that: µ, Γ ≈id,σ′ µ
′, Γ ′.

[Function Call]. By hypothesis, there exist µ′′, Γ ′′′, σ and v′′ such that:

rs, pc ` 〈µ, e0(e1), Γ 〉 ⇓ 〈µ′′, v′′, Γ ′′′, σ〉

By inspection of the [Function Call] rule, it follows that there exist two configurations 〈µ0, v0, Γ0, σ0〉 and
〈µ1, v1, Γ1, σ1〉 such that:

rs, pc ` 〈µ, e0, Γ 〉 ⇓ 〈µ0, v0, Γ0, σ0〉 (3ba)

rs, pc ` 〈µ0, e1, Γ0〉 ⇓ 〈µ1, v1, Γ1, σ1〉 (3bb)

Applying the induction hypothesis to Equations 3ba and 3bb and the transitivity of ≈id,σ′ (Lemma 15), it
follows that:

µ, Γ ≈id,σ′ µ1, Γ1 (3bc)

Let µ′ and Γ ′′ denote the memory and labeling obtained from µ1 and Γ1 respectively by allocating the new
scope object. Since the reference corresponding to the newly allocated scope object is not in the domain of
both µ1 and Γ1, it follows that: µ1 ≤ µ′ and Γ1 ≤ Γ ′′. Hence, applying Lemma 16, it follows that:

µ1, Γ1 ≈id,σ′ µ
′, Γ ′′ (3bd)

By inspection of the [Function Call] rule, we conlude that there is a configuration 〈µ′′, v′, Γ ′′′, σ′′〉, such
that:

r′′s , pc
′ t σ0 ` 〈µ′, s, Γ ′′〉 ⇓ 〈µ′′, v′, Γ ′′′, σ′′〉 (3be)

Applying Lemma 21 to Equation 3ba, it follows that pc ≤ σ0 and consequently: pc ≤ pc′ t σ0. Since by
hypothesis pc 6≤ σ′, we conclude that: pc′ t σ0 6≤ σ′. Therefore, we can apply the induction hypothesis to
Equation 3be and conclude that:

µ′, Γ ′′ ≈id,σ′ µ
′′, Γ ′′′ (3bf)

Applying the transitivity of ≈id,σ′ (Lemma 15) to Equations 3bc, 3bd and 3bf, it follows that:

µ, Γ ≈id,σ′ µ
′′, Γ ′′′

[Prop Update]. By hypothesis, there is a configuration 〈µ′, v′, Γ ′, σ〉 such that:

rs, pc ` 〈µ, e1[e2] = e3, Γ 〉 ⇓ 〈µ′, v′, Γ ′, σ〉

By inspection of the [Prop Update] rule, there must exist three configurations 〈µ1, v1, Γ1, σ1〉, 〈µ2, v2, Γ2, σ2〉
and 〈µ3, v3, Γ3, σ3〉 such that:

rs, pc ` 〈µ, e1, Γ 〉 ⇓ 〈µ1, r1, Γ1, σ1〉 (3ca)

rs, pc ` 〈µ1, e2, Γ1〉 ⇓ 〈µ2,m2, Γ2, σ2〉 (3cb)

rs, pc ` 〈µ2, e3, Γ2〉 ⇓ 〈µ3, v3, Γ3, σ3〉 (3cc)

Applying the induction hypothesis to Equations 3ca, 3cb and 3cc and the transitivity of ≈id,σ′ (Lemma 15),
it follows that:

µ, Γ ≈id,σ′ µ3, Γ3 (3cd)
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The final memory µ′ and the final labeling Γ ′ are obtained from µ3 and Γ3 respectively in the following way:

Γ ′
.
= Γ3 [(r1,m2) 7→ σ1 t σ2 t σ3] µ′

.
= µ3 [(r1,m2) 7→ v3]

Additionally, we know that σ1 t σ2 ≤ Γ3(r1,m2). Applying Lemma 21 to Equation 3ca, we conclude that
pc ≤ σ1 and therefore pc v Γ3(r1,m2). Since, by hypothesis, pc 6≤ σ′, it follows that Γ3(r1,m2) 6≤ σ′. Hence,
by Lemma 17, it follows that

µ3, Γ3 ≈id,σ′ µ
′, Γ ′ (3ce)

Applying the transitivity of ≈id,σ′ to Equations 3cd and 3ce, the result follows.

[Assign-1]. By hypothesis, there is a configuration 〈µ′, v, Γ ′, σ〉 such that:

rs, pc ` 〈µ, x = e, Γ 〉 ⇓ 〈µ′, v, Γ ′, σ〉

By inspection of the [Assign-1] rule, we conclude that there is a configuration 〈µ1, v1, Γ1, σ1〉, such that:

rs, pc ` 〈µ, e, Γ 〉 ⇓ 〈µ1, v1, Γ1, σ1〉 (3da)

where v1 = v and σ1 = σ. Applying the induction hypothesis to Equation 3da, we conlcude that:

µ, Γ ≈id,σ′ µ1, Γ1 (3db)

Again, by inspection of the [Assign-1] rule, we conclude that µ′ and Γ ′ are obtained from µ1 and Γ1 in the
following way:

Γ ′ = Γ1 [(rx, x) 7→ σ] µ′ = µ1 [(rx, x) 7→ v]

where 〈µ, rs, x〉 RScope rx. By the definition of ⇓IF , it follows that pc ≤ Γ1(rx, x). Since, pc 6≤ σ′, we conclude
that Γ1(rx, x) 6≤ σ′. Moreover, applying Lemma 21 to Equation 3db, we conclude that pc ≤ σ and thus, since
pc 6≤ σ′, it follows that σ 6≤ σ′. We can therefore apply Lemma 17 to conclude that:

µ1, Γ1 ≈id,σ′ µ
′, Γ ′ (3dc)

Applying the transivity of ≈id,σ′ to Equations 3db and 3dc, the result follows.

The next lemma establishes that the two scope references obtained by looking up for a variable in two
low equal memories starting from two β-related scope references are also β − related.

Lemma 5 (Scope Chain Inspection on Low Equal Memories). Given two memories µ1 and µ2

respectively well-labeled by Γ1 and Γ2, a partial injective functions on Ref , β, two references r1 and r2, a
security level σ, and a string m ∈ Str such that:

µ1, Γ1 ≈β,σ µ2, Γ2 (5a)

r1 ∼β r2 (5b)

〈µ1, r1,m〉 RScope r′1 (5c)

〈µ2, r2,m〉 RScope r′2 (5d)

Γ1(r1), Γ2(r2) ≤ σ (5e)

Then, r′1 ∼β r′2.

Proof. We proceed by induction on the derivation of 〈µ1, r1,m〉 RScope r′1.
The bases cases correspond to Rules [Null] and [Base], whereas the inductive case correspond to the

Rule [Look-up].

[Null]. If the last rule to be applied on the derivation of 〈µ1, r1,m〉 RScope r′1 is [Null], it means that
r1 = null = r′1. From the Hypothesis 5b, we conclude that r2 = null. Therefore, it follows that r′2 = null
and r′1 ∼β r′2.
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[Base]. If the last rule to be applied on the derivation of 〈µ1, r1,m〉 RScope r′1 is [Base], it means that
m ∈ dom(µ1(r1)) and r′1 = r1. Considering the Hypotheses 5a, 5b, and 5c, it follows directly from the
definition of ≈β,σ that dom(µ1(r1)) = dom(µ2(r2)). Therefore, since m ∈ dom(µ1(r1)), we conclude that
m ∈ dom(µ2(r2)) and consequently that r′2 = r2.

[Look-up]. If the last rule to be applied on the derivation of 〈µ1, r1,m〉 RScope r′1 is [Look-up], it means
that m 6∈ dom(µ1(r1)), r1 6= null:

〈µ1, r
′′
1 ,m〉 RScope r′1 (5f)

where r′′1 = µ1(r1,@scope). By the Hypothesis 5a, 5b, and 5c, we conclude that dom(µ1(r1)) = dom(µ2(r2)).
Therefore, it follows that m 6∈ dom(µ2(r2)) and:

〈µ2, r
′′
2 ,m〉 RScope r′2 (5g)

where r′′2 = µ2(r2,@scope). Since by hypothesis, µ1 is well labeled by Γ1 and µ2 is well labeled by Γ2, it
follows that:

Γ1(r′′1 ) ≤ Γ1(r1,@scope) ≤ Γ1(r1) (5h)

Γ2(r′′2 ) ≤ Γ2(r2,@scope) ≤ Γ2(r2) (5i)

From Hypothesis 5e and Equations 5h and 5i, it follows that:

Γ1(r1,@scope) ≤ σ (5j)

Γ2(r2,@scope) ≤ σ (5k)

From the Hypotheses 5a and 5b and Equations 5j and 5k, we conclude, by the definition of ≈β,σ, that:

r′′1 ∼β r′′2 (5l)

From the Hypothesys 5d and Equations 5j and 5k, we conclude, by the definition of ≈β,σ, that:

r′′1 , r
′′
2 ≤ σ (5m)

Applying the induction hypothesis to the Hypothesis 5a and Equations 5f, 5g, and 5l, and 5m, we conclude
that: r′1 ∼β r′2.

The next lemma establishes that the two scope references obtained by looking up for a property in two
low equal memories starting from two β-related scope objects are either β-related or the two corresponding
look-up levels are unobservable.

Lemma 6 (Prototype Chain Inspection on Low Equal Memories). Given two memories µ1 and µ2

well labeled by Γ1 and Γ2 respectively, two references r1 and r2, a security level σ, an injective mapping on
references β, and a string m ∈ Str such that:

µ1, Γ1 ≈β,σ µ2, Γ2 (6a)

r1 ∼β r2 (6b)

〈µ1, r1,m, Γ1〉 RProto 〈r′1, σ1〉 (6c)

〈µ2, r2,m, Γ2〉 RProto 〈r′2, σ2〉 (6d)

Then, it follows that: (σ1 ≤ σ ∨ σ2 ≤ σ)⇒ (r′1 ∼β r′2 ∧ σ1 = σ2).

Proof. To prove this result one has to prove the following two implications:

σ1 ≤ σ ⇒ (r′1 ∼β r′2 ∧ σ1 = σ2) (6e)

σ2 ≤ σ ⇒ (r′1 ∼β r′2 ∧ σ1 = σ2) (6f)
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The proof of Equation 6e proceeds by induction on the derivation of Equation 6c, whereas the proof of 6f
proceeds by induction on the derivation of 6d. Since, these proofs are symmetric we ommit the second.

We proceed by induction on the derivation of 〈µ1, r1,m, Γ1〉 RProto 〈r′1, σ1〉. Furthermore, we assume
σ1 ≤ σ. Hence, we have to show that r′1 ∼β r′2 ∧ σ1 = σ2. The bases cases correspond to Rules [Null] and
[Base], whereas the inductive case correspond to the Rule [Look-up].

[Null]. If the last rule to be applied on the derivation of 〈µ1, r1,m, Γ1〉 RProto 〈r′1, σ1〉 is the [Null] Rule,
it means that r1 = null, r′1 = null, and σ1 = ⊥. By the Hypothesis 6b, we conclude that r2 = null, and
therefore r′2 = null and σ2 = ⊥, from which the result follows.

[Base]. If the last rule to be applied on the derivation of 〈µ1, r1,m, Γ1〉 RProto 〈r′1, σ1〉 is [Base], it means
that m ∈ dom(µ1(r1)), r′1 = µ1(r1,m), and σ1 = Γ1(r1,m). By hypothesis, σ1 = Γ1(r1,m) ≤ σ; hence, it
follows from Hypotheses 6a and 6b (by the definition of ≈β,σ) that: m ∈ dom(µ2(r2)), Γ1(r1,m) = Γ2(r2,m),
and µ1(r1,m) = µ2(r2,m), from which the result follows.

[Look-up]. If the last rule to be applied on the derivation of 〈µ1, r1,m, Γ1〉 RProto 〈r′1, σ1〉 is the [Look-
up] Rule, it means that m 6∈ dom(µ1(r1)). Hence, there is a security level σ′1 such that:

〈µ1, r
′′
1 ,m, Γ1〉 RProto 〈r′1, σ′1〉 (6g)

σ1 = σ′1 t Γ1(r1,@proto) t Γ1(r1) (6h)

where r′′1 = µ1(r1,@proto). By the Hypothesis 6b, we conclude that r2 6= null. Since, by hypothesis, σ1 ≤ σ,
it follows that Γ1(r1) ≤ σ entailing that Γ2(r2) ≤ σ (by the Hypotheses 6a and 6b). Since both µ1(r1)
and µ2(r2) have low structure security levels, it follows that that their domains coincide and therefore
m 6∈ dom(µ2(r2)). Hence, there is a security level σ′2 such that:

〈µ2, r
′′
2 ,m, Γ2〉 RProto 〈r′2, σ′2〉 (6i)

σ2 = σ′2 t Γ2(r2,@proto) t Γ2(r2) (6j)

where r′′2 = µ1(r2,@proto). From Equation 6h and the fact that σ1 ≤ σ, it follows that Γ1(r1,@proto) ≤ σ.
Since by hypothesis, µ1(r1) and µ2(r2) coincide in their low domains, we conclude that Γ1(r1,@proto) =
Γ2(r2,@proto), entailing that:

r′′1 ∼β r′′2 (6k)

Applying the induction hypothesis to the Hypothesis 6a and Equations 6g, 6i, and 6k, we conclude:

σ′1 ≤ σ ⇒ (r′1 ∼β r′2 ∧ σ′1 = σ′2) (6l)

It follows from Equation 6h and σ1 ≤ σ, that σ′1 ≤ σ, thus proving the result.

The following lemma states that the low equality is preserved by the monitored semantics.

Lemma 7. For any program s, two memories µ1 and µ2, respectively well labeled by Γ1 and Γ2, references
r1 and r2 and security levels pc and σ, if there exists a partial injective function β on Ref such that
β(#global) = #global, β(#protObj) = #protObj, and:

µ1, Γ1 ≈β,σ µ2, Γ2 (7a)

r1 ∼β r2 (7b)

r1, pc ` 〈µ1, s, Γ1〉 ⇓IF 〈µ′1, v1, Γ ′1, σ1〉 (7c)

r2, pc ` 〈µ2, s, Γ2〉 ⇓IF 〈µ′2, v2, Γ ′2, σ2〉 (7d)

Then, there exists a functison β′ such that β ≤ β′ and the following hold:

µ′1, Γ
′
1 ≈β′,σ µ′2, Γ ′2 (7e)(

σ1 ≤ σ ∨ σ2 ≤ σ
)
⇒
(
v1 ∼β′ v2 ∧ σ1 = σ2

)
(7f)

15



Proof. We start by noting that if pc 6≤ σ, then we can apply Lemma 4 to the Hypotheses 7c and 7d to
conclude that:

µ1, Γ1 ≈id1,σ µ
′
1, Γ

′
1 (7g)

µ2, Γ2 ≈id2,σ µ
′
2, Γ

′
2 (7h)

where id1 and id2 correspond to the identity function defined on the domain of µ1 and to the identity function
defined on the domain of µ2 (respectively). Applying Lemma 20 to Hypothesis 7a and Equations 7g and 7h,
Claim 7e follows. Since pc 6≤ σ, we conclude, applying Lemma 21, that σ1 6≤ σ and σ2 6≤ σ, thus proving
Claim 7f.

In the remaining of the proof, we assume pc ≤ σ. We proceed by induction on the derivation of 7c.

[Value] If the last rule to be applied in the derivation of 7c is [Value], it means that s = v for some value
v ∈ Val. Hence, by hypothesis, it follows that:

r1, pc ` 〈µ1, v, Γ1〉 ⇓IF 〈µ1, v, Γ1, pc〉 r2, pc ` 〈µ2, v, Γ2〉 ⇓IF 〈µ2, v, Γ2, pc〉

Entailing that µ′1 = µ1, µ′2 = µ2, Γ ′1 = Γ1, Γ ′2 = Γ2, v1 = v2 = v and σ1 = σ2 = pc. Therefore, we conclude
that µ′1, Γ

′
1 ≈β′,σ µ′2, Γ ′2, for β′ = β. Furthermore, applying Lemma 25, it follows that v1 = v ∼β′ v = v2,

thus verifying the second claim of the lemma.

[Variable] If the last rule to be applied in the derivation of 7c is [Variable], it means that s = x for some
variable x. Hence, applying the hypothesis, it follows that:

r1, pc ` 〈µ1, x, Γ1〉 ⇓IF 〈µ1, v1, Γ1, σ1〉 (7ja)

r2, pc ` 〈µ2, x, Γ2〉 ⇓IF 〈µ2, v2, Γ2, σ2〉 (7jb)

Entailing that µ′1 = µ1, µ′2 = µ2, Γ ′1 = Γ1, Γ ′2 = Γ2. Thus, as in the previous case, we can immediately
conclude that: µ′1, Γ

′
1 ∼β′,σ µ′2, Γ ′2, for β′ = β.

By inspection of [Variable], we conclude that:

〈µ1, r1, x〉 RScope r′1 (7jc)

〈µ2, r2, x〉 RScope r′2 (7jd)

Where v1 = µ1(r′1, x), v2 = µ2(r′2, x), σ1 = Γ1(r′1, x) t pc, and σ2 = Γ2(r′2, x) t pc.
Since both Equations 7ja and 7jb constitue well labeled big step transitions, it follows that: Γ1(r1) ≤ pc

and Γ2(r2) ≤ pc. Hence, since pc ≤ σ, we conclude that:

Γ1(r1), Γ2(r2) ≤ σ (7je)

Applying Lemma 5 to the Hypotheses 7a and 7b and Equations 7jc, 7jd, and soundness:proof:var:eq:5, we
conclude that: r′1 ∼β r′2.

Suppose, σ1 ≤ σ, this means that Γ1(r′1, x) ≤ σ. Since µ′1(r′1) and µ′2(r′2) coincide in the low properties,
it follows that Γ2(r′2, x) = Γ1(r1, x) ≤ σ and v1 = v2. The symmetric argument can be presented for σ2 ≤ σ,
thus following Claim 7f.

[Look-up] If the last rule to be applied in the derivation of 7c is [Look-up], it means that there are two
expressions e1 and e2 such that s = e1[e2]. Hence, by inspection of the Rule [Look-up], it follows that there
are eight configurations such that:

r1, pc ` 〈µ1, e1, Γ1〉 ⇓ 〈µ11, r11, Γ11, σ11〉 (7kaa)

r1, pc ` 〈µ11, e2, Γ11〉 ⇓ 〈µ12, v12, Γ12, σ12〉 (7kab)

r2, pc ` 〈µ2, e1, Γ2〉 ⇓ 〈µ21, r21, Γ21, σ21〉 (7kac)

r2, pc ` 〈µ21, e2, Γ21〉 ⇓ 〈µ22, v22, Γ22, σ22〉 (7kad)
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where µ′1 = µ12, µ′2 = µ22, Γ ′1 = Γ12, Γ ′2 = Γ22, and:

〈µ12, r11, v12, Γ12〉 RProto 〈r′1, σ′1〉 (7kae)

〈µ22, r21, v22, Γ22〉 RProto 〈r′2, σ′2〉 (7kaf)

σ1 = σ′1 t σ11 t σ12 (7kag)

σ2 = σ′2 t σ21 t σ22 (7kah)

v1 = µ12(r′1, v12) (7kai)

v2 = µ22(r′2, v22) (7kaj)

(7kak)

Applying the induction hypothesis to Hypotheses 7a and 7b and Equations 7kaa and 7kac, we conclude that
there is a mapping β1 such that:

µ11, Γ11 ≈β1,σ µ21, Γ21 (7kal)

β v β1 (7kam)(
σ11 ≤ σ ∨ σ21 ≤ σ

)
⇒
(
r11 ∼β1

r21 ∧ σ11 = σ21
)

(7kan)

Analogously, applying the induction hypothesis to the Hypothesis 7b and to Equations 7kab, 7kad and 7kal,
it follows that:

µ12, Γ12 ≈β2,σ µ22, Γ22 (7kao)

β1 v β2 (7kap)(
σ12 ≤ σ ∨ σ22 ≤ σ

)
⇒
(
v12 ∼β2

v22 ∧ σ12 = σ22
)

(7kaq)

Observing that µ′1 = µ12, µ′2 = µ22, Γ ′1 = Γ12, and Γ ′2 = Γ22, Claim 7e follows.
Suppose σ1 ≤ σ, from Equation 7kag we conclude that: σ′1 ≤ σ, σ11 ≤ σ, and σ12 ≤ σ. From σ11 ≤ σ,

we conclude (by Equation 7kan) that r11 ∼β2 r21. From σ21 ≤ σ, we conclude (by Equation 7kaq) that
v12 = v22 = v. Hence, applying Lemma 6 to Equations 7kao, 7kae and 7kae (remarking that v12 = v22 = v)
we conclude that: (σ′1 ≤ σ∨σ′2 ≤ σ)⇒ (r′1 ∼β2

r′2∧σ′1, σ′2 ≤ σ), which entails that: v1 ∼β v2. The symmetric
argument can be presented for the case σ2 ≤ σ, thus following Claim 7f .

[Prop Update]. By hypothesis there are three expressions e1, e2, and e3, such that s = e1[e2] = e3. By
inspection of [Prop Update]Rule, it follows that there are twelve configurations such that:

r1, pc ` 〈µ1, e1, Γ1〉 ⇓IF 〈µ11, r11, Γ11, σ11〉 (7caa)

r1, pc ` 〈µ11, e2, Γ11〉 ⇓IF 〈µ12,m12, Γ12, σ12〉 (7cab)

r1, pc ` 〈µ12, e3, Γ12〉 ⇓IF 〈µ13, v13, Γ13, σ13〉 (7cac)

r2, pc ` 〈µ2, e1, Γ2〉 ⇓IF 〈µ21, r21, Γ21, σ21〉 (7cad)

r2, pc ` 〈µ21, e2, Γ21〉 ⇓IF 〈µ22,m22, Γ22, σ22〉 (7cae)

r2, pc ` 〈µ22, e3, Γ22〉 ⇓IF 〈µ23, v23, Γ23, σ23〉 (7caf)

Where:

µ′1 = µ13 [(r11,m12) 7→ v13] (7cag)

Γ ′1 = Γ13 [(r11,m12) 7→ σ11 t σ12 t σ13] (7cah)

σ1 = σ13 (7cai)

µ′2 = µ23 [(r21,m22) 7→ v23] (7caj)

Γ ′2 = Γ23 [(r21,m22) 7→ σ21 t σ22 t σ23] (7cak)

σ2 = σ23 (7cal)
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From Hypothesis 7a and 7b and applying the induction hypothesis three times consecutively to Equa-
tions 7caa to 7caf, it follows that there is a partial injective function on Ref such that:

µ13, Γ13 ≈β′,σ µ23, Γ23 (7cam)(
σ11 ≤ σ ∨ σ21 ≤ σ

)
⇒
(
r11 ∼β′ r21 ∧ σ11 = σ21

)
(7can)(

σ12 ≤ σ ∨ σ22 ≤ σ
)
⇒
(
m12 = m22 ∧ σ12 = σ22

)
(7cao)(

σ13 ≤ σ ∨ σ23 ≤ σ
)
⇒
(
v13 ∼β′ v23 ∧ σ13 = σ23

)
(7cap)

Observe that Equation 7cap corresponds to the second claim of the Lemma.
We proceed by case analysis on the levels corresponding to the evaluation of e1 and e2.

– σ11, σ12, σ21, σ22 ≤ σ. In this case, from Equations 7can and 7cao, we conclude that r11 ∼β r21 and
m12 = m22. Hence, applying Lemma 18, it follows that µ′1, Γ

′
1 ≈β′,σ, thus proving the lemma.

– σ11 6≤ σ ∨ σ21 6≤ σ. From Equation 7can, it follows that σ11, σ21 6≤ σ. By the definition of ⇓IF , it follows
that:

Γ13(r11,m12), Γ23(r21,m22) 6≤ σ (7cba)

We apply Lemma 17 to conclude that µ13, Γ13 ≈id,σ µ
′
1, Γ

′
1 and µ23, Γ23 ≈id,σ µ

′
2, Γ

′
2. Hence, applying

Lemma 20 to the previous to equations and Equation 7cam, the result follows.
– σ21 6≤ σ ∨ σ22 6≤ σ. This case is shown using a similar argument as in the previous one.

[Assign-1] If the last rule to be applied in the derivation of 7c is [Assign-1], it means that there is one
expression e and a variable x such that s = x = e. Hence, by inspection of the Rule [Assign-1], it follows
that there are two configurations such that:

r1, pc ` 〈µ1, e, Γ1〉 ⇓ 〈µ′′1 , v1, Γ ′′1 , σ1〉 (7ca)

r2, pc ` 〈µ2, e, Γ2〉 ⇓ 〈µ′′2 , v2, Γ ′′2 , σ2〉 (7cb)

Where:

〈µ1, r1, x〉 RScope r1x r1x 6= null (7cc)

µ′1 = µ′′1
[
(r1x, x) 7→ v1

]
(7cd)

Γ ′1 = Γ ′′1
[
(r1x, x) 7→ σ1

]
(7ce)

〈µ2, r2, x〉 RScope r21x (7cf)

(r22x = r21x ∧ r21x 6= null) ∨ r22x = #global (7cg)

µ′2 = µ′′2
[
(r22x , x) 7→ v2

]
(7ch)

Γ ′2 = Γ ′′2
[
(r22x , x) 7→ σ2

]
(7ci)

Applying the induction hypothesis to Hypotheses 7a and 7b and Equations 7ca and 7cb, we conclude that:

µ′′1 , Γ
′′
1 ≈β′,σ µ′′2 , Γ ′′2 (7cj)(

σ1 ≤ σ ∨ σ2 ≤ σ
)
⇒
(
v1 ∼β′ v2 ∧ σ1 = σ2

)
(7ck)

for a partial injective function β′ which extends β. Equation 7ck corresponds to the second claim of the
lemma. It remains to prove the first claim.

Applying Lemma 5 to Hypotheses 7a and 7b and Equations 7cc and 7cf, we conclude that: r1x ∼β r21x .
Since r1x 6= null, it follows that r21x 6= null, r22x = r21x and thus:

r1x ∼β r22x (7cl)
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Since both Equations 7ca and 7ca consist of well-labeled big step transitions (by Lemma 1), it follows
that: Γ ′′1 (r1), Γ ′′2 (r2) ≤ pc. Since pc ≤ σ, we conclude that:

Γ ′′1 (r1), Γ ′′2 (r2) ≤ pc (7cm)

Applying Lemma 18 to Hypothesis 7b and Equations 7cd, 7ce, 7ch, 7ci, 7cj, 7ck, 7cl, and 7cm, we
conclude that: µ′1, Γ

′
1 ≈β′,σ µ′2, Γ ′2, thus proving the first claim of the lemma.

[Assign-2] If the last rule to be applied in the derivation of 7c is [Assign-2], it means that there is one
expression e and a variable x such that s = x = e. Hence, by inspection of the Rule [Assign-2], it follows
that there are two configurations such that:

r1, pc ` 〈µ1, e, Γ1〉 ⇓ 〈µ′′1 , v1, Γ ′′1 , σ1〉 (7da)

r2, pc ` 〈µ2, e, Γ2〉 ⇓ 〈µ′′2 , v2, Γ ′′2 , σ2〉 (7db)

Where:

〈µ1, r1, x〉 RScope null (7dc)

µ′1 = µ′′1 [(#global, x) 7→ v1] (7dd)

Γ ′1 = Γ ′′1 [(#global, x) 7→ σ1] (7de)

〈µ2, r2, x〉 RScope r21x (7df)

(r22x = r21x ∧ r21x 6= null) ∨ r22x = #global (7dg)

µ′2 = µ′′2
[
(r22x , x) 7→ v2

]
(7dh)

Γ ′2 = Γ ′′2
[
(r22x , x) 7→ σ2

]
(7di)

Applying the induction hypothesis to Hypotheses 7a and 7b and Equations 7da and 7db, we conclude that:

µ′′1 , Γ
′′
1 ≈β′,σ µ′′2 , Γ ′′2 (7dj)(

σ1 ≤ σ ∨ σ2 ≤ σ
)
⇒
(
v1 ∼β′ v2 ∧ σ1 = σ2

)
(7dk)

for a partial injective function β′ which extends β. Equation 7ck corresponds to the second claim of the
lemma. It remains to prove the first claim.

Applying Lemma 5 to Hypotheses 7a and 7b and Equations 7dc and 7df, we conclude that: r1x ∼β r21x .
Since r1x = null, it follows that r21x = null, r22x = null. Thus, the last rule to be applied in the derivation of 7d
is [Assign-2]. Since by hypothesis β(#global) = #global and β ≤ β′, we conclude that β′(#global) = #global.
From Equation 7dj, it, therefore, follows:

#global ∼β′ #global (7dl)

Since both Equations 7da and 7da consist of well-labeled big step transitions (by Lemma 1), it follows
that: Γ ′′1 (r1), Γ ′′2 (r2) ≤ pc. Since pc ≤ σ, we conclude that:

Γ ′′1 (r1), Γ ′′2 (r2) ≤ pc (7dm)

Applying Lemma 18 to Hypothesis 7b and Equations 7dd, 7de, 7dh, 7di, 7dj, 7dk, 7dl, and 7dm, we
conclude that: µ′1, Γ

′
1 ≈β′,σ µ′2, Γ ′2, thus proving the first claim of the lemma.

[Function Literal] If the last rule to be applied in the derivation of 7c is [Function Literal], it means
that s = function(x){s}. Hence, by inspection of the Rule [Function Literal], it follows that:

r1, pc ` 〈µ1, function(x){s}, Γ1〉 ⇓ 〈µ′1, r′1, Γ ′1, pc〉 (7ea)

r2, pc ` 〈µ2, function(x){s}, Γ2〉 ⇓ 〈µ′2, r′2, Γ ′2, pc〉 (7eb)
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Where:

µ′1 = µ1 [r′1 7→ o1] (7ec)

Γ ′1 = Γ1 [(r′1,@fscope) 7→ pc, (r′1,@code) 7→ pc, (r′1, prototype) 7→ pc] (7ed)

µ′2 = µ2 [r′2 7→ o2] (7ee)

Γ ′2 = Γ2 [(r′2,@fscope) 7→ pc, (r′2,@code) 7→ pc, (r′2, prototype) 7→ pc] (7ef)

o1 = [@fscope 7→ r1,@code 7→ λx.s, prototype 7→ protObj] (7eg)

o2 = [@fscope 7→ r2,@code 7→ λx.s, prototype 7→ protObj] (7eh)

where r′1 6∈ dom(µ1) and r′2 6∈ dom(µ2). From the definitions of o1 and o2 and noting that pc ≤ σ, r1 ∼β r2
(Hypothesis 7b), and β(protObj) = protObj, it follows that o1 ∼β o2. Thus, applying Lemma 19, it follows
that: µ′1, Γ

′
1 ≈β′,σ µ′2, Γ ′2, where β ≤ β′ and β′(r′1) = r′2. Additionally, observing that σ1 = σ2 = pc, both of

the claims of the lemma follow.

[Bin Operator] If the last rule to be applied in the derivation of 7c is [Bin Operator], it means that
s = e1 op2 e2. Hence, by inspection of the Rule [Bin Operator], it follows that there exist four transitions:

r1, pc ` 〈µ1, e1, Γ1〉 ⇓ 〈µ11, v11, Γ11, σ11〉 r1, pc ` 〈µ12, e2, Γ11〉 ⇓ 〈µ12, v12, Γ12, σ12〉 (7fa)

r2, pc ` 〈µ2, e1, Γ2〉 ⇓ 〈µ21, v21, Γ21, σ21〉 r2, pc ` 〈µ22, e2, Γ21〉 ⇓ 〈µ22, v22, Γ22, σ22〉 (7fb)

Where µ′1 = µ12, Γ ′1 = Γ12, µ′2 = µ22, and Γ ′2 = Γ22. From the Hypotheses 7a and 7b and Equations 7fa
and 7fb, we concude, applying the induction hypothesis two times consecutively, that there is a β′ which
extends β such that:

µ′1, Γ
′
1 ≈β′,σ µ′2, Γ ′2 (7fc)(

σ11 ≤ σ ∨ σ21 ≤ σ
)
⇒
(
v11 = v21 ∧ σ11 = σ21

)
(7fd)(

σ12 ≤ σ ∨ σ22 ≤ σ
)
⇒
(
v12 = v22 ∧ σ12 = σ22

)
(7fe)

Observe that we use = instead of ∼β′ in Equations 7fd and 7fe, because a binary operation cannot be
performed on references. Equation 7fc corresponds to the first claim of the lemma. Combining Equations 7fd
and 7fe, we obtain:(

σ11 t σ12 ≤ σ ∨ σ21 t σ22 ≤ σ
)
⇒
(
⇓op2 (v11, v12) =⇓op2 (v21, v22) ∧ σ11 t σ12 = σ21 t σ22

)
(7ff)

Observing that σ1 = σ11 t σ12 and σ2 = σ21 t σ22, it follows that Equation 7ff corresponds to the second
claim of the lemma.

[This-1] If the last rule to be applied in the derivation of 7c is [This-1], it means that @this ∈ dom(µ1(r1))
and that:

µ′1 = µ1 Γ ′1 = Γ1 (7ga)

v1 = µ1(r1,@this) σ1 = pc t Γ1(r1,@this) (7gb)

From Hypotheses 7a and 7b, it follows that dom(µ1(r1)) = dom(µ2(r2)), we therefore conclude that: @this ∈
dom(µ2(r2)), from which it follows that the last rule to be applied in the derivation of 7d is also [This-1].
Hence, we conclude that:

µ′2 = µ2 Γ ′2 = Γ1 (7gc)

v2 = µ2(r2,@this) σ2 = pc t Γ2(r2,@this) (7gd)

From Equations 7ga and 7gc, the first claim of the lemma follows. To prove the second claim let us suppose
that σ1 ≤ σ. This implies that Γ1(r1,@this) ≤ σ. Since the objects pointed by r1 and r2 coincide in their
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low properties (Hypothesis 7b), we conclude that: Γ1(r1,@this) = Γ2(r2,@this) (from which it follows that
σ1 = σ2) and that v1 = µ1(r1,@this) = µ2(r2,@this) = v2, thus proving the second claim of the lemma.

[This-2] If the last rule to be applied in the derivation of 7c is [This-2], it means that @this 6∈ dom(µ1(r1))
and that:

µ′1 = µ1 Γ ′1 = Γ1 (7ha)

v1 = #global σ1 = pc (7hb)

From Hypotheses 7a and 7b, it follows that dom(µ1(r1)) = dom(µ2(r2)), we therefore conclude that: @this 6∈
dom(µ2(r2)), from which it follows that the last rule to be applied in the derivation of 7d is also [This-2].
Hence, we conclude that:

µ′2 = µ2 Γ ′2 = Γ1 (7hc)

v2 = #global σ2 = pc (7hd)

From Equations 7ga and 7gc, the first claim of the lemma follows. To prove the second claim, it is enough
to note that, by hypothesis β(#global) = #global and σ1 = σ2.

[Function Call] If the last rule to be applied in the derivation of 7c is [Function Call], then by
hypothesis there are two expressions e1 and e2, such that s = e1(e2). By inspection of [Function Call], it
follows that there are six transitions:

r1, pc ` 〈µ1, e1, Γ1〉 ⇓IF 〈µ11, r11, Γ11, σ11〉 (7ia)

r1, pc ` 〈µ11, e2, Γ11〉 ⇓IF 〈µ12, v12, Γ12, σ12〉 (7ib)

r′′1 , pc
′
1 t σ11 ` 〈µ′′1 , s1, Γ ′′1 〉 ⇓IF 〈µ′1, v1, Γ ′1, σ1〉 (7ic)

r2, pc ` 〈µ2, e1, Γ2〉 ⇓IF 〈µ21, r21, Γ21, σ21〉 (7id)

r2, pc ` 〈µ21, e2, Γ21〉 ⇓IF 〈µ22, v22, Γ22, σ22〉 (7ie)

r′′2 , pc
′
2 t σ21 ` 〈µ′′2 , s2, Γ ′′2 〉 ⇓IF 〈µ′2, v2, Γ ′2, σ2〉 (7if)

Where:

pc′1 = Γ12(r11,@fscope) r′1 = µ12(r11,@fscope) λx1.s1 = µ12(r11,@code) (7ig)

Γ ′′1 = Γ12 [(r′′1 , x1) 7→ σ12, (r
′′
1 ,@scope) 7→ pc′1 t σ11, r′′1 7→ pc′1 t σ11] (7ih)

o1 = [x1 7→ v1,@scope 7→ r′1] µ′′1 = µ12 [r′′1 7→ o1] (7ii)

pc′2 = Γ22(r21,@fscope) r′2 = µ22(r21,@fscope) λx2.s2 = µ22(r21,@code) (7ij)

Γ ′′2 = Γ22 [(r′′2 , x2) 7→ σ22, (r
′′
2 ,@scope) 7→ pc′2 t σ21, r′′2 7→ pc′2 t σ21] (7ik)

o2 = [x2 7→ v2,@scope 7→ r′2] µ′′2 = µ22 [r′′2 7→ o2] (7il)

and r′′1 6∈ dom(µ12) and r′′2 6∈ dom(µ22). From Hypotheses 7a and 7b and Equations 7ia, 7ib, 7id, and 7ie, it
follows, applying the induction hypothesis, that there is a partial injective function β′ on Ref that extends
β such that:

µ12, Γ12 ≈β′,σ µ22, Γ22 (7im)(
σ11 ≤ σ ∨ σ21 ≤ σ

)
⇒
(
r11 ∼β′ r21 ∧ σ11 = σ21

)
(7in)(

σ12 ≤ σ ∨ σ22 ≤ σ
)
⇒
(
v12 ∼β′ v22 ∧ σ12 = σ22

)
(7io)

There are two cases to consider: the case where σ11 ≤ σ and pc′1 ≤ σ and the opposite one.
If σ11 ≤ σ and pc′1 ≤ σ, it follows from Equation 7in that σ21 = σ11 ≤ σ and r11 ∼β′ r21. Since r11 ∼β′ r21,

pc′1 = Γ12(r11,@fscope) ≤ σ, it follows by Equation 7im that: pc′2 = Γ22(r21,@fscope) ≤ σ, r′1 ∼β′ r′2, and
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λx1.s1 = λx2.s2. Hence, by noting that Equation 7io guarantees that either σ12, σ22 ≤ σ ∧ v12 ∼β′ v22, or
σ12, σ22 6≤ σ, we conclude that:

o1|
r′′1 ,Γ

′
1

σ ∼β′ o2|
r′′2 ,Γ

′
2

σ (7ip)

Applying Lemma 19 to Equations 7ih, 7ii, 7ik, 7il, 7im, and 7ip, we conclude that:

µ′′1 , Γ
′′
1 ≈β′′,σ µ′′2 , Γ ′′2 (7iq)

where β′ ≤ β′′ and β′′(r′′1 ) = r′′2 . Hence, recalling that pc′1 = pc′2 and that σ11 = σ21, we apply the induction
hypothesis to Equations 7ic, 7if and 7iq to conclude the result.

If σ11 6≤ σ or pc′1 6≤ σ, it follows that pc′1 t σ11 6≤ σ and pc′2 t σ21 6≤ σ. Hence, applying Lemma 4 to
Equations 7ic and 7if, it follows that:

µ′′1 , Γ
′′
1 ≈id,σ µ

′
1, Γ

′
1 (7ir)

µ′′2 , Γ
′′
2 ≈id,σ µ

′
2, Γ

′
2 (7is)

Observing that r′′1 6∈ dom(µ12) and r′′2 6∈ dom(µ22) and that there is no property either in µ12 or in µ22

pointing to r′′1 or r′′2 (respectively), we conclude that:

µ12, Γ12 ≈id,σ µ
′′
1 , Γ

′′
1 (7it)

µ22, Γ22 ≈id,σ µ
′′
2 , Γ

′′
2 (7iu)

Applying the transitivity of ≈id,σ (Lemma 15) to Equations 7ir, 7is, 7it, and 7iu, we conlcude that:

µ12, Γ12 ≈id,σ µ
′
1, Γ

′
1 (7iv)

µ22, Γ22 ≈id,σ µ
′
2, Γ

′
2 (7iw)

Applying Lemma 20 to Equations 7im, 7iv, and 7iw, the first claim of the lemma follows. As for the second
claim, applying Lemma 21 to Equations 7ic and 7if, we conclude that pc′1 t σ11 ≤ σ1 and pc′2 t σ21 ≤ σ2,
entailing that σ1, σ2 6≤ σ and thus verifying the claim.

[Method Call] If the last rule to be applied in the derivation of 7c is [Method Call], then by hypothesis
there are three expressions e1, e2, and e3, such that s = e1[e2](e3). By inspection of [Method Call], it
follows that there are eight transitions:

r1, pc ` 〈µ1, e1, Γ1〉 ⇓IF 〈µ11, r11, Γ11, σ11〉 (7ja)

r1, pc ` 〈µ11, e2, Γ11〉 ⇓IF 〈µ12,m12, Γ12, σ12〉 (7jb)

r1, pc ` 〈µ12, e3, Γ12〉 ⇓IF 〈µ13, v13, Γ13, σ13〉 (7jc)

r′′1 , pc
′
1 t σ11 t σ12 t σ1

m ` 〈µ′′1 , s1, Γ ′′1 〉 ⇓IF 〈µ′1, v1, Γ ′1, σ1〉 (7jd)

r2, pc ` 〈µ2, e1, Γ2〉 ⇓IF 〈µ21, r21, Γ21, σ21〉 (7je)

r2, pc ` 〈µ21, e2, Γ21〉 ⇓IF 〈µ22,m22, Γ22, σ22〉 (7jf)

r2, pc ` 〈µ22, e3, Γ22〉 ⇓IF 〈µ23, v23, Γ23, σ23〉 (7jg)

r′′2 , pc
′
1 t σ11 t σ12 t σ2

m ` 〈µ′′2 , s2, Γ ′′2 〉 ⇓IF 〈µ′2, v2, Γ ′2, σ2〉 (7jh)

Where:

〈µ13, r11,m12, Γ13〉 RProto 〈r1m, σ1
m〉 (7ji)

pc′1 = Γ13(r1m,@fscope) r′1 = µ13(r1m,m1)(@fscope) λx1.s1 = µ13(r1m,m1)(@code) (7jj)

o1
.
= [x1 7→ v13,@scope 7→ r′1,@this 7→ r11] µ′′1 = µ13 [r′′1 7→ o1] (7jk)

Γ ′′1
.
= Γ13 [(r′′1 , x1) 7→ σ13, (r

′′
1 ,@scope) 7→ σ′1, (r

′′
1 ,@this) 7→ σ11, r

′′
1 7→ σ′1] (7jl)

〈µ23, r21,m22, Γ23〉 RProto 〈r2m, σ2
m〉 (7jm)

pc′2 = Γ23(r2m,@fscope) r′2 = µ23(r2m,m2)(@fscope) λx2.s2 = µ23(r2m,m2)(@code) (7jn)

o2
.
= [x2 7→ v23,@scope 7→ r′2,@this 7→ r21] µ′′2 = µ23 [r′′2 7→ o2] (7jo)

Γ ′′2
.
= Γ23 [(r′′2 , x2) 7→ σ23, (r

′′
2 ,@scope) 7→ σ′2, (r

′′
2 ,@this) 7→ σ21, r

′′
2 7→ σ′2] (7jp)

22



and r′′1 6∈ dom(µ13), r′′2 6∈ dom(µ23), σ′1 = pc′1 t σ11 t σ12 t σ1
m, and σ′2 = pc′2 t σ21 t σ22 t σ2

m.

From Hypotheses 7a and 7b and Equations 7ja, 7jb, 7jc, 7je, 7jf, and 7jg, it follows, applying the
induction hypothesis (three times), that there is a partial injective function β′ on Ref that extends β such
that:

µ13, Γ13 ≈β′,σ µ23, Γ23 (7jq)(
σ11 ≤ σ ∨ σ21 ≤ σ

)
⇒
(
r11 ∼β′ r21 ∧ σ11 = σ21

)
(7jr)(

σ12 ≤ σ ∨ σ22 ≤ σ
)
⇒
(
m12 = m22 ∧ σ12 = σ22

)
(7js)(

σ13 ≤ σ ∨ σ23 ≤ σ
)
⇒
(
v13 ∼β′ v23 ∧ σ13 = σ23

)
(7jt)

There are two cases to consider: σ′1 ≤ σ and σ′1 6≤ σ.

If σ′1 ≤ σ, it follows from Equations 7jr to 7jt that: r11 ∼β′ r21, m12 = m22, r′1 ∼β′ r′2, λx1.s1 = λx2.s2.
Remarking that r11 ∼β′ r21, m12 = m22, we can apply Lemma 6 to conclude that:(

σ1
m ≤ σ ∨ σ2

m ≤ σ
)
⇒
(
r1m ∼β′ r2m ∧ σ1

m = σ2
m

)
(7jua)

Since, we are assuming that σ′1 ≤ σ, it follows from the equation above that r1m ∼β′ r2m and σ1
m = σ2

m. Hence,
using Equation 7jt, we conclude that:

o1|
r′′1 ,Γ

′
1

σ ∼β′ o2|
r′′2 ,Γ

′
2

σ (7jub)

Applying Lemma 19 to Equations 7jk, 7jk, 7jo, 7jp, 7jq, and 7jub, we conclude that:

µ′′1 , Γ
′′
1 ≈β′′,σ µ′′2 , Γ ′′2 (7juc)

where β′ ≤ β′′ and β′′(r′′1 ) = r′′2 . Hence, observing that σ′1 = σ′2, we apply the induction hypothesis to
Equations 7jd, 7jh, and 7juc to conclude the result.

If σ′1 6≤ σ, it follows by Equations 7jr to 7jt that σ′2 6≤ σ. Hence, we can apply Lemma 4 to Equations 7jd
and 7jh to conclude that:

µ′′1 , Γ
′′
1 ≈β′,σ µ′1, Γ ′1 (7jva)

µ′′2 , Γ
′′
2 ≈β′,σ µ′2, Γ ′2 (7jvb)

Observing that r′′1 6∈ dom(µ13) and r′′2 6∈ dom(µ23) and that there is no property either in µ13 or in µ23

pointing to r′′1 or r′′2 (respectively), we conclude that:

µ13, Γ13 ≈id,σ µ
′′
1 , Γ

′′
1 (7jvc)

µ23, Γ23 ≈id,σ µ
′′
2 , Γ

′′
2 (7jvd)

Applying the transitivity of ≈id,σ (Lemma 15) to Equations 7jva, 7jvb, 7jvc, and 7jvd, we conlcude that:

µ13, Γ13 ≈id,σ µ
′
1, Γ

′
1 (7jve)

µ23, Γ23 ≈id,σ µ
′
2, Γ

′
2 (7jvf)

Applying Lemma 20 to Equations 7jq, 7jve, and 7jvf, the first claim of the lemma follows. As for the second
claim, applying Lemma 21 to Equations 7jd and 7jh, we conclude that σ′1 ≤ σ1 and σ′2 ≤ σ2, entailing that
σ1, σ2 6≤ σ and thus verifying the claim.

[Constructor Call] If the last rule to be applied in the derivation of 7c is [Constructor Call], then
by hypothesis there are two expressions e1 and e2 such that s = new e1(e2). By inspection of [Constructor
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Call], it follows that there are six transitions:

r1, pc ` 〈µ1, e1, Γ1〉 ⇓IF 〈µ11, r11, Γ11, σ11〉 (7wa)

r1, pc ` 〈µ11, e2, Γ11〉 ⇓IF 〈µ12, v12, Γ12, σ12〉 (7wb)

r′′1 , pc
′
1 t σ11 ` 〈µ′′1 , s1, Γ ′′1 〉 ⇓IF 〈µ′1, v1, Γ ′1, σ1〉 (7wc)

r2, pc ` 〈µ2, e1, Γ2〉 ⇓IF 〈µ21, r21, Γ21, σ21〉 (7wd)

r2, pc ` 〈µ21, e2, Γ21〉 ⇓IF 〈µ22, v22, Γ22, σ22〉 (7we)

r′′2 , pc
′
2 t σ21 ` 〈µ′′2 , s2, Γ ′′2 〉 ⇓IF 〈µ′2, v2, Γ ′2, σ2〉 (7wf)

where: and r1o 6∈ dom(µ1), r′′1 6∈ dom(µ′)

r′1 = µ12(r11,@fscope) λx1.s1 = µ12(r11,@code) r1p = µ12(r11, prototype) (7wg)

pc′1 = Γ12(r11,@fscope) σ1
p = Γ12(r1p, prototype) (7wh)

o1 = [@proto 7→ r1p] o1s = [x1 7→ v1,@scope 7→ r′1,@this 7→ r1o] (7wi)

µ′′1 = µ12

[
r1o 7→ o1, r

′′
1 7→ o1s

]
(7wj)

Γ ′′1 = Γ12


(r1o,@proto) 7→ σ11 t σ1

p, r
1
o 7→ σ11,

(r′′1 , x1) 7→ σ12, (r
′′
1 ,@scope) 7→ σ11 t pc′1,

(r′′1 ,@this) 7→ σ11, r
′′
1 7→ σ11 t pc′1

 (7wk)

r′2 = µ22(r21,@fscope) λx2.s2 = µ22(r21,@code) r2p = µ22(r21, prototype) (7wl)

pc′2 = Γ22(r21,@fscope) σ2
p = Γ22(r2p, prototype) (7wm)

o2 = [@proto 7→ r2p] o2s = [x2 7→ v2,@scope 7→ r′2,@this 7→ r2o] (7wn)

µ′′2 = µ22

[
r2o 7→ o2, r

′′
2 7→ o2s

]
(7wo)

Γ ′′2 = Γ22


(r2o,@proto) 7→ σ21 t σ2

p, r
2
o 7→ σ21,

(r′′2 , x2) 7→ σ22, (r
′′
2 ,@scope) 7→ σ21 t pc′2,

(r′′2 ,@this) 7→ σ21, r
′′
2 7→ σ21 t pc′2

 (7wp)

and r′′1 , r
1
o 6∈ dom(µ12), r′′2 , r

2
o 6∈ dom(µ22).

From Hypotheses 7a and 7b and Equations 7wa, 7wb, 7wd, and 7we, it follows, applying the induction
hypothesis (two times consecutively), that there is a partial injective function β′ on Ref that extends β such
that:

µ12, Γ12 ≈β′,σ µ22, Γ22 (7wq)(
σ11 ≤ σ ∨ σ21 ≤ σ

)
⇒
(
r11 ∼β′ r21 ∧ σ11 = σ21

)
(7wr)(

σ12 ≤ σ ∨ σ22 ≤ σ
)
⇒
(
v12 = v22 ∧ σ12 = σ22

)
(7ws)

There are two cases to consider: σ11 t pc′1 ≤ σ and σ11 t pc′1 6≤ σ.
If σ11 t pc′1 ≤ σ, it follows from Equations 7jr and 7js that: r11 ∼β′ r21, λx1.s1 = λx2.s2, σ11 = σ21,

and pc′1 = pc′2. From r11 ∼β′ r21 and Equation 7wq, it follows that:(
σ1
p ≤ σ ∨ σ2

p ≤ σ
)
⇒
(
r1p ∼β′ r2p ∧ σ1

p = σ2
p

)
(7wta)

It therefore follows that:
o1|

r1o,Γ
′
1

σ ∼β′ o2|
r2o,Γ

′
2

σ o1s|
r′′1 ,Γ

′
1

σ ∼β′ o2s|
r′′2 ,Γ

′
2

σ (7wtb)

Applying Lemma 19 to Equations 7wi, 7wj, 7wk, 7wn, 7wo, and 7wp, 7wq, and 7wtb, we conclude that:

µ′′1 , Γ
′′
1 ≈β′′,σ µ′′2 , Γ ′′2 (7wtc)

where β′ ≤ β′′, β′′(r1o) = r2o and β′′(r′′1 ) = r′′2 .
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Observing that β′′(r′′1 ) = r′′2 and pc′1 t σ11 = pc′2 t σ21 ≤ σ, we apply the induction Hypothesis to
Equations 7wc, 7wf, and 7wtc, the result follows.

If σ11tpc′1 6≤ σ, it follows (by Equations 7wq and 7wr) that σ21tpc′2 6≤ σ. Hence, we can apply Lemma 4
to Equations 7wc and 7wf and conclude that:

µ′′1 , Γ
′′
1 ≈id,σ µ

′
1, Γ

′
1 (7wua)

µ′′2 , Γ
′′
2 ≈id,σ µ

′
2, Γ

′
2 (7wub)

From Equations 7wi, 7wj, 7wk, 7wn, 7wo, and 7wp, we conclude:

µ12, Γ12 ≈id,σ µ
′′
1 , Γ

′′
1 (7wuc)

µ22, Γ22 ≈id,σ µ
′′
2 , Γ

′′
2 (7wud)

Applying the transivity of ≈id,σ (Lemma 15) to Equations 7wua, 7wub, 7wuc, and 7wud, it follows:

µ12, Γ12 ≈id,σ µ
′
1, Γ

′
1 (7wue)

µ22, Γ22 ≈id,σ µ
′
2, Γ

′
2 (7wuf)

Finally, applying Lemma 20 to Equations 7wue, 7wuf and 7wq, we conclude that: µ′1, Γ
′
2 ≈β′′,σ µ′2, Γ ′2 for

some β′′ that extends β.
As for the second claim of the lemma, applying Lemma 21, we conclude that σ11 t pc′1 ≤ σ1 and

σ21 t pc′2 ≤ σ2. Thus, σ1, σ2 6≤ σ which proves the claim.

[Variable Upgrade] If the last rule to be applied in the derivation of 7c is [Variable Upgrade], then
by hypothesis there is a variable x and a level σ′ such that s = upgVar(x, σ′). By inspection of [Variable
Upgrade], we conclude that:

r1, pc ` 〈µ1, upgVar(x, σ′), Γ1〉 ⇓IF 〈µ1, undef, Γ1

[
(r1x, x) 7→ Γ1(r1x, x) t σ′

]
, pc〉 (7va)

r2, pc ` 〈µ2, upgVar(x, σ′), Γ2〉 ⇓IF 〈µ2, undef, Γ2

[
(r2x, x) 7→ Γ2(r2x, x) t σ′

]
, pc〉 (7vb)

where 〈µ1, r1, x〉 RScope r1x, 〈µ2, r2, x〉 RScope r2x, and r′1, r
′
2 6= null. Hence, applying Lemma 5 to Hypothe-

ses 7a and 7b and recalling that we are assuming that pc ≤ σ, it follows that: r1x ∼β r2x. From Hypothesis 7a
and the fact that r1x ∼β r2x, we conclude that:(

Γ1(r1x, x) = Γ2(r2x, x) ≤ σ ∧ µ1(r1x, x) = µ2(r2x, x)
)
∨ Γ1(r1x, x), Γ2(r2x, x) 6≤ σ (7vc)

which implies that: (
σ′1, σ

′
2 ≤ σ ∧ µ1(r1x, x) = µ2(r2x, x)

)
∨ σ′1, σ′2 6≤ σ (7vd)

The first claim of the Lemma follows from Equation 7vd and Hypothesis 7a. By remarking that σ1 = σ2 = pc
and v1 = v2 = undef , the second claim follows.

[Property Upgrade] If the last rule to be applied in the derivation of 7c is [Property Upgrade], then
by hypothesis there is a variable o, a string p and a level σ′ such that s = upgProp(o, p, σ′). By inspection
of [Property Upgrade], we conclude that:

r1, pc ` 〈µ1, upgProp(o, p, σ′), Γ1〉 ⇓IF 〈µ1, undef, Γ1

[
(r1p, p) 7→ Γ (r1p, p) t σ′

]
, pc〉 (7wa)

r2, pc ` 〈µ2, upgProp(o, p, σ′), Γ2〉 ⇓IF 〈µ2, undef, Γ2

[
(r2p, p) 7→ Γ (r2p, p) t σ′

]
, pc〉 (7wb)

where 〈µ1, r1, o〉 RScope r1o, 〈µ1, µ1(r1o, o), p, Γ1〉 RProto 〈r1p, σ′′1 〉, 〈µ2, r2, o〉 RScope r2o, and 〈µ2, µ2(r2o, o), p, Γ2〉 RProto 〈r2p, σ′′2 〉.
Since 〈µ1, r1, o〉 RScope r1o and 〈µ2, µ2(r2o, o), p, Γ2〉 RProto 〈r2p, σ′′2 〉, we can apply Lemma 5 to Hypothe-

ses 7a and 7b and (by noting that pc ≤ σ) conclude that: r1o ∼β r2o. Given the fact that r1o ∼β r2o,
there are two cases to consider, either: Γ1(r1o, o), Γ2(r2o, o) ≤ σ or Γ1(r1o), Γ2(r2o) 6≤ σ. If it is the case that
Γ1(r1o, o), Γ2(r2o, o) 6≤ σ, the definition of ⇓IF guarantees that Γ1(r1p, p), Γ2(r2p, p) 6≤ σ. Upgrading the levels
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of high properties preserves the low equality, therefore the result follows. It remains to prove that the result
holds for the case in which Γ1(r1o, o), Γ2(r2o, o) ≤ σ. For this case, it follows from the fact that r1o ∼β r2o that
µ1(r1o, o) ∼β µ2(r2o, o).

Since r1o ∼β r2o, 〈µ1, µ1(r1o, o), p, Γ1〉 RProto 〈r1p, σ′′1 〉, 〈µ2, µ2(r2o, o), p, Γ2〉 RProto 〈r2p, σ′′2 〉, we can apply
Lemma 6 to the Hypothesis 7a and conclude that:

(σ′′1 ≤ σ ∨ σ′′2 ≤ σ)⇒ (r1p ∼β r2p ∧ σ′′1 , σ′′2 = σ) (7wc)

Hence, there are two cases to consider: either σ′′1 , σ
′′
2 ≤ σ or σ′′1 , σ

′′
2 6≤ σ.

If σ′′1 , σ
′′
2 ≤ σ, it follows that r1p ∼β r2p and σ′′1 = σ′′2 . Furthermore, it follows that property p is labeled with

the same level in both memories (Γ1(r1p, p) = Γ2(r2p, p)) and that its corresponding values in the two memories
are β-related (µ1(r1p, p) ∼β µ2(r2p)). Since property p is updated to the same level in both executions, the
low equality is preserved independently of the visibility of the new level of p.

If σ′′1 , σ
′′
2 6≤ σ, the definition of ⇓IF guarantees that Γ1(r1p, p), Γ2(r2p, p) 6≤ σ. Upgrading the levels of high

properties preserves the low equality, therefore the result follows.

[If-1] If the last rule to be applied in the derivation of 7c is [If-1], then by hypothesis there is an expression
e, and two statements s1 and s2 such that s = if(e){s1}else{s2}. By inspection of [If-1], we conclude that
there are three transitions:

r1, pc ` 〈µ1, e, Γ1〉 ⇓IF 〈µ10, true, Γ10, σ10〉 (7xa)

r1, pc t σ10 ` 〈µ10, s1, Γ10〉 ⇓IF 〈µ′1, v1, Γ ′1, σ1〉 (7xb)

r2, pc ` 〈µ2, e, Γ2〉 ⇓IF 〈µ20, v20, Γ20, σ20〉 (7xc)

Applying the induction hypothesis to Hypotheses 7a and 7b and Equations 7xa and 7xc, we conclude that:

µ10, Γ10 ≈β′,σ µ20, Γ20 (7xd)(
σ10 ≤ σ ∨ σ20 ≤ σ

)
⇒
(
true = v20 ∧ σ10 = σ20

)
(7xe)

There are two cases to consider: σ10, σ20 ≤ σ and σ10, σ20 6≤ σ.
If σ10, σ20 ≤ σ, it follows that v20 = true and thus we conclude that the Rule [If-1]was applied in the

derivation of Hypothesis 7d. Hence:

r2, pc t σ20 ` 〈µ20, s1, Γ20〉 ⇓IF 〈µ′2, v2, Γ ′2, σ2〉 (7xf)

Applying the induction hypothesis to Hypothesis 7b and Equations 7xb, 7xd, and 7xf, the result follows.
If σ10, σ20 6≤ σ, the rule used in the derivation of Hypothesis 7d can be either [If-1]or [If-2]. Hence, we

have to consider two cases. Since they are similar, we will just consider one of them. Suppose that v20 = false,
then:

r2, pc t σ20 ` 〈µ20, s2, Γ20〉 ⇓IF 〈µ′2, v2, Γ ′2, σ2〉 (7xg)

Since σ10, σ20 6≤ σ, we can apply Lemma 4 to Equations 7xc and 7xg, to conclude that:

µ10, Γ10 ≈id,σ µ
′
1, Γ

′
1 (7xh)

µ20, Γ20 ≈id,σ µ
′
2, Γ

′
2 (7xi)

Applying Lemma 20 to Equations 7xd, 7xh and 7xi, the result follows.

Theorem 1 (Security). For any proper β, program s, memory µ0 well labeled by Γ , reference r, and level
pc such that r, pc ` 〈µ0, s, Γ 〉 ⇓IF 〈µ′0, v, Γ ′, σ〉, then for all memories µ1 either NI(s, Γ, µ0, µ1, β, pc), or
β(r), pc ` 〈µ1, s, β(Γ )〉 6⇓IF .

It is well-known that noninterference NI(s, Γ ) is not a safety property [31] since it cannot be stated as a
trace property. Monitors cannot enforce noninterference [22] but just over-approximations of the property [8].
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This means that neither can we prove NI(s, Γ ) for one monitored execution, nor can we prove that for all
equivalent memory µ1, NI(s, Γ, µ0, µ1, β) holds (recall that our noninterference notion does not depend on
the monitor). Instead, our security theorem claims that a terminating program s in the monitor either holds
the noninterference property for a given memory µ1 or it ensures that s diverges with memory µ1 when
monitored. Proof is by structural induction and can be found in the full version of the paper [1].

Secure program rejected by the monitor. The following program is secure according to the noninterference
property, but is rejected by the monitor with initial memory and labeling defined in Section 3, (2):

if(h){o[”p”] = 0}else{o[”p”] = 0}

Discussion on Type System Extraction. Using the same constraints given by the monitor, we can extract
a type system for a JavaScript subset limited to static variable references and statically determined scope.
Hence, the labeling can be computed by an algorithm that statically determines a function Γ , Γ : (Str 7→
Str)∪Ref 7→ L for each program point in the program (for loops, the algorithm must compute a fix point of
labeling functions obtained in several interactions). We assume that programs are desugared in such a way
that property updates can only be written as x.y = e. Any command can be desugared to this form using
additional local variables. Using the set of Γ functions, the typing rule for property update and creation has
the following form:

Property Update/Creation

pc, Γ ` x : σ1 pc, Γ ` y : σ2 σ1 t σ2 ≤ Γ (x, y)

pc, Γ ` x.y = e

6 Information Flow Instrumentation Compiler

Formal specification. Compilation is done by a function, CP〈.〉, from JavaScript programs to JavaScript
programs. The compiler inlines the constraints defined by the monitor of Section 5. The compilation function
CP〈.〉 is defined using a compilation function, C〈.〉, on statements and a compilation function, Cl〈.〉, on
simple expressions (identifier, primitive values, and the this keyword). Their formal definitions are given in
Figures 6, 6, and 6. The compilation function for statements parses JavaScript statements and the upgrade
statements presented in Figure 1. Every object has a property lab that maps its remaining properties to
the corresponding security levels (this variable emulates Γ when fixed to the object’s reference). Variable
pc holds the security level of the current context. The security lattice is a parameter of the compiler stored

at runtime in variable lat; it implements a property bot for the bottom of the lattice and a method lub for
calculating the least upper bound of two security levels. Function setUpLab() sets up the labeling property
in the current scope object. Function GetPropLev(., .) looks up for the property level in the labeling of the
object specified as first parameter. Function GetStructLev(.) returns the structure level of the object given
as parameter. Function GetV arLev(., .) returns the security level of the variable given as first parameter in
the labeling given as second parameter. Function SetPropLev(., ., ., ., .) dynamically modifies the labeling
lab adding a property to the labeling if the property does not exist or modifying it, if it does. Finally,

function Enforce(., .,) receives two security levels l and l′ as parameters; if l ≤ l′ then the statement is
equivalent to undef , otherwise it does not terminate. This is done to ensure that the execution of a compiled
program is similar to the monitored execution of the original program. In practice, however, the compiler
throws an exception. In the specification of the compiler we only consider normalized programs as established
in Definition 8.
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Definition 8 (Syntax of normalized programs).

s ::= s1; s2 sequence of statements
| if i(ê){s1}else{s2} conditional
| whilei(ê){s} while loop

ê ::= x identifier
| v primitive values
| this this keyword

ē ::= x[ê] member selector
| (ê1 op2 ê2) binary operations
| ê very simple expression

¯̄e ::= x(ê)i function call
| x[ê1](ê2)i method call
| new x(ê)i constructor call
| functioni(x){s} function literal

e ::= x[ê1] = ê2 property assignment
| x = ē variable assignment 1
| x = ¯̄e variable assignment 2

variable lookup

Cl〈x〉 = lat.lub( pc, GetV arLev(”x”, lab))
value

Cl〈v〉 = pc

this

Cl〈this〉 = lat.lub( pc, GetV arLev(”this”, lab))
property lookup

Cl〈x[ê]〉 = lat.lub( pc, Cl〈x〉, Cl〈ê〉 GetPropLev(x, ê))

binary operation

Cl〈ê1 op2 ê2〉 = lat.lub(Cl〈ê1〉, Cl〈ê2〉)

Fig. 5. A compiler for the level of simple expressions

The theorem of correctness says that if a program terminates starting from a given configuration (original
configuration) with the monitor semantics, then the compiled counterpart also terminates in a “similar”
configuration. In order to state the theorem we need to formally define similarity between memories. Memory
similarity requires that for all original references, labelings are the same and values are similar (using the
β-equality defined in Section 4).

Definition 9 (Memory Similarity). A memory µ labeled by Γ is similar to a memory µ′ w.r.t. β, written
µ, Γ Rβ µ′, iff dom(β) = dom(µ) and for all r ∈ dom(β) where o = µ(r) and o′ = µ′(β(r)) the following
holds:

dom(o) = dom(µ′(β(r))(lab)) ⊆ dom(o′)

∀p ∈ dom(o) o(p) ∼β o′(p)
∀p ∈ dom(o) Γ (r, p) = µ′(β(r))(lab)(p)

In the formal specification and theorems we assume that variables and functions introduced by the
compiler are fresh and cannot overlap with variables or functions in untrusted code. However, in the imple-
mentation we use randomization to satisfy this assumption (see Section 7).

Theorem 2 (Correctness). Given a reference mapping β, a labeled configuration 〈µ, s, Γ 〉, a configuration
〈µ′, CP〈s〉〉, two scope references r and β(r) in µ and µ′ resp., and a security level pc = µ′(β(r))( pc), such
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function literal

C〈s〉 = s′ s′′ =

∣∣∣∣∣∣∣∣
var lab;
pc = lat.lub( pc, arguments.callee. pc);
lab = InitLab(arguments.callee. lab, ”x”, argLev, vars(s), pc);
s′

C〈functioni(x){s}〉 =

∣∣∣∣∣∣∣∣
zi = function(x, argLev, pc){s′′};
zi. lab = lab;
zi. pc = pc;
wi.lev = pc

function call - 1

C〈x(ê)i〉 =

∣∣∣∣∣∣
aux = x(ê, Cl〈ê〉, Cl〈x〉)
zi = aux.val;
wi = aux.lev;

method call - 1

C〈x[ê1](ê2)i〉 =

∣∣∣∣∣∣∣∣
lev = lat.lub(Cl〈x〉, Cl〈ê1〉, GetPropLev(x, ê2));
aux = x[ê1](ê2, Cl〈ê2〉, lev)
zi = aux.val;
wi = aux.lev;

constructor call - 1

C〈new x(ê)i〉 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

wi = lat.lub(Cl〈x〉, x. pc);
zi = InitObject(Object.create(x.prototype), Cl〈x〉);
aux = x.call(zi, ê, Cl〈ê〉, Cl〈x〉);
if(aux){

zi = aux.val;
wi = aux.lev

}

Fig. 6. Compiling indexed expressions
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property update/creation

C〈x[ê1] = ê2〉 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

if(ê1 in x) {
Enforce( lat.lub(Cl〈x〉, Cl〈ê1〉, pc), GetPropLev(x, ê1))

} else {
Enforce( lat.lub(Cl〈x〉, Cl〈ê1〉, pc), GetStructLev(x))

}
SetPropLev(x, ê1, lat.lub(Cl〈x〉, Cl〈ê1〉, Cl〈ê2〉, pc));
x[ê1] = ê2

simple expression assignment

C〈x = ē〉 =

∣∣∣∣∣∣
Enforce( pc, Cl〈x〉);
SetV arLev(”x”, lat.lub(Cl〈ē〉, pc), lab);
x = ē

call expression assignment
C〈¯̄e〉 = s i = index(¯̄e)

C〈x = ¯̄e〉 =

∣∣∣∣∣∣∣∣
s;
Enforce( pc, Cl〈x〉);
SetV arLev(”x”, wi, lab);
x = zi

sequence

C〈s1〉 = s′1 C〈s2〉 = s′2
C〈s1; s2〉 = s′1; s′2

if
C〈s1〉 = s′1 C〈s2〉 = s′2

C〈if i(ê){s1}else{s2}〉 =

∣∣∣∣∣∣∣∣
zi = pc;
pc = lat.lub( pc, Cl〈ê〉);

if(ê){s′1}else{s′2}
pc = zi

while
C〈s〉 = s′

C〈whilei(ê){s}〉 =

∣∣∣∣∣∣∣∣
zi = pc;
pc = lat.lub( pc, Cl〈ê〉);

while(ê){s′}
pc = zi

upgrade variable

C〈upgVar(x, l)〉 = SetV arLev(”x”, lat.lub(Cl〈x〉, l), lab)

upgrade property

C〈upgProp(x, v, l)〉 = SetPropLev(x, v, lat.lub( GetPropLev(x, v), l, Cl〈x〉))

upgrade structure

C〈upgStruct(x, l)〉 = SetStructLev(x, lat.lub( GetStructLev(x), l, Cl〈x〉))

program
C〈s〉 = s′

CP〈s〉 =

∣∣∣∣∣∣∣∣
var lab, pc;
pc = lat.bot;
lab = setUpLab(vars(s), lat.bot);
s′

Fig. 7. Compiler Specification
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that µ, Γ Rβ µ′; then:

∃〈µf , vf , Γf , σ〉 r, pc ` 〈µ, s, Γ 〉 ⇓IF 〈µf , vf , Γf , σ〉
iff

∃〈µ′f , v′f 〉 β(r) ` 〈µ′, CP〈s〉)〉 ⇓JS 〈µ′f , v′f 〉

If both configurations converge: µf , Γf Rβ′ µ′f with vf ∼β′ v′f for some β ≤ β′.

Using the correctness theorem and Lemma 2, we prove the following lemma that relates monitored with
unmonitored (but labeled) executions of compiled programs. In the following, we use the term proper compiler
labeling for a labeling Γ that assigns the same level to all the compiler variables.

Lemma 8. For any reference r, security level pc, and initial configuration 〈µ, s, Γ 〉, such that s = CP〈s′〉
for some program s′, then r, pc ` 〈µ, s, Γ 〉 ⇓ 〈µ′, v, Γ ′, σ〉 iff r, pc ` 〈µ, s, Γ 〉 ⇓IF 〈µ′, v, Γ ′, σ〉.

We assume that Γ0 is a labeling mapping the global object to the bottom of the security lattice considered.
The following theorem shows that compiled code is secure w.r.t. the noninterference property given in
Section 4.

Theorem 3 (Security). For any program s, NI(CP〈s〉, Γ0) holds.

Proof. The result follows immediately by Theorem 2, Lemma 8, and Theorem 1.

Modular extensions for external interfaces Although JavaScript can be used as a general purpose language,
most JavaScript programs are intended to be run in a browser in the context of a web page. Such programs
often interact with the web page on which they are included through the DOM API. We provide a way to
extend the enforcement functions used by our compiler in order to deal with the DOM API. We use the
same approach to deal with other external APIs, namely the XMLHttpRequest API. For this reason, the
term external function is used for all functions whose code is not given by the programmer and hence is not
available for instrumentation. Managing external APIs consists in specifying for each one of them, an IFlow
signature, that describes:

Its effect on the security levels of its arguments (updtArgsLevels), of the object on which it was called
(updtObjLevel), and return value (computeRetLevel);

The circumstances in which the API can be successfully invoked (enforce);
A preprocessing function for its arguments (processArg) and for its return value (computeRetValue).

A call to an external API of the kind o.m(arg) is compiled as shown in Listing 6 and denoted as CP〈o.m(arg), ifs〉
where ifs is its IFlow signature.

1 enforce(arg_level , ctxt_level);

2 val_i = o.m(processArg(arg));

3 val_i = computeRetValue(val_i);

4 lev_i = computeRetLevel(arg_level , ctxt_level , val_i);

5 updtArgsLevels(arg , args_level , ctxt_level);

6 updtObjLevel(o, args_level , ctxt_level);

Listing 1.4. Compilation of call to external API

In order to preserve the security results of Theorem 3, and due to the compositionality of our enforcement
technique, the following lemma must be proved for each external API handled by the compiler. We assume
in the lemma that JavaScript semantics rules ⇓JS are extended in order to handle external APIs. (See [24]
for a JavaScript extension to HTML tags including the iframe tag and the Postmessage API, see [16] for a
formal semantics of the DOM API).

Lemma 9. Let o.m(e) be an invocation to an external API and ifs its IFlow signature, then NI(CP〈o.m(e), ips〉, Γ0)
holds.
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IFlow Signatures. In order to show the effectiveness of our modular approach to handle external functions,
we provide IFlow signatures for the following external APIs: appendChild, createTextNode, createElement,
eval, setTimeout.

We give examples of IFlow signatures in order to illustrate the simplicity and scalability of the proposed
mechanism. In the case of the eval external function a possible IFlow signature consists in using the pro-
cessArg function to compile the argument that is passed to it at runtime. This is equivalent to on-the-fly
inlining as proposed by Magazinius [27] for an imperative language extended with an eval statement.

1 function processArg(str) { compile str }

Listing 1.5. IFlow signature for the eval function

In the appendChild external method, the default IFlow signature prevents the execution of the method
when trying to append an untrusted node to a trusted node. This is achieved through the enforce function:

1 function enforce(arg_level , ctxt_level) {

2 if(_lat.leq(ctxt_level , arg_level)) {

3 throw new Error(’IFlow Error’);

4 } else {

5 return true; }}

Listing 1.6. IFlow signature for the appendChild function

For the XMLHttpRequest send method, the default IFlow policy prevents the sending of high-level informa-
tion to low-level servers. The enforce function to achieve this goal is similar to the one for the appendChild
method.

Examples that make use of external interfaces. In this example, we consider a standard lattice for in-
tegrity [21] such that H ≤ L, where H represents high integrity and L represents low integrity (untrusted).
The program below creates a text node with untrusted content and tries to append it to a high integrity
div node. According to the IFlow policy of Listing 6, this program is illegal. The DOM is regarded as an
information sink, for this reason the properties of DOM objects cannot be automatically upgraded.

1 var low_integrity_string , text_node , div;

2 ugpVar(low_integrity_string , ’L’);

3 low_integrity_string = readUntrustedSource ();

4 text_node = document.createTextNode(low_integrity_string);

5 div = document.createElement(’div’);

6 div.appendChild(text_node);

Listing 1.7. An example concerning integrity of the DOM

The program below schedules the execution of a piece of code that updates the value of a low confidentiality
variable, depending on the value of a high variable. This constitutes a sensitive upgrade. The IFlow signature
for setTimeout must do more than compile the code that is to be executed, it must wrap it in a function
literal and set the default level of its program counter to the current pc level. By doing this, when this code
is finally executed, the pc level will be high and the assignment will be prevented.

1 var x = 0;

2 if (h) {

3 setTimeout(’x = 4’, 2000) ;}

Listing 1.8. An example using setTimeout

The program below makes use of the XMLHttpRequest object to send a confidential cookie to an untrusted
server through a POST http message. In the IFlow signature the updtObjLevel function of the open external
method downgrades all the properties of the xhr object to L. The property cookie of document is by default
labeled with H in the confidentiality lattice. Then, the enforce function prevents the illegal flow.
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1 var xhr;

2 xhr = new XMLHttpRequest ();

3 xhr.open("POST", untrusted_url);

4 xhr.send(document.cookie);

Listing 1.9. An example of cookie stealing

7 Implementation and Dealing with Untrusted Code

The compiler prototype is implemented in JavaScript and is available online at [1] together with a broad
set of examples that includes those of the paper. We discuss here implementation details regarding implicit
type coercions and randomization.

Untrusted code. The correctness of the instrumentation relies on the assumption that the internal variables
and object properties used by the compiler do not intercept with those of the program to be compiled.
Naturally, a malicious program may try to surpass the compiler by rewriting some of its internal variables.
For example an attacker program lat = permissive lattice redefines lat, which is assumed to be bound to
the object representing the security lattice. Therefore, the attacker code is allowed to trigger information
flows otherwise forbidden. In order to prevent this kind of malicious behaviour, variable names used by the
compiler are randomly generated. In order to tamper with the compiler internal state, the attacker code
must be able to guess the randomly generated names. The names of internal local variables (like pc) are
randomly generated, whereas those of global variables (like lat) are assumed to be properties of a single
object that is accessed through a global variable whose name is also randomly generated. In this way, the
runtime libraries that are assumed to be available during the execution of compiled code do not need to be
dynamically computed. Type coercions. Malicious code can exploit implicit type coercions to compromise
the security of compiled code, as one can see in the example below.

1 o1.toString = function () { return ’p’; };

2 o2.p = secret;

3 public = o2[o1];

Listing 1.10. Malicious Code Example - Exploiting Implicit Type Coercions

Our instrumentation disallows any kind of implicit type coercion. Since relying in implicit type coercions is
considered a bad programming practice that is error-prone and hinders maintainability, we do not find this
restriction a serious shortcoming of the compiler. Native functions. The compiler correctness does not rely
on any kind of function that is liable to malicious code, namely native functions.

1 o.p = 0;

2 upgStruct(o, H);

3 o.hasOwnProperty = function () { return false}

4 if(h) {

5 o.p = 1;}

Listing 1.11. Malicious Code Example - Tampering with native functions

The example above is illegal, because updating the value of a low property in a high context constitutes
a sensitive upgrade. Creating a new property in a high context is, however, allowed. Hence, the compiler
must test if the object defines the property that is being set in order to decide which constraint to apply.
To this end, one could use the object hasOwnProperty method directly, which would make the correctness
of the compiler dependent on its semantics. This approach would entail a security violation, since malicious
code can redefine the hasOwnProperty method, thus modifying its original semantics. Instead of using the
object’s hasOwnProperty method, the compiler uses a different one that is provided in the runtimes and
thus accessed through a global variable whose name is randomly generated:

1 _runtime.hasOwnProperty = function(o, p) {

2 var o = {};
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3 return o.hasOwnProperty.call(o, p); }

Listing 1.12. Malicious Code Example - Internal hasOwnProperty method

8 Conclusion

We have presented a sound information flow monitor based on labeling of properties of objects instead of
values of properties. The inlining of such a monitor generates a linear number of additional objects w.r.t.
original code for compiled code (instrumented code). Having implemented a prototype [1] of the instrumen-
tation, we show its effectiveness in a number of examples including examples that use external libraries such
as the DOM API. The correctness and security of the instrumentation relies on the assumption that property
names used by the compiler do not overlap with those of the original code. In the implementation, we remove
this assumption by randomizing property names. It would be interesting to define a stronger noninterference
property for active attackers [15] and use the techniques of [4] for the randomizing compiler to prove a
stronger result w.r.t. untrusted code in mashups [23, 24]. The type system discussed in Section 5 can be used
as an optimization within the compiler to type the portions of code that can be statically analyzed. This is
left as future work.
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A Information Flow Monitor Semantics

Figures 8, 9, and 10 give the rules for ⇓IF .

Property Update
rs, pc ` 〈µ, e1, Γ 〉 ⇓IF 〈µ1, r1, Γ1, σ1〉 rs, pc ` 〈µ1, e2, Γ1〉 ⇓IF 〈µ2,m2, Γ2, σ2〉
rs, pc ` 〈µ2, e3, Γ2〉 ⇓IF 〈µ3, v3, Γ3, σ3〉 m2 ∈ µ3(r1) σ1 t σ2 ≤ Γ3(r1,m2)

Γ4
.
= Γ3 [(r1,m2) 7→ σ1 t σ2 t σ3] µ4

.
= µ3 [(r1,m2) 7→ v3]

rs, pc ` 〈µ, e1[e2] = e3, Γ 〉 ⇓IF 〈µ4, v3, Γ4, σ3〉

Property Creation
rs, pc ` 〈µ, e1, Γ 〉 ⇓IF 〈µ1, r1, Γ1, σ1〉 rs, pc ` 〈µ1, e2, Γ1〉 ⇓IF 〈µ2,m2, Γ2, σ2〉
rs, pc ` 〈µ2, e3, Γ2〉 ⇓IF 〈µ3, v3, Γ3, σ3〉 m2 6∈ µ3(r1) µ4

.
= µ3 [(r1,m2) 7→ v3]

σ1 t σ2 ≤ Γ3(r1) Γ4
.
= Γ3 [(r1,m2) 7→ σ1 t σ2 t σ3, r1 7→ Γ3(r1) t σ1 t σ2]

rs, pc ` 〈µ, e1[e2] = e3, Γ 〉 ⇓IF 〈µ4, v3, Γ4, σ3〉

Property Lookup
rs, pc ` 〈µ, e1, Γ 〉 ⇓IF 〈µ1, r1, Γ1, σ1〉 rs, pc ` 〈µ1, e2, Γ1〉 ⇓IF 〈µ2,m2, Γ2, σ2〉

〈µ2, r1,m2, Γ2〉 RProto 〈r′, σ′〉
rs, pc ` 〈µ, e1[e2], Γ 〉 ⇓IF 〈µ2, µ2(r′,m2), Γ2, σ1 t σ2 t σ′〉

Variable
〈µ, rs, x〉 RScope rx rx 6= null

rs, pc ` 〈µ, x, Γ 〉 ⇓IF 〈µ, µ(rx, x), Γ, Γ (rx, x) t pc〉

Assignment - 1
rs, pc ` 〈µ, e, Γ 〉 ⇓IF 〈µ1, v1, Γ1, σ1〉 〈µ, rs, x〉 RScope rx rx 6= null
pc ≤ Γ1(rx, x) Γ2

.
= Γ1 [(rx, x) 7→ σ1] µ2

.
= µ1 [(rx, x) 7→ v1]

rs, pc ` 〈µ, x = e, Γ 〉 ⇓IF 〈µ2, v1, Γ2, σ1〉

Assignment - 2
rs, pc ` 〈µ, e, Γ 〉 ⇓IF 〈µ1, v1, Γ1, σ1〉 〈µ, rs, x〉 RScope null pc ≤ Γ1(#global)

Γ2
.
= Γ1 [(#global, x) 7→ σ1] µ2

.
= µ1 [(#global, x) 7→ v1]

rs, pc ` 〈µ, x = e, Γ 〉 ⇓IF 〈µ2, v1, Γ2, σ1〉

Function Literal
of

.
= [@fscope 7→ rs,@code 7→ λx.s, prototype 7→ #objProt] rf 6∈ dom(µ) µ′

.
= µ [rf 7→ of ]

Γ ′
.
= Γ [(rf ,@fscope) 7→ pc, (rf ,@code) 7→ pc, (rf , prototype) 7→ pc]

rs, pc ` 〈µ, function(x){s}, Γ 〉 ⇓IF 〈µ′, rf , Γ ′, pc〉

Fig. 8. Monitored Semantics of JavaScript Expressions - 1

B Auxiliary Lemmas for Theorem 1

Properties of the β-Equatility. In the following, Obj|R corresponds to the set of objects that only
use references in R (where R ⊆ Ref). Denoting by Pse, the set Obj ∪ Val, we use Pse|R for Obj|R ∪ Val.
Lemmas 25, 11, and 27 establish that for every set of references R ⊆ Ref , the β-Equatility is an equivalence
relation on Pse|R.
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Function Call
rs, pc ` 〈µ, e0, Γ 〉 ⇓IF 〈µ0, r0, Γ0, σ0〉 rs, pc ` 〈µ0, e1, Γ0〉 ⇓IF 〈µ1, v1, Γ1, σ1〉

pc′
.
= Γ1(r0,@fscope) r′s

.
= µ1(r0,@fscope) λx.s

.
= µ1(r0,@code)

r′′s 6∈ dom(µ1) Γ ′
.
= Γ1 [(r′′s , x) 7→ σ1, (r

′′
s ,@scope) 7→ pc′ t σ0, r′′s 7→ pc′ t σ0]

os
.
= [x 7→ v1,@scope 7→ r′s] µ′

.
= µ1 [r′′s 7→ os] r′′s , pc

′ t σ0 ` 〈µ′, s, Γ ′〉 ⇓IF 〈µ′′, v, Γ ′′, σ′〉
rs, pc ` 〈µ, e0(e1), Γ 〉 ⇓IF 〈µ′′, v, Γ ′′, σ′〉

Method Call
rs, pc ` 〈µ, e0, Γ 〉 ⇓IF 〈µ0, r0, Γ0, σ0〉 rs, pc ` 〈µ0, e1, Γ0〉 ⇓IF 〈µ1,m1, Γ1, σ1〉
rs, pc ` 〈µ1, e2, Γ1〉 ⇓IF 〈µ2, v2, Γ2, σ2〉 〈µ2, r0,m1, Γ2〉 RProto 〈rm, σm〉

pc′
.
= Γ2(rm,@fscope) r′s

.
= µ2(rm,m1)(@fscope) λx.s

.
= µ2(rm,m1)(@code)

os
.
= [x 7→ v2,@scope 7→ r′s,@this 7→ r0] r′′s 6∈ dom(µ2) µ′

.
= µ2 [r′′s 7→ os]

σ′
.
= pc′ t σ0 t σ1 t σm Γ ′′

.
= Γ ′ [(r′′s , x) 7→ σ2, (r

′′
s ,@scope) 7→ σ′, (r′′s ,@this) 7→ σ0, r

′′
s 7→ σ′]

r′′s , σ
′ ` 〈µ′, s, Γ ′′〉 ⇓IF 〈µ′′, v, Γ ′′′, σ′′〉

rs, pc ` 〈µ, e0[e1](e2), Γ 〉 ⇓IF 〈µ′′, v, Γ ′′′, σ′′〉

Constructor Call
rs, pc ` 〈µ, e0, Γ 〉 ⇓IF 〈µ0, r0, Γ0, σ0〉 rs, pc ` 〈µ0, e1, Γ0〉 ⇓IF 〈µ1, v1, Γ1, σ1〉

pc′
.
= Γ1(r0,@fscope) r′s

.
= µ1(r0,@fscope) λx.s

.
= µ1(r0,@code) rp

.
= µ1(r0, prototype)

σp
.
= Γ1(r0, prototype) o

.
= [@proto 7→ rp] ro 6∈ dom(µ1) r′′s 6∈ dom(µ′)

os
.
= [x 7→ v1,@scope 7→ r′s,@this 7→ ro] µ′

.
= µ1 [ro 7→ o, r′′s 7→ os]

Γ ′
.
= Γ1 [(ro,@proto) 7→ pc t σp, ro 7→ σ0, (r

′′
s , x) 7→ σ1, (r

′′
s ,@scope) 7→ σ0, (r

′′
s ,@this) 7→ σ0, r

′′
s 7→ σ0]

r′′s , pc
′ t σ0 ` 〈µ′, s, Γ ′〉 ⇓IF 〈µ′′, v, Γ ′′, σ′〉

rs, pc ` 〈µ, new e0(e1), Γ 〉 ⇓IF 〈µ′′, v, Γ ′′, σ′〉

This - 1
@this ∈ µ(rs) rthis

.
= µ(rs,@this)

σthis
.
= Γ (rs,@this)

rs, pc ` 〈µ, this, Γ 〉 ⇓IF 〈µ, rthis, Γ, pc t σthis〉

This - 2
@this 6∈ µ(rs)

pc, rs ` 〈µ, this, Γ 〉 ⇓ 〈µ,#global, Γ, pc〉

Bin Operator
rs, pc ` 〈µ, e1, Γ 〉 ⇓IF 〈µ1, v1, Γ1, σ1〉 rs, pc ` 〈µ, e2, Γ 〉 ⇓IF 〈µ2, v2, Γ2, σ2〉

rs, pc ` 〈µ, e1 op2 e2, Γ 〉 ⇓IF 〈µ2,⇓op2 (v1, v2), Γ2, σ1 t σ2〉

Value

rs, pc ` 〈µ, v, Γ 〉 ⇓IF 〈µ, v, Γ, pc〉

Fig. 9. Monitored Semantics of JavaScript Expressions - 2

37



Variable Upgrade
〈µ, rs, x〉 RScope rx 6= undef pc ≤ Γ (rx, x)

rs, pc ` 〈µ, upgVar(x, σ), Γ 〉 ⇓IF 〈µ, undef, Γ [(rx, x) 7→ Γ (rx, x) t σ] , pc〉

Property Upgrade
〈µ, rs, o〉 RScope ros 6= undef 〈µ, µ(ros , o), p, Γ 〉 RProto 〈rp, σ′〉 pc t Γ (ros , o) t σ′ ≤ Γ (rp, p)

rs, pc ` 〈µ, upgProp(o, p, σ), Γ 〉 ⇓IF 〈µ, undef, Γ [(rp, p) 7→ Γ (rp, p) t σ] , pc〉

Structure Upgrade
〈µ, rs, o〉 RScope ros 6= undef ro

.
= µ(ros , o) pc t Γ (ros , o) ≤ Γ (ro)

rs, pc ` 〈µ, upgStruct(o, σ), Γ 〉 ⇓IF 〈µ, undef, Γ [ro 7→ Γ (ro) t σ] , pc〉

Seq

rs, pc ` 〈µ, s1, Γ 〉 ⇓IF 〈µ1, v1, Γ1, σ1〉 rs, pc ` 〈µ1, s2, Γ1〉 ⇓IF 〈µ2, v2, Γ2, σ2〉
rs, pc ` 〈µ, s1; s2, Γ 〉 ⇓IF 〈µ2, v2, Γ2, σ2〉

If - 1
rs, pc ` 〈µ, e, Γ 〉 ⇓IF 〈µ, v′, Γ ′, σ′〉 v′ 6∈ {0, false, undef, null}

rs, pc t σ′ ` 〈µ′, s1, Γ ′〉 ⇓IF 〈µ′′, v′′, Γ ′′, σ′′〉
rs, pc ` 〈µ, if(e){s1}else{s2}, Γ 〉 ⇓IF 〈µ′′, v′′, Γ ′′, σ′′〉

If - 2
rs, pc ` 〈µ, e, Γ 〉 ⇓IF 〈µ, v′, Γ ′, σ′〉 v′ ∈ {0, false, undef, null}

rs, pc t σ′ ` 〈µ′, s2, Γ ′〉 ⇓IF 〈µ′′, v′′, Γ ′′, σ′′〉
rs, pc ` 〈µ, if(e){s1}else{s2}, Γ 〉 ⇓IF 〈µ′′, v′′, Γ ′′, σ′′〉

While-1
rs, pc ` 〈µ, e, Γ 〉 ⇓IF 〈µ′, v′, Γ ′, σ′〉 v′ ∈ {0, false, undef, null}

rs, pc ` 〈µ,while(e){s}, Γ 〉 ⇓IF 〈µ′, undef, Γ ′, pc〉

While-2
rs, pc ` 〈µ, e, Γ 〉 ⇓IF 〈µ′, v′, Γ ′, σ′〉 v′ 6∈ {0, false, undef, null}

rs, pc t σ′ ` 〈µ′, s, Γ ′〉 ⇓IF 〈µ′′, v′′, Γ ′′, σ′′〉 rs, pc ` 〈µ′′,while(e){s}, Γ ′′〉 ⇓IF 〈µ′′′, v′′′, Γ ′′′, σ′′′〉
rs, pc ` 〈µ,while(e){s}, Γ 〉 ⇓IF 〈µ′′′, v′′′, Γ ′′′, σ′′′〉

Fig. 10. Monitored Semantics of JavaScript Statements

38



Lemma 10 (Reflexivity of ∼id). Given a set of references R ⊆ Ref , then for every pseudo value v ∈
Pse|R, it follows that v ∼id v, where id is the identity function defined on R.

Proof. The proof proceeds by case analysis.

– v ∈ Prim. Applying the Rule Prim, the result immediately follows.
– v ∈ Λ. Applying the Rule Fun, the result immediately follows.
– v ∈ R. Since id is defined on R, we conclude that v = id(v). Hence applying the Rule Reference, the

result immediately follows.
– v ∈ Obj|R. For every property p ∈ dom(v), v(p) ∈ Prim∪R ∪Λ. Hence, we can use the three first cases

to conclude that v(p) ∼id v(p). Thus, using Rule Object, the result follows.

Lemma 11 (Symmetry of ∼β). Given an injective function β and two pseudo values v1, v2 ∈ Pse such
that: v1 ∼β v2, then v2 ∼β−1 v1.

Proof. The proof proceeds by case analysis.

– v1, v2 ∈ Prim. By the Rule Value, we conclude that v1 = v2, and hence v2 = v1. Thus, using the same
rule, the result follows.

– v1, v2 ∈ Λ. By the Rule Fun, we conclude that v1 = v2, and hence v2 = v1. Thus, using the same rule,
the result follows.

– v1, v2 ∈ Ref . The Rule Reference guarantees that v2 = β(v1). Since β is injective, β−1 is defined on
the range of β and particularly, β−1(v2) = v1, from which the result follows (applying the same rule).

– v1, v2 ∈ Obj. The Rule Object guarantees that dom(v1) = dom(v2) = P and that for every property
p ∈ P , v1(p) ∼β v2(p). Since v1(p) and v2(p) are either in Prim, in Ref , or in Λ, we use the three first
cases to conclude that: v2(p) ∼β−1 v1(p) for every property p ∈ P , thus proving the result.

Lemma 12 (Transitivity of ∼β). Given two injective functions β1, β2 : Ref ↪→ Ref and three pseudo-
values v1, v2, v3 ∈ Pse such that: v1 ∼β1 v2 and v2 ∼β2 v3, then v1 ∼β1◦β2 v3.

Proof. There are three cases to consider:

– v1, v2, v3 ∈ Prim. Rule Value guarantees that v1 = v2 and v2 = v3, which means that v1 = v3 and
therefore: v1 ∼β1◦β2

v3.
– v1, v2, v3 ∈ Λ. Rule Fun guarantees that v1 = v2 and v2 = v3, which means that v1 = v3 and therefore:
v1 ∼β1◦β2

v3.
– v1, v2, v3 ∈ Ref . Rule Reference guarantees that v2 = β1(v1) and v3 = β2(v2). Hence, v3 = β2(β1(v1)) =
β1 ◦ β2(v1), from which follows that: v1 ∼β1◦β2

v3.
– v1, v2, v3 ∈ Obj. Rule Object guarantees that dom(v1) = dom(v2) = dom(v3) = P . For every property
p ∈ P , v1(p) ∼β1 v2(p) and v2(p) ∼β2 v3(p). Since v1(p), v2(p) and v3(p) are either in Prim, in Ref ,
or in Λ, we use the two first cases to conclude that: v1(p) ∼β1◦β2

v3(p) for every property p ∈ P , thus
proving the result.

Lemma 13. Given four pseudo values v1, v
′
1, v2, v

′
2 ∈ Pse such that v1 ∼id1 v

′
1, v2 ∼id2 v

′
2 and v1 ∼β v2,

where id1 and id2 correspond to the identity mapping on references defined on two (possibly different) arbitrary
domains. Then, it follows that v′1 ∼β v′2.

Proof. The proof proceeds by case analysis.

– v1, v
′
1, v2, v

′
2 ∈ Prim. Rule Value guarantees that v1 = v2, v1 = v′1, and v2 = v′2, from which follows

that v′1 = v′2 and therefore: v′1 ∼β v′2.
– v1, v

′
1, v2, v

′
2 ∈ Ref . Rule Reference guarantees that v2 = β(v1), v1 = v′1, and v2 = v′2. Hence,

v′2 = β(v′1) and therefore v′1 ∼β v′2.
– v1, v

′
1, v2, v

′
2 ∈ Obj. Rule Object guarantees that dom(v1) = dom(v′1) = dom(v2) = dom(v′2) = P .

For every property p ∈ P , v1(p) ∼β v2(p), v1(p) ∼id1 v′1(p), and v1(p) ∼β v2(p). Since v1(p), v′1(p),
v2(p), and v′2(p) are either in Prim, in Ref , or in Λ, we can apply the current lemma to conclude that:
v′1(p) ∼β v′2(p) for every property p ∈ P , thus proving the result.
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Low Equality Properties The following lemma is used in the proof of the transitivity of the low equality
relation.

Lemma 14. Given four security levels σ1, σ2, σ3, σ ∈ L and three sets of references R1, R2, R3 ⊆ Ref , such
that: (

(σ1 ≤ σ) ∨ (σ2 ≤ σ)
)
⇒
(
σ1, σ2 ≤ σ ∧R1 = R2

)
(29a)(

(σ2 ≤ σ) ∨ (σ3 ≤ σ)
)
⇒
(
σ2, σ3 ≤ σ ∧R2 = R3

)
(29b)

Then it follows that: (
(σ1 ≤ σ) ∨ (σ3 ≤ σ)

)
⇒
(
σ1, σ3 ≤ σ ∧R1 = R3

)
(29c)

Proof. Assume that σ1 ≤ σ, it follows from Hypothesis 29a that σ2 ≤ σ and R1 = R2. From the fact that
σ2 ≤ σ, we apply Hypothesis 29b to conclude that σ3 ≤ σ and R2 = R3. Hence, assuming that σ1 ≤ σ,
we conclude that

(
σ1, σ3 ≤ σ ∧ R1 = R3

)
. In a similar way, assuming that σ3 ≤ σ, we conclude that(

σ1, σ3 ≤ σ ∧R1 = R3

)
. Therefore, the claim of the lemma holds.

The following two lemmas establish the transitivity and the reflexivity (when β corresponds to the identity
function) of the low equality relation.

Lemma 15 (Transitivity). Given memories µ1, µ2 and µ3, labelings Γ1, Γ2 and Γ3, a security level σ and
two functions β12 and β23 such that:

µ1, Γ1 ≈β12,σ µ2, Γ2 (30a)

µ2, Γ2 ≈β23,σ µ3, Γ3 (30b)

Then it follows that: µ1, Γ1 ≈β23◦β12,σ µ3, Γ3

Proof. For every reference r ∈ dom(β23 ◦ β12), we have to prove that:

{p ∈ dom(µ1(r))) | Γ1(r, p) ≤ σ} = {p ∈ dom(µ3(r′′)) | Γ3(r′′, p) ≤ σ} = P (30c)

µ1(r)|P ∼β23◦β12 µ3(r′′)|P (30d)

Γ1|r,P = Γ3|r′′,P (30e)(
Γ1(r) ≤ σ ∨ Γ3(r′′) ≤ σ

)
⇒
(
dom(µ1(r)) = dom(µ3(r′′)) ∧ Γ1(r), Γ3(r′′) ≤ σ

)
(30f)

where: r′′ = β23 ◦ β12(r). Suppose that r ∈ dom(β23 ◦ β12), it follows that:

r ∈ dom(β12) (30g)

r′ = β12(r) ∈ dom(β23) (30h)

From the Hypothesis 30a and Equation 30g, we conclude that:

{p ∈ dom(µ1(r))) | Γ1(r, p) ≤ σ} = {p ∈ dom(µ3(β12(r)))) | Γ2(β12(r), p) ≤ σ} = P ′ (30i)

µ1(r)|P ′ ∼β12
µ2(β12(r))|P ′ (30j)

Γ1|r,P ′ = Γ2|β12(r),P ′ (30k)(
Γ1(r) ≤ σ ∨ Γ2(β12(r)) ≤ σ

)
⇒
(
dom(µ1(r)) = dom(µ3(r′)) ∧ Γ1(r), Γ2(β12(r)) ≤ σ

)
(30l)

From the Hypothesis 30b and Equation 30h, we conclude that:

{p ∈ dom(µ2(β12(r)))) | Γ2(β12(r), p) ≤ σ} = {p ∈ dom(µ3(r′′)) | Γ3(r′′, p) ≤ σ} = P ′′ (30m)

µ2(β12(r))|P ′′ ∼β23 µ3(r′′)|P ′′ (30n)

Γ2|β12(r),P ′′ = Γ3|r′′,P ′′ (30o)(
Γ2(β12(r)) ≤ σ ∨ Γ3(r′′) ≤ σ

)
⇒
(
dom(µ2(β12(r))) = dom(µ3(r′)) ∧ Γ2(β12(r)), Γ3(r′) ≤ σ

)
(30p)
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From Equations 30i and 30m, Claim 30c follows by noting that P = P ′ = P ′′. Thus, applying Lemma 12
to Equations 30j and 30n, Claim 30d follows. Claim 30e is an immediate consequence of the fact that
P = P ′ = P ′′ and of Equations 30k and 30o. Applying Lemma 14 to Equations 30l and 30p, Claim 30f
follows.

Lemma 16 (Reflexivity of ≈id,σ). For any security level σ ∈ L, two consistent memories µ and µ′ and
two labelings Γ and Γ ′, such that µ ≤ µ′ and Γ ≤ Γ ′, then: µ, Γ ≈id,σ µ

′, Γ ′, where id is the identity function
defined on the domain of µ.

Proof. One has to prove for every reference r ∈ dom(µ) that:

{p ∈ dom(µ(r))) | Γ (r, p) ≤ σ} = {p ∈ dom(µ′(r)) | Γ ′(r, p) ≤ σ} = P (31a)

µ(r)|P ∼id µ
′(r)|P (31b)

Γ |r,P = Γ ′|r,P (31c)(
Γ (r) ≤ σ ∨ Γ ′(r) ≤ σ

)
⇒
(
dom(µ(r)) = dom(µ′(r)) ∧ Γ (r), Γ ′(r) ≤ σ

)
(31d)

Since, by hypothesis, µ ≤ µ′ and r ∈ dom(µ), it follows that µ(r) = µ′(r) and, therefore, dom(µ(r)) =
dom(µ′(r)). Thus, considering the hypothesis that Γ ≤ Γ ′, Claim 31a immediately follows. Since P is
defined and µ(r) = µ′(r), it follows that µ(r)|P = µ′(r)|P . Moreover, since µ is consistent, we get that
µ(r)|P ∈ Obj|dom(µ) = Obj|dom(id). Hence, applying Lemma 25, Claim 31b immediately follows. Claim 31c
follows directly from the fact that P is defined and Γ ≤ Γ ′. To prove claim 31d, we note that since µ ≤ µ′

and Γ ≤ Γ ′, it follows that dom(µ(r)) = dom(µ′(r)) and Γ (r) = Γ ′(r). Hence, either Γ (r), Γ ′(r) ≤ σ and
dom(µ(r)) = dom(µ′(r)), or Γ (r), Γ ′(r) 6≤ σ.

The following three lemmas establish three different sets of conditions that if verified when updating two
memories that are initially low equal, ensure that final memories are also low equal.

Lemma 17 (High Property Update). Given a security level σ ∈ L and two consistent memories µ and
µ′ respectively labeled by Γ and Γ ′ such that µ coincides with µ′ everywhere except for some reference r and
property p for which σ 6≤ Γ (r, p) and σ 6≤ Γ ′(r, p); then: µ, Γ ≈β,σ µ′, Γ ′.

Lemma 18 (Low-Equality Preserving Property Update/Creation). Given three security levels σ, σ1, σ2 ∈
L, two consistent memories µ1 and µ2 respectively labeled by Γ1 and Γ2, two references r1, r2 ∈ Ref , two
values v1, v2 ∈ Val and partial injective function on references β, such that: r1 ∼β r2, µ1, Γ1 ≈β,σ µ2, Γ2,
and (v1 ∼β v2 ∧ σ1 = σ2) ∨ σ1, σ2 ≤ σ. Then, it follows that µ′1, Γ

′
1 ≈β,σ µ′2, Γ ′2, for µ′1 = µ1 [(r1,m) 7→ v1],

µ′2 = µ2 [(r2,m) 7→ v2], Γ ′1 = Γ1 [(r1,m) 7→ σ1], and Γ ′2 = µ2 [(r2,m) 7→ v2].

Given an object o ∈ Obj pointed by a reference r in a memory µ labeled by Γ and a security level

σ ∈ L, the notation o|r,Γσ is used for the restriction of o to its low properties. Formally: o|r,Γσ
def
= o|P , where

P = {p ∈ dom(o)|Γ (r, p) ≤ σ}.

Lemma 19 (Low-Equality Preserving Object Creation). Given a security level σ ∈ L, four consistent
memories µ1, µ′1, µ2, and µ′2 respectively well-labeled by Γ1, Γ ′1, Γ2, and Γ ′2, two references r1, r2 ∈ Ref
respectively free in µ1 and µ2, , two objects o1, o2 ∈ Obj, and a partial injective function β defined on
Ref , such that: µ1, Γ1 ≈β,σ µ2, Γ2, µ′1 = µ1 [r1 7→ o1], µ′2 = µ2 [r1 7→ o1], and o1|r1,Γ1

σ ∼β o2|r2,Γ2
σ . Then:

µ′1, Γ
′
1 ≈β′,σ µ′2, Γ ′2, where β′ = β ∪ {(r1, r2)}.

Lemma 20. Given a security level σ ∈ L and four consistent memories µ1, µ′1, µ2, and µ′2 respectively
labeled by Γ1, Γ ′1, Γ2, and Γ ′ and a partial injective function β defined on Ref , such that:

µ1, Γ1 ≈id1,σ µ
′
1, Γ

′
1

µ2, Γ2 ≈id2,σ µ
′
2, Γ

′
2

µ1, Γ1 ≈β,σ µ2, Γ2

Where id1 and id2 correspond to the identity function defined on the domain of µ1 and the identity function
defined on the domain of µ2 respectively. Then, it follows that: µ′1, Γ

′
1 ≈β,σ µ′2, Γ ′2.
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Auxiliar lemmas concerning monitored execution The following lemma states that the reading effect
of an expression is always higher the program counter.

Lemma 21. Given a program s, a memory µ, a labeling Γ , a security level pc and a reference rs such that:

rs, pc ` 〈µ, s, Γ 〉 ⇓IF 〈µ′, v, Γ ′, σ〉

for some memory µ′, value v, labeling Γ ′ and security level σ; then: pc ≤ σ.

Proof. Straightforward by induction on the derivation of rs, pc ` 〈µ, s, Γ 〉 ⇓IF 〈µ′, v, Γ ′, σ〉.
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