
UNIVERSITY OF NICE - SOPHIA ANTIPOLIS
DOCTORAL SCHOOL STIC

SCIENCES ET TECHNOLOGIES DE L’INFORMATION
ET DE LA COMMUNICATION

P H D T H E S I S
to obtain the title of

Doctor of Computer Science
of the University of Nice - Sophia Antipolis

To Be Defended by

José Fragoso Santos

Enforcing Secure Information Flow in
Client-Side Web Applications

Vers l’Établissement du Flux d’Information Sûr dans les
Applications Web Côté Client

Advised by Tamara Rezk and Ana Almeida Matos

prepared at INRIA Sophia Antipolis, Team Indes

to be defended on December 8th, 2014

Jury :

President : Cédric Fournet - Microsoft Research
Reviewers : Peter Thiemann - University of Freiburg

David A. Naumann - Stevens Institute of Technology
Examiners : Vasco T. Vasconcelos - University of Lisbon
Advisors : Tamara Rezk - Inria

Ana Almeida Matos - University of Lisbon
Invited : Gérard Boudol - Inria





Abstract

During the last decade, Web applications have evolved from static pages presented by Web
servers which centralised all computations to multi-tier applications in which computations are
shared between the client and the server. In addition to this, current client-side Web applica-
tions often combine code dynamically loaded from different origins to create new functionalities.
As it happens, this architectural style allows for an ever widening spectrum of security vulner-
abilities, since malicious third-party scripts may compromise the security of the whole system.
In this scenario, many attacks arise at the application level, and can thus be tackled by means
of programming language design and analysis techniques, such as static analysis or program
instrumentation.

In this thesis, we address the issue of enforcing confidentiality and integrity policies in the
context of client-side Web applications. Since most Web applications are developed in the
JavaScript programming language, we study static, dynamic, and hybrid enforcement mecha-
nisms for securing information flow in Core JavaScript — a fragment of JavaScript that retains
its defining features. Specifically, we propose:

1. a monitored semantics for dynamically enforcing secure information flow in Core JavaScript
as well as a source-to-source transformation that inlines the proposed monitor,

2. a type system that statically checks whether or not a program abides by a given information
flow policy, and

3. a hybrid type system that combines static and dynamic analyses in order to accept more
secure programs than its fully static counterpart.

Most JavaScript programs are designed to be executed in a browser in the context of a
Web page. These programs often interact with the Web page in which they are included via a
large number of external APIs provided by the browser. The execution of these APIs usually
takes place outside the perimeter of the language. Hence, any realistic analysis of client-side
JavaScript must take into account possible interactions with external APIs. To this end, we
present a general methodology for extending security monitors to take into account the possible
invocation of arbitrary APIs and we apply this methodology to a representative fragment of the
DOM Core Level 1 API that captures DOM-specific information flows.





Résumé

Au cours de la dernière décennie les applications Web sont passées d’une architecture dans
laquelle le serveur Web était chargé de tous les calculs à une architecture multi-levels dont les
calculs sont partagés entre le client et le serveur. De plus, actuellement les applications Web côté
client sont souvent le résultat d’une combinaison de plusieurs scripts issus d’origines différentes.
Ce style architectural expose les applications Web à un très large éventail de failles de sécurité
puisque des scripts tiers malveillants peuvent mettre en cause la sécurité de tout le système.
Dans ce scénario, plusieurs attaques surgissent au niveau de l’application. Par conséquent, ces
attaques peuvent être surmontés à travers des techniques de conception ainsi que de l’analyse
des langages de programmation, comme l’analyse statique et l’instrumentation du code.

Nous nous intéressons à la mise en œuvre des politiques de confidentialité et d’intégrité des
données dans le contexte des applications Web côté client. Étant donné que la plupart des ap-
plications Web est développée en JavaScript, on propose des mécanismes statiques, dynamiques
et hybrides pour sécuriser le flux d’information en Core JavaScript - un fragment de JavaScript
qui retient ses caractéristiques fondamentales. Nous étudions en particulier:

1. une sémantique à dispositif de contrôle afin de garantir dynamiquement le respect des
politiques de sécurité en Core JavaScript aussi bien qu’un compilateur qui instrumente un
programme avec le dispositif de contrôle proposé,

2. un système de types qui vérifie statiquement si un programme respecte une politique de
sécurité donnée,

3. un système de types hybride qui combine des techniques d’analyse statique à des techniques
d’analyse dynamique afin d’accepter des programmes surs que sa version purement statique
est obligée de rejeter.

La plupart des programmes JavaScript s’exécute dans un navigateur Web dans le context
d’une page Web. Ces programmes interagissent avec la page dans laquelle ils sont inclus parmi
des APIs externes fournies par le navigateur. Souvent, l’execution d’une API externe dépasse
le périmètre de l’interprète du langage. Ainsi, une analyse réaliste des programmes JavaScript
côté client doit considérer l’invocation potentielle des APIs externes. Pour cela, on présente
une méthodologie générale qui permet d’étendre des dispositifs de contrôle de sécurité afin qu’ils
prennent en compte l’invocation potentielle des APIs externes et on applique cette méthodologie
à un fragment important de l’API DOM Core Level 1.





Contents

1 Introduction 1
1.1 Securing Information Flow in a Core of JavaScript . . . . . . . . . . . . . . . . . 3
1.2 Securing Information Flow in the Browser . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Core JavaScript 9
2.1 Formal Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Formal Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Scope Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Function Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.3 Scope Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.4 Prototype-Chain Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.5 Method Calls versus Function Calls . . . . . . . . . . . . . . . . . . . . . . 17
2.4.6 Formal Semantics - Specification . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.1 Modelling the Binding of Variables . . . . . . . . . . . . . . . . . . . . . . 21

3 Defining Secure Information Flow in Core JavaScript 23
3.1 Challenges for IFC in Core JavaScript . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 The Attacker Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Low-Equality for Values and Sequences of Values . . . . . . . . . . . . . . 26
3.3 Noninterferent Allocator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.1 Toward an Attacker Model for the ECMA Standard . . . . . . . . . . . . 28
3.5.2 Further Remarks on the Structure Security Level . . . . . . . . . . . . . . 29

4 Dynamic Information Flow Control in Core JavaScript 31
4.1 Monitoring Secure Information Flow in Core JavaScript . . . . . . . . . . . . . . 32

4.1.1 Controlling Implicit Flows and the No-Sensitive-Upgrade Discipline . . . . 37
4.1.2 The Structure Security Level . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.3 Preventing Security Leaks via Prototype Mutations . . . . . . . . . . . . . 40
4.1.4 Tracking the Level of the Program Counter . . . . . . . . . . . . . . . . . 41
4.1.5 Monitor Noninterference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Monitor-Inlining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Malicious Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Formal Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



vi Contents

5 Static to Hybrid Information Flow Control in Core JavaScript 53
5.1 Security Types for Core JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.1 Annotating Core JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.2 Syntax of Security Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.3 Well-Typed Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 The Attacker Model and the Meaning of Security Types . . . . . . . . . . . . . . 61
5.2.1 Noninterference for Typed Programs . . . . . . . . . . . . . . . . . . . . . 62

5.3 Static Information Flow Control in Core JavaScript . . . . . . . . . . . . . . . . . 62
5.3.1 Soundness of the Static Type System . . . . . . . . . . . . . . . . . . . . . 66

5.4 Hybrid Information Flow Control in Core JavaScript . . . . . . . . . . . . . . . . 67
5.4.1 A Program Logic for Reasoning about Local Scope . . . . . . . . . . . . . 67
5.4.2 Type Sets and Level Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4.3 Specification of the Type System . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 An Extensible Monitored Semantics for Securing Web APIs 75
6.1 An Extensible Semantics for Core JavaScript . . . . . . . . . . . . . . . . . . . . 76
6.2 A Secure Extensible Monitor for Core JavaScript . . . . . . . . . . . . . . . . . . 79

6.2.1 An Attacker Model for External APIs? . . . . . . . . . . . . . . . . . . . . 81
6.2.2 Noninterference for Monitored APIs . . . . . . . . . . . . . . . . . . . . . 81
6.2.3 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4.1 Toward the Inlining of Extensible Information Flow Monitors . . . . . . . 85
6.4.2 Further Comments on Confinement for APIs . . . . . . . . . . . . . . . . 86

7 Monitoring Secure Information Flow in a DOM-like API 89
7.1 Core DOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1.1 Core DOM - Formal Model . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2 Monitoring Secure Information Flow in the Core DOM API . . . . . . . . . . . . 95

7.2.1 Challenges for Information Flow Control in Core DOM . . . . . . . . . . . 95
7.2.2 An Attacker Model for the Core DOM API . . . . . . . . . . . . . . . . . 98
7.2.3 Monitor Plugins for the Core DOM API . . . . . . . . . . . . . . . . . . . 100
7.2.4 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.3 Secure Information Flow for Live Collections . . . . . . . . . . . . . . . . . . . . . 103
7.3.1 Extending the Formal DOM API with Live Collections . . . . . . . . . . . 104
7.3.2 Information Leaks introduced by Live Collections . . . . . . . . . . . . . . 107
7.3.3 An Attacker Model for Live Collections . . . . . . . . . . . . . . . . . . . 108
7.3.4 Monitor Plugins for the Core DOM API + Live Collections . . . . . . . . 111
7.3.5 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.5.1 Order Leaks in the DOM API . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.5.2 A Comparison with the Model of Russo et al. [Russo 2009] . . . . . . . . . 114

8 Conclusions 117
8.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Bibliography 121



Contents vii

A Proofs of Chapter 4 129
A.1 Noninterference - Security Montior . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.1.1 Proving Confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.1.2 Proving Noninterference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.2 Correctness - Inlining Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B Proofs of Chapter 5 147
B.1 Soundness of the Static Type System . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.1.1 Properties of Well-Typed Memories . . . . . . . . . . . . . . . . . . . . . . 147
B.1.2 Properties of Low-Equal Memories . . . . . . . . . . . . . . . . . . . . . . 148
B.1.3 Main Properties of the Static Type System . . . . . . . . . . . . . . . . . 150

B.2 Soundness of the Hybrid Type System . . . . . . . . . . . . . . . . . . . . . . . . 164

C Proofs of Chapter 6 175

D Proofs of Chapter 7 179
D.1 Noninterference - Basic DOM API . . . . . . . . . . . . . . . . . . . . . . . . . . 179
D.2 Proving Low-Equality Strengthening . . . . . . . . . . . . . . . . . . . . . . . . . 187
D.3 Noninterference - Live Collections Monitor . . . . . . . . . . . . . . . . . . . . . . 196





List of Figures

2.1 A Simple Contact Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 A Big-Step Semantics for Core JavaScript . . . . . . . . . . . . . . . . . . . . . . 18

3.1 A labelled memory and its low-projection . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Monitored Execution of Program vs. Unmonitored Execution of Compilation . . 32
4.2 Meta-Functions for Updating Security Labellings . . . . . . . . . . . . . . . . . . 34
4.3 Monitored Core JavaScript Semantics - Imperative Fragment . . . . . . . . . . . 35
4.4 Monitored Core JavaScript Semantics - Functional Fragment . . . . . . . . . . . . 36
4.5 Monitor-Inlining Compiler - Imperative Fragment . . . . . . . . . . . . . . . . . . 45
4.6 Monitor-Inlining Compiler - Functional Fragment . . . . . . . . . . . . . . . . . . 46

5.1 Typing Environment for the Contact Manager - ΓCM = [CM 7→ τ̇CM ] . . . . . . 57
5.2 A Big-Step Semantics for Core JavaScript Extended with Type-based Labellings 60
5.3 Typing Secure Information Flow in Core JavaScript . . . . . . . . . . . . . . . . . 63
5.4 Hybrid Typing Secure Information Flow in Core JavaScript . . . . . . . . . . . . 70

6.1 An Extensible Semantics for Core JavaScript . . . . . . . . . . . . . . . . . . . . 78
6.2 An Extensible Monitored Semantics for Core JavaScript . . . . . . . . . . . . . . 81
6.3 Extended Compiler - CAPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.1 The Core DOM Monitored API Register . . . . . . . . . . . . . . . . . . . . . . . 92
7.2 Core DOM API Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.3 Core DOM Monitor - Primitives for Tree Operations . . . . . . . . . . . . . . . . 101
7.4 The Live Collection API Register: R . . . . . . . . . . . . . . . . . . . . . . . . 105
7.5 Search Predicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.6 Core DOM API + Live Collections Plugins . . . . . . . . . . . . . . . . . . . . . 106
7.7 Core DOM Monitor - Live Collections . . . . . . . . . . . . . . . . . . . . . . . . 111

D.1 Well-labelling Predicate for Live Primitives . . . . . . . . . . . . . . . . . . . . . 189





Chapter 1

Introduction

Contents
1.1 Securing Information Flow in a Core of JavaScript . . . . . . . . . . . . 3

1.2 Securing Information Flow in the Browser . . . . . . . . . . . . . . . . . 4

1.3 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Web applications hold a prominent spot in the Internet of today. They are increasingly
used by people in their everyday lives to accomplish all sorts of tasks, including e-mailing,
word processing, online banking and shopping, and many, many other. While some of these
applications do not necessarily mandate a high level of security, there are those, such as online
banking, for which it is of paramount importance. Security of Web applications is, therefore, an
important and highly applicable research topic. And, in order to be able to address it properly,
we begin by taking a closer look at their general structure.

Most Web applications are composed of several different programs, called scripts, which do
not necessarily share the same origin. Some of these scripts can even be loaded from third-party
code providers at runtime; this is the case, for example, when it comes to online advertisements.
The code whose origin coincides with that of the Web page is called the integrator, whereas
each external script is called a gadget. Using gadgets in a Web application is not mandatory,
but if any are involved, it is then the job of the integrator to patch them all together in or-
der to generate the Web application. The resulting Web application is called a Web mashup.
The programming language that is typically used for the implementation of Web mashups is
JavaScript [5th edition of ECMA 262 2011] — a widely used programming language supported
by all of the major browsers.

What can be said about the security issues that are raised by the use of external gadgets
in a Web application? The fact most pertinent to this question is that gadgets can be loaded
at runtime and can even depend on the input given by the user. This is commonplace, for
instance, for online advertisements, which are loaded from ad servers that use various data
mining techniques in order to determine which advertisements should be displayed to which
user. Therefore, it is impossible for the developer of such Web applications to know a priori
which third-party code will be executed. This architectural style of modern Web applications can
raise serious security issues — malicious third-party programs can compromise the integrity and
confidentiality of the user’s resources. Illustratively, a recent study by Jang et al. [Jang 2010] has
shown that many Websites, including some in the Alexa global top-100, exhibit privacy-violating
security vulnerabilities.

In light of the current security-critical situation, a common interest exists between Web
application developers and users alike in the enforcement of isolation properties that guarantee
that confidential resources are not leaked to untrusted parties and that high-integrity resources
are not modified based on low-integrity data coming from untrusted gadgets. In fact, the central
concept in the Web application security model, the Same Origin Policy (SOP) [Barth 2011], was
designed to provide precisely this type of guarantees. Roughly, this policy states that a script



2 Chapter 1. Introduction

loaded from one origin is not allowed to access or modify resources obtained from another origin.
Here, as in [Yang 2013], we refer to this definition as the strict SOP. While a full implementation
of the strict SOP would definitely solve most of the security issues that wreak havoc on modern
Web applications, it would, unfortunately, also severely constrain one of their essential features,
that being the interaction between scripts of different origins within a Web page. As it is, in order
to allow for cross-origin communication, the browser security model includes many exceptions
to the strict SOP. For instance, current browsers allow for the inclusion of an external gadget in
a Web page in two different ways:

• either through the creation of a script node that is not subject to the Same Origin Policy,
meaning that the included gadget is executed in the same environment as the integrator
and has read/write access to all of its resources;

• or through the creation of an iframe node, subject to the Same Origin Policy, with the
included gadget executed in a separate environment, commonly referred to as a sandbox,
from which it does not have direct access to the integrator’s resources1.

Since the Same Origin Policy is, in fact, implemented in current browsers, it is possible to
take advantage of it when designing secure Web applications. This can be accomplished by the
developer [Barth 2009], or automatically [Louw 2012, Luo 2012]. However, the complexity of the
API for interframe communication often makes it hard and cumbersome to manually sandbox
the execution of external gadgets.

Making use of the SOP does not guarantee, by itself, security of Web applications as there are
security issues that lay beyond its scope. Even if we sandbox the execution of a gadget (prevent-
ing it from actively compromising the integrity and confidentiality of the user’s resources), the
integrator can inadvertently leak confidential information to that gadget or corrupt high-integrity
resources using data originating from that gadget. In other words, a sandboxing mechanism can
allow the integrator to use the API for interframe communication as an escape hatch for send-
ing/receiving arbitrary information to/from external gadgets. Hence, this type of mechanism
is only fit to enforce security policies such that the integrator is allowed to declassify/endorse
everything it sends/receives to/from external gadgets, as in delimited release [Sabelfeld 2003b].
In order to provide stronger security guarantees, one needs to resort to more powerful techniques
than simply sandboxing the execution of third-party code. In particular, one needs to control
the information flows that take place within the code of the integrator in order to decide which
information can be securely sent to which gadget and/or which resources can be modified by
which gadget-based information.

Another problem of SOP-based sandboxing mechanisms for Web applications is that their
precision is constrained by the precision of the SOP. In fact, it has been observed that “the SOP
is merely a highly restrictive Information Flow Control policy in which flows between origins
are denied” [Yang 2013]. By using the SOP as a means for securing Web applications, one is
essentially constraining the level of granularity of the security policies that can be enforced.
Concretely, when using the SOP in the design of a security mechanism, one is forced to view
each origin as a security principal in the system [Magazinius 2010a]. While it is possible to
assign different security credentials to different sets of principals/origins, it is not possible to
assign different security credentials to the same principal/origin depending on how it uses the
information that it is given. For instance, suppose that we would like to express that a given
gadget can have access to certain confidential information as long as it does not send it to the
server from which it was issued. The only way to enforce this type of policy is through the use
of an Information Flow Control (IFC) mechanism.

1In this case, communication is still possible via the PostMessage API [Barth 2009].



1.1. Securing Information Flow in a Core of JavaScript 3

We support the view that “Information Flow Control is a good fit for whole-browser secu-
rity” [Yang 2013], as it can perfectly capture the SOP, but also express more fine-grained security
policies whose enforcement eliminates security vulnerabilities in current Web applications, while
at the same time allowing for the flexibility of cross-origin communication.

1.1 Securing Information Flow in a Core of JavaScript

Noninterference [Goguen 1982] is a class of properties that have been classically used to reason
about how the execution of a program propagates or how it generates dependencies between
the resources it manipulates. The problem of enforcing secure information flow is essentially
a problem of preventing the execution of programs that can potentially create illegal depen-
dencies between the resources they operate on. For instance, confidentiality-wise, a program
is secure if its execution does not entail the creation of dependencies between public outputs
and secret inputs. In other words, secret inputs cannot influence public outputs. Analogously,
integrity-wise, a program is secure if its execution does not entail the creation of dependencies
between high-integrity outputs and low-integrity inputs. In other words, low-integrity inputs
cannot influence high-integrity outputs. Thus, noninterference provides the mathematical foun-
dation for reasoning precisely about secure information flow and, in fact, it has been largely
used [Hedin 2011, Sabelfeld 2003a] to formally express the absence of security leaks for a wide va-
riety of programming languages ranging from functional (e.g. [Pottier 2002]) to object-oriented
(e.g. [Banerjee 2002]) in both sequential (e.g. [Volpano 1996]) and concurrent settings (e.g.
[Almeida Matos 2009]).

The stating of the dependencies that the execution of a program can legally generate generally
betakes a certain degree of abstraction. It is not always possible or even desirable to talk about
the actual resources that a program manipulates. Instead, it is often more convenient to reason
about classes of resources that mandate the same degree of security. We can, therefore, see
an information flow policy as a partially ordered set of security levels together with a mapping
establishing the security levels of the resources on which the program operates. This mapping,
which we call a security labelling, can be interpreted as an abstraction of the concrete resources
of the program [Cousot 1977, Hunt 2006]. Having established a security policy, we say that,
given two resources A and B, an information flow from A to B is legal if the security level of
B is higher than or equal to the level of A. Whenever two levels LA and LB are in the order
relation (LA v LB), it means that the use of information at level LB is at least as restrictive
as the use of information at level LA. More restrictive security levels correspond to higher
confidentiality and lower integrity, since high-confidentiality resources are not allowed to affect
low-confidentiality resources and low-integrity resources are not allowed to affect high-integrity
resources. Intuitively, information is allowed to move up in the partially ordered set of security
levels but not down. For convenience, we assume that the partially ordered set of security levels
constitutes a lattice [Davey 2002], meaning that the least upper bound (lub) and the greatest
lower bound (glb) between any two security levels are always defined.

In the context of information flow research, the enforcement of integrity policies [Biba 1977,
Li 2003] can be viewed as the dual problem of the enforcement of confidentiality policies. Hence,
in the remainder of the thesis we shall always refer to confidentiality policies, while the applica-
tion of the proposed mechanisms to the enforcement of integrity policies would be straightfor-
ward.

Confidentiality-wise, given a concrete program state, a security labelling defines what part
of that state is visible at each security level. Hence, if a security labelling is too coarse, it
will declare invisible resources that should be visible. In this sense, coarse security policies
inevitably cause secure programs not to abide by noninterference and therefore be rejected by



4 Chapter 1. Introduction

sound enforcement mechanisms. Thus, it is vital that the “abstractions made in the attacker
model be adequate with respect to potential attacks” [Sabelfeld 2003a]. In other words, security
policies should be rich enough to capture the various types of attacks coming from the language,
thus adequately reflecting its expressive power. The question to be answered is: “What can an
attacker see using the constructs of the language?” The answer to this question is not always
trivial, since not only are the contents of a program state visible to an attacker, but also the
structure of these contents. For instance, in JavaScript, as in other object oriented languages,
a program can inspect the values associated with the fields of an object. However, unlike most
other languages, JavaScript also allows a program to check which are the fields that an object
defines.

In this thesis, we begin by defining noninterference for Core JavaScript - a fragment of
JavaScript that retains its defining features. Particularly, the proposed definition of noninter-
ference makes use of security policies that reflect the specificities of the language (such as the
fact that programs can check the existence of object fields). We then study different types of
mechanisms (both static and dynamic) to enforce variations of the proposed security property.

The dynamic nature of JavaScript renders it an exceedingly difficult language to statically
analyse [Maffeis 2009]. Consequently, sound static analyses for JavaScript are in general largely
over-conservative and reject many secure programs. Contrastingly, dynamic analyses are nor-
mally less conservative than static analyses, but impose a performance overhead that is often
non-negligible [Hedin 2014]. In this thesis, we propose: (1) a purely dynamic monitor that en-
forces secure information flow in Core JavaScript as well as source-to-source transformation that
inlines the monitor, (2) a type system that statically checks whether or not a Core JavaScript
program abides by a given information flow policy, and finally (3) a hybrid type system that
combines static and dynamic analyses in order to accept more programs than its fully static
counterpart. This hybrid type system leverages the combination of static and runtime analysis
to overcome some of the disadvantages of purely static and purely dynamic approaches.

1.2 Securing Information Flow in the Browser

Although JavaScript can be used as general-purpose programming language, most JavaScript
programs are conceived to be executed in a browser in the context of a Web page. These
programs often interact with the Web page in which they are included via the Application
Programming Interfaces (APIs) provided by the browser, such as the Document Object Model
API (DOM API), the XMLHttpRequest API, or the W3C Geolocation API. The semantics
of these APIs often escapes the semantics of JavaScript in the sense that, since they are not
implemented in JavaScript, their execution is not managed by the JavaScript engine, but rather
by a dedicated and separate module of the browser [Grosskurth 2005]. Thus, a realistic analysis
of client-side JavaScript code must include an analysis of the APIs that the targeted programs
are supposed to use. However, the continuous emergence and heterogeneity of different APIs
[Guha 2012] renders the problem of precise reasoning about JavaScript client-side code extremely
challenging. This is particularly relevant in the context of information flow security. Hence, to
tackle this problem, this thesis presents a general methodology for extending security monitors
in order for them to take into account the possible invocation of arbitrary external APIs. We
then apply this methodology to extend our information flow monitor for Core JavaScript as well
as the corresponding source-to-source program transformation.

The DOM API [W3C Recommendation 2000, W3C Recommendation 2005] occupies a cen-
tral role among the APIs that browsers make available for JavaScript programs. Indeed, ev-
ery modern browser includes a DOM implementation that manages the integration between
JavaScript and the user interface of the browser. More concretely, JavaScript programs use the



1.3. Contributions and Outline 5

DOM API to interact with the HTML page that the browser displays on the screen — to change
or simply access the content of the page as well as the input coming from the user. In a cer-
tain sense, one can also view the DOM as the data structure corresponding to the “in memory”
counterpart of the displayed HTML page. In fact, the displayed document is represented in the
DOM API as a tree structure, whose nodes correspond to the various types of content in the
document.

Unsurprisingly, malicious programs can use the DOM to encode illegal information
flows [Russo 2009]. Hence, to make sure that a JavaScript program is secure, one must analyse
how it interacts with the Web page in which it is included via the DOM API. In this thesis, we
present a group of monitor extensions for handling an important fragment of the DOM Core
Level 1 API, that we call Core DOM. There, as in the DOM API, DOM nodes are treated as
first-class values. Using this, we are able to construct an information flow control mechanism
that is more fine-grained than the previous approaches in the literature [Russo 2009]. We also
introduce methods and properties for modelling the behaviour of live collections — a special
type of data structure in the DOM Core Level 1 API. We show that live collections effectively
augment the observational power of an attacker and we show how to monitor their use in order
to enforce secure information flow.

1.3 Contributions and Outline

In a nutshell, the original contributions of this thesis are the following:

• A new information flow monitor-inlining transformation for a core of JavaScript that re-
tains its defining features, such as prototype-based inheritance, extensible objects, con-
structs for checking the existence of object fields, and unusual interactions between the
binding of variables and the binding of properties;

• A hybrid type system for checking whether or not a Core JavaScript program abides by a
given information flow policy that combines static and dynamic analysis to avoid rejecting
programs that are in fact secure;

• A general methodology for extending information flow monitors to take into account the
execution of arbitrary APIs, possibly outside of the perimeter of the modelled language;

• An information flow monitor that handles an important fragment of the DOM Core Level
1 API, including live collections, which had not been formally studied so far in the context
of Information Flow Control (IFC) research.

The outline of the thesis is as follows:

• Chapter 2 presents the fragment of JavaScript that is studied in this thesis, which we
call Core JavaScript. This core takes into account the defining features of the language
mentioned above.

• Chapter 3 defines what it means for a Core JavaScript program to be noninterferent.
The proposed definition of noninterference makes use of security policies that accurately
capture the expressiveness of the language by taking into account its main specificities.

• Chapter 4 first presents a monitor that dynamically enforces secure information flow for
Core JavaScript as well as a source-to-source transformation that inlines the monitor.
The presented monitor is proven sound, that is noninterferent, and the compiler is proven
correct with respect to the monitor. Therefore, we ensure that, after compilation, only



6 Chapter 1. Introduction

secure executions are allowed to go through, as potentially illegal executions are caused to
diverge by the inlined runtime enforcement mechanism.

• Chapter 5 first presents a purely static type system for securing information flow in Core
JavaScript. Using this type system as a starting point, we develop a hybrid type system for
information flow control in Core JavaScript. Unlike purely static type systems, which only
accept programs when they can guarantee that all possible execution paths are secure, the
hybrid type system we propose infers a set of assertions under which a program can be
securely accepted and instruments it so as to dynamically check whether these assertions
hold. By deferring rejection to runtime, this hybrid version is able to typecheck secure
programs that purely static type systems cannot accept.

• Chapter 6 proposes a methodology for extending sound JavaScript information flow mon-
itors. This methodology allows us to enforce compliance of a monitor with the proposed
noninterference property in a modular way. Thus, proving that a monitor is noninter-
ferent after extending it with a new API only requires the proof that the API itself is
noninterferent. We apply this methodology to extend our information flow monitor for
Core JavaScript. Furthermore, this chapter presents an extension of the information flow
monitor-inlining compiler defined in Chapter 4 that additionally takes into account the
invocation of arbitrary APIs.

• Chapter 7 presents a group of monitor extensions for handling a fragment of the DOM
Core Level 1 API, that we call Core DOM API. In the Core DOM API, as in the DOM
API, tree nodes are treated as first-class values. We take advantage of this feature in
order to design an information flow control mechanism that is more fine-grained than the
previous approaches in the literature [Russo 2009]. Furthermore, we extend Core DOM
with additional API methods that model the behaviour of live collections, a type of data
structure present in the DOM Core Level 1 API that exhibits a very unusual semantics.
We show that the use of live collections effectively augments the observational power of
an attacker and we provide monitor extensions to tackle these newly introduced forms of
information leaks.

1.4 Publications

While certain elements of this thesis remain unpublished to this day, the remaining parts have
previously appeared in the following publications:

• Fragoso Santos, José and Rezk, Tamara. An Information Flow Monitor Inlining Compiler
For Securing a Core of JavaScript. IFIP SEC, 2014
This paper presents a version of the information flow monitor-inlining compiler here in-
troduced in Chapter 4, which was, to the best of our knowledge, the first of this type of
compilers designed for a JavaScript-like language. The information flow monitor used in
the paper as well as its respective source-to-source transformation differ from those of the
thesis in that they consider a smaller subset of JavaScript. Namely, they do not include
neither the in nor the delete program constructs, which we do include here. Since the these
constructs effectively augment the observational power of an attacker, their inclusion in
the targeted fragment of the language required changing the way program resources are
labeled.

• Almeida-Matos, Ana, Fragoso Santos, José and Rezk, Tamara. An Information Flow Mon-
itor for a Core of DOM – Introducing references and live primitives. TGC, 2014



1.4. Publications 7

The paper presents a novel, purely dynamic, flow-sensitive monitor for securing informa-
tion flow in an imperative language extended with DOM-like tree operations, which is
proven sound with respect to a standard notion of noninterference for monitors. The mon-
itor extensions presented in Chapter 6 partially coincide with the language primitives for
operating on tree nodes studied in this paper. The main difference is that here we study
these operation in the context of Core JavaScript, while in the paper they were studied in
the context of a simple WHILE language.





Chapter 2

Core JavaScript

Contents
2.1 Formal Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Formal Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Scope Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Function Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.3 Scope Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.4 Prototype-Chain Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.5 Method Calls versus Function Calls . . . . . . . . . . . . . . . . . . . . . . 17
2.4.6 Formal Semantics - Specification . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.1 Modelling the Binding of Variables . . . . . . . . . . . . . . . . . . . . . . . 21

In a nutshell, JavaScript is an object-based, untyped, language which supports closures and
prototype-based inheritance [3rd edition of ECMA 262 1999, 5th edition of ECMA 262 2011].
Indeed, objects are the central datatype of JavaScript. But, in contrast to class-based lan-
guages where the fields of an object are restricted by the class to which it belongs (which is
statically specified), a JavaScript object is an unrestricted partial mapping from strings to val-
ues. The strings in the domain of an object are called its properties. In JavaScript there are two
types of objects: those that are defined by the programmer and those that are provided by the
language runtime. The latter are called internal objects.

JavaScript is an object-based language. However, there are no classes. Instead, every non-
native object has a prototype from which it can inherit properties. Prototypes are also objects.
Hence, prototypical inheritance is a form of delegation, in the sense that an object dispatches
to its prototype the requests that it does not know how to handle. For instance, in order to
look-up the value of a property "xpto" of an object bound to a variable o, the JavaScript engine
first checks whether "xpto" belongs to the set of properties of the object bound to o. If so, the
property look-up yields the value with which that object associates property "xpto". Otherwise,
the engine checks whether the prototype of that object defines a property named "xpto", and so
forth. The sequence of objects that can be accessed from a given object through the inspection
of the respective prototypes is called a prototype-chain.

JavaScript features first-class functions. Functions can be used in three different ways: as
usual functions, as methods, or as constructors. When assigning a function to a property of
an object, the function becomes a method of the object. Every method accessible to an object
through its prototype-chain can be called as a method of that object. Concretely, when calling a
function as a method, the keyword this is bound to the receiver object, that is, the object on which
the method was called. For instance, suppose that the object bound to o has access to a property



10 Chapter 2. Core JavaScript

x, y1, · · · , yn ∈ Var ::= foo | bar | baz | · · · % Identifiers

m, p ∈ Str ::= "foo" | "bar" | "baz" | · · · % Strings

n ∈ Num ::= 0 | 1 | 2 | · · · % Numbers

b ∈ Bool ::= true | false % Booleans

pv ∈ Prim ::= m | n | b | null | undefined % Primitive Values

r ∈ Ref 3 null % References

v ∈ Val ::= pv | r | pf % Values

pf ∈ Fλ ::= λx. {var y1, · · · , yn; e} % Parsed Function Literals

fv ∈ Falsy ::= false | 0 | undefined | null % Falsy Values

i, j, k ∈ Index % Indexes

Table 2.1: Syntax for Values, Identifiers, and Indexes

named "xpto" through its prototype-chain and that this property is bound to a function. In
this scenario, when calling o["xpto"](...), the keyword this is bound to the object bound to o
and not to the object that actually defines "xpto" in its prototype-chain. Hence, prototypes
can be seen as a device for method sharing in JavaScript. Every function can additionally be
called as a constructor. However, since in this work we do not model the keyword new, we skip
the explanation of this feature and refer the reader to [Flanagan 2011] for a detailed account of
the language.

Another important feature of JavaScript is that programs are allowed both to dynamically
add new properties to the domain of an object and to delete existing ones. A program can check
whether a property is accessible to an object through its prototype-chain using the keyword in.
Interestingly, the property look-up construct can also be used to check the existence of properties,
since the looking-up of a property that is not defined in the prototype-chain of an object does not
yield an error but instead a special value – undefined. Furthermore, the looking-up of a variable
that has been declared but has not yet been assigned a value also yields undefined. Besides
undefined, JavaScript features another value that is meant to be used as a representation of no
value – null. However, in contrast to undefined, the value null is an assignment value, meaning
that it must be explicitly assigned to a variable/property so that its corresponding look-up yields
null.

2.1 Formal Syntax

We define a JavaScript-like language, called Core JavaScript, which is intended to model a real-
istic subset of the JavaScript specification [3rd edition of ECMA 262 1999]. However, in order
to simplify the presentation, we do not model the return statement—functions are assumed to
return the value to which their body evaluates. Furthermore, given that most implementations
do allow explicit prototype mutation, we depart from [3rd edition of ECMA 262 1999] and in-
clude this feature through a special property "_prot_", which Core JavaScript programs can
directly manipulate. For instance, o1["_prot_"] = o2 sets the prototype of the object bound to
o1 to the object bound to o2, and o1["_prot_"] evaluates to the prototype of the object bound
to o1.

In Core JavaScript, some expressions are annotated with one or two unique indexes, taken
from a set Index, for the use of the source-to-source transformations presented in the following
chapters. These transformations need to add new, unique identifiers to the program to be



2.1. Formal Syntax 11

e, e0, e1, e2 ∈ Expr ::= v % Value

| thisi % This

| xi % Identifier

| e0 opi e1 % Binary operation

| x = e % Variable Assignment

| e0[e1]i % Property Look-up

| e0 ini e1 % Membership Testing

| e0[e1] = e2 % Property Assignment

| deletei e0[e1] % Property Deletion

| e0(e1)i % Function Call

| e0[e1](e2)i % Method Call

| e0 ?i,j (e1) : (e2) % Conditional

| e0, e1 % Sequence

| { }i % Object Literal

| functioni(x){var y1, · · · , yn; e} % Function Literal

Table 2.2: Syntax of Expressions

transformed. We make this possible by associating each program construct with one or two
unique indexes, which are then used to index a special set of identifiers for the exclusive use of
the source-to-source transformations to be presented. We use i, j, and k to represent indexes
and we omit the index(es) of an expression whenever they are not needed.

In Core JavaScript, identifiers are taken from a set Var ranged over by x, y1, ..., and yn and
values are taken from a set Val ranged over by v. We distinguish three types of values: primitive
values, taken from a set Prim and ranged over by pv, references, taken from a set Ref and ranged
over by r, and parsed function literals, taken from a set Fλ and ranged over by pf .

The set Prim includes strings, numbers, booleans, as well as the two special values used for
the representation of no value: null and undefined. The set Str of strings is ranged over bym and
p. Typically, we use p for property names and m for arbitrary strings. The set Num of numbers
is ranged over by n. The set Bool of booleans contains two distinct values: false that represents
the logical constant false and true that represents the logical constant true. In JavaScript,
some values are coerced to true in contexts where a boolean value is expected, whereas other are
coerced to false. The latter are called falsy values. The set of all falsy values is denoted by Falsy
and ranged over by fv. Finally, we use op to represent arbitrary binary operators. References
are pointers to objects. However, for convenience, the value null is assumed to be contained in
Ref. When used in a context where a reference is expected, the value null represents the absence
of a reference. Finally, a parsed function literal pf ∈ Fλ corresponds to the parsed counterpart
of a function literal expression (described below).

The formal syntax of values, identifiers, and indexes is given in Table 2.1, whereas the formal
syntax of Core JavaScript expressions is given in Table 2.2. The set Expr of expressions is ranged
over by e, e0, e1 and e2 and includes:

• the binary operation e0 op e1, that applies the binary operator op to the results of com-
puting e0 and e1;

• the variable assignment x = e, that sets the value of x to the result of computing e;



12 Chapter 2. Core JavaScript

• the membership testing expression e0 in e1, that evaluates to true if the object to which
e1 evaluates defines the property whose name matches the evaluation of e0 and evaluates
to false otherwise;

• the property look-up e0[e1], that evaluates to the value of the property whose name matches
the result of the computation of e1 and is accessible to the object resulting from the
computation of e0 via its prototype-chain;

• the property assignment e0[e1] = e2, that sets the value of the property of the object
obtained by computing e0 whose name results from the computation of e1 to the result of
e2;

• the property deletion delete e0[e1], that removes the property whose name results from the
computation of e1 from the domain of the object obtained by computing e0;

• the function call e0(e1), that applies the function that results from computing e0 to the
result of the computation of e1;

• the method call e0[e1](e2), that applies the method whose name results from computing e1

and which is accessible to the object obtained from the computation of e0 via its prototype-
chain to the result of the computation of e2;

• the conditional e0 ? (e1) : (e2), that executes e1 or e2 depending on whether the compu-
tation of e0 renders true or false;

• the sequential expression e0, e1, that executes e1 after the execution of e0 has terminated;

• the object literal expression {}, that allocates a new object in memory;

• the function literal expression function(x){var y1, · · · , yn; e}, that evaluates to the an
internal object containing the corresponding parsed function literal;

The set Expr of expressions additionally includes values, the this keyword, and identifiers. In
the following, we use e.x as an abbreviation for e[string(x)] (where string(x) denotes the string
corresponding to the name of the identifier x) and e0 ? e1 as an abbreviation for e0 ? e1 : 0.

2.2 Running Example

This section presents the running example that is used throughout the thesis. It consists of a
fragment of the code for a simple contact management online application, given in Figure 2.1.
The variable CM holds the Contact Manager object. The contact manager stores contacts in
an object that is bound to its property "contact_list". This object is used as a table whose
entries are the last names of the contacts (extended with unique integers to avoid collisions)
and whose values are the actual contacts. A contact is simply an object containing a first name
(stored in property "fst"), a last name (stored in property "lst"), an e-mail address (stored
in property "email"), and a flag "favourite" (whose existence indicates that that contact is
among the user’s favourite contacts).

This example illustrates the typical use of prototypical inheritance in JavaScript. We create
a “fixed” object for storing all the methods contact objects must implement and we assign this
object to the property "proto_contact" of the Contact Manager. Every time a contact object
is created, its prototype is set to CM.proto_contact. Hence, every contact object implements
the methods: (1) printContact that generates a string with a description of the contact, (2)
makeFavourite that marks the contact as favourite, (3) isFavourite that checks whether the



2.2. Running Example 13

CM = { }, CM.proto_contact = { }, CM.contact_list = { },

CM.proto_contact.printContact = function() { this.lst + "," + this."fst" },

CM.proto_contact.makeFavourite = function() { this.favourite = null },

CM.proto_contact.unFavourite = function() {
"favourite" in this ? delete this["favourite"] : true

},

CM.proto_contact.isFavourite = function() { "favourite" in this },

CM.createContact = function(fst_name, lst_name, email) {
var contact;
contact = { },
contact._prot_ = CM.proto_contact,
contact.fst = fst_name,
contact.lst = lst_name,
contact.email = email,
contact

},

CM.storeContact = function(contact, i) {
var list, key;
list = this.contact_list,
key = contact.lst + i,
key in list ? (CM.storeContact(contact, i + 1)) : (list[key] = contact)

},

CM.getContact = function(lst_name, i) { this.contact_list[lst_name + i]}

Figure 2.1: A Simple Contact Manager

contact is marked as favourite, and (4) unFavourite that deletes the property that marks the
contact as favourite.

In the following, we give a brief description of the methods that compose the Contact Man-
ager example.

• Methods of Contact Objects. The method printContact returns a string consisting
of the last and first names of the contact on which it was called separated by a comma
(in this context, the binary operator + should be interpreted as string concatenation).
Since the mere existence of the property "favourite" in a contact marks it as a favourite
contact, the method makeFavourite only has to assign an arbitrary value to the property
"favourite" of a contact to turn that contact into a favourite contact. To stress this fact,
we choose to assign it to null. Conversely, in order for a contact to cease to be a favourite
contact, one simply has delete the property "favourite" from its list of properties. Finally,
to check whether a contact is a favourite contact, it suffices to check whether "favourite"
belongs to its list of properties, which can be done using the program construct in.

• Methods of the Contact Manager. The method createContact creates a new contact
and returns it. Therefore, the last expression in its body is contact, since it evaluates
to the newly created contact. Given a contact object and an integer n, the method
storeContact stores the contact corresponding to its first argument in the the the contact



14 Chapter 2. Core JavaScript

o ∈ Obj ::= [m0 7→ v0,m1 7→ v1, · · · ] % Objects

µ ∈ Mem ::= [r0 7→ o0, r1 7→ o1, · · · ] % Memories

Table 2.3: Semantic Domains - Extensional Definitions

list of the contact manager. As mentioned above, a contact list is an object whose entries
are the last names of the stored contacts extended with unique integers to avoid collisions.
Hence, the method storeContact first checks whether there already exists a contact with
the same last name associated with n in the contact list. If it is not the case, it stores
the contact in the corresponding property of the contact list. If it is the case, the method
calls itself recursively with the same contact but with n incremented by one. Finally, the
method getContact returns the contact associated with the name and integer given as
inputs. If no such contact exists, it returns undefined.

2.3 Notation

Before proceeding with the description of the formal semantics of Core JavaScript, we must
introduce some auxiliary notation for representing sequences of elements and partial mappings,
which is then used throughout the thesis.

Sequences In the following, we use −→z to denote a sequence of elements. Given a sequence −→z
we use: (1) −→z (i) for the ith element of −→z , (2) |−→z | for its number of elements, (3) ShiftL(−→z , i)
for the sequence obtained by removing from −→z its ith element (provided that it is defined) and
left-shifting its remaining elements by one position, (4) −→z :: z for the sequence obtained by
appending z to −→z , (5) z :: −→z for the sequence obtained by prepending z to −→z , (6) −→z 0 :: −→z 1

for the concatenation of −→z 0 and −→z 1, and (7) last(−→z ) for the last element of −→z . Futhermore,
the symbol ε is used to denote the empty sequence.

Partial Mappings We use: (1) [z0 7→ w0, · · · , zn 7→ wn] for the partial function that maps
z0 to w0, ..., and zn to wn respectively, (2) Z [z0 7→ w0, · · · , zn 7→ wn] for the partial mapping
that coincides with Z everywhere except in z0, ..., and zn, which are otherwise mapped to w0,
..., and wn respectively, (3) Z|W for the restriction of the mapping Z to W (provided that W is
included in the domain of Z), (4) Z(z ·w) for the nested function call (Z(z))(w) (provided that
Z(z) is a function), and (5) Z[z · w1 7→ w0] for the nested update Z [z 7→ Z(z) [w0 7→ w1]],

2.4 Formal Semantics

This section describes the formal semantics of Core JavaScript. In Core JavaScript, objects are
modelled as unrestricted mappings from strings to values. Hence, an object o ∈ Obj : Str→ Val
is a partial function mapping strings to values. The strings in the domain of an object are called
its properties. Given an object o and a property p, the value bound to o’s property p is denoted
by o(p). Not all properties can be manipulated by Core JavaScript programs. Some properties,
called internal, are reserved for the use of the semantics, meaning that they can neither be
inspected nor updated by JavaScript programs. For clarity, these properties are prefixed with
an “@”. We use dom(o) to denote the set of properties of o excluding internal properties and
@dom(o) for the set of all properties of o including internal properties.

A Core JavaScript memory µ ∈ Mem : Ref → Obj is a partial mapping from references to
objects as in [3rd edition of ECMA 262 1999]. Hence, given a memory µ and a reference r, the



2.4. Formal Semantics 15

object bound to r in µ is denoted by µ(r). Consequently, given a memory µ, a reference r, and
a property p, (µ(r))(p) denotes the value bound to the property p of the object pointed to by
r in µ. Finally, given an object o, we denote by #o the reference that points to o. Table 2.3
presents the extensional definition of Core JavaScript objects and memories.

As in [Banerjee 2002], we assume a parametric object allocator, meaning that references are
chosen deterministically. Concretely, the evaluation of an object literal yields a new reference,
which is computed using the deterministic allocator fresh, and which is set to point to the newly
created object. While allowing us to avoid having to deal with technical details in the stating
the security properties (presented in the following chapters), the assumption of a parametric
allocator does not weaken the results of the thesis, since, in practice, allocators are in fact
deterministic.

2.4.1 Scope Objects

In Core JavaScript, the binding of variables is modelled in memory by the use of scope ob-
jects [Maffeis 2008]. Hence, in the formal semantics, a function/method call triggers the creation
of a scope object. A scope object is an internal object that maps the formal parameter of the
function that is being called as well as the variables declared in its body to their respective
values. A scope object is said to be active if it is associated with the function/method that is
currently executing. Since function literals can be nested inside each other, every scope object
defines a property "@scope" that binds the reference of the scope object that was active when
the corresponding function literal was evaluated. The sequence of scope objects that can be
accessed from a given scope object through the respective "@scope" properties is called a scope-
chain. The global object, which is assumed to be pointed to by a fixed reference #glob, is the
object that is at the end of every scope-chain and therefore it is the object that binds global
variables. In particular, we assume that the global object also defines a property "@scope",
which is in its case set to null.

In order to determine the value associated with a given variable, one has to inspect all
objects in the scope-chain that starts in the active scope object. Concretely, when trying to
look-up the value bound to an identifier xpto in the current scope, the semantics first checks
whether "xpto" ∈ dom(µ(r)), where r is the reference pointing to the current scope object. If
"xpto" ∈ dom(µ(r)), the variable look-up yields µ(r · "xpto"), otherwise the semantics checks
whether the next scope object in the current scope-chain defines a binding for "xpto", and so
forth. This behaviour is modelled by the semantic function Scope : Mem × Ref × Var → Ref
formally given in Definition 2.1. Informally, r1 = Scope(µ, r0, x) means that r1 is the reference
that points to the scope object that defines a binding for variable x and that is closest to the
one pointed to by r0 (µ(r0)) in the scope-chain that starts at µ(r0).

Definition 2.1 (Scope). The function Scope : Mem× Ref× Str→ Ref is defined as follows:

Scope(µ, r, x) =


null if r = null
r if string(x) ∈ dom(µ(r))
Scope(µ, µ(r · "@scope"), x) otherwise

The variable look-up procedure clearly exposes the duality identifier/string that holds a
prominent spot in the formal semantics of Core JavaScript. At runtime, the identifiers declared
in the body of a function, as well as its formal parameter, are modelled as properties of a scope
object. However, the properties in the domain of an object are strings. Hence, each scope object
maps the strings corresponding to the names of the identifiers as well as the formal parameter
of its corresponding function to their respective values. Formally, given an identifier x, string(x)
denotes the string corresponding to its name. Conversely, given a string m, ident(m) denotes
the identifier whose name corresponds to m.



16 Chapter 2. Core JavaScript

2.4.2 Function Objects

In the formal semantics, the evaluation of a function literal yields a reference to an object, called
a function object, that stores its parsed counterpart. More specifically, since every function is
executed in the environment in which the corresponding function literal was evaluated, every
function object defines the following two properties:

• "@code" that stores the parsed function literal and

• "@fscope" that stores the reference that points to the scope object that was active when
the corresponding function literal was evaluated.

As an example, assume that the global object defines a variable out originally set to null. In
this scenario, the evaluation of the program presented below on the left yields the value 0 and
creates in memory the list of objects displayed below on the right:

(function(x){
var g, h;
g = function(x) {h(2)},
h = function(y){out = x},
g(1)

})(0);

o0
s = ["@scope" 7→ #glob, "x" 7→ 0, "g" 7→ og, "h" 7→ oh]

ogs =
[
"@scope" 7→ #o0

s, "x" 7→ 1
]

ohs =
[
"@scope" 7→ #o0

s, "y" 7→ 2
]

o0 = ["@code" 7→ λx.var g, h; ê, "@fscope" 7→ #glob]
og =

[
"@code" 7→ λx.h(2), "@fscope" 7→ #o0

s

]
oh =

[
"@code" 7→ λy.out = x, "@fscope" 7→ #o0

s

]
where: (1) o0

s, o
g
s, and ohs are the scope objects associated with the invocation of the outermost

anonymous function, of function g, and of function h, respectively, (2) objects o0, og, and oh are
their respective function objects, and (3) ê is the body of the outermost anonymous function.
After the execution of this program, the global object maps out to 0 and not to 1, because the
scope object that is closest to ohs and which defines a binding for x is o0

s and not ogs (which does
not belong to the scope-chain of ohs ).

2.4.3 Scope Allocation

The creation of a scope object is formally emulated by the semantic function NewScope : Mem×
Ref × Val × Ref → Mem × Val × Ref, which is given in Definition 2.2. Intutively, 〈µ′, e, r′〉 =
NewScope(µ, rf , varg, rthis) means that r′ is the reference of the newly allocated scope object.
This scope object is meant to be used as the active scope object during the execution of the
function pointed to by rf in µ. In this new scope object, the formal argument of the function
to be executed is bound to the value varg and the keyword this is bound to rthis. Finally, the
memory that results from the allocation of the scope object is µ′ and e is the body of the function
to be executed.

Definition 2.2 (NewScope). For any two memories µ and µ′, three references rf , rthis, and r′,
value varg, and expression e, 〈µ′, e, r′〉 = NewScope(µ, rf , varg, rthis) holds if and only if:

• λx. {var y1, · · · , yn; e} = µ(rf · "@code"),

• r = µ(rf · "@fscope"),

• r′ = fresh(),

• µ′ = µ [r′ 7→ ["@scope" 7→ r,mx 7→ varg, "@this" 7→ rthis,my1 7→ undefined, · · · ,myn 7→ undefined]],
where: mx = string(x), my1 = string(y1), ..., and myn = string(yn).

for some identifiers x, y1, ..., and yn.



2.4. Formal Semantics 17

2.4.4 Prototype-Chain Inspection

In Core JavaScript, every object (except scope objects and function objects) defines a property
"_prot_" that stores a reference pointing to its prototype and which is originally set to null.
When trying to look-up the value of a property p of an object o, the semantics first checks
whether p ∈ dom(o). If p ∈ dom(o), the property look-up yields o(p), otherwise the semantics
checks whether the prototype of o (pointed to by o("_prot_")) defines a property named p,
and so forth. The prototype-chain inspection procedure is emulated by the semantic function
Proto : Mem × Ref × Str → Ref given in Definition 2.3. Informallly, r′ = Proto(µ, r,m) means
that µ(r′) is the object that is closest to µ(r) in its prototype-chain and that defines a binding
for m. Hence, the evaluation of the program:

o0 = { }, o0.xpto = 0, o1 = { }, o1._proto_ = o0, o1.xpto (2.1)

yields 0, because, even though the object bound to o1 does not define the property "xpto", its
prototype does.

Definition 2.3 (Proto). The function Proto : Mem× Ref× Str→ Ref is defined as follows:

Proto(µ, r, p) =


null if r = null
r if p ∈ dom(µ(r))
Proto(µ, µ(r · "_prot_"), p) otherwise

When looking-up the value of a property p in an object o, if p is not defined in the whole
prototype-chain of o, instead of yielding an error, the semantics yields undefined. Therefore, the
expression o = { }, o.xpto evaluates to undefined.

2.4.5 Method Calls versus Function Calls

A function can be either invoked as a normal function or as a method. When calling a function
as a method, the keyword this is bound to the receiver object (that is, the object on which the
method was invoked), otherwise it is bound to the global object. Therefore, every scope object
defines a property "@this" that holds the value of the keyword this in that scope. Hence, suppose
that in a memory µ, the global object defines two variables o0 and o1 that hold references to
the objects ["_prot_" 7→ null, "f" 7→ #of ] and ["_prot_" 7→ #o0] respectively, where #of is the
reference of a given function object. In the evaluation of the expression o1.f(0), the semantics
starts by creating a scope object whose property "@this" is set to #o1 and then proceeds with
the evaluation of the body of the function pointed to by #of .

In contrast to real client-side JavaScript where the global variable window holds a reference
to the global object, in Core JavaScript a program cannot directly get hold of the reference
pointing to the global object. However, any program can obtain this reference by evaluating the
expression this in the body of a function called “as a function”. For instance, assuming that the
global object defines the global variables x, f, and global, after the evaluation of the program:

x = 0, f = function() {this}, global = f(), global.x = 1 (2.2)

the global variable x is set to 1.

2.4.6 Formal Semantics - Specification

The big-step semantics of Core JavaScript is presented in Figure 2.2. Every big-step semantic
transition has the following form: r ` 〈µ, e〉 ⇓ 〈µ′, v〉, where: (1) r is the reference of the active
scope object, (2) µ and µ′ are the initial and final memories, (3) e is the expression to evaluate,
and (4) v is the value to which it evaluates. In the following, we give a brief description of each
rule:



18 Chapter 2. Core JavaScript

Value
r ` 〈µ, v〉 ⇓ 〈µ, v〉

This
r ` 〈µ, this〉 ⇓ 〈µ, µ(r · "@this")〉

Variable
rx = Scope(µ, r, x) rx 6= null

mx = string(x)

r ` 〈µ, x〉 ⇓ 〈µ, µ(rx ·mx)〉

Binary Operation
r ` 〈µ, e0〉 ⇓ 〈µ0, v0〉 r ` 〈µ0, e1〉 ⇓ 〈µ1, v1〉

v′ = v0 op v1

r ` 〈µ, e0 op e1〉 ⇓ 〈µ1, v
′〉

Variable Assignment
r ` 〈µ, e〉 ⇓ 〈µ0, v0〉 rx = Scope(µ0, r, x)

rx 6= null mx = string(x)

r ` 〈µ, x = e〉 ⇓ 〈µ0[rx ·mx 7→ v0], v0〉

Property Look-up
r ` 〈µ, e0〉 ⇓ 〈µ0, r0〉 r ` 〈µ0, e1〉 ⇓ 〈µ1,m1〉 r′ = Proto(µ1, r0,m1)

r′ 6= null⇒ v = µ1(r′ ·m1) r′ = null⇒ v = undefined

r ` 〈µ, e0[e1]〉 ⇓ 〈µ1, v〉

Membership Testing
r ` 〈µ, e0〉 ⇓ 〈µ0,m0〉 r ` 〈µ0, e1〉 ⇓ 〈µ1, r1〉

r′ = Proto(µ1, r1,m0)
r′ 6= null⇒ v = true r′ = null⇒ v = false

r ` 〈µ, e0 in e1〉 ⇓ 〈µ1, v〉

Property Assignment
r ` 〈µ, e0〉 ⇓ 〈µ0, r0〉 r ` 〈µ0, e1〉 ⇓ 〈µ1,m1〉

r ` 〈µ1, e2〉 ⇓ 〈µ2, v2〉
r ` 〈µ, e0[e1] = e2〉 ⇓ 〈µ2[r0 ·m1 7→ v2], v2〉

Property Deletion
r ` 〈µ, e0〉 ⇓ 〈µ0, r0〉 r ` 〈µ0, e1〉 ⇓ 〈µ1,m1〉

m1 6= "_prot_"
µ′ = µ0

[
r0 7→ µ0(r0)|dom(µ0(r0))\{m1}

]
r ` 〈µ, delete e0[e1]〉 ⇓ 〈µ′, true〉

Function Call
r ` 〈µ, e0〉 ⇓ 〈µ0, r0〉 r ` 〈µ0, e1〉 ⇓ 〈µ1, v1〉
〈µ̂, ê, r̂〉 = NewScope(µ1, r0, v1,#glob)

r̂ ` 〈µ̂, ê〉 ⇓ 〈µ′, v〉
r ` 〈µ, e0(e1)i〉 ⇓ 〈µ′, v〉

Method Call
r ` 〈µ, e0〉 ⇓ 〈µ0, r0〉 r ` 〈µ0, e1〉 ⇓ 〈µ1,m1〉 r ` 〈µ1, e2〉 ⇓ 〈µ2, v2〉

rm = Proto(µ2, r0,m1) rf = µ2(rm ·m1) 〈µ̂, ê, r̂〉 = NewScope(µ2, rf , v2, r0)
r̂ ` 〈µ̂, ê〉 ⇓ 〈µ′, v〉

r ` 〈µ, e0[e1](e2)i〉 ⇓ 〈µ′, v〉

Conditional
r ` 〈µ, ê〉 ⇓ 〈µ̂, v̂〉

v̂ 6∈ Falsy⇒ i = 0 v̂ ∈ Falsy⇒ i = 1
r ` 〈µ̂, ei〉 ⇓ 〈µ′, v〉

r ` 〈µ, ê ? (e0) : (e1)〉 ⇓ 〈µ′, v〉

Sequence
r ` 〈µ, e0〉 ⇓ 〈µ0, v0〉
r ` 〈µ0, e1〉 ⇓ 〈µ1, v1〉
r ` 〈µ, e0, e1〉 ⇓ 〈µ1, v1〉

Object Literal
r′ = fresh()

µ′ = µ [r′ 7→ ["_prot_" 7→ null]]

r ` 〈µ, { }i〉 ⇓ 〈µ′, r′〉

Function Literal
rf = fresh()

µ′ = µ [rf 7→ ["@fscope" 7→ r, "@code" 7→ λx. {var y1, · · · , yn; e}]]
r ` 〈µ, functioni(x){var y1, · · · , yn; e}〉 ⇓ 〈µ′, r′〉

Figure 2.2: A Big-Step Semantics for Core JavaScript

• The Rule [Value] simply evaluates a value to itself.

• The Rule [This] evaluates the keyword this to the reference bound to the property "@this"
of the active scope object.

• The Rule [Variable] starts by looking-up in the current scope-chain the reference of the
scope-object that defines a binding for the variable x - rx. Then, it returns the value with
which that scope object associates "x" (the string that corresponds to the name of x).



2.4. Formal Semantics 19

• The Rule [Binary Operation] starts by sequentially evaluating the two subexpressions of
the current expression, thereby obtaining two values v0 and v1. The expression evaluates
to the result of applying the corresponding binary operation to v0 and v1.

• The Rule [Variable Assignment] starts by evaluating the expression to be assigned,
thereby obtaining a value v. This value is then assigned to the property matching the
variable to which the value is assigned in the scope object that defines a binding for it.

• The Rule [Property Look-up] starts by sequentially evaluating the two subexpressions
of the current expression, thereby obtaining the reference to the object whose property is
being inspected (r0) and the string corresponding to the property’s name (m1). Then, the
semantics looks for the object that defines m1 in the prototype-chain of the object pointed
to by r0. If that object exists, the semantics yields the value with which it associates
property m1. Otherwise, the semantics yields undefined.

• The Rule [Membership Testing] starts by sequentially evaluating the two subexpressions
of the current expression, thereby obtaining a reference to an object r1 and a string m0.
Then the semantics checks whether any of the objects in the prototype-chain of the object
pointed to by r1 defines a property named m0. If that is the case, the expression evaluates
to true. Otherwise, it evaluates to false. It is important to note that the rule [Membership
Testing] cannot be simulated by the Rule [Property Look-up], because a property look-
up cannot distinguish the case in which an object defines a given property but maps it to
the value undefined from the case in which an object does not define a given property.

• The Rule [Property Assignment] starts by sequentially evaluating the three subexpres-
sions of the current expression, thereby obtaining the reference to the object whose prop-
erty is being updated/created (r0), the string corresponding to the property’s name (m1),
and the value that is to be assigned to it (v2). Then, the semantics sets the value of the
property m1 in the object pointed to by r0 to v2 in the resulting memory. This is done
by setting r0 to point to an object that coincides with µ2(r0) in every property except for
m1, which is set to point to v2.

• The Rule [Property Deletion] starts by sequentially evaluating the two subexpressions
of the current expression, thereby obtaining the reference to the object whose property is
to be deleted (r0) and the string corresponding to the property’s name (m1). Then, the
semantics removes m1 from the domain of the object pointed to by r0. Note that programs
are not allowed to delete the property "_prot_" of any given object.

• The Rule [Function Call] starts by sequentially evaluating the two subexpressions of the
current expression, thereby obtaining the reference pointing to the function object of the
function to be executed (r0) as well as the value to be used as its argument (v1). Then,
the semantics allocates a new scope object and executes the body of the function in the
updated memory. Observe that during the execution of the function’s body the keyword
this is bound to the reference pointing to the global object.

• The Rule [Method Call] starts by sequentially evaluating the three subexpressions of the
current expression, thereby obtaining the reference to the object on which the method
is called (r0), the method’s name (m1), and the value to be used as an argument v2.
Then, the semantics finds the reference pointing to the object in the prototype-chain of
the one pointed to by r0 that actually implements the method named m1 and obtains
the function object corresponding to that method (stored in reference rf ). Finally, the
semantics allocates a new scope object and executes the body of the method in the updated
memory.



20 Chapter 2. Core JavaScript

• The Rule [Conditional Expression] starts by evaluating the guard of the conditional
expression, thereby obtaining a value – v̂. Then, the semantics checks whether v̂ is a falsy
value [Crockford 2008], that is whether v̂ ∈ Falsy = {null, undefined, false, 0}. If v̂ is not
a falsy value, the then-branch of the conditional is executed. If it is, the else-branch is
executed.

• The Rule [Sequence] sequentially evaluates its two subexpressions.

• The Rule [Object Literal] allocates a new object literal in memory. The new object in a
new reference and does not have any properties besides "_prot_", which is originally set
to null.

• The Rule [Function Literal] allocates a new function object in memory. The property
"@code" of the new function object stores the parsed counterpart of the corresponding
function literal and the property "@fscope" stores the reference of the scope object that
was active when the function literal was evaluated.

2.5 Related Work

The popularity of JavaScript as a language for developing client-side web applications has
been steadily increasing in recent years. This increase in popularity has pushed forward a
lot of research in both static and runtime analyses for JavaScript such as: type checking
and type inference algorithms [Thiemann 2005, Anderson 2005, Jensen 2009], points-to anal-
ysis [Jang 2009], CPS-transformations [Luo 2012, Clements 2008] among others. Most of the
analyses for JavaScript in the literature have been designed for different JavaScript-like lan-
guages, which capture different aspects of the real language. However, the great majority con-
sists of a core lambda calculus extended with objects supporting prototype-based inheritance and
imperative constructs. Some of these works also feature programming constructs for handling
exceptions and implicit type coercions [Thiemann 2005].

Maffeis et al. [Maffeis 2008] have been the first to propose a semantics for the full ECMA-262
Standard, 3rd Edition [3rd edition of ECMA 262 1999]. The proposed semantics is small-step
and models the binding of variables in memory using scope objects. More recently, Bodin
et al. [Bodin 2013] have presented a formalisation of the current version of the ECMA stan-
dard [5th edition of ECMA 262 2011] in the Coq proof assistant as well as a JavaScript inter-
preter that has been proven correct with respect to the authors’ specification. Furthermore, they
have validated their interpreter using test262, the ECMA conformance test suite. In contrast
to [Maffeis 2008], the formal semantics presented in [Bodin 2013] is big-step. This fact allows the
authors to closely follow the informal specification, thereby maintaining what they call an eyeball
correspondence between the standard and its formalisation in the Coq proof assistant. In order
to overcome the typical drawbacks of big-step semantics (related to the handling of exceptions
and divergence), the authors follow the pretty big-step style of Charguéraud [Charguéraud 2013].
Another important difference between these two semantics is that the authors of [Bodin 2013]
model scope using environment records instead of scope objects. An environment record can
be either a declarative environment record or an object environment record. While declarative
environment records provide the local scoping associated with function calls, object environment
records provide the dynamic scooping associated with the use of the construct with.

Also with the goal of reasoning precisely about real JavaScript programs, Guah et
al. [Guha 2010] have followed, however, a completely different approach from the works men-
tioned above. They have proposed λJS – a lambda calculus enriched with some of the most
important JavaScript features, such as objects, prototype-based inheritance and constructs for



2.6. Discussion 21

handling exceptions, which the authors claim to capture the essence of JavaScript. Further-
more, they provide a de-sugaring transformation that compiles arbitrary JavaScript programs
into λJS as well as an interpreter for λJS programs. These artefacts allowed them to validate
their semantics and de-sugaring transformation by testing them against the test262 and Mozilla
test suites.

The formal semantics presented in this chapter is heavily inspired by that of Maffeis et
al. [Maffeis 2008]. Concretely, it keeps some of its main design features, such as the use of scope
objects for the modelling of the binding of variables. However, the size and complexity of the
semantics of Maffeis et al. (which occupies more than eighty pages) make it very hard to use it
for formally reasoning about the security properties of JavaScript programs. Hence, we opted
for the use of a simplified version of this semantics, which retains, in our opinion, the most
challenging features of the language in terms of information flow control.

2.6 Discussion

2.6.1 Modelling the Binding of Variables

JavaScript is not statically scoped in the sense that, in general, it is not possible to know
statically in which scope we can find a property/variable. Consider, for instance, the following
JavaScript program:

var x, y, obj0, obj1;
x = 0;
obj0 = { };
obj1 = { };
obj1.x = 1;
obj0._proto_ = obj1;
with(obj0){ y = x; }

(2.3)

After the execution of this program y is assigned to 1 and not to 0, because the construct with
construct adds the object bound to obj0 to the front of the current scope-chain, executes the as-
signment and then restores the scope-chain to its original state. Furthermore, since scope objects
are allowed to have prototypes, the scope-chain inspection procedure traverses the prototype-
chain of every scope object before going on to the next scope object. However, the current
version of the specification [5th edition of ECMA 262 2011] is statically scoped when in strict
mode, since it does not allow for the use of the most dynamic features of the language, such as
the with construct.

Since scope objects are assumed not to have a prototype and since we do not include the
JavaScript with construct, Core JavaScript programs are statically scoped. This means that
we could have modelled the binding of variables using substitution, as in other works targeting
subsets of the whole language, as [Guha 2010]. However, we have chosen to model scope using
scope objects, as in [Maffeis 2008], for two main reasons. First, we envisage to extend the
model to deal with a larger subset of the language, which may not be statically scoped. Second,
modelling the binding of variables as the binding of properties allows us to simplify the definition
of the security property for Core JavaScript, because we can treat variables and properties
uniformly.





Chapter 3

Defining Secure Information Flow in
Core JavaScript

Contents
3.1 Challenges for IFC in Core JavaScript . . . . . . . . . . . . . . . . . . . . 23
3.2 The Attacker Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Low-Equality for Values and Sequences of Values . . . . . . . . . . . . . . . 26
3.3 Noninterferent Allocator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.1 Toward an Attacker Model for the ECMA Standard . . . . . . . . . . . . . 28
3.5.2 Further Remarks on the Structure Security Level . . . . . . . . . . . . . . . 29

This chapter proposes a noninterference definition for Core JavaScript, which is in turn
used to define what it means for a program to be secure. As a first step toward the definition
of noninterference, we show how to label resources in Core JavaScript with security levels.
Intuitively, a security labelling for a given memory establishes, for each security level, what parts
of that memory are visible by an an attacker at that level. This is not easy to define since
not only are the contents of the memory visible to an attacker, but also the structure of these
contents. We use the term security policy for the pair consisting of a lattice of security levels
and a security labelling. In the examples, we use the lattice L = {H,L} with L v H and
H 6v L, meaning that resources labelled with L (low) are less confidential than those labelled
with H (high). Hence, H-labelled resources may depend on L-labelled resources, but not the
contrary, as that would entail a security leak. We use u and t for the least upper bound (lub)
and greatest lower bound (glb), respectively. And we use ⊥ and > for the bottom level and the
top level, respectively.

3.1 Challenges for IFC in Core JavaScript

This section reviews the main challenges that are raised by the particular features of the language
when defining a notion of secure information flow. These challenges are especially relevant to
the definition of security labelling for a Core JavaScript memory. Indeed, a security labelling
must capture all the possible ways in which an attacker can use the constructs of the language
to reveal the contents of a given memory.

Extensible Objects As discussed earlier, in Core JavaScript, the programmer can dynam-
ically add and remove properties from objects. In fact, objects are commonly used as tables
whose keys are computed at runtime. Hence, in many contexts, it is not realistic to expect the
programmer to statically know the properties of the objects that are created at runtime. How-
ever, security-wise, the programmer often knows the security level of the contents of an object



24 Chapter 3. Defining Secure Information Flow in Core JavaScript

even when its actual properties are not known. For instance, in the Contact Manager example,
the precise structure of contact_list cannot be statically known because contacts are to be
specified dynamically by the user. Nevertheless, the programmer should be allowed to specify a
security policy stating, for example, that the e-mail address of every contact in contact_list
is confidential and therefore of level H.

Leaks via Prototype Mutations The fact that a prototype of an object is allowed to change
at runtime may be exploited to encode security leaks. In order to illustrate this, let us return to
the example of the Contact Manager (given in Section 2.2). Suppose that the first and last names
of a contact are of level L and that we create a new object, bound to CM.proto_contact_new,
to be used as the prototype of contact objects, that prints contacts in a different way:

CM.proto_contact_new.printContact = function() {this.fst + " " + this.lst} (3.1)

The output of printContact is low for the original and new methods, since, in both cases, it
only discloses information at level L. However, the expression:

h ? c["_prot_"] = CM.proto_contact_new,
l = c.printContact()

(3.2)

encodes an information flow from an H-labelled resource to an L-labelled resource because,
depending on the value of the high variable h, it changes the prototype of the contact bound
to c and therefore the behaviour of printContact, which is supposed to generate a low out-
put. Concretely, depending on the value of h, the attacker sees the contact printed as either
last_name, first_name or as first_name last_name. Hence, an information flow control
mechanism must be able to detect that the choice of which method to apply in the evaluation
of c.printContact() effectively depends on H-labelled information.

Leaks via the Checking of the Existence of Properties In Core JavaScript, a program
can dynamically add and remove properties from objects. Furthermore, a program can check
whether a property is defined in the prototype-chain of an object using the membership testing
construct. Thus, the mere existence of a property in the domain of an object may disclose
confidential information. For instance, suppose that the user of the contact manager does not
want to disclose which are his favourite contacts. In this case, the existence of the property
favourite in a contact object should be confidential. However, the fact that the value associated
with a property is confidential does not imply that its existence is confidential. Suppose that
the e-mail addresses of the contents are supposed to be confidential. This does not mean that
the existence of the property email in a contact should be confidential. In fact, since all contact
objects define a property email that is not supposed to be deleted, the existence of that property
does not reveal any confidential information.

Leaks via the Global Object In Core JavaScript functions can be invoked using function
calls or method calls. During the execution of a method call, the keyword this is bound to
the object on which the method was invoked. However, during the execution of a function
call, the keyword this is bound to the global object (the object whose properties are the global
variables of the program). Hence, it is possible to encode insecure information flows regarding
confidential global variables using the keyword this inside a function. For instance, the
program function() {l = this.cookie}() produces the same effect as l = cookie. Dynamic
information flow control mechanisms are able to prevent this type of leak very simply, since it
amounts to check whether the keyword this is bound to the global object. In contrast, static
mechanisms for information flow control face a much more difficult challenge, since it is very



3.2. The Attacker Model 25

difficult to determine statically whether the keyword this may be bound to the global object in
a given program point.

3.2 The Attacker Model

In order to formally characterize the observational power of an attacker, we define a notion of
low-projection of a memory at a given security level σ [Almeida Matos 2009]. The low-projection
of a memory at a given security level σ corresponds to the part of that memory that an attacker
at level σ can see.

We start by formally defining a security labelling as a tuple Σ = 〈Σ0,Σ1,Σ2〉 composed
of three partial functions Σ0 : Ref 7→ L, Σ1 : Ref 7→ Str 7→ L, and Σ2 : Ref 7→ Str 7→ L
respectively called object labelling, property-value labelling, and property-existence labelling and
described below.

• The object labelling Σ0 maps each reference in its domain to the security level associated
with the object to which it points, called object level. Intuitively, the fact that an object
has a visible object level means that its existence is observable.

• The property-value labelling Σ1 maps each pair in its domain consisting of a reference
and a property name to the value level of that property in the object pointed to by that
reference. Intuitively, the fact that the property p of the object pointed to by reference r
has a visible value level means that the value associated with that property in that object
is observable.

• The property-existence labelling Σ2 maps each pair in its domain consisting of a reference
and a property name to the existence level [Hedin 2012] of that property in the object
pointed to by that reference. Intuitively, the fact that the property p of the object pointed
to by reference r has a visible existence level means that the existence of that property in
that object is observable.

In the following, we use Lab to denote the set of security labellings. Given a labelling Σ, we
denote by Σ.obj, Σ.val, and Σ.exist the corresponding object labelling, property-value labelling,
and property-existence labelling. Consequently, given an object o pointed to by a reference r, a
labelling Σ, and a property name p: (1) Σ.obj(r) is the object level of o, (2) Σ.val(r · p) is the
value level of o’s property p, and (3) Σ.exist(r · p) is the existence level of o’s property p. Since
not all program resources need to be labelled, a security labelling may be partial. However,
there are some criteria it must verify. Namely, we say that memory µ is well-labelled by Σ if:
dom(Σ.obj) = dom(Σ.val) = dom(Σ.exist) ⊆ dom(µ) and for every reference r ∈ dom(Σ.obj),
@dom(Σ.val(r)) = @dom(Σ.exist(r)) ⊆ @dom(µ(r)).

Definition 3.1 formalises the notions of low-projection and of low-equality. Informally, given
a security labelling Σ, an attacker at level σ can see:

• the existence of the objects whose object levels are v σ,

• the existence of properties in visible objects whose existence levels are v σ,

• the values associated with visible properties in visible objects whose value levels are v σ.

Definition 3.1 (Low-Projection and Low-Equality for Core JavaScript Memories). The low-
projection of a memory µ w.r.t. a security level σ and a labeling Σ is given by:

µ �Σ,σ= {(r,Σ.obj(r)) | Σ.obj(r) v σ}
∪ {(r, p,Σ.exist(r · p)) | Σ.obj(r) t Σ.exist(r · p) v σ ∧ p ∈ @dom(µ(r))}
∪ {(r, p, v,Σ.val(r · p)) | Σ.obj(r) t Σ.exist(r · p) t Σ.val(r · p) v σ ∧ p ∈ @dom(µ(r))}



26 Chapter 3. Defining Secure Information Flow in Core JavaScript

Two memories µ0 and µ1, respectively labelled by Σ0 and Σ1 are said to be low-equal at security
level σ, written µ0,Σ0 ∼σ µ1,Σ1 if they coincide in their respective low-projections, µ0 �Σ0,σ=
µ1 �Σ1,σ.

Returning to the Contact Manager example, suppose the user wants to enforce a security
policy such that only the e-mails of the stored contacts and the identity of the favourite contacts
should be of level H. Everything else should be set to L. Figure 3.1 presents the memory
resulting from the execution of the program below:

x = CM.createContact("Jane", "Doe", "jane.d@gmail.com"),
y = CM.createContact("John", "Doe", "john.d@gmail.com"),
CM.storeContact(x, 0),
CM.storeContact(y, 0),
makeFavorite(x)

(3.3)

together with its low-projection at level L. Remark that, while the values of both e-mail ad-
dresses are hidden, their existence remains visible. In contrast, the property favourite is
removed from the contact object of Jane.

3.2.1 Low-Equality for Values and Sequences of Values

In order to ease the presentation of the results of the following chapters, we define a notion of
low-equality for labelled values and for labelled sequences of values. A labelled value is simply
a pair consisting of a value and a security level. Analogously, a labelled sequence of values is a
sequence of values paired up with a sequence of security levels. Each level in the sequence of
levels labels that occupies the same position in the sequence of values.

Informally, two values v0 and v1 respectively labelled by σ0 and σ1 are said to be low-equal
at level σ, written v0, σ0 ∼σ v1, σ1, if either they are both observable and coincide or they are
both unobservable. This notion is formalised in Definition 3.2.

Definition 3.2 (Low-Equality for Labelled Values). Two values v0 and v1 respectively labelled
by the security levels σ0 and σ1 are low-equal at a security level σ, written v0, σ0 ∼σ v1, σ1, if
and only if it holds that: v0 = v1 ∧ σ0 = σ1 v σ ∨ σ0 u σ1 6v σ.1

Definition 3.3 extends the definition of low-equality for labelled values to sequences of labelled
values. Informally, two sequences of labelled values are low-equal at a given security level if they
are low-equal point-wise. Furthermore, if two sequences of labelled values are low-equal at a
given security level, either they have the same number of elements, or the extra elements of the
sequence with more elements are not observable.

Definition 3.3 (Low-Equality for Sequences). Two sequences of values −→v 0 and −→v 1 respectively
labelled by two sequences of security levels −→σ 0 and −→σ 1 are said to be low-equal with respect to a
security level σ, written −→v 0,

−→σ 0 ∼σ −→v 1,
−→σ 1 if the following hold:

• ∀0≤i<n
−→σ 0(i) u −→σ 1(i) v σ ⇒ −→v 0(i) = −→v 1(i) ∧ −→σ 0(i) = −→σ 1(i) v σ,

• ∀n<i<|−→v 0|
−→σ 0(i) 6v σ, and

• ∀n<j<|−→v 1|
−→σ 1(j) 6v σ

where n = min(|−→v 0|, |−→v 1|).
1This formula can be equivalently re-written as (σ0 v σ ∨ σ1 v σ) ⇒ (σ0 = σ1 v σ ∧ v0 = v1).



3.2. The Attacker Model 27

• proto_contactL

• contact_listL

• printContactL

• makeFavoriteL

• isFavoriteL

• Doe0L

• Doe1L

• fstL

• lstL

• emailL

• favoriteH

•_proto_ L

Jane L

Doe L

jane.d@gmail.comH

null H

. … 

…

• @code

• @scope

. … 

…

• @code

• @scope

. … 

…

• @code

• @scope

• fstL

• lstL

• emailL

•_proto_ L

JohnL

DoeL

john.d@gmail.comH

L

L

L

L

L

• unfavoriteL . … 

…

• @code

• @scope

L

L

L

L

λx

λx

λx

λx

• proto_contactL

• contact_listL

• printContactL

• makeFavoriteL

• isFavoriteL

• Doe0L

• Doe1L
• fstL

• lstL

• emailL

•_proto_ L

JohnL

DoeL

L

L

L L

• unfavoriteL

. … 

…

• @code

• @scope

. … 

…

• @code

• @scope

. … 

…

• @code

• @scope

. … 

…

• @code

• @scope

L

L

L

L

λx

λx

λx

λx

L

L
L

Jane L

Doe L
• fstL

• lstL

• email

•_proto_ 

Figure 3.1: A labelled memory and its low-projection



28 Chapter 3. Defining Secure Information Flow in Core JavaScript

3.3 Noninterferent Allocator

Throughout the thesis, we always assume that object allocators are deterministic. However, it
must be possible to relate references created in low contexts in different executions. To this
end, the definition of object allocator must be modified so that the allocator is given additional
information. A parametric object allocator is now defined as a function fresh : L → Ref that
receives as input a security level σ and outputs a new reference. The security level given as
input to the object allocator is referred to as the level of the allocation. Intuitively, when an
allocation takes place in a high context, it is given a high security level. And, when an allocation
is performed in a low context, it is given a low security level.

We do not give the specification of a concrete object allocator. Moreover, we assume that
the object allocator has an internal state for recalling how many times it was invoked at each
security level (and which were the references generated by the allocation). Throughout the
thesis, we assume that allocators are such that: the allocation at level σ of an object in two
memories that are low-equal at level σ yields the same reference.

3.4 Related Work

Since the seminal works of Bell and La Padula and Denning [Bell 1976, Denning 1976], the
classical approach to secure information flow is to use a lattice of secure levels and a security
labelling that maps resources to security levels. The ordering relation on the security levels
establishes which are the legal information flows. Information is allowed to move up in the
security lattice (from low-labelled resources to high-labelled resources), but not down. This
property was first formally stated via a notion strong dependency by Cohen in [Cohen 1977],
and later referred to as noninterference by Goguen and Messeguer in [Goguen 1982].

In general, one can view noninterference as a class of properties that state how the ex-
ecution of a program is allowed to propagate dependencies between the resources on which
it operates. In order to instantiate noninterference to a concrete programming language, one
must start by defining how to label program states. While simple imperative languages only
require a very simple labelling strategy [Volpano 1996], more complex languages may require
sophisticated labelling strategies whose details heavily depend on the features of the targeted
language [Banerjee 2002].

Hedin et al [Hedin 2012] have been the first to propose an information flow monitor for
a realistic core of JavaScript. They introduce the notion of existence levels to deal with the
constructs for the checking of the existence of properties. They further introduce the notion
of structure security level (SSL), which corresponds to an upper bound on the existence levels
of the properties of an object. Hence, if an object o has a low SSL, one can only change its
structure (either by adding properties to o or removing properties from o) in low contexts.

3.5 Discussion

3.5.1 Toward an Attacker Model for the ECMA Standard

The attacker model we present here fits the expressiveness of Core JavaScript. The Ecma
standard [5th edition of ECMA 262 2011], however, allows for other types of attacks. Namely,
in JavaScript, an attacker can explore time-based covert channels [Agat 2000] to encode illegal
information flows, which is not the case in Core JavaScript. Consider, for instance, the program



3.5. Discussion 29

below:

l1 = (new Date()).getTime(),
if (h){

//do meaningless time-consuming operations
}
l2 = (newDate()).getTime()− l1

(3.4)

where the expression new Date() evaluates to an object that represents the current date, which,
in turn, implements a method getTime that outputs the time in milliseconds since 1970/01/01.
After the execution of this program, the value of l2 depends on the initial value of the high
variable h. Therefore, information flow control mechanisms targeting the full Ecma standard
must be able to detect these types of flows.

3.5.2 Further Remarks on the Structure Security Level

It is important to emphasise that the structure security level [Hedin 2012] is not a key element
for the characterisation of the attacker model inherent to JavaScript, but rather a device of the
authors’ enforcement mechanism. The need for the SSL arises from the fact that the existence
levels are not established a priori. Hence, the SSL plays the role of the existence level of the
properties that are not associated with an existence level. Accordingly, the level associated with
the look-up of a property that does not have an existence level is the SSL. Consider the following
example:

o = { },
h ? (o.xpto = 0),
l = "xpto" in o

(3.5)

This program encodes an implicit flow from the high variable h to the low variable l via the
existence of property "xpto" in the object bound to o. Now suppose we want to design a
dynamic mechanism for enforcing secure information flow in Core JavaScript. When executing
this program starting from a memory that maps h to 1, this implicit flow can be easily detected,
since the existence level of property "xpto" is H (as it was created in a high context). However,
when h is initially set to 0, it becomes impossible for a dynamic mechanism to identify the
implicit flow via the existence level of property "xpto", simply because it does not exist. In
order to solve this problem, Hedin et al have introduced the notion of structure security level.
The idea is to use this level as the existence level of the properties that do not exist. This
means that the structure security level establishes an upper bound on the levels of the contexts
in which one is allowed to change the domain of an object (either by adding new properties or
removing existing ones). However, as shown here, this level is not needed to characterise the
observational power of an attacker in Core JavaScript, but it is rather a design strategy used by
dynamic enforcement mechanisms.





Chapter 4

Dynamic Information Flow Control in
Core JavaScript

Contents
4.1 Monitoring Secure Information Flow in Core JavaScript . . . . . . . . . 32

4.1.1 Controlling Implicit Flows and the No-Sensitive-Upgrade Discipline . . . . 37
4.1.2 The Structure Security Level . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.3 Preventing Security Leaks via Prototype Mutations . . . . . . . . . . . . . 40
4.1.4 Tracking the Level of the Program Counter . . . . . . . . . . . . . . . . . . 41
4.1.5 Monitor Noninterference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Monitor-Inlining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Malicious Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Formal Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

As JavaScript is a highly dynamic language, it comes as expected that research efforts di-
rected towards defining mechanisms that would check the noninterference of JavaScript programs
predominantly feature dynamic approaches, such as information flow monitors [Austin 2012,
Hedin 2012] and secure multi-execution [Devriese 2010]. In practice, there are two main ways
one could implement a JavaScript information flow monitor: either one modifies a JavaScript
engine so that it additionally implements the security monitor (as in [Hedin 2012]), or one in-
lines the monitor into the original program (as in [Magazinius 2012, Chudnov 2010]). We have
chosen to follow the second approach, which has the advantage of being browser-independent.

This chapter presents a compiler that inlines an information flow monitor for Core JavaScript.
The proposed compiler is proven sound with respect to a standard definition of input-output
termination insensitive noninterference for monitors. Informally, we prove that the execution of
a compiled program goes through only if that execuction is secure; otherwise, the constraints
inlined in the program by the compiler will cause it to diverge.

More specifically, we start by presenting an information flow monitored semantics for Core
JavaScript that is proven sound, i.e. proven to enforce termination-insensitive noninterference.
The proposed monitored semantics differs from a previous monitor for enforcing secure infor-
mation flow in a realistic core of JavaScript [Hedin 2012] in that it was specifically designed
to serve as guide for the implementation of an inlining compiler, rather than for a browser in-
strumentation. Then, we present an inlining compiler that rewrites Core JavaScript programs
in order to simulate their execution in the monitor. The compiler is proven correct, meaning
that the execution of a program goes through in the monitor if and only if the execution of its
instrumentation by the inlining compiler goes through in the original semantics. In order for
this to be achieved, security labelling is instrumented in the memory of the program, giving rise



32 Chapter 4. Dynamic Information Flow Control in Core JavaScript

Figure 4.1: Monitored Execution of Program vs. Unmonitored Execution of Compilation

to a similarity relation between labelled memories and instrumented memories. As illustrated in
Figure 4.1, given a labelled memory and its instrumented counterpart, the monitored execution
of the original program in the labelled memory and the standard execution of its compilation
in the instrumented memory always yield two memories that are similar. We have implemented
a prototype of the proposed compiler, which supports a subset of JavaScript semantics larger
than the one modelled in Core JavaScript and which is available at [Fragoso Santos 2014].

Outline. This chapter is structured as follows: In Section 4.1, we present an information
flow monitored semantics for Core JavaScript that is proven sound, i.e. proven to enforce
termination-insensitive noninterference. Section 4.2 features an inlining compiler that rewrites
Core JavaScript programs in order to simulate their execution in the monitor. In Section 4.3
we provide a discussion on related work, whereas in Section 4.4, we elaborate on certain details
regarding the implementation of the compiler.

4.1 Monitoring Secure Information Flow in Core JavaScript

In this section, we present a monitored semantics for dynamically enforcing secure information
flow in Core JavaScript. The security monitor we present is flow-sensitive, purely dynamic and
follows the no-sensitive-upgrade discipline of Zdancewic [Zdancewic 2002, Austin 2009].

The monitored execution of an expression e in a memory µ paired up with a security labelling
Σ can be interpreted as an extension of the unmonitored execution of e in µ that additionally
performs the abstract execution of e in Σ [Hunt 2006]. In this sense, we can view Σ as an abstract
memory. While the standard execution of e in µ produces a value, its abstract execution in Σ
generates a security level σ, which is called the reading effect of e [Sabelfeld 2003a]. The reading
effect of e corresponds to the least upper bound on the levels of the resources on which the value
to which e evaluates depends. The rules of the monitored semantic relation, ⇓IF , are defined in
Figures 4.3 and 4.4. The semantic rules have the form r, σpc ` 〈µ, e,Σ〉 ⇓IF 〈µ′, v,Σ′, σ〉, where:

• σpc is the security level of the program counter, that is, the security level of the current
execution context,

• Σ and Σ′ are the initial and final security labellings, and

• σ is the reading effect of e.

All the remaining elements keep their original meaning. For simplicity, the monitor was designed
in such a way that the reading effect of an expression is always higher than or equal to the level



4.1. Monitoring Secure Information Flow in Core JavaScript 33

of the context in which it was evaluated. For clarity, in the specification of each semantic rule,
we use:

• light grey for the parts of the rule that coincide with the unmonitored semantics,

• orange for the labelling updates,

• red for the constraints.

The security level associated with checking the existence of a given property in a given object
is the corresponding existence level. It is natural for a dynamic enforcement mechanism to set
the existence level of a given property to the level of the context in which it was created. This,
however, raises the problem of deciding which is the existence level of the properties that do not
exist yet. For instance, suppose a program checks whether an object o defines a given property
p. If p is in the domain of o, the security level of the result should be the existence level of p.
But what if p is not in the domain of o? To cope with this issue, each object is associated with
a default existence level that acts as the existence level of the properties that do not exist yet
and which is called structure security level [Hedin 2012]. Hence, in the previous example, when
p is not in the domain of o, the level of the result should be the structure security level of o.

To keep track of the structure security levels of the objects in memory, dynamic security
labellings are extended with a fourth element, called the structure security labelling, which maps
each object reference to the structure security level of the corresponding object. Furthermore,
we assume that object literals are annotated with their corresponding structure security levels.
Given a security labelling Σ, we denote the corresponding structure security labelling by Σ.struct.

In order to simplify the specification of the monitor, we introduce a group of functions to
update security labellings, which are presented in Figure 4.2 and are briefly described below:

• updt(Σ, (r, p), (σ, σ′)) outputs the security labelling obtained from Σ by setting the value
level of the property p in the object pointed to by r to σ′. Furthermore, if this object does
not define p, its existence level is set to σ.

• contract(Σ, r, p) outputs the security labelling obtained from Σ by removing the existence
level and the value level of the property p in the object pointed to by r.

• extend(Σ, r, σo, σs) outputs the security labelling obtained from Σ when allocating a new
object in the reference r with object level σo and structure security level σs.

In the following we give a brief description of the rules of the monitored semantics. We
ignore by now some important aspects of the monitor, such as the constraints that it enforces,
which are carefully discussed in the following subsections. As a general remark, if a rule does
not change the memory, it also does not change the security labelling.

• [Value] The reading effect of a value is simply the level of the program counter.

• [This] The reading effect of the expression this is the lub between the level of the program
counter and the value level of the internal property "@this" of the current scope object.

• [Variable] The reading effect of a variable x is the lub between the level of the program
counter and the value level of the property mx of the scope object that defines a binding
for x in the current scope-chain (where mx = string(x)).

• [Binary Operation] The reading effect of a binary operation e0 op e1 is simply the lub
between the reading effects of e0 and e1. It is important to emphasise that both the reading
effect of e0 and the reading effect of e1 are already higher than or equal to the level of the
program counter. Hence, the reading effect of e0 op e1 is also higher than or equal to the
level of the program counter.



34 Chapter 4. Dynamic Information Flow Control in Core JavaScript

Labelling Update
p ∈ dom(Σ.exist(r))⇒ Σexist = Σ.exist

p 6∈ dom(Σ.exist(r))⇒ Σexist = Σ.exist[r · p 7→ σ]
Σval = Σ.val[r · p 7→ σ′]

updt(Σ, (r, p), (σ, σ′)) = 〈Σ.obj,Σval,Σexist,Σ.struct〉

Labelling Contraction
P = @dom(Σ.exist(r))\{p} Σval = Σ.val [r 7→ Σ.val(r)|P ]

Σexist = Σ.exist [r 7→ Σ.exist(r)|P ]

contract(Σ, r, p) = 〈Σ.obj,Σval,Σexist,Σ.struct〉

Labelling Extension
Σobj = Σ.obj [r 7→ σo] Σval = Σ.val [r 7→ [ ]]

Σexist = Σ.exist [r 7→ [ ]] Σstruct = Σ.struct [r 7→ σs]

extend(Σ, r, σo, σs) = 〈Σobj ,Σval,Σexist,Σstruct〉

Figure 4.2: Meta-Functions for Updating Security Labellings

• [Variable Assignment] The reading effect of a variable assignment x = e0 is simply the
reading effect of e0, which is already higher than or equal to the level of the program
counter. This rule also sets the value level of the property mx of the scope object that
defines a binding for x in the current scope-chain to the reading effect of e0 (where mx =
string(x)). The existence level of mx in that scope-object remains unchanged, because mx

already exists in the scope object that defines a binding for it. The constraint of this rule,
as all the other constraints, is explained in Subsection 4.1.1.

• [Property Look-up] The reading effect of a property look-up e0[e1] is the lub between: (1)
the reading effects of e0 and e1, (2) the level of the prototype-chain inspection procedure
(explained in Subsection 4.1.3), and (3) the value level of the property m1 (obtained from
the evaluation of e1) of the object that defines a binding for it in the prototype-chain of
the object pointed to by r0 (obtained from the evaluation of e0), provided that such an
object exists.

• [Membership Testing] The reading effect of a membership testing expression e0 in e1

is the lub between: (1) the reading effects of e0 and e1, (2) the level of the prototype-
chain inspection procedure (explained in Subsection 4.1.3), and the existence level of the
property m0 (obtained from the evaluation of e0) of the object that defines a binding for
it in the prototype-chain of the object pointed to by r1 (obtained from the evaluation of
e1), provided that such an object exists.

• [Property Assignment] The reading effect of a property assignment e0[e1] = e2 is simply
the reading effect of e2. This rule also sets the value level of property m1 (obtained from
the evaluation of e1) of the object pointed to by r0 (obtained from the evaluation of e0) to
the lub between the reading effects of the three subexpressions. If the property assignment
is a property creation (meaning that m1 is not already defined by the object pointed to
by r0), the existence level of m1 in the object pointed to by r0 is set to the lub between
the reading effects of e0 and e1.

• [Property Deletion] The reading effect of a property deletion delete e0[e1] is simply the
level of the program counter, as a property deletion does not reveal any information about



4.1. Monitoring Secure Information Flow in Core JavaScript 35

Value
r, σpc ` 〈µ, v,Σ〉 ⇓IF 〈µ, v,Σ, σpc〉

This
rthis = µ(r · "@this") σthis = Σ.val(r · "@this") t σpc

r, σpc ` 〈µ, this,Σ〉 ⇓IF 〈µ, rthis,Σ, σthis〉

Variable
rx = Scope(µ, r, x) rx 6= null

mx = string(x) σ = Σ.val(rx ·mx) t σpc
r, σpc ` 〈µ, x,Σ〉 ⇓IF 〈µ, µ(rx ·mx),Σ, σ〉

Binary Operation
∀i=0,1 r, σpc ` 〈µi, ei,Σi〉 ⇓IF 〈µi+1, vi,Σi+1, σi〉

v′ = v0 op v1 σ′ = σ0 t σ1

r, σpc ` 〈µ0, e0 op e1,Σ0〉 ⇓IF 〈µ2, v
′,Σ2, σ

′〉

Variable Assignment
r, σpc ` 〈µ, e0,Σ〉 ⇓IF 〈µ0, v0,Σ0, σ0〉 rx = Scope(µ0, r, x) rx 6= null mx = string(x)

µ′ = µ0[rx ·mx 7→ v0] Σ′ = updt(Σ0, (rx,mx), (Σ0.exist(rx ·mx), σ0)) σpc v Σ0.val(rx ·mx)

r, σpc ` 〈µ, x = e0,Σ〉 ⇓IF 〈µ′, v0,Σ
′, σ0〉

Property Look-up
∀i=0,1 r, σpc ` 〈µi, ei,Σi〉 ⇓IF 〈µi+1, vi,Σi+1, σi〉
〈r′, σ′〉 = Proto(µ2, v0, v1,Σ2) σ′′ = σ0 t σ1 t σ′

r′ = null⇒ v = undefined ∧ σ = σ′′

r′ 6= null⇒ v = µ1(r′ ·m1) ∧ σ = σ′′ t Σ.val(r′ · v1)

r, σpc ` 〈µ0, e0[e1],Σ〉 ⇓IF 〈µ2, v,Σ2, σ〉

Membership Testing
∀i=0,1 r, σpc ` 〈µi, ei,Σi〉 ⇓IF 〈µi+1, vi,Σi+1, σi〉
〈r′, σ′〉 = Proto(µ2, v0, v1,Σ2) σ = σ0 t σ1 t σ′

r′ = null⇒ v = false
r′ 6= null⇒ v = true

r, σpc ` 〈µ0, e0 in e1,Σ〉 ⇓IF 〈µ2, v,Σ2, σ〉

Property Assignment
∀i=0,1,2 r, σpc ` 〈µi, ei,Σi〉 ⇓IF 〈µi+1, vi,Σi+1, σi〉 v0 ∈ Ref v1 ∈ Str
µ′ = µ3[v0 · v1 7→ v2] Σ′ = updt(Σ3, (v0, v1), (σ0 t σ1, σ0 t σ1 t σ2))

v1 ∈ dom(µ3(v0))⇒ σ0 t σ1 v Σ3.val(v0 · v1) v1 6∈ dom(µ3(v0))⇒ σ0 t σ1 v Σ3.struct(v0)

r, σpc ` 〈µ0, e0[e1] = e2,Σ〉 ⇓IF 〈µ′, v2,Σ
′, σ2〉

Property Deletion
∀i=0,1 r, σpc ` 〈µi, ei,Σi〉 ⇓IF 〈µi+1, vi,Σi+1, σi〉
v0 ∈ Ref v1 ∈ Str v0 ∈ dom(µ2(v1))

µ′ = µ2

[
v0 7→ µ2(v0)|dom(µ2(v0))\v1

]
Σ′ = contract(Σ2, v0, v1) σ0 t σ1 v Σ0.exist(v0 ·m1)

r, σpc ` 〈µ0, delete e0[e1],Σ0〉 ⇓IF 〈µ′, true,Σ′, σpc〉

Object Literal
ro = fresh(σpc) σ = σs t σpc
µ′ = µ [ro 7→ ["_prot_" 7→ null]]

Σ′ = extend(Σ, ro, σpc, σ)
Σ′′ = updt(Σ′, (ro, "_prot_"), (σ, σ))

r, σpc ` 〈µ, {}σs ,Σ〉 ⇓IF 〈µ′, ro,Σ′′, σpc〉

Conditional
r, σpc ` 〈µ, e,Σ〉 ⇓IF 〈µ̂, v̂, Σ̂, σ̂〉

v̂ 6∈ VF ⇒ i = 0 v̂ ∈ VF ⇒ i = 1

r, σpc t σ̂ ` 〈µ̂, ei, Σ̂〉 ⇓IF 〈µ′, v,Σ′, σ〉
r, σpc ` 〈µ, e ? (e0) : (e1) ,Σ〉 ⇓IF 〈µ′, v,Σ′, σ〉

Sequence
r, σpc ` 〈µ, e0,Σ〉 ⇓IF 〈µ0, v0,Σ0, σ0〉
r, σpc ` 〈µ0, e1,Σ0〉 ⇓IF 〈µ1, v1,Σ1, σ1〉
r, σpc ` 〈µ, e0, e1,Σ〉 ⇓IF 〈µ1, v1,Σ1, σ1〉

Figure 4.3: Monitored Core JavaScript Semantics - Imperative Fragment

its subexpressions. This rule also removes both the value level and the existence level of the
property m1 (obtained from the evaluation of e1) in the object pointed to by r0 (obtained
from the evaluation of e0).

• [Object Literal] The reading effect of an object literal is simply the level of the program
counter. The allocation of the new object must be paired-up with an extension of the
current labelling in order to record both its object level and its structure security level.



36 Chapter 4. Dynamic Information Flow Control in Core JavaScript

Function Call
∀i=0,1 r, σpc ` 〈µi, ei,Σi〉 ⇓IF 〈µi+1, vi,Σi+1, σi〉

〈r̂, µ̂, ê, Σ̂〉 = NewScopelab(µ2, v0, v1,#glob,Σ2, σ0, σ0 t σ1)

r̂, σ0 ` 〈µ̂, ê, Σ̂〉 ⇓IF 〈µ′, v,Σ′, σ〉
r, σpc ` 〈µ0, e0(e1),Σ0〉 ⇓IF 〈µ′, v,Σ′, σ〉

Method Call
∀i=0,1,2 r, σpc ` 〈µi, ei,Σi〉 ⇓IF 〈µi+1, vi,Σi+1, σi〉 〈rm, σm〉 = Proto(µ3, v0, v1,Σ3)

rf = µ3(rm · v1) σ′pc = σ0 t σ1 t Σ3.val(rm · v1) t σm
〈r̂, µ̂, ê, Σ̂〉 = NewScopelab(µ3, rf , v2, v0,Σ3, σ

′
pc, σ

′
pc t σ2)

r̂, σ′pc ` 〈µ̂, ê, Σ̂〉 ⇓IF 〈µ′, v,Σ′, σ〉
r, σpc ` 〈µ0, e0[e1](e2),Σ0〉 ⇓IF 〈µ′, v,Σ′, σ〉

Function Literal
rf = fresh(σpc) µ′ = µ [rf 7→ ["@fscope" 7→ r, "@code" 7→ λx. {var y1, · · · , yn; e}]]

Σ′ = extend(Σ, rf , σpc, , σpc)
Σ′′ = updt(Σ′, (rf , "@fscope"), (σpc, σpc)) Σ′′′ = updt(Σ′′, (rf , "@code"), (σpc, σpc))

r, σpc ` 〈µ, function(x){var y1, · · · , yn; e},Σ〉 ⇓IF 〈µ′, rf ,Σ′′′, σpc〉

Figure 4.4: Monitored Core JavaScript Semantics - Functional Fragment

Furthermore, it must also record the value level and the existence level of the property
"_prot_" of the newly allocated object, which are both set to the current level of the
program counter.

• [Conditional Expression] The reading effect of a conditional expression is the reading
effect of the branch that is evaluated. During the evaluation of this branch, the level of the
program counter is upgraded to the reading effect of the guard of the conditional. Hence,
the reading effect of whole conditional expression is always higher than or equal to the
reading effect of its guard.

• [Sequence] The reading effect of a sequence expression e0, e1 is the reading effect of its
second subexpression.

• [Function Call] The reading effect of a function call e0(e1) is the reading effect of the
body of the function that is evaluated. The allocation of the new scope object must be
paired-up with an extension of the current labelling in order for it to additionally cover
the properties of the newly allocated scope object. This extension is discussed in detail
in Subsection 4.1.4. During the evaluation of the body of the function, the level of the
program counter is set to the reading effect of e0.

• [Method Call] The reading effect of a method call e0[e1](e2) is the reading effect of the
body of the method that is evaluated. Like in the case of the function call, the allocation
of the new scope object must be paired-up with an extension of the current labelling in
order for it to additionally cover the properties of the newly allocated scope object. During
the evaluation of the body of the method, the level of the program counter is set to the lub
between: (1) the reading effects of e0 and e1, (2) the level of the prototype-chain inspection
procedure, (3) the level of the context in which the function literal corresponding to the
method was evaluated, and (4) the value level of the property m1 (obtained from the



4.1. Monitoring Secure Information Flow in Core JavaScript 37

Program: h = 0 h = 1

Both Approaches Naive Approach No-Sensitive-Upgrade

l0 = true; Σ.val(r · "l0") := L Σ.val(r · "l0") := L Σ.val(r · "l0") := L

l1 = true; Σ.val(r · "l1") := L Σ.val(r · "l1") := L Σ.val(r · "l1") := L

h ? branch not taken branch taken branch taken
(l0 = false); — Σ.val(r · "l0") := H stuck
l0 ? branch taken branch not taken —
(l1 = false); Σ.val(r · "l1") := L — —

Final Low Memory: l1 = false l1 = true —

Table 4.1: Naive Approach vs No-sensitive-upgrade

evaluation of e1) in the object that defines a binding for m1 in the prototype-chain of the
object pointed to by r0 (obtained from the evaluation of e0).

• [Function Literal] The reading effect of a function literal is simply the level of the
program counter. The allocation of the new function object must be paired-up with an
extension of the current labelling in order for it to additionally cover the properties of the
newly allocated function object: "@fscope" and "@code". The value level and the existence
level of both of these properties are set to the current level of the program counter.

4.1.1 Controlling Implicit Flows and the No-Sensitive-Upgrade Discipline

The no-sensitive-upgrade discipline of Zdancewic [Zdancewic 2002, Austin 2009] establishes that
visible resources cannot be upgraded in invisible contexts, since such upgrades would cause the
visible domain of a program to change depending on secret values. Therefore, the flow-sensitive
monitors that implement the no-sensitive-upgrade discipline abort executions that encode illegal
implicit flows. Intuitively, one could consider a naive strategy that would simply raise the security
level of visible resources updated in high contexts to the level of the context itself. However, this
strategy does not work since it would partially leak the contents of the resources on which the
control flow depends.

Consider, for instance, the example given in Table 4.1 and adapted from [Austin 2010]. This
table shows four monitored executions of a program (represented on the left) in two distinct
memories that initially map a high variable h to 0 and 1, respectively. Specifically, one can see
how the dynamic labelling Σ evolves during the execution of the program applying both the
naive strategy and the no-sensitive-upgrade strategy. In the example, r is assumed to be the
reference of the current scope object. While both monitors coincide on the executions starting
from the memory that initially maps h to 0, they differ on the executions starting from the
memory that initially maps h to 1. The monitor following the naive approach raises the level
of l0 to H (thus allowing the execution to go through), whereas the monitor following the no-
sensitive-upgrade strategy blocks the execution when the program tries to update the value of
l0 in a high context. It should be noted that the execution of this program by the monitor
following the naive strategy generates two memories that are not low-equal even though the
initial memories are low-equal.

In Core JavaScript, there are seven types of implicit illegal flows that cause the proposed
monitor to abort the execution, and they are illustrated in Table 4.2. To see why the information
flows encoded in the programs given in Table 4.2 should be prevented, consider their execution



38 Chapter 4. Dynamic Information Flow Control in Core JavaScript

Type I Type II Type III Type IV

laux = true,

l = true,

h ? (laux = false),

laux ? (l = false)

o = { }L,
o.p = true,

l = true,

h ? (o.p = false),

o.p ? (l = false)

o = { }L,
o.p = true,

l = true,

h ? (delete o.p),

"p" in o ? (l = false)

oh = { }H ,
ol = { }L,
l = true,

ol.p = false,

h ? (oh = ol),

oh.p = true,

!ol.p ? (l = false)

Type V Type VI Type VII

l = true,

o = { }H ,
o.q = false,

proph = "p",

h ? (proph = "q"),

o[proph] = true,

!o.q ? (l = false)

oh = { }H ,
ol = { }L,
oh.p = true,

ol.p = true,

l = true,

h ? oh = ol,

delete oh.["p"],

"p" in ol ? (l = false)

o = { }H ,
proph = "q",

o.p = true,

o[proph] = true,

l = true,

h ? proph = "p",

delete o[proph],

"p" in o ? (l = false)

Table 4.2: Naive Approach vs No-sensitive-upgrade

by a monitor following the naive approach in two memories that initially map a high variable h
to 0 and 1, respectively. The execution of all six programs in a memory that originally maps h
to 0 terminates with a memory that maps the low variable l to false (without raising its security
level to H). Alternatively, their execution in a memory that originally maps h to 1 terminates
with a memory that maps the low variable l to true (without raising its security level to H).
Since the two initial memories are low-equal, one can see that the execution of these programs by
a monitor following the naive strategy reveals information about the secret contents of the initial
memory (specifically, the content of the high variable h). Below, we list and briefly comment on
each of the types of illegal implicit flow:

• Visible Variable Assignment in an Invisible Context (Type I): the monitor blocks
assignments to variables holding visible values in high contexts. Therefore, in the example,
the monitor blocks the assignment of false to laux inside the first conditional.

• Visible Property Assignment in an Invisible Context (Type II): the monitor
blocks assignments to properties holding visible values within invisible contexts. Therefore,
in the example, the monitor blocks the assignment of false to o.p inside the first conditional.

• Visible Property Deletion in an Invisible Context (Type III): the monitor blocks
deletions of visible properties in invisible contexts. Therefore, in the example, the monitor
blocks the deletion of the property "p" of the object bound to o inside the first conditional.

• Visible Property Assignment via Invisible Reference (Type IV): the monitor
blocks assignments to visible properties when the reference pointing to the object that
binds the property was computed using secret information. For instance, in the example,



4.1. Monitoring Secure Information Flow in Core JavaScript 39

while the low variable ol can only hold low references, the high variable oh can hold both
low and high references. Therefore, the assignment oh = ol is allowed to go through.
However, when oh is set to point to the same reference as ol, the assignment oh.p = true
is blocked, since it tries to update the value of a low property via a high reference.

• Visible Property Assignment via an Invisible Property Name (Type V): the
monitor blocks assignments to visible properties when the corresponding property name
was computed using secret information. For instance, in the example, the variable proph
can hold both low and high property names. Therefore, the assignment proph = "q" is
allowed to go through, even though it is performed inside a high conditional. However,
after this assignment, the assignment o[proph] = true is blocked since it tries to update
the value of a low property via a high property name.

• Visible Property Deletion via an Invisible Reference (Type VI): the monitor
blocks the deletion of visible properties when the reference pointing to the object that
binds the property was computed using secret information. For instance, in the example,
the high variable oh can hold both low references and high references. Therefore, the
assignment oh = ol is allowed to go through. However, when oh is set to point to the
same reference as ol, the execution of delete oh[p] is blocked since it constitutes a low
property deletion via a high reference.

• Visible Property Deletion via an Invisible Property Name (Type VII): the mon-
itor blocks the deletion of a visible property when the corresponding property name was
computed using secret information. For instance, in the example, the high variable proph
can hold both low property names and high property names. Therefore, the assignment
proph = "p" is allowed to go through inside the body of the high conditional. However,
when proph is set to "p", the execution of delete o[proph] is blocked since it constitutes a
low property deletion via a high property name.

4.1.2 The Structure Security Level

Since objects in Core JavaScript are initially created without any properties, the structure
security level of an object defines an upper bound on the existence levels of the properties
that can be added to that object. In this sense, the structure security level of an object can
be understood as the security level associated with its domain. If an object has a low structure
security level, all its properties have low existence levels, which means that the entire domain
of the object is visible. If an object has a high structure security level, only its properties with
low existence levels are visible. Again, we emphasise that the structure security level is not a
key element for the characterisation of the attacker model inherent to JavaScript, but rather a
device of the enforcement mechanism. The need for the structure security level arises from the
fact that existence levels are not established a priori.

Since the structure security level is used to control the implicit information flows that can
be encoded by modifying the domain of an object, it cannot be upgraded. In fact, such upgrades
would violate the no-sensitive-upgrade discipline, which forbids upgrades based on implicit flows.
Hence, if an object o has a low structure security level, one can only change its structure (either
by adding properties to o or removing properties from o) in low contexts.This fact is illustrated
in Table 4.3, which shows four monitored executions of a program in two distinct memories that
initially map a high variable h to 0 and 1 respectively. While both monitors coincide on the
executions starting from the memory that initially maps h to 0, they differ on the executions
starting from the memory that initially maps h to 1. The monitor following the naive approach
raises the structure security level of the object bound to o toH (thus allowing the execution to go



40 Chapter 4. Dynamic Information Flow Control in Core JavaScript

Program: h = 0 h = 1

Both Approaches Naive Approach No-Sensitive-Upgrade

l = true; Σ.val(r · "l") := L Σ.val(r · "l") := L Σ.val(r · "l") := L

o = { }L;
Σ.val(r · "o") := L/

Σ.struct(ro) := L

Σ.val(r · "o") := L/

Σ.struct(ro) := L

Σ.val(r · "o") := L/

Σ.struct(ro) := L

h ? branch not taken branch taken branch taken

(o.p = true); —
Σ.val(ro · "p") := H/

Σ.exist(ro · "p") := H/

Σ.struct(ro) := L

stuck

!("p" in o) ? branch taken branch not taken —
(l = false); Σ.val(r · "l") := L — —

Final Low Memory: l = false l = true —

Table 4.3: Preventing Security Leaks via the Domain of an Object

through), whereas the monitor following the no-sensitive-upgrade strategy blocks the execution
when the program tries to create a property in an object with a low structure security level inside
a high context. We assume in this example that the created object is stored in reference ro and
that r is the reference of the current scope object. Observe that the execution of this program
by the monitor following the naive strategy generates two memories that are not low-equal even
though the initial memories are low-equal.

4.1.3 Preventing Security Leaks via Prototype Mutations

Let us suppose that a program looks up the value of a property p in an object o, and that
p 6∈ dom(o). Then, since this property look-up leaks information about the domain of o (one
gets to know that p does not belong to the domain of o), the security level associated with the
property look-up expression must be equal to or higher than the structure security level of o.
Furthermore, it must also be higher than or equal to the level of o "_prot_" property, since the
value of this property determines what the object that the prototype-chain look-up procedure
will inspect next is. In fact, the security monitor has to take into account the structure security
level as well as the level of the "_prot_" property of every object traversed during the prototype-
chain inspection procedure until it finds the object that defines a binding for the property being
looked-up. For example, given a memory:

µ =

 #o0 7→ ["xpto" 7→ 1, "_prot_" 7→ null] ,
#o1 7→ ["_prot_" 7→ #o0] ,
#glob 7→ ["o1" 7→ #o1]

 (4.1)

and a labelling Σ, such that either Σ.struct(#o0) = H or Σ.val(#o0 ·"_prot_") = H, the reading
effect of the expression o1.xpto must be H, because it leaks information both about the domain
of the object bound to o1 and about its prototype. In the next definition, we redefine the
prototype-chain look-up procedure in order to additionally compute the security level associated
with the prototype-chain inspection procedure.

Definition 4.1 (Proto). The semantic function Proto : Mem × Ref × Str × Lab → Ref × L is



4.1. Monitoring Secure Information Flow in Core JavaScript 41

recursively defined as follows:

Proto(µ, r, p,Σ) =


(null,⊥) if r = null
(r,Σ.exist(r ·m)) if p ∈ dom(µ(r))
(r′,Σ.val(r · "_prot_") t Σ.struct(r) t σ) if r 6= null ∧ p 6∈ dom(µ(r))

where (r′, σ) = Proto(µ, µ(r · "_prot_"), p,Σ).

4.1.4 Tracking the Level of the Program Counter

An information flow monitor must keep track of the level of the program counter in order to
prevent illegal implicit flows. In the particular case of Core JavaScript, the level of the program
counter must always be higher than or equal to the security levels of the resources that were
used to decide the following:

• which branch to take in a conditional expression whose code is still being executed,

• which function/method to execute in a function/method call expression whose code is still
being executed.

In order to cater for the first point, when a branch of a conditional expression is evaluated, the
level of the program counter is upgraded to the reading effect of its guard. On the other hand,
when calling a function/method, the level of the program counter must be upgraded to the lub
between the reading effects of the expressions that were used to decide which function/method
was to be called. In order to illustrate these two points, consider the execution of the following
program in a memory that originally maps the low global variables l1 and l2 to 0.

f1 = function(x){l1 = 1},
f2 = function(x){l2 = 1},
h ? (f = f1) : (f = f2),
f()

(4.2)

Assuming that the security level of h is originally set to high, after the execution of this program
both variables l1 and l2 depend on the initial value of variable h (independently of which
function gets executed). However, since the monitor is purely dynamic, it cannot upgrade the
levels of the resources that are not updated at runtime. Hence, the execution of this program
must always be blocked by the monitor. This is precisely what happens, since the level of the
program counter is upgraded to the level of f during the execution of the function bound to f.
The level of f must be high, otherwise the assignments of the then-branch and of the else-branch
of the conditional expression are blocked.

Labelled New Scope Allocation The semantic function NewScopelab : Mem × Ref × Val ×
Ref×Lab×L×L → Mem×Val×Ref×Lab is used by the monitored semantics to allocate a new
labelled scope object. As its unmonitored counterpart NewScope, NewScopelab allocates a new
scope object. In addition, it updates the current labelling with the security labels associated
with the newly allocated scope object and its properties. Given the statement 〈r′, µ′, e,Σ′〉 =
NewScopelab(µ, rf , varg, rthis,Σ, σpc, σarg), we can read that that Σ′ is the labelling resulting
from the extension of Σ to the newly allocated scope object. Concretely, the value level of the
property matching the name of the formal argument of the function to execute is set to σarg.
All of the other value levels and existence levels are set to σpc — an upper bound on the level
of the resources that were used to decide which function was to be executed. The remaining
elements keep their original meaning.



42 Chapter 4. Dynamic Information Flow Control in Core JavaScript

Definition 4.2 (NewScopelab). For any two memories µ and µ′, three references rf , rthis,
and r′, a value varg, an expression e, security levels σarg and σpc, and labellings Σ and Σ′,
〈r′, µ′, e,Σ′〉 = NewScopelab(µ, rf , varg, rthis,Σ, σpc, σarg) holds if and only if:

• λx. {var y1, · · · , yn; e} = µ(rf · "@code"),

• r = µ(rf · "@fscope"),

• r′ = fresh(σpc),

• µ′ = µ [r′ 7→ ["@scope" 7→ r,mx 7→ varg, "@this" 7→ rthis,my1 7→ undefined, · · · ,myn 7→ undefined]],
where: mx = string(x), my1 = string(y1), ..., and myn = string(yn),

• Σ′.obj = Σ.obj [r′ 7→ σpc],

• Σ′.exist = Σ.exist [r′ 7→ ["@fscope" 7→ σpc,mx 7→ σx, "@this" 7→ σpc,my1 7→ σpc, · · · ,myn 7→ σpc]],

• Σ′.val = Σ.val [r′ 7→ ["@fscope" 7→ σpc,mx 7→ σx, "@this" 7→ σpc,my1 7→ σpc, · · · ,myn 7→ σpc]],

• Σ′.struct = Σ.struct [r′ 7→ σpc]

for some variables x, y1, · · · , yn such that mx = string(x) and myi = string(yi), for i ∈ {1, . . . , n}.

4.1.5 Monitor Noninterference

Classically [Volpano 1996], one of the first steps towards proving a noninterference result is to
establish a confinement result. In the present case, Theorem 4.1 establishes that the monitored
execution of a Core JavaScript expression in a high context does not update or create low
memory. Therefore, when executing a Core JavaScript program using the monitor in a high
context, the low-projections of the initial and final memories coincide.

Theorem 4.1 (Confinement). Given an expression e, a memory µ, a labelling Σ, a level σpc, and
a reference r such that: r, σpc ` 〈µ, e,Σ〉 ⇓IF 〈µ′, v,Σ′, σ〉 for some memory µ′, value v, labelling
Σ′ and security level σ; then for every security level σ′ ∈ L such that σpc 6v σ′: µ,Σ ∼σ′ µ′,Σ′.

Informally, we say that a security monitor is noninterferent if successfully terminating mon-
itored executions always preserve the low-equality relation. More precisely, an information flow
monitor is noninterferent if and only if, for any expression e, whenever an attacker cannot dis-
tinguish two labelled memories before executing e, then the attacker is also unable to distinguish
the memories that result from the monitored execution of e. Hence, an attacker cannot use the
monitored execution of a program as a means to obtain information about the confidential con-
tents of a memory. Theorem 4.2 states that the monitored successfully-terminating execution
of a program on two low-equal memories always yields two low-equal memories.

Theorem 4.2 (Noninterferent Monitor). For any expression e, memories µ and µ′, respectively
labelled by Σ and Σ′, reference r, and security levels σpc and σ, such that:

• µ,Σ ∼σ µ′,Σ′,

• r, σpc ` 〈µ, e,Σ〉 ⇓IF 〈µf , vf ,Σf , σf 〉,

• r, σpc ` 〈µ′, e,Σ′〉 ⇓IF 〈µ′f , v′f ,Σ′f , σ′f 〉;

Then: µf ,Σf ∼σ µ′f ,Σ′f and vf , σf ∼σ v′f , σ′f .

The second claim of the theorem states that, whenever one of the executions produces a visible
value, the other also produces a visible value and the two values coincide.

The proofs of the results presented in this section are given in Appendix A.1.



4.2. Monitor-Inlining 43

Labelled Object Instrumented Object

o = [p 7→ v0, q 7→ v1]

Σ.val(ro) = [p 7→ σp, q 7→ σq]

Σ.exist(ro) = [p 7→ σ′p, q 7→ σ′q],

Σ.struct(ro) = σs

ô =


p 7→ v0, $p 7→ σp, $p̄ 7→ σ′p,

q 7→ v1, $q 7→ σq, $q̄ 7→ σ′q,

"$struct" 7→ σs


Table 4.4: Labelled Object vs. Instrumented Object

4.2 Monitor-Inlining

This section presents an information flow monitor-inlining compiler for Core JavaScript. The
proposed compiler instruments programs in order to simulate their execution in the monitored
semantics presented in Section 4.1. This instrumentation is based on a technique that consists
of pairing up each variable with a shadow variable [Magazinius 2012, Chudnov 2010] that holds
its corresponding security level, and each property with two shadow properties that hold its
corresponding value level and existence level. As the compiled program has to handle security
levels, we include these shadow variables and properties in the set of program values, effectively
adding them to the syntax of the language as such. We also add two new binary operators
corresponding to the order relation (v) and the least upper bound (t) between security levels.

In the design of the compiler, we assume the existence of two given sets of internal variables
and property names, denoted by Scomp, that do not overlap with those available for the program-
mer. In particular, the compilation of every expression requires additional variables intended to
bookkeep the value to which it evaluates and its reading effect. These variables are later used
in the compilation of the expressions that include this expression. Hence, we assume the set of
compiler variables to include two indexed sets of variables {$vi}i∈N and {$li}i∈N used to store
the levels and the values of intermediate expressions, respectively. For clarity, all identifiers that
are reserved for the compiler are prefixed with the dollar sign.

For each variable x, the compiler adds a new shadow variable, $x, that holds its corresponding
security level. Analogously, for each property p, the compiler adds two new properties, $p and $p̄,
that hold its corresponding value level and existence level. In contrast to variables, whose names
are available at compile time, property names can be dynamically computed. Therefore, we
assume the existence of two runtime functions, bound to the variables $shadowV and $shadowE,
that, given a property name, output the name of the shadow properties that hold its value level
and existence level, respectively. Concretely, given a property p, the expression $shadowV(p)
evaluates to $p and the expression $shadowE(p) evaluates to $p̄.

Apart from adding to every object o two additional shadow properties $p and $p̄ for every
property p in its domain, the inlined monitoring code also adds to o a special property "$struct"
that stores its structure security level. Table 4.4 represents a labelled object o (pointed to by a
reference ro) on the left and its instrumented counterpart on the right.

4.2.1 Malicious Code

Given an expression e to compile, the compiler guarantees that e does not use variable and
property names in Scomp by:

1. statically verifying that the names of the variables in e do not overlap with Scomp,

2. dynamically verifying that e does not look-up, create, update, or delete properties whose
names belong to Scomp.



44 Chapter 4. Dynamic Information Flow Control in Core JavaScript

In order to perform the dynamic check, the compiler makes use of a runtime function bound to
the variable $legal that returns true when its argument does not belong to Scomp.

By making sure that compiler identifiers do not overlap with the identifiers of the programs
to compile, we guarantee the soundness of the proposed transformation even when it receives as
input malicious programs. Malicious programs attempt to bypass the inlined runtime enforce-
ment mechanism by rewriting some of its internal variables/properties. For instance, considered
the following program that is to be executed in a memory that originally maps xh to a secret
value and xl to a public value:

$xh = L, xl = xh (4.3)

This program tries to tamper with the internal state of the runtime enforcement mechanism in
order to be allowed to leak confidential information. Concretely, it tries to transfer the content
of xh to xl without raising the level of xl. To this end, it first sets the level of xh (stored in
variable $xh) to L (low). However, the compiler statically detects that the program makes use
of an identifier reserved for the runtime enforcement mechanism and the compilation fails.

4.2.2 Formal Specification

The inlining compiler is defined as a function C, given in Figures 4.5 and 4.6. It expects as
input an expression e and produces a pair 〈ê | i〉, where ê is the expression that simulates the
execution of e in the monitored semantics and i an index such that, after the execution of ê,
$vi stores the value to which e evaluates and $li its corresponding reading effect. Besides the
runtime functions bound to $shadowV, $shadowE, and $legal, the compiler makes use of:

• a runtime function bound to $check that diverges when its argument is different from true;

• a runtime function bound to $inspect that expects as input an object and a property and
outputs the level associated with the corresponding prototype-chain inspection procedure;

• an additional binary operator hasOwnProp that checks whether the object given as its left
operand defines the property given as its right one.

In JavaScript, the operator hasOwnProp does not exist; instead, there exists a method
hasOwnProperty, accessible to every object via its corresponding prototype chain, that checks
whether the object on which it is invoked defines the property whose name it receives as input.
We chose not to model this feature of the language exactly as it is in the specification in order
to keep the model as simple as possible. Doing it otherwise would imply cluttering the already
complex semantics of Core JavaScript by having an alternative case for the Rule [Method Call],
which would model the semantics of hasOwnProperty.

During the evaluation of the instrumented code, the level of the execution context (σpc) is
assumed to be stored in the variable $pc. To this end, function literals are instrumented in order
to receive as input the level of the argument and the level of the context in which they are invoked.
Function/method calls are instrumented accordingly. Furthermore, the instrumented code of a
function/method call must have access to both the return value of the original function/method
and the level that is to be associated with that value. Therefore, every function literal returns
an object that defines two properties: (1) a property "val" that stores the return value of the
original function and (2) a property "lev" that stores the level to be associated with that value.

Each compiler rule precisely mimics the corresponding monitor rule. As done in the presenta-
tion of the monitor, constraints are depicted in red and labelling updates are depicted in orange.
The compiled code must bookkeep the level and value of indexed expressions. To this end, given
an expression e with index i, the compilation of e assigns the value to which it evaluates to a



4.2. Monitor-Inlining 45

Value

ê =

{
$li = $pc,
$vi = v

C〈vi〉 = 〈ê | i〉

Variable

string(x) 6∈ Scomp ê =

{
$li = $pc t $x,
$vi = x

C〈xi〉 = 〈ê | i〉

This

ê =

{
$li = $pc,
$vi = this

C〈thisi〉 = 〈ê | i〉

Binary Operation
〈ê0 | j〉 = C〈e0〉 〈ê1 | k〉 = C〈e1〉

ê =


ê0,
ê1,
$li = $lj t $lk,
$vi = $vj op $vk

C〈e0 opi e1〉 = 〈ê | i〉

Variable Assignment
string(x) 6∈ Scomp 〈e′ | i〉 = C〈e〉

ê =


e′

$check($pc v $x),
$x = $li,
x = $vi

C〈x = e〉 = 〈e′, ê | i〉

Property Look-up
〈ê0 | j〉 = C〈e0〉 〈ê1 | k〉 = C〈e1〉

ê =



ê0,
ê1,
$li = $lj t $lk t $inspect($vj , $vk),
($vk in $vj) ?

($li = $li t $vj [$shadowV($vk)] ),
$check($legal($vk)) ,
$vi = $vj [$vk]

C〈e0[e1]i〉 = 〈ê | i〉

Membership Testing
〈ê0 | j〉 = C〈e0〉 〈ê1 | k〉 = C〈e1〉

ê =



ê0, ê1,
$li = $lj t $lk t $inspect($vk, $vj),
($vj in $vk) ?

($li = $li t $vk[$shadowE($vj)] ),
$check($legal($vj)) ,
$vi = $vj in $vk

C〈e0 ini e1〉 = 〈ê | i〉

Property Assignment
〈ê0 | i〉 = C〈e0〉 〈ê1 | j〉 = C〈e1〉 〈ê2 | k〉 = C〈e2〉

ê =



ê0, ê1, ê2, $check($legal($vj)),
($vi hasOwnProp $vj) ?(

$check($li t $lj v $vi[$shadowV($vj)])
)

:
(
$check($li t $lj v $vi.$struct) ,

$vi[$shadowE($vj)] = $li t $lj
)
,

$vi[$shadowV($vj)] = $li t $lj t $lk,
$vi[$vj ] = $vk

C〈e0[e1] = e2〉 = 〈ê | k〉

Object Literal

ê =



$vi = {},
$vi.$struct = σs,
$vi[$shadowE("_prot_")] = $pc,
$vi[$shadowV("_prot_")] = $pc,
$li = $pc,
$vi

C〈{}i,σs〉 = 〈ê | i〉

Property Deletion
〈ê0 | j〉 = C〈e0〉 〈ê1 | k〉 = C〈e1〉

ê =



ê0, ê1,
$check($lj t $lk v $vj [$shadowE($vk)]),
delete $vj [$shadowE($vk)],
delete $vj [$shadowV($vk)],
$li = $pc,
$vi = delete $vj [$vk]

C〈deletei e0[e1]〉 = 〈ê | i〉

Conditional
〈ê0 | i〉 = C〈e0〉 〈ê1 | j〉 = C〈e1〉

〈ê2 | k〉 = C〈e2〉

ê =


ê0, $ls = $pc, $pc = $pc t $li,
$vi ?(

ê1, $vt = $vj , $lt = $lj
)

:
(
ê2, $vt = $vk, $lt = $lk

)
,

$pc = $ls, $vt

C〈e0 ?s,t (e1) : (e2) 〉 = 〈ê | t〉

Sequence
〈ê0 | i〉 = C〈e0〉 〈ê1 | j〉 = C〈e1〉

C〈e0, e1〉 = 〈ê0, ê1 | j〉

Figure 4.5: Monitor-Inlining Compiler - Imperative Fragment



46 Chapter 4. Dynamic Information Flow Control in Core JavaScript

Function Call
〈ê0 | j〉 = C〈e0〉 〈ê1 | k〉 = C〈e1〉

ê =


ê0,
ê1,
$ret = $vj($vk, $lj t $lk, $lj),
$li = $ret["lev"],
$vi = $ret["val"]

C〈e0(e1)i〉 = 〈ê | i〉

Method Call
〈ê0 | j〉 = C〈e0〉 〈ê1 | k〉 = C〈e1〉 〈ê2 | s〉 = C〈e2〉

ê =



ê0, ê1, ê2,
$check($legal($vk)),
$levCtx = $lj t $lk t $inspect($vk, $vj),
$ret = $vj [$vk]($vs, $levCtx t $ls, $levCtx),
$li = $ret["lev"],
$vi = $ret["val"]

C〈e0[e1](e2)i〉 = 〈ê | i〉

Function Literal
〈êf | j〉 = C〈e〉 {i1, · · · , ik} = indexes(e)

efun =



function (x, $x, $pc) {
var y1, $y1, · · · , yn, $yn;
var $vi1 , $li1 , · · · , $vik , $lik ;
êf ,
$ret = {},
$ret["val"] = $vj ,
$ret["lev"] = $lj ,
$ret

}

ê =

 $vi = efun,
$li = $pc,
$vi

C〈functioni(x){var y1, · · · , yn; e}〉 = 〈ê | i〉

Figure 4.6: Monitor-Inlining Compiler - Functional Fragment

new variable $vi and its reading effect to a new variable $li. We use light grey for depicting
bookkeeping code. The compilation of variable/property assignments and sequence expressions
does not introduce additional variables because the corresponding value and reading effect are
already available through the indexed variables introduced by the corresponding subexpressions.

4.2.3 Correctness

In Definition 4.3, we present a similarity relation S between labelled memories in the monitored
semantics and instrumented memories in the original semantics. This relation requires that for
every object in the labelled memory, its corresponding labelling coincides with its instrumented
labelling (except for some internal properties whose levels can be automatically inferred) and that
the property values of the original object coincide with those of its instrumented counterpart.

Definition 4.3 (Memory Similarity). A memory µ labelled by Σ is similar to a memory µ′,
written µ,Σ S µ′, if and only if, for every reference r ∈ dom(µ), it holds that:

• ∀p∈dom(µ(r)) µ(r · p) = µ′(r · p),

• ∀p∈@dom(µ(r)) Σ.val(r · p) = µ′(r · $p), and

• If µ(r) is not internal: ∀p∈dom(µ(r)) Σ.exist(r·p) = µ′(r·$p̄) and Σ.struct(r) = µ′(r·"$struct").

The Correctness Theorem states that, provided that a program and its compiled counterpart
are evaluated in similar configurations, the evaluation of the original one in the monitored
semantics terminates if and only if the evaluation of its compilation terminates in the original
semantics. Additionally, if that happens, the final memories are similar and the computed values
coincide. Therefore, since the monitored semantics only allows secure executions to go through,
we guarantee that, when using the inlining compiler, programs are rewritten in such a way that
only their secure executions are allowed to terminate.



4.3. Related Work 47

Theorem 4.3 (Correctness). Provided that e does not use identifiers in Scomp, for any labelled
and instrumented configurations 〈µ, e,Σ〉 and 〈µ′, e′〉, such that µ,Σ S µ′ and C〈e〉 = 〈e′ | i〉, for
some index i, and for any reference r in dom(µ) such that µ′(r · "$pc") = ⊥, it is always the
case that:

∃〈µf , v,Σf , σ〉
r,⊥ ` 〈µ, e,Σ〉 ⇓IF 〈µf , v,Σ, σ〉

iff
∃〈µ′f , v′〉

r ` 〈µ′, e′〉 ⇓ 〈µ′f , v′〉

Moreover, if either of the two sides of the equivalence holds, then:

• µf ,Σf S µ′f ,

• v = v′ = µ′f (r · $vi), and

• σ = µ′f (r · $li).

The proof of Theorem 4.3 is given in Appendix A.2.

4.3 Related Work

Dynamic Monitors for Enforcing Secure Information Flow. Flow-sensitive monitors
for enforcing noninterference can be broadly divided into two classes: those that are purely
dynamic, such as [Zdancewic 2002] [Austin 2009], [Austin 2010], and [Austin 2012], and those
commonly referred to as hybrid monitors, that mix runtime monitoring with static analysis,
such as [Venkatakrishnan 2006], [Guernic 2007], and [Shroff 2007]. In contrast to hybrid moni-
tors,1 purely dynamic monitors do not rely on any kind of static analysis. Instead, the authors
of [Austin 2009], [Austin 2010], and [Austin 2012] propose three alternative strategies for de-
signing sound purely dynamic information flow monitors.

• The no-sensitive-upgrade strategy [Zdancewic 2002, Austin 2009], that forbids the update
of public resources inside private contexts.

• The permissive-upgrade [Austin 2010] strategy, that allows sensitive upgrades to take place,
but marks the resources upgraded in sensitive contexts and forbids the program to branch
depending on the content of these resources.

• Finally, the multiple facet strategy surpasses the limitations of the first two by the use of
multiple faceted values. The intuition behind this strategy is that values must appear dif-
ferently to observers at different security levels. Therefore, the security monitor simulates
multiple executions for different security levels.

It is unclear whether or not the multiple facet strategy should be considered as a purely dynamic
approach, since, despite not performing any kind of static analysis, it does perform look aside
operations [Russo 2010]. In other words, it may dynamically inspect program branches that are
not executed.

Hybrid monitors must estimate, either statically or dynamically, the set of resources that are
updated/created in untaken program branches. Our choice for the inlining of a purely dynamic
monitor has to do with the fact that the dynamic features of JavaScript make it very difficult to
compute such an approximation. Therefore, we have chosen to start with a simpler goal, which
can be viewed as a first step in that direction.

1The literature review regarding hybrid monitors is deferred to the related work section of Chapter 5, where
we provide an overview of hybrid analyses for securing information flow.



48 Chapter 4. Dynamic Information Flow Control in Core JavaScript

Coarse Grained Information Flow Monitors. In the past several years, coarse-grained
information flow monitors [Russo 2008, Stefan 2011, Stefan 2014, Buiras 2014] have emerged as
an alternative to fine-grained information flow monitors. The main advantage of this type of
monitor with respect to fine-grained monitors is that they are easier to integrate with existing
languages [Russo 2008, Stefan 2014]. In fact, in monadic languages such as Haskell, this type
of monitor can even be implemented as a library [Russo 2008]. The drawback of this approach,
however, is that it comes at the cost of losing precision.

The design of coarse-grained information flow monitors was inspired by information flow
control mechanisms for operating systems. Concretely, coarse-grained monitors are designed in
a way such that the level of the program counter represents an upper bound on the levels of
all data observed or modified. Raising the current level of the program counter allows com-
putations to read data in a very flexible way “at the cost of being more limited in where they
can subsequently write” [Stefan 2014]. This can lead to a problem commonly referred to as
label creep [Sabelfeld 2003a]. To overcome this problem, these monitors make use of a special
construct that allows for the evaluation of an expression in a separate context and for the reset
of the program counter after that evaluation [Stefan 2011, Buiras 2014].

Recently, Buiras et al. [Buiras 2014] have presented a coarse-grained flow-sensitive informa-
tion flow monitor featuring the decomposition of security labels for references into two elements:
the label of the value to which the reference points and the label of the label of that reference.
This labelling strategy gives a new perspective on the no-sensitive-upgrade strategy: the label
of a reference can be upgraded freely as long as the label of its label remains invariant.

Monitoring Secure Information Flow in the Browser. The monitor presented in this
thesis is purely dynamic and enforces the no-sensitive-upgrade discipline. Moreover, this work
introduces the notions of existence level and structure security level for the labelling of JavaScript
objects. However, as this monitor has been designed in order to guide a browser instrumentation
and not an inlining transformation, it labels values instead of property names. For this reason, it
is our opinion that the labelling abstraction presented in this chapter is better fitted for guiding
the implementation of an inlining compiler that uses shadow variables and shadow properties.

Hedin and Sabelfeld [Hedin 2012] were the first to design, prove sound, and implement an
information flow monitor for a realistic core of JavaScript. As their monitor is purely dynamic,
it suffers from the limitations of being very conservative [Russo 2010]. To overcome these limita-
tions, Birgisson et al. [Birgisson 2012] show how to use tests in order to boost the permissiveness
of the monitor presented in [Hedin 2012]. Concretely, each time the execution of a program is
blocked in order to prevent a sensitive upgrade, an upgrading instruction is added to the pro-
gram in order to prevent the same error from reoccurring. Since the upgrading instruction is
placed outside the sensitive context, the execution of the modified program no longer triggers
the identified illegal upgrade. As a result, future executions of the modified program will not be
blocked due to the same error. This methodology can be applied to the monitor presented in
this chapter in order to make it less conservative.

Despite targeting JavaScript, the monitors of both Hedin [Hedin 2012] and Birgisson et
al. [Birgisson 2012], as our own, do not model the reactive aspect of client-side web applications.
Bohannon et al. [Bohannon 2009] presented a definition of noninterference for reactive programs
such as web scripts. They further presented a runtime monitor for enforcing the proposed defi-
nition of reactive noninterference. Later, Bielova et al. [Bielova 2011] proposed an enforcement
mechanism for reactive noninterference based on secure multi-execution [Devriese 2010], which
was implemented on top of the Featherweight Firefox browser model.

Monitor-Inlining Transformations Chudnov and Naumann [Chudnov 2010] proposed an
information flow monitor inlining transformation for a WHILE language, which inlines the hybrid



4.4. Discussion 49

information flow monitor presented in [Russo 2010]. Hence, their inlining compiler includes
a static analysis that estimates the set of variables updated in untaken program branches.
Later, Magazinius et al. [Magazinius 2010c, Magazinius 2012] proposed the inlining of a purely
dynamic information flow monitor that enforces the no-sensitive-upgrade discipline for a simple
imperative language that features global functions, a let construct, and an eval expression that
allows for dynamic code evaluation. Both compilers pair up each variable with a shadow variable
that holds its corresponding level.

Here, we extend the techniques of [Chudnov 2010, Magazinius 2010c, Magazinius 2012] in
order to handle object properties by pairing up each property with two shadow properties. The
languages modelled in both [Chudnov 2010] and [Magazinius 2010c, Magazinius 2012] only fea-
ture primitive values and do not feature scope composition, where functions can be defined
inside functions. In [Chudnov 2010] there are no functions and in [Magazinius 2012] every
function is executed in a “clean” environment, without producing side-effects. Hence, in both
[Chudnov 2010] and [Magazinius 2012], the reading effect of an expression e corresponds to the
least upper bound between the levels of the variables that explicitly occur in e. Therefore,
the instrumented code for computing the level of e is simply $x1 t · · · t $xn, where {x1, · · · , xn}
are the variables that explicitly occur in e and {$x1, · · · , $xn} are the variables that hold their
corresponding levels. In Core JavaScript, as in JavaScript, this does not hold. First, one can
immediately notice that expressions that feature property look-ups or function/method calls do
not generally verify this property. Second, expressions may be composed of expressions that have
side effects. Therefore, the level associated with the entire expression can actually be lower than
the least upper bound on the levels of the variables that it includes. As an example, consider
the expression (x = y) + x. Since x = y evaluates to the value of y (besides assigning the value
of y to x), the value to which the whole expression evaluates only depends on the initial value
of y. Therefore, the reading effect of this expression should not take into account the initial
level of x. In order to handle these two issues, an inlining transformation for JavaScript must
introduce extra variables to keep track of the values and levels of intermediate expressions.

Inlining Transformations for Securing JavaScript Programs Phung et al. [Phung 2009]
proposed a methodology for implementing security monitors that consist of wrapping security-
critical built-in methods of JavaScript programs in order to enforce security policies. Concretely,
in the context of this work, a security policy is a piece of JavaScript code specifying which method
calls are to be intercepted and, for each intercepted method call, which action is to be taken.
The major advantage of the methodology proposed in [Phung 2009] is that it does not require
the monitored code to be re-written. Instead, it only requires a pre-step that serves to wrap
security critical built-in functions with the monitoring code that checks adherence to the specified
security policies. This approach suffers, however, from a range of vulnerabilities that have to
do with the fact that wrapped methods are executed in the attacker’s environment. Hence, the
attacker can modify functions used by the wrapping functions to “bypass the policies or extract
the original unwrapped methods” [Magazinius 2010b]. To overcome this issue, Magazinius et
al. [Magazinius 2010b] extend the work of [Phung 2009] with a mechanism for the specification
of declarative policies which are both easier to write and not vulnerable to the attacker’s code.

4.4 Discussion

The prototype of the compiler is implemented in JavaScript and is available online
at [Fragoso Santos 2014], together with a broad set of examples encompassing all of the ex-
amples provided throughout the chapter. This section discusses:

• implementation details regarding the problem of how to give security guarantees in the



50 Chapter 4. Dynamic Information Flow Control in Core JavaScript

presence of active attackers,

• the additional challenges introduces by implicit type coercions which are considered in the
implementation of the compiler.

Untrusted Code and Native Functions Active attackers can be seen as input programs
that actively try to bypass the runtime enforcement mechanism inlined by the compiler in order
to trigger illegal flows without being noticed. The correctness of the instrumentation relies on
the assumption that the internal variables and properties (meant for the use of the runtime
enforcement mechanism) do not overlap with those of the program to be compiled. However, a
malicious program may try to bypass the inlined runtime enforcement mechanism by rewriting
some of the compiler’s internal variables. For example, in the current implementation the security
lattice is implemented as an object bound to a global variable $lat. Hence, a malicious program
may try to modify this object in the following way: $lat = MOST_PERMISSIVE_LATTICE. After
setting $lat to the most permissive lattice, the attacker code is allowed to trigger information
flows otherwise forbidden. As explained in the previous section, in order to prevent this kind of
malicious behaviour, the compiler acts as follows:

• It statically verifies whether or not the identifiers that explicitly appear in the code of the
program are legal, meaning that they are not for the internal use of the inlined enforcement
mechanism (e.g. $lat);

• It instruments property look-ups, property assignments, method calls, and property dele-
tions to guarantee that the corresponding property is not reserved for the use of the runtime
enforcement mechanism.

Another possible technique that malicious programs can explore to tamper with the internal
state of the inlined runtime enforcement mechanism consists of redefining the native functions
used by the compiler. A native function is a function provided by the language runtime. Inter-
estingly, JavaScript programs are allowed to redefine native functions. Hence, if the compiler
runtime enforcement mechanism depends on the behaviour of a native function which compiled
programs are allowed to modify, the correctness of the instrumentation may be compromised.
Therefore, the compiler was implemented in such a way that the inlined runtime enforcement
mechanism does not rely on any kind of data/code that can be modified at runtime by compiled
programs. Consider, for instance, the following program:

o.prop = 0;
o.hasOwnProperty = function() { false };
h ? (o.prop = 1)

(4.4)

Suppose that the structure security level of the object bound to o is high. This program is illegal
because updating the value of a low property in a high context constitutes a sensitive upgrade.
Creating a new property in a high context is, however, allowed (because the structure security
level of the object bound to o is high). Hence, the compiler must test if the object defines the
property that is being set in order to decide which constraint to apply. To this end, one could use
the object hasOwnProperty method directly, which would make the correctness of the compiler
dependent on its semantics. This approach, however, would compromise the correctness of the
transformation, since malicious code can redefine the hasOwnProperty method, thus modifying
its original semantics (which is the case in this example).



4.4. Discussion 51

Instead of using the object’s hasOwnProperty method, the compiler uses a different one
that is provided in the runtime libraries and which is not accessible to compiled code:

_runtime.hasOwnProperty = (function () {
var o1 = { },
return function(o, prop) { o1.hasOwnProperty.call(o, prop) }

})();

(4.5)

Type Coercions JavaScript features implicit type coercions, which are not modelled in Core
JavaScript. Implicit type coercions introduce new types of implicit flows, such as the one illus-
trated in the example below:

if (private) {
o1.toString = function () { "p1" }

} else {
o1.toString = function () { "p2" }

}
o2.p1 = 1;
o2.p2 = 2;
public = o2[o1]

(4.6)

This program first sets the toString method of the object bound to o1 either to a function
that returns the "p1" or to a function that returns "p2" depending on the value of the high
variable private. Then, it sets the properties "p1" and "p2" of the object bound to o2 to 1 and
2, respectively. Finally, it assigns the result of the property look-up o2[o1] to the low variable
public. Since the expression o1 does not evaluate to a string, but to a reference, the JavaScript
engine calls the method toString of the object bound to o1 in order to obtain the name of
the property being inspected. Since this name depends on secret information, the result of the
look-up also depends on secret information.

As the semantics of Core JavaScript does not feature implicit type coercions, the inlining
compiler does not take those into account. Hence, in order to guarantee the correctness of
the compilation procedure for JavaScript programs, which can perform implicit type coercions,
the instrumentation disallows the use of any kind of implicit type coercion. Since relying on
implicit type coercions is considered bad programming practice that is error-prone and hinders
maintainability [Crockford 2008], we do not find this restriction a serious shortcoming of the
compiler. For example, the program above can be equivalently rewritten as follows:

if (h) {
o1.toString = function () { "p1" }

} else {
o1.toString = function () { "p2" }

}
o2.p1 = 1;
o2.p2 = 2;
public = o2[o1.toString()]

(4.7)





Chapter 5

Static to Hybrid Information Flow
Control in Core JavaScript

Contents
5.1 Security Types for Core JavaScript . . . . . . . . . . . . . . . . . . . . . . 54

5.1.1 Annotating Core JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.2 Syntax of Security Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.3 Well-Typed Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 The Attacker Model and the Meaning of Security Types . . . . . . . . 61
5.2.1 Noninterference for Typed Programs . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Static Information Flow Control in Core JavaScript . . . . . . . . . . . 62
5.3.1 Soundness of the Static Type System . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Hybrid Information Flow Control in Core JavaScript . . . . . . . . . . . 67
5.4.1 A Program Logic for Reasoning about Local Scope . . . . . . . . . . . . . . 67
5.4.2 Type Sets and Level Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4.3 Specification of the Type System . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

This chapter presents and proves sound both a purely static type system and a hybrid type
system for securing information flow in Core JavaScript. In contrast to the static type system
that rejects a program due to partial information concerning the types of its sub-expressions,
the hybrid type system infers a set of assertions under which that program can be securely
accepted. Then, the hybrid type system inlines the inferred assertions in the original program
so as to dynamically check whether these assertions are verified. If the assertions inlined in a
given program are not verified at runtime, that execution of the program is caused to diverge.
Hence, by deferring rejection to runtime, the hybrid type system can typecheck secure programs
that purely static type systems cannot accept.

One of the major drawbacks in the development of static analyses for JavaScript is the
fact that property names can be computed using string operations [Maffeis 2009]. This renders
intractable the problem of deciding at the static level which property is actually being accessed
in a given property look-up. Consider the following program:

o = { },
o.secret_prop = secret_input(),
o.public_prop = public_input(),
public_out = o[f()]

(5.1)

This program creates an object and assigns it to variable o. Then, it adds to the newly created
object two properties "secret_prop" and "public_prop" which are respectively set to a secret
input and a public input (specified by the user through the functions bound to the identifiers
secret_input and public_input). Then, depending on the return value of the function bound



54 Chapter 5. Static to Hybrid Information Flow Control in Core JavaScript

to f, the program assigns the value of one of these properties to a public output. In this example,
deciding which is the property whose value is assigned to the public output is equivalent to
predicting the dynamic behaviour of the function bound to f, which is, in general, undecidable.
Observe that this type of issue is not exclusive of properties look-ups. It also arises in method
calls, membership expressions, property assignments, and property deletions.

In order to overcome the difficulty illustrated above, previous analyses for enforcing confine-
ment properties in JavaScript (such as that of [Maffeis 2009]) have chosen to restrict the targeted
language subset, excluding property look-ups with arbitrary expressions. Here, we propose a
new approach (Section 5.4), exploiting the connections between static and runtime analysis to
avoid rejecting programs that are in fact secure. The key insight of our approach is that, since
we aim at enforcing termination insensitive noninterference, the analysis may infer a set of
assertions under which a program can be securely accepted and then dynamically verify whether
or not these assertions hold. The original program is instrumented in such a way that if the
assertions under which it is conditionally accepted fail to hold, its instrumentation diverges. For
instance, the example presented above cannot be statically considered secure (for an arbitrary
function f), since, in general, it is not possible to decide whether a function produces a given
output. However, the following modified version of the program:

o = { },
o.secret_prop = secret_input(),
o.public_prop = public_input(),
_x = f(),
(_x !== "secret_prop") ? (public_out = o[_x]) : ($diverge())

(5.2)

can be securely accepted, since it diverges whenever the function bound to f evaluates to
"secret_prop". Hence, we guarantee that the potential illegal information flow never occurs.
As explained in Section 4.4, JavaScript features implicit type coercions. Hence, malicious code
could try to exploit this feature of the language to bypass the inlined enforcement mechanism.
Therefore, in order to prevent such attacks, it suffices to instrument the generated code so that it
diverges when trying to perform implicit type coercions. Since the semantics of Core JavaScript
does not include implicit type coercions, both type systems presented in this chapter do not take
this issue into account.

Outline This chapter is structured as follows: Section 5.1 presents the language of security
types that is used in the subsequent sections for the typing of secure information flow. Section 5.3
presents the static type system, whereas Section 5.4 presents its hybrid version. Section 5.5
presents a discussion of the related work.

5.1 Security Types for Core JavaScript

This section presents the language of security types that is later used to type secure information
flow in Core JavaScript.

5.1.1 Annotating Core JavaScript

In order to allow the programmer to provide additional information to the type systems, we
modify the syntax of Core JavaScript. While the static type system uses the additional infor-
mation for obtaining gains in precision, the hybrid type system uses it for obtaining gains in
performance. Concretely, as in [Taly 2011], property look-ups, membership testing expressions,
property assignments, property deletions, and method calls are annotated with a set P of the



5.1. Security Types for Core JavaScript 55

pf ∈ Fλ ::= λΓ,τ̇x.
{

varτ̇1,··· ,τ̇n y1, · · · , yn; e
}

% Parsed Function Literal
P ::= {m1, · · · ,mn} % Property Set Annotation

e, e0, e1, e2 ∈ Expr ::= ...

| e0 inPi e1 % Membership Testing
| e0[e1, P ]i % Property Look-up
| e0[e1, P ] = e2 % Property Assignment
| deletei,P e0[e1] % Property Deletion
| e0[e1, P ](e2)i % Method Call
| { }τ̇ ,i % Object Literal
| functionΓ,τ̇ ,i(x){varτ̇1,··· ,τ̇n y1, · · · , yn; e} % Function Literal

Table 5.1: Modified Syntax of Expressions

properties to which the corresponding expression may evaluate. This set is called a property
set annotation. For instance, in the expression o[e, {"foo", "bar", "baz"}], the property set
annotation means that e always evaluates to a string equal to "foo", "bar", or "baz". Further-
more, object literals, function literals, as well as variable declarations are annotated with their
respective security types (which are explained in the next subsection) and function literals are
annotated with the typing environment in which they were typed. The modified syntax is given
in Table 5.1.

We say that a property set annotation P is correct if the expression to which it applies always
evaluates to a string in P . Moreover, we say that P is minimal if there is no other correct P ′

such that P ′ ⊂ P . Instrumenting a program in order to dynamically check the correctness
of its property set annotations is not a difficult problem. Indeed, it amounts to wrap each
expression that includes a property set annotation in a conditional expression that dynamically
checks whether the expression to which the property set annotation applies is contained in
that property set. If that is case, the execution is allowed to go through. Otherwise, the
instrumentation causes the program to diverge. It is possible to modify the specification of the
hybrid type system presented in Section 5.4 so that it additionally performs the runtime checks
required for verifying the correctness of property set annotations. This would, however, clutter
up the presentation. Hence, we leave it implicit and we assume, in the rest of the chapter,
that property set annotations are correct. But they do not have to be minimal – the property
set annoation corresponding to the set Str of all strings is always correct. We say that two
expressions e and e′ are equal up to property set annotations, written e ≡ e′, if they only differ
in property set annotations. Whenever a property set annotation is omitted, it is assumed to
be Str, and the notation e.x is now used as an abbreviation for e[string(x), {string(x)}]. For
instance, o.xpto is used as an abbreviation for o["xpto", {"xpto"}].

5.1.2 Syntax of Security Types

Every security type τ̇ ∈ SType is obtained by pairing up a raw type τ ∈ Type with a security
level σ ∈ L, where SType is the set of all security types and Type the set of all raw types.
Furthermore, we denote by SOType the set of all object security types. The syntax of types is
given in Table 5.2, where p, σ, and κ range over the sets of strings, security levels, and type
variables. Given a security type τσ the level σ, that annotates its raw type τ , is referred to
as the external level of the security type. The external level of a security type establishes an
upper bound on the levels of the resources on which the values of that type may depend. For
instance, a primitive value of type PRIML may only depend on low resources. The same applies
to an object o of type µκ.〈pL : PRIMH〉L. However, the value associated with o’s property p may



56 Chapter 5. Static to Hybrid Information Flow Control in Core JavaScript

τ ∈ Type ::= PRIM % Prim Type

| 〈τ̇ .τ̇ σ→ τ̇〉 % Function Type

| 〈κ.τ̇ σ→ τ̇〉 % Method Type

| µκ.〈pσ : τ̇ , · · · , pσ : τ̇ , ∗σ : τ̇〉 % Extensible Object Type

| µκ.〈pσ : τ̇ , · · · , pσ : τ̇〉 % Non-extensible Object Type

τ̇ ∈ SType ::= τσ % Security Type

Table 5.2: Syntax of Types

depend on high resources. A typing environment Γ : Var → SType is a mapping from variables
to types.

In contrast to class-based languages, where method types are specified inside their classes,
JavaScript functions are first-class values which can be defined anywhere in the code and later
assigned to properties of arbitrary objects. This creates a dependency between types for func-
tions and types for objects, because object types include the types of their methods and function
types include the type of the objects to which the keyword this is bound during execution. To
break this circularity, we make use of recursive types [Amadio 1991]. However, to keep the pre-
sentation fairly simple, we restrict the occurrence of type variables to the type of the keyword
this in function types. This restriction gives raise to two kinds of function types, those that use
an arbitrary type as the type of the keyword this and those which instead use a type variable.
In the following, we give a brief description of the possible raw types:

• The type PRIM is the type of the expressions that evaluate to primitive values.

• The type 〈τ̇0.τ̇1
σ→ τ̇2〉 is the type of the expressions that evaluate to functions that map

values of type τ̇1 to values of type τ̇2 and during the execution of which the keyword this
is bound to an object of type τ̇0. The level σ is the writing effect [Sabelfeld 2003a] of the
functions of that type, i.e., a lower bound on the levels of the resources created/updated
during their execution.

• The type 〈κ.τ̇ σ→ τ̇〉 coincides with the one just described, except that it is meant to be
used as the type of a method. Hence, since it is specified inside the corresponding object
type, the type of the keyword this is the type variable bound by that object type (see the
example given in Figure 5.1).

• The type µκ.〈pσ00 : τ̇0, · · · , pσnn : τ̇n, ∗σ∗ : τ̇∗〉 is the type of the expressions that evaluate
to (references of) objects that potentially define properties p0, · · · , pn, mapping each
property pi to a value of security type τ̇i. The security type assigned to the ∗ is the
default security type [Thiemann 2005]. The default security type of an object type µκ.〈pσ00 :
τ̇0, · · · , pσnn : τ̇n, ∗σ∗ : τ̇∗〉 is the security type of (the values assigned to) the properties of
the objects of that type which are not in {p0, ..., pn}. Every property pi is additionally
associated with an existence level σi. The level σ∗ is the default existence level.

• The type µκ.〈pσ00 : τ̇0, · · · , pσnn : τ̇n〉 coincides with the one just described except that it
does not define a default type and a default existence level. Hence, it applies to non-
extensible objects. Non-extensible objects differ from extensible objects in that they are
only supposed to define the properties explicitly declared in their corresponding types.

Notation Given an object security type τ̇ ∈ SOType, we use the notation dom(τ̇) for the
set containing the properties that explicitly appear in τ̇ (including ∗ if it is present), and the



5.1. Security Types for Core JavaScript 57

τ̇contact = µκ ·〈 "fst"L : PRIML, "lst"L : PRIML,
"id"L : PRIMH , "favourite"H : PRIMH ,
"printContact"L : 〈κ.PRIML

H→ PRIML〉L,
"makeFavorite"L : 〈κ.PRIML

H→ PRIML〉L,
"isFavorite"L : 〈κ.PRIML

H→ PRIMH〉L,
"unFavorite"L : 〈κ.PRIML

H→ PRIMH〉L,
"_prot_"L : τ̇proto_contact

〉
L

τ̇CM = µκ ·〈 "proto_contact"L : τ̇proto_contact,
"contact_list"L : µκ.〈∗L : τ̇contact〉L,
"createContact"L : 〈κ.(PRIML, PRIML, PRIMH)

L→ τ̇contact〉L,
"storeContact"L : 〈κ.(τ̇contact, PRIML)

L→ τ̇contact〉L,
"getContact"L : 〈κ.(PRIML, PRIML)

H→ τ̇contact〉L
〉

L

Figure 5.1: Typing Environment for the Contact Manager - ΓCM = [CM 7→ τ̇CM ]

notation ∗(τ̇) for the pair (σ∗, τ̇∗) consisting of the default existence level and the default security
type of τ̇ . Note that the fact that an object has type τ̇ does not mean that it defines all of the
properties declared in dom(τ̇), but rather that it potentially defines the properties in dom(τ̇)
(in which case they are mapped to values of the corresponding type).

Given a security type τ̇ , lev(τ̇) denotes its external level and bτ̇c its raw type. For instance,
lev(PRIML) = L and bPRIMLc = PRIM. We define τ̇σ as bτ̇clev(τ̇)tσ. Hence, (PRIML)H = PRIMH .

Example Figure 5.1 presents a typing environment for the Contact Manager example. We
omit the specification of the type τ̇proto_contact that coincides with τ̇contact in every property
except in "_prot_" for which it does not define a mapping, since objects of that type are not
supposed to have a prototype.1 In the example, functions that do not modify the memory are
associated with function types with high writing effects. This is due to the fact that the writing
effect of a function is a lower bound on the levels of the resources that are updated/created during
the execution of that function. Hence, when no resources are created/updated, the writing effect
is the top security level.

Inspection of Object Types It is useful to define a function �: SOType× Str→ L× SType
that receives as input an object security type τ̇ and a string p and outputs a pair consisting of
the existence level and the security type with which τ̇ associates p:

� (τ̇ , p) =

{
(σi, {τ̇ /κ}τ̇p) if τ̇ = µκ.〈· · · , pσi : τ̇p, · · · 〉σ
(σ∗, {τ̇ /κ}τ̇∗) if τ̇ = µκ.〈· · · , ∗σ∗ : τ̇∗, · · · 〉σ ∧ p 6∈ dom(τ̇)

(5.3)

where {τ̇0/κ}τ̇1 denotes the capture-avoiding substitution of κ for τ̇0 in τ̇1. In the following,
given a pair lt = (σ, τ̇) consisting of a security level and a security type, we use πlev(lt) to
denote σ and πtype(lt) to denote τ̇ .

Interestingly, object types can be interpreted as a typing environments. Concretely, given
an object security type τ̇ ∈ SOType, we define its corresponding typing environment, Γτ̇ : Var→
SType, as the function that maps each identifier whose name corresponds to a string p ∈ dom(τ̇)
to the security type with which that type associates p – πtype(� (τ̇ , p)). Formally: Γτ̇ (x) =

1Note that in real JavaScript every object has an implicit prototype: Object.prototype.



58 Chapter 5. Static to Hybrid Information Flow Control in Core JavaScript

πtype(� (τ̇ , string(x))). Conversely, given a typing environment Γ, τ̇Γ denotes the object security
type that matches Γ. Formally, given a typing environment Γ such that dom(Γ) = {y1, · · · , yn},
τ̇Γ is defined as µκ.〈p⊥1 : τ̇1, · · · , p⊥n : τ̇n〉 where pi = string(yi) and τ̇i = Γ(yi) for i = 1, · · · , n.

5.1.2.1 Restricting the Syntax of Security Types for Objects

In order to guarantee the soundness of the proposed type systems, one must impose some
restrictions on the syntax of object security types. This subsection describes these restrictions.

First, we require the existence level of a property to be lower than or equal to the level that
annotates its corresponding security type. This restriction forbids the specification of an object
security type that associates an invisible property with a visible value. Formally, given an object
security type τ̇ and a property p ∈ dom(τ̇), it must be the case that:

πlev(� (τ̇ , p)) v lev(πtype(� (τ̇ , p))) (5.4)

Second, we require the security level that annotates an object type to be higher than or equal
to the level that annotates the type of its prototype. This constraint is meant to prevent leaks
via prototype mutations. If the level of the prototype of an object o is high, then the prototype
of o is allowed to change in a high context. However, such changes remain invisible to a low
observer, because the level of o is itself high, meaning that a low observer can never see any of
the contents of o. Formally, given an object security type τ̇ , it must be the case that:

lev(πtype(� (τ̇ , "_prot_"))) v lev(τ̇) (5.5)

The final restriction concerning the syntax of security types for objects has to do with the
relation between the type of an object and the type of its prototype. An important aspect of
object types is that they must reflect the whole prototype-chain accessible through the corre-
sponding objects. Hence, in the Contact Manager example, the security type assigned to contact
objects also includes the methods that the corresponding prototype implements. Since every
object type must reflect the whole prototype-chain accessible through the corresponding objects,
not all types can be used as the type of the prototype for the objects of a given type.

Consider, for instance, an object o0 of type τ̇0 = µκ.〈"propA"L : PRIM
L, "_prot_"L : _〉L and

an object o1 of type τ̇1 = µκ.〈"propA"L : µκ.〈∗L : PRIM
L〉L〉L. Suppose we set τ̇1 as the type of

the prototype in τ̇0. Then, the look-up of "propA" in o0 may yield two different types of values
(besides undefined, if neither o0 nor o1 defines "propA"). It yields a value of type PRIML when
object o0 defines "propA" and an object of type µκ.〈∗L : PRIM

L〉L when o0 does not define "propA"
and o1 defines "propA". In order to overcome this problem, we restrict what types can be legally
used for the prototype of a given object type. We say that τ̇1 is a consistent prototype type for τ̇0,
written τ̇0 �proto τ̇1, if τ̇1 does not define a default type and both types coincide in the domain
of τ̇1 (with the exception of the property "_prot_"). Definition 5.1 formalises this notion.

Definition 5.1 (Consistent Prototypes). We say that τ̇1 is a consistent prototype type for τ̇0,
written τ̇0 �proto τ̇1, if and only if:

• ∗ 6∈ dom(τ̇1),

• dom(τ̇1) ⊆ dom(τ̇0),

• ∀p∈dom(τ̇1)\{"_prot_"} � (τ̇0, p) = � (τ̇1, p).



5.1. Security Types for Core JavaScript 59

5.1.2.2 Subtyping Security Types

In order to type expressions that either result from the combination of subexpressions with
different types, or whose evaluation may yield values of different types (for instance, a property
look-up with an imprecise property set annotation), both the type systems presented in the
following sections make use of an ordering on security types, called subtyping relation. Intuitively,
a security type τ̇0 is a subtype of another security type τ̇1, if the use of an expression of type τ̇0 is
secure whenever the use of an expression of type τ̇1 is secure. The ordering v on security levels
induces a simple ordering � on security types: τ̇0 � τ̇1 iff lev(τ̇0) v lev(τ̇1) and bτ̇0c ≡ bτ̇1c,
where ≡ stands for syntactic equality.

As is the case of references in ML [Pottier 2002], every two object security types in the
subtyping relation need to have the same corresponding raw type, because, while property
look-ups and membership testing expressions are covariant with the type of the property being
inspected, property assignments and property deletions are contravariant. Consider, for instance,
an object of type τ̇0 = µκ.〈"propA"L : PRIML〉L bound to an identifier x and an object of type
τ̇1 = µκ.〈"propA"L : PRIMH〉L bound to and identifier y. The following two expressions illustrate
why raw object types need to be invariante:

• If we let τ̇0 � τ̇1, the expression y = x, y.propA = h, which assigns an invisible value to a
visible property, would be typable.

• Conversely, if we let τ̇1 � τ̇0, the expression x = y, l = x.propA, which assigns an invisible
value to a visible variable, would be typable.

Given a raw type τ , the set {τ̇ | bτ̇c ≡ τ} of its corresponding security types forms a lattice
(when ordered by �). The corresponding lub and glb g,f : SType× SType→ SType are defined
as follows: τ̇0

g
f τ̇1 = τ̇ ⇔ bτ̇c ≡ bτ̇0c ≡ bτ̇1c ∧ lev(τ̇) = lev(τ̇0)tu lev(τ̇1). Using the notions of lub

and glb between security types, we extend � to arbitrary sets of properties in the two following
ways �↑, �↓ : SOType× 2Str → L× SType:

�↑ (τ̇ , P ) = (t{σ̂ | p ∈ P ∧ σ̂ = πlev(� (τ̇ , p))},g{τ̇ ′ | p ∈ P ∧ τ̇ ′ = πtype(� (τ̇ , p))}) (5.6)

�↓ (τ̇ , P ) = (u{σ̂ | p ∈ P ∧ σ̂ = πlev(� (τ̇ , p))},f{τ̇ ′ | p ∈ P ∧ τ̇ ′ = πtype(� (τ̇ , p))}) (5.7)

While �↑ is used for the typing of property look-ups, membership testing expressions, and method
calls (which are covariant with the type of the corresponding property), �↓ is used for the typing
of property assignments and property deletions (which are contravariant with the type of the
corresponding property).

5.1.3 Well-Typed Memories

In order to reason about the types of the objects in memory, we have to extend the semantics of
Core JavaScript, defined in Section 2.4, with type-based labellings that serve to record the types
of the objects created at runtime, which include the types of the function literals dynamically
evaluated. Hence, the augmented transitions of the big-step semantics for Core JavaScript have
the form:

r ` 〈µ,Σ, e〉 ⇓ 〈µ′,Σ′, v〉 (5.8)

where Σ and Σ′ are initial and final type-based labellings respectively, while the remaining ele-
ments keep their original meaning. A type-based labelling is a function Σ : Ref→ SType mapping



60 Chapter 5. Static to Hybrid Information Flow Control in Core JavaScript

Function Literal
r′ = fresh(µ) Σ′ = Σ [r′ 7→ τ̇ ]

µ′ = µ
[
r′ 7→

[
"@fscope" 7→ r, "@code" 7→ λΓ,τ̇x.

{
varτ̇1,··· ,τ̇n y1, · · · , yn; e

}]]
r ` 〈µ,Σ, functionΓ,τ̇ ,i(x){varτ̇1,··· ,τ̇n y1, · · · , yn; e}〉 ⇓ 〈µ′,Σ′, r′〉

Object Literal
r′ = fresh(µ) Σ′ = Σ [r′ 7→ τ̇ ]
µ′ = µ [r′ 7→ ["_prot_" 7→ null]]

r ` 〈µ,Σ, { }τ̇ ,i〉 ⇓ 〈µ′,Σ′, r′〉

Figure 5.2: A Big-Step Semantics for Core JavaScript Extended with Type-based Labellings

references to security types. Upon the evaluation of a function/object literal of type τ̇ , the se-
mantics extends the current labelling Σ with a new mapping from the newly created reference
to its corresponding type. The two unique rules that directly interact with type-based labellings
are [Function Literal] and [Object Literal]. These rules are presented in Figure 5.2. The
only difference between these two rules and their original counterparts is that these rules have to
extend the current type-based labelling with a new mapping from the newly allocated reference
to the type of its corresponding object.

Another important difference between the adapted semantics of Core JavaScript used in this
chapter and the one introduced in Chapter 2 is that, here, parsed function literals in memory are
assumed to be annotated with the typing environment in which they were typed. Accordingly, we
assume the existence of a semantic function tenv that, given a parsed function literal, outputs the
typing environment with which it is annotated. For instance, given a memory µ and a reference r
pointing to a function object in µ, tenv(µ(r ·"@code")) is the typing environment that annotates
the function literal associated with the function object pointed to by r. It is important to
emphasise that this is just a device for the proofs and not a feature of the enforcement mechanism.
In other words, these typing environments are not used by the semantics.

We can now introduce the definition of well-typed memory. Informally, one can say that a
memory is well-typed by a given type-based labelling Σ, if the types given by Σ to the objects in
memory “match” the objects with which they are associated. In the same way, a scope-chain is
well-typed by a given typing environment Γ and type-based labelling Σ, if the types assigned by
Γ to the identifiers in that scope match their corresponding values. Definition 5.2 establishes the
notion of well-typed scope-chain, whereas Definition 5.3 gives the notion of well-typed memory.

In order to simplify the specification of the following two definitions, it is useful to introduce
the notion of extended labelling to primitive values. Given a labelling Σ : Ref → SType, its
extension to primitive values Σ̄ : Ref ∪ Prim→ SType is defined as follows:

Σ̄(v) =

{
Σ(v) if v ∈ Ref
PRIM⊥ otherwise (5.9)

Definition 5.2 (Well-typed Scope-Chain). Given a memory µ, a scope reference r, a typing
environment Γ, and a type-based labelling Σ, we say that the scope-chain stored in µ that starts
in r is well-typed by Γ and Σ if for every variable x ∈ dom(Γ) for which there is a reference
r′ such that r′ = Scope(µ, r, x) and r′ 6= null, it follows that: Σ̄(µ(rx · mx)) � Γ(x), where
mx = string(x).

Definition 5.3 (Well-Typed Memory). A memory µ is well-typed by Σ, if:

1. every reference pointing to a non-internal object in µ is in the domain of Σ,



5.2. The Attacker Model and the Meaning of Security Types 61

2. every reference rf pointing to a funtion object in µ is mapped by Σ to a function type
τ̇ , which correctly types the body of the corresponding function in its annotated typing
environment (Γ = tenv(µ(rf · "@code"))), and the corresponding scope-chain is well-typed
by Γ and Σ,

3. for every reference r ∈ dom(Σ) and property p ∈ dom(µ(r)), it holds that:

Σ(µ(r · p)) � πtype(� (Σ(r), p))

5.2 The Attacker Model and the Meaning of Security Types

Since in this chapter resources are labelled using type-based labellings instead of dynamic la-
bellings, the low-equality definition must be adjusted to type-based labellings. Informally, when
considering a memory well-typed by a type-based labelling Σ, an attacker at level σ can see:

1. a reference r as well as the type of the object to which it points, provided that the external
level of that type is lower than or equal to σ (formally, lev(Σ(r)) v σ),

2. the existence of a property p in an object pointed to by a visible reference r, provided
that the type of that object associates p with an existence level lower than or equal to σ
(formally, πlev(� (Σ(r), p)) t lev(Σ(r)) v σ),

3. the value of a property p in an object pointed to by a visible reference r, provided that
the type of that object associates p with a security type whose external level is lower than
or equal to σ (formally, lev(πtype(� (Σ(r), p))) t lev(Σ(r)) v σ),

4. the code of a function object pointed to by a reference r, provided that the external level
of the type of that object is lower than or equal to σ (formally, lev(Σ(r)) v σ).

Since every function object in memory is associated with the scope object that was active
at the time of its evaluation, the low-equality must also take into account the scope-chains that
are stored in memory. To this end, Definition 5.4 extends the notion of low-projection and
low-equality to scope-chains. Informally, given a labelling Γ, a memory µ, and a scope reference
r, an attacker at level σ can see:

• the value of a variable x in the domain of Γ, provided that there is an object in the scope-
chain that starts with µ(r) that defines a binding for x and that x is mapped by Γ to a
security type whose external level is lower than or equal to σ (formally, lev(Γ(x)) v σ).

Definition 5.4 (Low-Projection and Low-Equality for Scope-Chains). The low-projection at
security level σ of the scope-chain labelled by Γ that starts with the scope object pointed to by r
in memory µ is defined as follows:

(µ, r) �Γ,σ= {(x, rx, µ(rx ·mx)) | x ∈ dom(Γ) ∧ lev(Γ(x))) v σ ∧ rx = Scope(µ, r, x) ∧
∧ rx 6= null ∧ mx = string(x)}

We say that the scope-chains starting with two objects pointed to by the same reference r in two
memories µ0 and µ1 are low-equal at level σ w.r.t. Γ, written Γ, r  µ0 ∼σ µ1, if (µ0, r) �Γ,σ=
(µ1, r) �Γ,σ.



62 Chapter 5. Static to Hybrid Information Flow Control in Core JavaScript

Definition 5.5 (Low-Projection and Low-Equality for Memories). The low-projection of a mem-
ory µ w.r.t. a security level σ and a type-based labelling Σ is given by:

µ �Σ,σ= {(r,Σ(r)) | lev(Σ(r)) v σ}
∪ {(r, p) | πlev(� (Σ(r), p)) t lev(Σ(r)) v σ ∧ p ∈ dom(µ(r))}
∪ {(r, p, v) | lev(πtype(� (Σ(r), p))) t lev(Σ(r)) v σ ∧ v = µ(r · p)}
∪ {

(
r, f, rs, (µ, rs) �Γ,σ

)
| lev(Σ(r)) v σ ∧ f = µ(r · "@code") ∧ Γ = tenv(f)

∧ rs = µ(r · "@fscope")}

Two memories µ0 and µ1, respectively typed by Σ0 and Σ1 are said to be low-equal at security
level σ, written µ0,Σ0 ∼σ µ1,Σ1 if they coincide in their respective low-projections, µ0 �Σ0,σ=
µ1 �Σ1,σ.

5.2.1 Noninterference for Typed Programs

Informally, a program is noninterferent if its execution in two low-equal memories always pro-
duces two low-equal memories. Hence, an attacker cannot use a noninterferent program as a
means to disclose the confidential contents of a memory. In the following, given a typing envi-
ronment Γ, we say that a type-based labelling Σ is consistent with Γ if Σ(#glob) = τ̇Γ, meaning
that the type of the global τ̇glob matches the typing environment.

Definition 5.6 (Noninterference). An expression e is said be noninterferent with respect to a
typing environment Γ, written NI(e,Γ), if for any two memories µ and µ′, type-based labellings
Σ and Σ′, and security level σ ∈ L such that:

• µ is well-typed by Σ and µ′ is well-typed by Σ′,

• Σ and Σ′ are consistent with Γ,

• #glob ` 〈µ,Σ, e〉 ⇓ 〈µf ,Σf , v〉,

• #glob ` 〈µ′,Σ′, e〉 ⇓ 〈µ′f ,Σ′f , v′〉, and

• µ,Σ ∼σ µ′,Σ′;

It holds that: µf ,Σf ∼σ µ′f ,Σ′f .

The definition of noninterference is standard except for the requirement that the typing
environment be consistent with the type of the global object. Furthermore, the initial memories
are assumed to be well-typed, meaning that the types of the references in memory must “match”
their corresponding values. For simplicity, the definition of noninterference does not impose any
restriction on the generated outputs. This does not constitute a problem, since any expression
e that produces a high output can be trivially re-written as h = e, null, for an arbitrary high
variable h.

5.3 Static Information Flow Control in Core JavaScript

We now present a static type system for securing information flow in Core JavaScript. The rules,
presented in Figure 5.3, use typing judgements of the form Γ, σpc ` e : τ̇ , where:

• Γ is the typing environment,

• σpc the context level, that is, a lower bound on the levels of the resources that can be
updated/created when e is evaluated,



5.3. Static Information Flow Control in Core JavaScript 63

Value
Γ, σpc ` v : PRIM

⊥
This
Γ, σpc ` this : Γ(this)

Var
Γ, σpc ` x : Γ(x)

Object Literal
σpc v lev(τ̇)

Γ, σpc ` {}τ̇ : τ̇

Binary Operation
Γ, σpc ` ei : τ̇i
τ̇ = τ̇0 g τ̇1

Γ, σpc ` e0 op e1 : τ̇

Variable Assignment
Γ, σpc ` e : τ̇ τ̇σpc � Γ(x)

Γ, σpc ` x = e : τ̇

Property Look-up
∀i=0,1 · Γ, σpc ` ei : τ̇i τ̇ = πtype(�↑ (τ̇0, P ))

σ = lev(τ̇0) t lev(τ̇1)

Γ, σpc ` e0[e1, P ] : τ̇σ

Membership Testing
∀i=0,1 · Γ, σpc ` ei : τ̇i

σ = πlev(�↑ (τ̇1, P )) t lev(τ̇0) t lev(τ̇1)

Γ, σpc ` e0 inP e1 : PRIMσ

Property Assignment
∀i=0,1,2 · Γ, σpc ` ei : τ̇i (σ, τ̇) = �↓ (τ̇0, P )

τ̇2 � τ̇ σpc t lev(τ̇0) t lev(τ̇1) v σ
Γ, σpc ` e0[e1, P ] = e2 : τ̇2

Property Deletion
∀i=0,1 · Γ, σpc ` ei : τ̇i σ = πlev(�↓ (τ̇ , P ))

σpc t lev(τ̇0) t lev(τ̇1) v σ
Γ, σpc ` deleteP e0[e1] : PRIM

⊥

Function Call
Γ, σpc ` e0 : 〈τ̇ ′0.τ̇ ′1

σ̂→ τ̇ ′2〉σ̂
′

Γ, σpc ` e1 : τ̇1 σ = σpc t σ̂′
σ v σ̂ τ̇σglobal � τ̇ ′0 τ̇σ1 � τ̇ ′1

Γ, σpc ` e0(e1) : (τ̇ ′2)σ

Method Call
∀i=0,1,2 · Γ, σpc ` ei : τ̇i 〈τ̇ ′0.τ̇ ′1

σ̂→ τ̇ ′2〉σ̂
′

= πtype(�↑ (τ̇0, P ))
σ = σpc t σ̂′ t lev(τ̇0) t lev(τ̇1)
σ v σ̂ τ̇σ0 � τ̇ ′0 τ̇σ2 � τ̇ ′1
Γ, σpc ` e0[e1, P ](e2) : (τ̇ ′2)σ

Conditional Expression
Γ, σpc ` e0 : τ̇0 σ′pc = σpc t lev(τ̇0)
∀i=1,2 · Γ, σ′pc ` ei : τ̇i τ̇ = τ̇1 g τ̇2

Γ, σpc ` e0 ? (e1) : (e2) : τ̇ lev(τ̇0)

Sequence
∀i=0,1 · Γ, σpc ` ei : τ̇i

Γ, σpc ` e0, e1 : τ̇1

Function Literal
τ̇ = 〈τ̇ ′0.τ̇ ′1

σ̂→ τ̇ ′2〉σ σpc t σ v σ̂
Γ [this 7→ τ̇ ′0, x 7→ τ̇ ′1, y1 7→ τ̇1, · · · , yn 7→ τ̇n] , σ̂ ` e : τ̇ ′2

Γ, σpc ` functionτ̇ ,Γ(x){varτ̇1,··· ,τ̇n y1, · · · , yn; e} : τ̇

Figure 5.3: Typing Secure Information Flow in Core JavaScript

• e is the expression to be typed, and

• τ̇ the type that is assigned to it.

In the following, we give a brief description of the rules that compose the type system.

• [Value] A literal value is given the type PRIM⊥ as it always evaluates to primitive value
and it does not disclose any secret contents.

• [This] The keyword this is given the type of the object that is to be bound to the keyword
this at runtime. This type is associated with the identifier this in the current typing
environment.

• [Variable] A variable x is given the type with which it is associated in the current typing
environment.

• [Object Literal] An object literal is given the type with which it is annotated.



64 Chapter 5. Static to Hybrid Information Flow Control in Core JavaScript

Typing Environment:

Γ(h1) = Γ(h2) = PRIMH Γ(l1) = Γ(l2) = PRIML

Γ(o1) = µκ.〈"p1"L : PRIMH , "p2"L : PRIML, ∗L : PRIML〉L

Γ(o2) = µκ.〈"q1"L : PRIML, "q2"H : PRIMH , ∗L : PRIMH〉L

Examples:

l1 = o1[l2, {"p2"}] TYPED

o1[l2, {"p1", "p3"}] ? (o2[l1, {"q2"}] = 0) TYPED

l1 = l2 inStr o2 NOT TYPED

o1[l2, {"p1", "p3"}] = o2[l1, {"q2", "q3"}] NOT TYPED

Table 5.3: Examples of Programs Accepted/Rejected by the Static Type System

• [Binary Operation] A binary operation is typed with the least upper bound g between
the types of its subexpressions.

• [Variable Assignment] A variable assignment x = e is typed with the type of e provided
that this type is a subtype of the type of x in the current typing environment and that the
level of the program counter is lower than or equal to the external level of the type of x.
While the first constraint prevents the assignment of a secret value to a public variable, the
second constraint prevents public variables to be updated inside secret contexts (thereby
preventing the execution of assignments which encode implicit flows).

• [Property Look-up] In order to type a property look-up e0[e1, P ], the type system first
computes the security type τ̇0 of e0 and the security type τ̇1 of e1. Then, the type system
computes the lub between the types with which τ̇0 associates the properties in P , thereby
obtaining the security type τ̇ (remark that this type may not exist). To account for possible
implicit flows, the external level of the type given to the whole expression must be higher
than or equal to the lub between the external levels of τ̇0 and τ̇1 – σ = lev(τ̇0) t lev(τ̇1).
Hence, the whole expression is typed with τ̇σ.

• [Membership Testing] In order to type a membership testing expression e0 inP e1, the
type system first computes the security type τ̇0 of e0 and the security type τ̇1 of e1. Then,
the type system computes the lub between the existence levels with which τ̇1 associates
the properties in P , thereby obtaining the security level σ (remark that this level always
exists). To account for possible implicit flows, the external level of the type given to the
whole expression must be higher than or equal to the lub between the external levels of τ̇0

and τ̇1. Hence, the whole expression is typed with PRIMσtlev(τ̇0)tlev(τ̇1). The raw type is
PRIM because a membership testing expression always evaluates to a boolean value.

• [Property Assignment] In order to type a property assignment e0[e1, P ] = e2, the type
system first computes the security types τ̇0, τ̇1, and τ̇2 of e0, e1, and e2, respectively. Then,
the type system computes the glb between the existence levels as well as the security types
with which τ̇0 associates the properties in P , thereby obtaining a security level σ and a
security type τ̇ . The type system subsequently checks whether τ̇2 is a subtype of τ̇ . This
constraint prevents the explicit flow resulting from the assignment of a high value to a



5.3. Static Information Flow Control in Core JavaScript 65

low property. Then, the type system checks whether the external levels of τ̇0 and τ̇ as
well as the level of the program counter are lower than or equal to σ. This constraint
prevents a program from updating/creating a property with a low existence level/value
level depending on secret information.

• [Property Deletion] In order to type a property deletion deleteP e0[e1], the type system
first computes the security types τ̇0 and τ̇1 of e0 and e1, respectively. Then, it computes
the glb between the existence levels with which τ̇0 associates the properties in P , thereby
obtaining the security level σ. Finally, the type system checks whether the lub between
the external levels of τ̇0 and τ̇1 as well as the level of the program counter are lower than
or equal to σ. This constraint prevents the deletion of a visible property depending on
secret information. The whole expression is typed with PRIM⊥, because the evaluation of
the expression always produces a boolean value and does not reveal any secret information.

• [Function Call] In order to type a function call, the type system first types its two
subexpressions, thereby obtaining two types – τ̇0 and τ̇1. Then, it computes the least
upper bound between the level that annotates τ̇0 and the current level of the program
counter σpc – σ. This level can be seen as an upper bound on the levels of the resources
that determine at runtime the function to which e0 evaluates. The type system, then,
checks whether σ is lower than or equal to the writing effect of the function type τ̇0. This
constraint prevents the calling of a function that creates/updates low memory depending
on high values. Finally, the type system checks whether the type τ̇global of the global objec
and the type τ̇1 of the function argument match the type τ̇ ′0 of the keyword this and of the
type τ̇ ′1 of the function formal parameter. The whole function call is typed with the return
type of the function type τ̇ ′2. However, in order to account for possible implicit flows, its
external level must be upgraded so that it is higher than or equal to σ.

• [Method Call] In order to type a method call e0[e1](e2), the type system first types its
three subexpressions, thereby obtaining three types – τ̇0, τ̇1, and τ̇2. Then, it computes
the lub between the types with which the type of τ̇0 associates the properties in P – τ̇
(provided that such a type exists). The type τ̇ must be a function type. After this, the
type system computes the lub between the external levels of τ̇ , τ̇0, and τ̇1 and the level of
the program counter, thereby obtaining a level σ. The type system then checks whether
σ is lower than or equal to the writing effect declared in the function type (τ̇). This
constraint prevents the calling of a function that creates/updates low memory depending
on high values. Finally, the type system checks whether τ̇0 and τ̇2 match the type τ̇ ′0 of
the keyword this and the type τ̇ ′1 of the formal parameter, respectively. The whole method
call is typed with the return type of the function type τ̇ ′2. However, in order to account
for possible implicit flows, its external level must be upgraded so that it is higher than or
equal to σ.

• [Conditional] In order to type a conditional expression e0 ? (e1) : (e2), the type system
first computes the type τ̇0 of e0. Then, it types e1 and e2 using as the level of the program
counter the lub between its current level (σpc) and the external level of τ̇0. By raising
the level of the program counter when typing e1 and e2, the type system prevents the
creation/update of public resources inside of a branch that was taken depending on secret
information. The type given to the whole expression is the lub between the types of e1

and e2.

• [Sequence] In order to type a sequence expression, the type system first types its two
subexpressions. The type given to the whole expression is the type of the second subex-
pression, since the whole expression evaluates to the value of its second subexpression.



66 Chapter 5. Static to Hybrid Information Flow Control in Core JavaScript

• [Function Literal] A function literal is typed with the type that annotates it. In order to
type a function literal, the type system first computes the lub between the external level of
its type and the current level of the program counter. Then, it checks whether this level is
lower than or equal to the writing effect declared in its type. This constraint prevents the
evaluation of function literals whose execution updates/creates low memory, depending on
secret information. Finally, the type system types the body of the function literal using
the typing environment obtained by extending the current typing environment with the
type τ̇ ′1 of the formal argument, the type τ̇ ′0 of the keyword this and the types τ̇1, ..., τ̇n of
the variables declared in the body of the function literal.

Table 5.3 presents a typing environment and two pairs of programs. While the first pair is type
checked by the static type system given in Figure 5.3, the second pair is rejected.

5.3.1 Soundness of the Static Type System

The following lemma states that the execution of a typable expression preserves the well-typing
predicate for memories. In other words, the execution of a typable expression in a well-typed
memory generates a well-typed memory.

Lemma 5.1 ( Well-Typing Preservation). For any two memories µ and µ′, type-based labellings
Σ and Σ′, reference r, expression e, value v, typing environment Γ, security level σpc, and
security type τ̇ , such that:

• r ` 〈µ,Σ, e〉 ⇓ 〈µ′,Σ′, v〉,

• Γ, σpc ` e : τ̇ ,

• µ is well-typed by Σ and the current scope-chain is well-typed by Γ and Σ;

It holds that: (1) µ′ is well-typed by Σ′, (2) the current scope-chain after the execution of e is
well-typed by Γ and Σ′, and (3) if v ∈ Ref, then Σ′(v) � τ̇ .

Lemma 5.2 states that the execution of an expression typable using a high context level does
neither create nor update low resources. Hence, the low-projection of the memory that results
from the execution of that expression coincides with the low-projection of the initial memory.
Finally, the soundness of the proposed type system is established in Theorem 5.1.

Lemma 5.2 (Confinement). For any two memories µ and µ′, type-based labellings Σ and Σ′,
reference r, expression e, value v, typing environment Γ, security levels σ and σpc, and security
type τ̇ , such that:

• r ` 〈µ,Σ, e〉 ⇓ 〈µ′,Σ′, v〉,

• Γ, σpc ` e : τ̇ ,

• µ is well-typed by Σ,

• σpc 6v σ

It holds that: µ �Σ,σ= µ′ �Σ
′,σ and (µ, r) �Γ,σ= (µ′, r) �Γ,σ.

Theorem 5.1 (Noninterference - Static Type System). For any expression e and typing envi-
ronment Γ such that Γ, σpc ` e : τ̇ , it holds that: NI(e,Γ).

Proofs are given in Appendix B.1.



5.4. Hybrid Information Flow Control in Core JavaScript 67

µ, r � v ∈ V ⇔ v ∈ V % Constant Basic Assertion
µ, r � $vi ∈ V ⇔ r′ = Scope(µ, r, $vi) ∧ µ(r′ · string($vi)) ∈ V % Variable Basic Assertion
µ, r � ω0 ∨ ω1 ⇔ µ, r � ω0 ∨ µ, r � ω1 % Disjunction
µ, r � ω0 ∧ ω1 ⇔ µ, r � ω0 ∧ µ, r � ω1 % Conjunction

µ, r � ¬ω ⇔ µ, r 6� ω % Negation
µ, r � true ⇔ always % Constant True

Table 5.4: Satisfaction Relation for Runtime Assertions

5.4 Hybrid Information Flow Control in Core JavaScript

The precision of the purely static type system heavily depends on the precision of property
set annotations. For instance, a property look-up is typable only if all properties in the corre-
sponding property set annotation are associated with the same raw type. In this section, we
modify this type system so as to make its precision independent of the precision of property
set annotations. The key insight is that, since our goal is to verify termination insensitive
noninterference, we can defer failure to execution time. Hence, instead of rejecting a program
based on imprecise property set annotations, the hybrid type system infers a set of assertions
under which a program can be securely accepted and instruments it so as to dynamically check
whether these assertions hold. The instrumented version diverges if the assertions under which
the original version was conditionally accepted fail to hold at runtime.

5.4.1 A Program Logic for Reasoning about Local Scope

In order to be able to reason about intermediate states of the execution, the type system makes
use of an indexed set of variables Vts = {$vi}i∈N. These variables are used for bookkeeping
the values of intermediate expressions and are not available for the programmer. Since one can
easily instrument a program so that it diverges when trying to read/write reserved variables,
we can assume that program variables do not overlap with those in Vts. The runtime assertions
generated by the type system are described by the following grammar:

ω ::= $vi ∈ V | v ∈ V | true | ω ∨ ω | ω ∧ ω | ¬ω (5.10)

where $vi is the i-th variable of Vts and V ⊂ Prim is an arbitrary set of primitive values. The
semantics of this logic is given by the satisfaction relation �. Informally, µ, r � ω means that
the assertion ω holds in the memory µ in the scope-chain that starts with the object pointed to
by r. The satisfaction relation for assertions is formally given in Table 5.4. We distinguish two
types of elementary runtime assertions:

• the constant basic assertion µ, r � v ∈ V holds provided that v ∈ V ,

• the variable basic assertion µ, r � $vi ∈ V holds provided that the value bound to $vi in
the scope-chain that starts with the object µ(r) is contained in V .

The remaining assertions are interpreted as in classical propositional logic.

5.4.2 Type Sets and Level Sets

In this section, we use as a running example the program x[yi] = u[vj ] +k z, to be typed using
the following typing environment:

Γ(x) = τ̇x = µκ.〈pL0 : PRIMH , pL1 : PRIML, ∗L : PRIML〉L
Γ(u) = τ̇u = µκ.〈qL0 : PRIML, qL1 : PRIMH , ∗L : PRIMH〉L

Γ(z) = Γ(y) = Γ(v) = PRIML
(5.11)



68 Chapter 5. Static to Hybrid Information Flow Control in Core JavaScript

This program is not typable using the static type system, because the left-hand side expression
is typed with PRIML (since the type system uses �↓ to determine its type), while the right-hand
side expression is typed with PRIMH (since the type system uses �↑ to determine its type).2

However, since the property set annotations of this program are very imprecise, it can be the
case that the potential illegal flows, which cause the static type system to reject it, never actually
happen. Hence, instead of using a single context level when typing a given expression and instead
of assigning a single security type to that expression, the hybrid type system uses a set L of
possible context levels, here called a level set, and types each expression with a set T of possible
security types, here called a type set. Each type τ̇ in the type set T and each security level σ in
the level set L is paired up with an assertion ω that describes “when” the expression is correctly
typed by τ̇ or “when” the context level is in fact σ. For instance, the look-up expressions x[yi]
and u[vj ] are respectively typed with:

Tx[yi] = {(PRIM
H , $vi ∈ {p0}), (PRIM

L, $vi ∈ {p1}), (PRIM
L,¬($vi ∈ {p0, p1}))} (5.12)

Tu[vj ] = {(PRIM
L, $vj ∈ {q0}), (PRIM

H , $vj ∈ {q1}), (PRIM
H ,¬($vj ∈ {q0, q1}))} (5.13)

where $vi and $vj are the variables of the type system that hold the values to which y and v
evaluate in their respective context.

It is useful to define a function �? that expects as input an object type τ̇ , a set P of
properties to inspect, and an expression e that evaluates to the actual property being inspected3

and generates a set of triples of the form (σ, τ̇ ′, ω). Each of these triples consists of a security
level σ, a security type τ̇ ′, and the assertion ω that must hold so that the actual property being
looked-up has existence level σ and security type τ̇ ′. Formally, letting LT τ̇ ,P,e = {(σ, τ̇ ′, (e ∈
{p})) | p ∈ P ∩ dom(τ̇) ∧ � (τ̇ , p) = (σ, τ̇ ′)}, �? is defined as follows:

�? (τ̇ , P, e) =

{
LT τ̇ ,P,e if P ⊆ dom(τ̇)
LT τ̇ ,P,e ∪ {(σ∗, τ∗,¬(e ∈ dom(τ̇) ∩ P ))} if P 6⊆ dom(τ̇)

(5.14)

where ∗(τ̇) = (σ∗, τ∗). We extend �? to sets of object security types paired up with runtime
assertions in the following way:

�? (T, P, e) = {(σ, τ̇ ′, ω ∧ ω′) | (τ̇ , ω) ∈ T ∧ (σ, τ̇ ′, ω′) ∈ �? (τ̇ , P, e)} (5.15)

Given a set LT of triples of the form (σ, τ̇ , ω), we denote by πlev(LT ) (πtype(LT ), resp.) the
set of pairs obtained from LT by removing from each triple the security type (the security level,
resp.). Observe that πtype(�? (τ̇x, Str, $vi)) = Tx[yi] and πtype(�? (τ̇u, Str, $vj)) = Tu[vj ].

In the following, we redefine some of the notations previously used with security types and
security levels for type sets and level sets. Given a type set T , a level set L, and an assertion ω,
we use:

• lev(T ) for the level set {(σ, ω) | (τσ, ω) ∈ T},

• TL for the type set {(τ̇ ′, ω) | (τ̇ , ωt) ∈ T ∧ (σ, ωl) ∈ L ∧ ω = ωt ∧ ωl ∧ τ̇ ′ = τ̇σ}, and

• Tω for the type set {(τ̇ , ω ∧ ω′) | (τ̇ , ω′) ∈ T}.

5.4.2.1 Combining Type Sets and Level Sets

Since an expression is typed with a set of security types and since the typing rules must consider
a set of possible context levels instead of a single context level, the constraints as well as the

2Recall that the implicit property set annotation is Str.
3Observe that e must either be a variable of the type system or a primitive value.



5.4. Hybrid Information Flow Control in Core JavaScript 69

lub’s and glb’s operations of the static type system must be rewritten in order to account for this
change. For instance, in the current running example, the hybrid type system types u[vj ] with
Tu[vj ] and z with Tz = {(PRIML, true)}. Therefore, in order to type u[v]j +k z, the type system
needs to combine two type sets. To this end, we make use of a function ⊕d, parameterized with a
generic binary function d, that given two sets of elements paired up with runtime assertions (be
it type sets or level sets), S0 and S1, generates a new set S0⊕dS1. Informally, if (s, ω) ∈ S0⊕dS1,
then, for every memory µ and reference r, µ, r � ω if and only if there are two pairs (s0, ω0) ∈ S0

and (s1, ω1) ∈ S1 such that µ, r � (ω0 ∧ ω1) and s = s0 d s1. Formally, the operation ⊕d must
verify the following:

∀µ∈Mem,r∈Ref ∃(s,ω)∈S0⊕dS1
µ, r � ω ⇔ ∃(s0,ω0)∈S0,(s1,ω1)∈S1

µ, r � (ω0∧ω1) ∧ s = s0ds1 (5.16)

Concretely, Tu[v]j ⊕gTz = Tu[v]j . However, making T ′z = {(PRIMH , true)}, it follows that Tu[v]j ⊕g
T ′z = {(PRIMH , true)}.

Constraint Generation In the rules that feature constraints, the hybrid type system tries to
infer a dynamic assertion under which the corresponding expression is legal. For instance, when
trying to type x[y]i = u[v]j + z, the hybrid type system tries to infer an assertion that is verified
only if the level of the property that is being assigned is higher than or equal to the level of the
right-hand side expression. To this end, we make use of a function When?

b, parameterized with
a generic order relation b, that given two sets of elements paired up with runtime assertions,
S0 and S1, generates an assertion ω = When?

b(S0, S1). The generated assertion describes the
conditions under which there are two pairs (s0, ω0) ∈ S0 and (s1, ω1) ∈ S1 such that s0 b s1 and
ω0 ∧ ω1 holds. Formally, if ω = When?

b(S0, S1), then:

∀µ∈Mem,r∈Ref µ, r � ω ⇔ ∃(s0,ω0)∈S0,(s1,ω1)∈S1
µ, r � (ω0 ∧ ω1) ∧ s0 b s1 (5.17)

For instance, in the current example: When?
�(Tx[yi], Tu[vj ]) = ($vi ∈ {p0})||($vj ∈ {q0}). If

$vi ∈ {p0} then the property being assigned is high and the assignment is legal. If $vj ∈ {q0},
then the value that is being assigned is low and, again, the assignment is legal.

5.4.3 Specification of the Type System

The hybrid type system for the imperative fragment of Core JavaScript is presented in Figure 5.4.
Typing judgements have the form: Γ, Lpc ` e e′/e′′ : T , where:

• Γ is the typing environment,

• Lpc a level set that represents all the possible levels of the current context,

• e the expression to be typed,

• e′ a new expression semantically equivalent to e except for the executions that are consid-
ered illegal,

• e′′ an expression that bookkeeps the value to which e′ evaluates,

• T the type set representing all possible types of e.

The rules of the hybrid type system have the same structure of the rules of the static type
system. While in the static type system the constraints are statically verified, in the dynamic
type system, the constraints are statically synthesised and inlined in the program in order to be
dynamically verified. However, the constraints are the same.



70 Chapter 5. Static to Hybrid Information Flow Control in Core JavaScript

Value

Γ, Lpc ` v  v/v : {(PRIM⊥, true)}

This

Γ, Lpc ` thisi  $vi=this/$vi : {(Γ(this), true)}

Var

Γ, Lpc ` xi  $vi=x/$vi : {(Γ(x), true)}

Object Literal
ω = When?

v(Lpc, lev(τ̇)) e′ = Wrap(ω, $vi = { }τ̇ )

Γ, Lpc ` { }τ̇ ,i  e′/$vi : {(τ̇ , true)}

Binary Operation
∀i=0,1 · Γ, Lpc ` ei  e′i/e′′i : Ti
e′ = e′0, e

′
1, $vj = e′′0 op e′′1

Γ, Lpc ` e0 opj e1  
e′/$vj : T0 ⊕g T1

Variable Assignment
Γ, Lpc ` e0  

e′0/e′′0 : T0 ω = When?
�(T

Lpc

0 ,Γ(x))

e = e′0,Wrap(ω, x = e′′0)

Γ, Lpc ` x = e0  
e/e′′0 : T0

Property Look-up
∀i=0,1 · Γ, Lpc ` ei  e′i/e′′i : Ti
TP = πtype(�

? (T0, P, e
′′
1))

L = lev(T0)⊕t lev(T1) e = e′0, e
′
1, $vj = e′′0 [e′′1 ]

Γ, Lpc ` e0[e1, P ]j  e/$vj : TLP

Membership Testing
∀i=0,1 · Γ, Lpc ` ei  e′i/e′′i : Ti

L = πlev(�
? (T0, P, e

′′
0))⊕t lev(T0)⊕t lev(T1)

e = e′0, e
′
1, $vj = e′′0 in e′′1

Γ, Lpc ` e0 inPj e1  
e/$vj : PRIM

L

Property Assignment
∀i=0,1,2 · Γ, Lpc ` ei  e′i/e′′i : Ti

LTP =�? (T0, P, e
′′
1) LP = πlev(LT ) TP = πtype(LT )

ω0 = When?
�(T2, TP ) ω1 = When?

v(Lpc ⊕t lev(T0)⊕t lev(T1), LP )
e = e′0, e

′
1, e
′
2,Wrap(ω0 ∧ ω1, e

′′
0 [e′′1 ] = e′′2)

Γ, Lpc ` e0[e1, P ] = e2  
e/e′′2 : T2

Property Deletion
∀i=0,1 · Γ, Lpc ` ei  e′i/e′′i : Ti LP = πlev(�

? (T0, P, e
′′
0))

ω = When?
v(Lpc ⊕t lev(T0)⊕t lev(T1), LP )

e = e′0, e
′
1,Wrap(ω, $vi = delete e′′0 [e′′1 ])

Γ, Lpc ` deletei,P e0[e1] e/undefined : PRIM
⊥

Sequence
∀i=0,1 · Γ, Lpc ` ei  e′i/e′′i : Ti

e = e′0, e
′
1

Γ, Lpc ` e0, e1  
e/e′′1 : T1

Conditional Expression
Γ, Lpc ` e0  

e′0/e′′0 : T0 L′pc = Lpc ⊕t lev(T0)

∀i=1,2 · Γ, L′pc ` ei  e′i/e′′i : Ti ωtrue = ¬(e′′0 ∈ VF ) ωfalse = (e′′0 ∈ VF )

T = Tωtrue
1 ∪ Tωfalse

2 e = e′0, e
′′
0 ? (e′1, $vj = e′′1) : (e′2, $vj = e′′2)

Γ, Lpc ` e0 ?j (e1) : (e2) e/$vj : T lev(T0)

Figure 5.4: Hybrid Typing Secure Information Flow in Core JavaScript

In order to illustrate the difference in functioning between the static and the hybrid type
systems, let us consider the Rule [Property Assignment]. In the typing of a property assign-
ment, all of the three subexpressions e0, e1, and e2 are typed with three type sets T0, T1, and
T2. The runtime assertion ω0 checks whether the type of the value being assigned is a subtype
of the property of the object to which it is being assigned (thereby avoiding explicit flows).
The runtime assertion ω1 checks whether the existence level of the property being assigned is
higher than or equal to the levels of the resources on which the computation of e0 and e1 de-
pends (thereby avoiding implicit flows). The instrumentation wraps the property assignment in
a conditional expression that checks whether the assertions ω0 and ω1 hold.



5.4. Hybrid Information Flow Control in Core JavaScript 71

Original Program Instrumentation

l1 = l2j inStr o2

$vj = l2,

($vj !== "q2") ?

(l1 = $vj in o2)

:
(
$diverge()

)

o1[l2i, {"p1", "p3"}] = o2[l1j , {"q2", "q3"}]

$vi = l2,

$vj = l1,

($vj === "p1") ?(
o1[$vi] = o2[$vj ]

)
:
(
$diverge()

)
Table 5.5: Examples of Programs Accepted by the Hybrid Type System but Rejected by the
Static Type System

Inlining Constraints The hybrid type system rewrites the program to be typed in order to
dynamically check the assertions under which it is conditionally accepted. To this end, every
conditionally typed expression is wrapped in a conditional expression that checks whether the
assertion under which it was accepted holds. In order to simplify the specification, we make use
of a syntactic function Wrap that given an assertion ω, different from true, and an expression e
generates the expression ω ? (e) : ($diverge()), where $diverge() is a runtime function that
always diverges. For instance, the program used as the running example is rewritten as follows:

$vi = y, $vj = v,
($vi == p0 || $vj == q0) ?

(
x[$vi] = u[$vj ] + z

)
:
(
$diverge()

)
)

(5.18)

If the type system is able to determine that a given constraint is always verified, it generates
the assertion true. In that case, Wrap simply outputs the given expression.

Table 5.5 shows that the hybrid type system type checks the two programs of Table 5.3 that
the static type system does not type check.

5.4.3.1 Soundness of the Hybrid Type System

In order to prove the correctness of the type system, one must be able to relate the memory
that results from the execution of a program and the memory that results from the execution
of its instrumented version (generated by the hybrid type system). To this end, we introduce a
similarity relation between the memories obtained from the execution of original programs and
the memories obtained from the execution of their instrumented counterparts. Informally, two
memories µ and µ′ are said to be hts-similar, written µ 'hts µ′, if µ does not bind type system
variables (in Vts) and the two memories only differ in Vts.

Definition 5.7 (hts-Similarity). A memory µ is said to be hts-similar to a memory µ′, written
µ 'hts µ′, if and only if dom(µ) = dom(µ′) and for every reference r ∈ dom(µ), it holds that:

• If µ(r) is a scope object: ∀p∈dom(µ(r)) ident(p) 6∈ Vts,

• If µ′(r) is not a scope object: ∀p∈dom(µ′(r)) µ(r · p) = µ′(r · p),



72 Chapter 5. Static to Hybrid Information Flow Control in Core JavaScript

• If µ′(r) is a scope object: ∀p∈dom(µ′(r)) ident(p) 6∈ Vts ⇒ µ(r · p) = µ′(r · p).

The soundness of the hybrid type system is established by Theorems 5.2 and 5.3. The
former states that the expressions generated by the type system preserve the semantics of their
original counterparts (in other words, the semantics of the instrumented program is contained
in the semantics of the original one), while the latter states that instrumented program is
noninterferent.

Theorem 5.2 (Transparency). For any expression e, typing environment Γ, memory µ well-
typed by Σ, level set L, and reference r such that:

• Γ, L ` e e′/e′′ : T and

• r ` 〈µ,Σ, e′〉 ⇓ 〈µ′f ,Σf , v〉;

It holds that there exists a memory µf such that r ` 〈µ,Σ, e〉 ⇓ 〈µf ,Σf , v〉 and µf 'hts µ′f .

Theorem 5.3 (Noninterference). For any expression e, typing environment Γ, and level set L,
if Γ, L ` e e′/e′′ : T , then NI(e′,Γ).

Proofs are given in Appendix B.2.

5.5 Related Work

Static Type Systems for Securing Information Flow Since the seminal work of Vol-
pano et al. [Volpano 1996] on typing secure information flow in a simple imperative language,
type systems for information flow control have been proposed for a wide variety of languages,
ranging from functional [Almeida Matos 2009, Pottier 2002] to Java-like object-oriented lan-
guages [Banerjee 2002]. To the best of our knowledge, our static type system for enforcing
secure information flow in Core JavaScript is the first that addresses the particular features of
JavaScript in the context of information flow control.

Hybrid Monitors Hybrid information flow monitors [Venkatakrishnan 2006, Guernic 2007,
Shroff 2007], use static analysis to reason about the implicit flows that arise due to untaken
execution paths. In fact, hybrid monitors must either statically or dynamically estimate the
resources that are created/updated in untaken program paths. More concretely, after the ex-
ecution of a control-flow expression (such as a function call, a method call, or a conditional
expression) that depends on high information, the security levels of the resources that would
have been updated in alternative paths must be set to high. The dynamic features of JavaScript
make it very difficult to design the type of static analysis required by hybrid monitors.

Hybrid monitors can also be used as a means to mitigate the performance overhead imposed
by runtime monitoring. For instance, Moore et al. [Moore 2011] showed how to combine mon-
itoring and static analysis so as to reduce the number of resources whose labels are tracked at
runtime.

Interestingly, Russo et al. [Russo 2010] proved that hybrid monitors are more permissive than
both purely dynamic and purely static enforcement mechanisms. Indeed, their result supports
the need for mechanisms which combine static and dynamic analysis like the hybrid type system
we present in the chapter. However, unlike hybrid monitors, the hybrid type system we propose
does not require any kind of runtime tracking of security levels (since the inlined conditions
feature the actual values that are computed by the program rather than their levels).



5.5. Related Work 73

Gradual Typing Secure Information Flow Recently, gradual security typing [Disney 2011,
Fennell 2013] has been proposed as a way to combine runtime monitoring and static analysis in
order to cater for controlled forms of polymorphism. Concretely, the programmer is expected to
introduce runtime casts in points where values of a pre-determined security type are expected.
“The type system statically guarantees adherence to the [security] policies on the static side of a
cast, whereas the runtime system checks the policies on the dynamic side” [Fennell 2013]. Like
the hybrid type system presented in this chapter, this approach can be used to overcome the
problem of property names computed at runtime. However, the use of gradual typing would
necessarily imply partial tracking of security levels.

Static Analysis for JavaScript There is plenty of literature on the subject of static analysis
for JavaScript. Thiemann [Thiemann 2005] proposed a type system to guarantee termination
and progress for a JavaScript-like language. Indeed, we borrow from [Thiemann 2005] the notion
of default type. The type system presented in [Thiemann 2005] does not account for objects
whose domain may change at runtime. To overcome this issue, Anderson et al. [Anderson 2005]
have proposed a type inference algorithm that allows objects “to evolve in a controlled manner”
by classifying their properties as definite or potential. This additional information could be
used by the static type system to distinguish property creations from property updates, thereby
relaxing the constraints imposed on property updates, which would not need to take into account
the existence level of the updated property.

Later, Jensen et al. [Jensen 2009] presented the first sound and detailed tool for type analysis
in real JavaScript code, called TAJS. The proposed type analysis for JavaScript is flow-sensitive
and based on abstract interpretation. The main contribution of this analysis are the design
of a complex lattice structure that caters for the particular features of the language and the
development of a prototype that covers the JavaScript full language.

The TypeScript programming language [Microsoft 2014] adds optional types to JavaScript,
with support for interaction with existing JavaScript libraries via interface declarations. The
main idea of this language is to harness the flexibility of real JavaScript, while at the same
time providing some of the advantages otherwise reserved for statically typed languages, such
as informative compiling errors and automatic code completion. Furthermore, types can be
also used for documentation purposes. Since client-side JavaScript programs make heavy use
of external APIs that are not available for static typing, the analysis of TypeScript programs
requires the specification of interface declarations for the external libraries that a program may
use. These interface declarations are, however, written by hand and often not by the authors of
the libraries. This is an error-prone process that has severe consequences, since the fact that an
interface declaration is incorrectly specified causes the tools that depend on it to produce wrong
results (for example, wrong suggestions for autocompletion). To solve this program, Feldthaus et
al. [Feldthaus 2014] have recently proposed an analysis for checking the correction of TypeScript
declaration files with respect to JavaScript library implementations. One of the contributions
of this work is a formalisation of the TypeScript typing language. Interestingly, this language
includes a generalisation of default type for objects that is called indexer. Concretely, an indexer
allows for the specification of classes of properties in a same object type that are to be assigned
to the same type.

Static Analysis for Securing JavaScript Applications Due to the complexity of
JavaScript semantics, most mechanisms for preventing security violations spawned by client-
side JavaScript code have focused on isolation properties [Maffeis 2009, Politz 2011], which are
easier to enforce than noninterference [Goguen 1982]. The analyses presented in [Maffeis 2009]
and [Politz 2011] deal in different ways with the issue of property names computed at runtime.
While the authors of [Maffeis 2009] consider a subset of the language that does not include this



74 Chapter 5. Static to Hybrid Information Flow Control in Core JavaScript

kind of look-up expression, the type system presented in [Politz 2011] overapproximates the set
of properties to which these arbitrary expressions may evaluate. We believe that the idea illus-
trated by the hybrid type could be applied both to [Maffeis 2009] and [Politz 2011] in order to
increase their permissiveness.

Keil et al. [Keil 2013] presented a type-based flow-sensitive dependency analysis for securing
information flow based on TAJS [Jensen 2009]. This analysis is intended to be used for security
purposes. The authors formalise the analysis as "an abstraction of a tainting semantics" and
prove the soundness of the abstraction, a non-interference property, and the termination of the
analysis.



Chapter 6

An Extensible Monitored Semantics for
Securing Web APIs

Contents
6.1 An Extensible Semantics for Core JavaScript . . . . . . . . . . . . . . . 76
6.2 A Secure Extensible Monitor for Core JavaScript . . . . . . . . . . . . . 79

6.2.1 An Attacker Model for External APIs? . . . . . . . . . . . . . . . . . . . . . 81
6.2.2 Noninterference for Monitored APIs . . . . . . . . . . . . . . . . . . . . . . 81
6.2.3 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4.1 Toward the Inlining of Extensible Information Flow Monitors . . . . . . . . 85
6.4.2 Further Comments on Confinement for APIs . . . . . . . . . . . . . . . . . 86

Although JavaScript can be used as a general-purpose programming language, many
JavaScript programs are designed to be executed in a browser in the context of a web page.
Such programs often interact with the web page in which they are included, as well as the
browser itself, through Application Programming Interfaces (APIs). Some APIs are fully imple-
mented in JavaScript, whereas others are built with a mix of different technologies, which can
be exploited to conceal sophisticated security violations. Thus, understanding the behaviour
of client-side web applications as well as proving their compliance with a given security policy
requires cross-language reasoning that is often far from trivial.

The size, complexity, and number of commonly used APIs poses an important challenge to
any attempt at formally reasoning about the security of JavaScript programs [Guha 2012]. To
tackle this problem, we propose a methodology for extending JavaScript monitored semantics.
This methodology allows us to verify whether a monitor complies with the proposed noninter-
ference property in a modular way. Thus, we make it possible to prove that a security monitor
is still noninterferent when extending it with a new API, without having to revisit the whole
model.

Generally, an API can be viewed as a particular set of specifications that a program can
follow to make use of the resources provided by another particular application. For client-side
JavaScript programs, this definition of API applies both to:

• interfaces of services that are provided to the program by the environment in which it
executes, namely the web browser (for instance, the DOM, the XMLHttpRequest, and the
W3C Geolocation APIs);

• interfaces of JavaScript libraries that are explicitly included by the programmer (for in-
stance, jQuery, Prototype.js, and Google Maps Image API).

In the context of this work, the main difference between these two types of APIs is that in the
former case their semantics escapes the JavaScript semantics, whereas in the latter it does not.



76 Chapter 6. An Extensible Monitored Semantics for Securing Web APIs

The methodology proposed here was designed as a generic way of extending security monitors
to deal with the first type of APIs. Nevertheless, it can also be applied to the second of APIs in
order to avoid the monitoring of the library’s code.

Outline This chapter is structured as follows: Section 6.1 introduces an extensible Core
JavaScript semantics based on the semantics introduced in Chapter 2. The extensible semantics
is formalised in a way that makes it possible to extend it effortlessly with arbitrary external
APIs. Section 6.2 presents an extensible version of the monitored semantics described in Chap-
ter 4. Furthermore, this section describes the criteria that a monitored API needs to verify so
that the plugging of the this API into the extensible monitor yields a noninterferent monitor.
Section 7.4 discusses related work. Finally, in Section 7.5, we analyse the following questions:
(1) How can one inline the extensible monitor presented in this chapter? (2) How general is our
definition of confinement for API plugins? The second question is of particular interest because,
as we shall see, the definition of confinement for APIs depends on the features of the proposed
mechanism for plugging APIs into the language runtime.

6.1 An Extensible Semantics for Core JavaScript

At the formal level, in order to model the execution of APIs that may escape the JavaScript
semantics, we extend the semantics of Core JavaScript ⇓ with two alternative rules for property
look-ups and method calls, thereby obtaining a new big-step semantic relation ⇓API. The alter-
native rules cater for the execution of arbitrary external APIs. Concretely, upon the invocation
of a method, the new semantics checks whether it is a standard method or rather a method
belonging to an API. In the former case, the semantics proceeds as before, whereas in the latter
it uses the semantics of that particular API to compute its return value. Analogously, when
looking-up the value of an object’s property, the semantics checks whether that property look-up
should be handled by an external API (rather than the JavaScript engine) in which case it uses
the semantics of that particular API to compute the value yielded by that property look-up.

Formally, we define an API API ∈ A as a triple 〈S,P,R〉 consisting of:

• a set S of API states that model the state of the API,

• a set P of API plugins that model the behaviours of the API,

• a mapping R, that we call API register, used to determine when to apply each API plugin.

Concretely, an API register R : Ref × Prim → P is a partial function that maps a pair con-
sisting of a reference and a primitive value to an API plugin. In the following, we assume that
expressions are marked with arbitrary annotations taken from a set Ann. These annotations are
used by the programmer to provide additional information to the API plugins. Given an API
API = 〈S,P,R〉, we use API.Reg to refer to R.

An API plugin can be seen as a function that, given a sequence of values, updates the current
API state and produces a new value. Formally, we model an API plugin pg ∈ P as a relation of
the form:

〈ν,−→v 〉α pg 〈ν ′, v〉β (6.1)

where:

• ν, ν ′ ∈ S are the API states immediately before and after the execution of pg,

• −→v is the sequence of arguments given to pg,



6.1. An Extensible Semantics for Core JavaScript 77

α ∈ Ann % Syntactic Annotations

β ∈ Ev % Internal Events

ν ∈ S % API States

pg ∈ P ⊆ (S × Val∗ × Ann)× (S × Val× Ann) % API Plugins

R : Ref× Prim→ P % API Register

API = 〈S,P,R〉 ∈ A % API

⇓API % Extended Core JavaScript Semantics

Table 6.1: Components of the API Formal Model

• α ∈ Ann is the syntactic annotation of the expression that triggered the call to pg,

• v is the return value of the call to pg, and

• β ∈ Ev is an internal event used by the security monitor and explained in detail Section 6.2.

The components of the API formal model are systematised in Table 6.1.
The API register plays a key role in this model, since it is its job to plug the API plugins

into the extensible semantics. Indeed, the API register identifies the property look-ups and
method calls that trigger the execution of an API plugin. In such cases, it also the job of the
API register to determine which API plugin is to be executed.

But how can the API register differentiate the property look-ups/method calls that trigger
the execution of an API plugin from the ones that do not? In order to make this possible, we
assume that the internal “objects” that compose an API state ν (and which do not have to be
Core JavaScript objects) are allocated in a set of references that does not overlap with the set
of references used for the allocation of Core JavaScript objects. However, these references can
be returned by any API plugin. Hence, Core JavaScript expressions may refer to the internal
“objects” of a given API state via API references. For an expression to trigger the invocation
of an API plugin, it suffices that it interacts with a reference that belongs to the corresponding
API (in a pre-established way). Consequently, when extending Core JavaScript with an API,
the initial Core JavaScript memory is assumed to contain at least one API reference that serves
as an entry point to the whole API.

The extended semantics intercepts property look-ups and methods calls. It then uses the
values of the first two subexpressions of the intercepted expression to determine whether
the evaluation of that expression triggers the execution of an API plugin and, if so, which API
plugin to apply. Concretely, in order to check whether the evaluation of a given expression
triggers the execution of an API plugin, the semantics checks whether the pair consisting of the
values of its first two subexpressions is in the domain of the API register. If that is the case,
the extensible semantics applies the API register to those two values, thereby obtaining the API
plugin to execute.

The semantics of Core JavaScript extended with an arbitrary API API = 〈S,P,R〉 ∈ A is
presented in Figure 6.1. Since the semantics must take into account the API state, which can
change during the execution, initial and final configurations are extended with an API state.
Concretely, the transitions of the extended monitor have the following form:

r ` 〈µ, e | ν〉 ⇓API 〈µ′, v | ν ′〉 (6.2)

where: ν and ν ′ are the initial and final API states. The remaining elements keep their original
meanings. Observe that the API register does not change during the execution.



78 Chapter 6. An Extensible Monitored Semantics for Securing Web APIs

Property Look-up
r ` 〈µ, e0 | ν〉 ⇓API 〈µ0, r0 | ν0〉 r ` 〈µ0, e1 | ν0〉 ⇓API 〈µ1,m1 | ν1〉

〈r0,m1〉 6∈ dom(API.Reg) r′ = Proto(µ1, r0,m1)
r′ 6= null⇒ v = µ1(r′)(m1) r′ = null⇒ v = undefined

r ` 〈µ, e0[e1]α | ν〉 ⇓API 〈µ1, v | ν1〉

External Property Look-up
r ` 〈µ, e0 | ν〉 ⇓API 〈µ0, r0 | ν0〉 r ` 〈µ0, e1 | ν0〉 ⇓API 〈µ1, v1 | ν1〉

〈r0, v1〉 ∈ dom(API.Reg) pg = API.Reg(r0, v1) 〈ν1, r0 :: v1〉α pg 〈ν ′, v〉β

r ` 〈µ, e0[e1]α | ν〉 ⇓API 〈µ1, v | ν ′〉

Method Call
r ` 〈µ, e0 | ν〉 ⇓API 〈µ0, r0 | ν0〉 r ` 〈µ0, e1 | ν0〉 ⇓API 〈µ1,m1 | ν1〉

r ` 〈µ1, e2 | ν1〉 ⇓API 〈µ2, v2 | ν2〉 〈r0,m1〉 6∈ dom(API.Reg) rm = Proto(µ2, r0,m1)

rf = µ2(rm ·m1) 〈µ̂, ê, r̂〉 = NewScope(µ2, rf , v2, r0) r̂ ` 〈µ̂, ê | ν2〉 ⇓API 〈µ′, v | ν ′〉
r ` 〈µ, e0[e1](e2)α | ν〉 ⇓API 〈µ′, v | ν ′〉

External Method Call
r ` 〈µ, e0 | ν〉 ⇓API 〈µ0, r0 | ν0〉 r ` 〈µ0, e1 | ν0〉 ⇓API 〈µ1, v1 | ν1〉
r ` 〈µ1, e2 | ν1〉 ⇓API 〈µ2, v2 | ν2〉 〈r0,m1〉 ∈ dom(API.Reg)

pg = API.Reg(r0, v1) 〈ν2, r0 :: v1 :: v2〉α pg 〈ν ′, v〉β

r ` 〈µ, e0[e1](e2)α | ν〉 ⇓API 〈µ′, v | ν ′〉

Figure 6.1: An Extensible Semantics for Core JavaScript



6.2. A Secure Extensible Monitor for Core JavaScript 79

Since the API register only intercepts property look-ups and method calls, only their corre-
sponding rules may have a different semantics from the one presented in Chapter 2. These rules
are presented in Figure 6.1 and briefly described below.

• In the Rules [Property Look-up] and [External Property Look-up], the semantics
starts by sequentially evaluating the two subexpressions of the current expression, thereby
obtaining: (1) the reference r0 of the object whose property is being inspected and (2) a
value v1 (which, in the case of a standard property look-up, corresponds to that property’s
name). The semantics then checks whether (r0, v1) is in the domain of the API register
API.Reg. If that is the case, the corresponding API plugin pg = API.Reg(r0, v1) is applied
and the whole expression evaluates to its return value. Otherwise, the semantics proceeds
as in the semantics of Core JavaScript (described in Chapter 2).

• In the Rules [Method Call] and [External Method Call], the semantics starts by se-
quentially evaluating the three subexpressions of the current expression, thereby obtaining:
(1) the reference r0 of the object on which the method is called, (2) a value v1 (which, in
the case of a standard property method-call, corresponds to the name of the method), and
(3) the value v2 to be used as the argument. The semantics then checks whether (r0, v1) is
in the domain of the API register API.Reg. If that is the case, the corresponding API plu-
gin pg = API.Reg(r0, v1) is applied and the whole expression evaluates to its return value.
Otherwise, the semantics proceeds as in the semantics of Core JavaScript (described in
Chapter 2).

6.2 A Secure Extensible Monitor for Core JavaScript

Having shown how to extend the Core JavaScript semantics in order to take into account the
execution of APIs that may take place outside the perimeter of the JavaScript engine, we now
show how to extend its monitored version presented in Chapter 4.

In order to extend the JavaScript monitored semantics presented in Chapter 4, each API
state ν is paired up with an abstract state Ξ ∈ Slab, that we call API labelling, which labels the
resources of ν with security levels. Hence, given an API state ν paired up with an API labelling
Ξ, the API labelling Ξ establishes, for each security level σ, the part of that API state that an
attacker at level σ can see. Different APIs have different types of resources and therefore label
those resources in different ways. Hence, we do not concretise the set of API labellings Slab.

In order to plug arbitrary APIs into the monitored semantics, we propose to associate each
API plugin pg ∈ Plab with a monitoring counterpart pglab ∈ Plab, that we call API monitor
plugin. An API monitor plugin pglab establishes how the API labelling Ξ should be updated
after the execution of its corresponding API plugin pg. Informally, while the API plugin pg
updates the API state, its monitoring counterpart pglab updates the API labelling. A pair
(pg, pglab) ∈ P×Plab, consisting of an API plugin and a monitor API plugin is called a monitored
API plugin. The API monitor plugin pglab uses the internal event β ∈ Ev generated by its
corresponding API plugin pg as well as the security levels of the arguments given to pg in
order to determine how the API labelling should be updated. Hence, an API monitor plugin is
modelled as a relation of the form:

〈Ξ,−→σ 〉β pglab 〈Ξ′, σ〉 (6.3)

where:

• Ξ,Ξ′ are the API labellings immediately before and after the execution of the API plugin,

• −→σ is the sequence of levels of the arguments given to the API plugin,



80 Chapter 6. An Extensible Monitored Semantics for Securing Web APIs

Ξ ∈ Slab % API Labellings

pglab ∈ Plab % API Monitor Plugins

(pg, pglab) ∈ P × Plab % Monitored API Plugins

RIF : Ref× Prim→ P ×Plab % Monitored API Register

∼api ∈ (S × Slab)× L× (S × Slab) % API Low-Equality Relation

APIIF = 〈S,Slab,P,Plab,RIF ,∼api〉 ∈ Alab % Monitored API

⇓API
IF % Extended Monitored Semantics

Table 6.2: Components of the Monitored API Formal Model

• β is the internal event generated by the API plugin in order to provide additional infor-
mation to its monitoring counterpart, and

• σ is the security level that labels the return value (called the reading effect of the API
plugin).

In order for an API register to be used by the extensible monitored semantics, it must
output both the API plugin and the API monitor plugin. Hence, we define a monitored API
register as a function RIF : Ref× Prim→ P ×Plab that given a reference and a primitive value
outputs a monitored API plugin. Finally, we define a monitored API APIIF ∈ Alab as tuple
〈S,Slab,P,Plab,RIF ,∼api〉 consisting of:

• a set S of API states,

• a set Slab of API labellings,

• a set P of API plugins,

• a set Plab of API monitor plugins,

• a monitored API register RIF , and

• a low-equality relation ∼api between labelled API states (described in the following sec-
tion).

We use APIIF .Reg and APIIF .equality to denote, respectively, the monitored API register and
the low-equality relation ∼api of the API APIIF . The components of the monitored API formal
model are systematised in Table 6.2.

A configuration of the monitored semantics for extended Core JavaScript is obtained by
adding both to the initial and final configurations of the original monitor an API state ν and an
API labelling Ξ. The rules of the extended monitored semantics ⇓API

IF have the form:

r, σpc ` 〈µ, e,Σ | ν,Ξ〉 ⇓API
IF 〈µ′, v,Σ′, σ | ν ′,Ξ′〉 (6.4)

where: ν and ν ′ are the initial and final API states and Ξ and Ξ′ are the initial and final API
labellings. The remaining elements keep their original meanings. Figure 6.2 presents the rules
of the monitor that applies the API plugins. Since the two rules are very similar, only the Rule
[External Property Look-up] is described.

• [External Property Look-up] The monitored semantics starts by sequentially evaluating
the two subexpressions of the current expression, thereby obtaining: (1) the reference r0



6.2. A Secure Extensible Monitor for Core JavaScript 81

External Property Look-up
∀i=0,1 r, σpc ` 〈µi, ei,Σi | νi,Ξi〉 ⇓APIIF

IF 〈µi+1, vi,Σi+1, σi | νi+1,Ξi+1〉
〈v0, v1〉 ∈ dom(APIIF .Reg) (pg, pglab) = APIIF .Reg(v0, v1)

〈ν2, v0 :: v1〉α pg 〈ν ′, v〉β 〈Ξ2, σ0 :: σ1〉β pglab 〈Ξ′, σ〉
r, σpc ` 〈µ0, e0[e1]α,Σ0 | ν0,Ξ0〉 ⇓APIIF

IF 〈µ2, v,Σ2, σ | ν ′,Ξ′〉

External Method Call
∀i=0,1,2 r, σpc ` 〈µi, ei,Σi | νi,Ξi〉 ⇓APIIF

IF 〈µi+1, vi,Σi+1, σi | νi+1,Ξi+1〉
〈v0, v1〉 ∈ dom(APIIF .Reg) (pg, pglab) = APIIF .Reg(v0, v1)

〈ν3, v0 :: v1 :: v2〉α pg 〈ν ′, v〉β 〈Ξ3, σ0 :: σ1 :: σ2〉β pglab 〈Ξ′, σ〉
r, σpc ` 〈µ0, e0[e1](e2)α,Σ0 | ν0,Ξ0〉 ⇓APIIF

IF 〈µ3, v,Σ3, σ | ν ′,Ξ′〉

Figure 6.2: An Extensible Monitored Semantics for Core JavaScript

of the object whose property is being inspected labelled by σ0 and (2) a value v1 (which,
in the case of the standard property look-up corresponds to the property’s name) labelled
by σ1. The semantics then checks whether (r0, v1) is in the domain of the monitored
API register APIIF .Reg. If that is the case, the corresponding monitored API plugin
(pg, pglab) = RIF (r0, v1) is obtained from the API register. Subsequently, the API plugin
pg = R(r0,m1) is applied, generating a value v and an internal event β. The API monitor
plugin is then applied (with the internal event β and the levels σ0 and σ1), generating a
level σ. The whole expression evaluates to v and has reading effect σ.

6.2.1 An Attacker Model for External APIs?

In order to state the properties of the extensible monitor, one must be able to relate the API
states that result from the execution of the same program starting from two low-equal memories.
This, however, requires being able to relate the API states that result from the execution of
that program. To this end, we assume that every monitored API comes equipped with a low-
equality relation ∼api between labelled API states (and parameterizable with a security level σ).
Informally, given two API states ν0 and ν1 respectively labelled by Ξ0 and Ξ1, and a security
level σ, ν0,Ξ0 ∼σapi ν1,Ξ1 means that ν0 and ν1 are indistinguishable for an attacker at level σ.
The only restriction that we impose on ∼api is that, for every security level σ ∈ L, the relation
∼σapi be an equivalence relation [Davey 2002].

6.2.2 Noninterference for Monitored APIs

Noninterference for Extended Monitors Definitions 6.1 and 6.2 adapt the notions of
monitor confinement and monitor noninterference (given in Chapter 4) to monitors extended
with arbitrary APIs. The main difference between the new definitions with respect to those
presented in Chapter 4 is that the new definitions take into account the labelled API state.
To this end, they make use of an abstract low-equality relation (as discussed in the previous
section).

Definition 6.1 (Confined Extended Monitor). Given a monitored API APIIF ∈ Alab, the ex-
tended monitored semantics ⇓APIIF

IF is said to be confined if, for any expression e, memory µ,
labelling Σ, API state ν, API labelling Ξ, reference r, and security levels σpc and σ, such that:

• r, σpc ` 〈µ, e,Σ | ν,Ξ〉 ⇓API
IF 〈µ′, v′,Σ′, σ′ | ν ′,Ξ′〉



82 Chapter 6. An Extensible Monitored Semantics for Securing Web APIs

• σpc 6v σ

It holds that: µf ,Σf ∼σ µ′,Σ′, ν,Ξ ∼σapi ν ′f ,Ξ′f , and σ′ 6v σ, where ∼api = APIIF .equality.

Definition 6.2 (Noninterferent Extended Monitor). Given a monitored API APIIF ∈ Alab, the
extended monitored semantics ⇓APIIF

IF is said to be noninterferent, written NI(⇓APIIF
IF ), if for

any expression e, memories µ and µ′ respectively labelled by Σ and Σ′, API states ν and ν ′

respectively labelled by Ξ and Ξ′, reference r, and security levels σpc and σ, such that:

• µ,Σ ∼σ µ′,Σ′,

• ν,Ξ ∼σapi ν ′,Ξ′,

• r, σpc ` 〈µ, e,Σ | ν,Ξ〉 ⇓API
IF 〈µf , vf ,Σf , σf | νf ,Ξf 〉,

• r, σpc ` 〈µ′, e,Σ′ | ν ′,Ξ′〉 ⇓API
IF 〈µ′f , v′f ,Σ′f , σ′f | ν ′f ,Ξ′f 〉

It holds that: µf ,Σf ∼σ µ′f ,Σ
′
f , νf ,Ξf ∼σapi ν ′f ,Ξ′f , and vf , σf ∼σ v′f , σ

′
f , where ∼api =

APIIF .equality.

Noninterference for Monitored APIs In order to guarantee that the extended monitor
is noninterferent one must impose some constraints on the API plugins that can be invoked.
Definitions 6.3 and 6.4 formalise these requirements. Definition 6.3 states that an API plugin is
confined if it only creates/updates resources whose levels are higher than or equal to the level
of the values that were used to decide which API plugin to apply. Since only the first two
arguments of an API plugin are used by the API register to determine which API to apply, only
the levels of these two arguments are used in the definition of confinement for APIs. In other
words, an API plugin is confined if it never modifies observable resources when either one of it
first two arguments is not observable.

The design of the Extensible Core JavaScript monitor guarantees that the levels of all the
arguments of an API plugin are always higher than or equal to the level of the context in which
that API plugin is called. Hence, we conclude that confined API plugins do neither create nor
update observable resources when invoked within unobservable contexts.

Definition 6.3 (Confined Labelled API Plugin). A monitored API plugin (pg, pglab) ∈ P×Plab
of an API APIIF = 〈S,Slab,P,Plab,RIF ,∼api〉 is said to be confined, if for any API state
ν ∈ S, API labelling Ξ ∈ Slab, sequence of values −→v , sequence of levels −→σ , security level σ, and
annotation α, such that:

• 〈ν,−→v 〉α pg 〈ν ′, v〉β,

• 〈Ξ,−→σ 〉β pglab 〈Ξ′, σ′〉, and

• −→σ (0) t −→σ (1) 6v σ;

It holds that: ν,Ξ ∼σapi ν ′,Ξ′ and σ′ 6v σ.

Definition 6.4 states that an API plugin is noninterferent if whenever it is executed in two
low-equal API states, it produces two low-equal API states and either the two return values are
both visible and coincide or they are both invisible.

Definition 6.4 (Noninterferent Labelled API plugin). A monitored API plugin (pg, pglab) ∈
P × Plab of an API APIIF = 〈S,Slab,P,Plab,RIF ,∼api〉 is said to be noninterferent, written
NI(APIIF , pg, pglab), if it is confined and for any two API states ν0 and ν1 and labellings Ξ0 and
Ξ1, two sequences of values −→v 0 and −→v 1 labelled by −→σ 0 and −→σ 1, and security level σ such that:



6.3. Related Work 83

• −→v 0,
−→σ 0 ∼σ −→v 1,

−→σ 1,

• ν0,Ξ0 ∼σapi ν1,Ξ1,

• 〈ν0,
−→v 0〉α pg 〈ν ′0, v0〉β and 〈Ξ0,

−→σ 0〉β pglab 〈Ξ′0, σ0〉, and

• 〈ν1,
−→v 1〉α pg 〈ν ′1, v1〉β

′ and 〈Ξ1,
−→σ 1〉β

′
pglab 〈Ξ′1, σ1〉;

It holds that: ν ′0,Ξ
′
0 ∼σapi ν ′1,Ξ′1 and v0, σ0 ∼σ v1, σ1.

An API APIIF ∈ Alab is said to be confined/noninterferent if all the monitored plugins in
the range of its register are confined/noninterferent.

Definition 6.5 (Confined/Noninterferent API). A monitored API APIIF ∈ Alab is said to be:

• confined if every API plugin (pg, pglab) ∈ rng(APIIF .Reg), verifies confinement for API
plugins;

• noninterferent, written NI(APIIF ), if every API plugin (pg, pglab) ∈ rng(APIIF .Reg),
verifies NI(APIIF , pg, pglab).

The next chapter presents an API for creating and manipulating dynamic tree structures
that we call Core DOM and which is meant to model the Core Level 1 DOM API. The proposed
API is proven to be confined and noninterferent.

6.2.3 Soundness

This section presents the two main security properties of the extensible monitor:

• Lemma 6.1 states that the extended monitor obtained by plugging a confined monitored
API into the extensible monitor is also confined.

• Theorem 6.1 states that the extended monitor obtained by plugging a noninterferent mon-
itored API into the extensible monitor is also noninterferent.

The proofs of the results can be found in Appendix C.

Lemma 6.1 (Confinement - Extensible Monitor). For any confined API APIIF ∈ Alab, it holds
that: ⇓APIIF

IF is confined.

Theorem 6.1 (Noninterference - Extensible Monitor). For any noninterferent and confined API
APIIF ∈ Alab, it holds that: NI(⇓APIIF

IF ).

Proofs are given in Appendix C.
Observe that an API can be noninterferent without being confined. However, in order to

guarantee that the plugging of an API into the extensible monitor yields a noninterferent monitor
that API must be both confined and noninterferent. This topic is further discussed in Section 6.4.

6.3 Related Work

Security of Web APIs Taly et al. [Taly 2011] proposed a static mechanism to verify API
confinement in client-side JavaScript programs. More concretely, the authors designed a static
analysis to formally verify whether, when integrating the code of an API into an arbitrary page,
the integrator code cannot interact with the API in order to cause it to leak its internal con-
fidential resources. Note that in [Taly 2011], the term API only refers to JavaScript libraries



84 Chapter 6. An Extensible Monitored Semantics for Securing Web APIs

whose code is explicitly included by the programmer and, therefore, is available for both runtime
and static analysis. Moreover, this work aims at a very specific security property: protecting
the confidential resources of the API. In contrast, our work aims at enforcing noninterfer-
ence, which is a more expressive property than API confinement as defined in [Taly 2011]. This
means that the extensible Core JavaScript monitor could be used to enforce this type of API
confinement. However, that would require: (1) the runtime monitoring of the integrator code
and (2) the specification of the monitored versions of the plugins exposed by the API whose
internal resources are to be protected.

Recently, Hedin et al. [Hedin 2014] proposed a security enhanced JavaScript interpreter
for fine-grained tracking of information flow in the presence of both JavaScript libraries and
external APIs provided by the browser, such as the DOM API. In order to cater for the possible
invocation of API plugins, the authors introduce the informal concept of information-flow models
for libraries. Concretely, they consider two types of such models:

• Shallow models that capture the behaviour of APIs that do not have an internal state,
such as the API provided by the JavaScript Math object (used by programs to perform
mathematical tasks);

• Deep models that capture the behaviour of APIs that have an internal state, which, there-
fore, can be used to encode illegal implicit flows (such as the DOM API).

Our definition of monitored API can be seen as a formalisation of the notion of deep information
flow model for libraries. Indeed, despite taking into account a vast number of APIs (including
some functionalities of the DOM API as well as several JavaScript built-in objects), the authors
of [Hedin 2014] do not present a formal framework for reasoning about extensible monitors and
information flow models for libraries in a modular way.

Extensible Semantics In recent years, interoperability has emerged as a central feature in
programming language design and implementation. This fact has pushed forward research on
runtime mechanisms for allowing programs written in different languages to interact with each
other in a seamless way [Ramsey 2011]. However, the topic of formal methods specifically de-
signed to reason about language extension remains relatively unexplored. Matthews and Find-
ler [Matthews 2009] presented a formal semantics for reasoning about multi-language programs.
In order to cater for the interaction between sub-programs written in different languages (but
viewed as parts of the same global program), the authors proposed a technique based on simple
“cross-language casts that regulate both control flow and value conversion between languages”.
In other words, the combined languages must be extended with special boundary operators that
serve to: (1) identify which regions of the global program are written in which language and
(2) perform the required conversions between the values of both languages. This technique can
be used to model a restricted form of interaction between Core JavaScript programs and ex-
ternal APIs. More precisely, one can model an external API as a language and then plug the
API-language into the Core JavaScript runtime using a boundary operator. However, this would
yield a more restrictive (and less realistic) mechanism for interaction between Core JavaScript
programs and external APIs.

In the context of Aspect oriented programming [Kiczales 1997], Djoko et al. [Djoko 2008]
proposed a formal semantics for performing the runtime weaving of arbitrary aspects into a
simple imperative language. Intuitively, an aspect can be seen as function that given a program
configuration produces a new configuration. Hence, aspects can modify both the memory and the
syntax of the program that is executing (many times distorting its semantics in unpredictable
ways). The authors of [Djoko 2008] define three categories of aspects and identify, for each
category, a class of temporal properties preserved by the weaving of the aspects of that category.



6.4. Discussion 85

Property Look-up
〈ê0 | j〉 = C〈e0〉 〈ê1 | k〉 = C〈e1〉 〈ê0, ê1, ê | i〉 = C〈e0[e1]i〉

ê =



ê0,
ê1,
#tmp = $register($vj , $vk) ?(

#tmp.check($lj , $lk, $vj , $vk),
$vi = $vj [$vk],
$li = #tmp.label($vi, $lj , $lk, $vj , $vk)

)
: (ê)

Capi〈e0[e1]i〉 = 〈ê0, ê1, e
′ | i〉

Method Call
〈ê0 | j〉 = C〈e0〉 〈ê1 | k〉 = C〈e1〉 〈ê2 | l〉 = C〈e2〉

〈ê0, ê1, ê2, ê | i〉 = C〈e0[e1](e2)i〉

ê =



ê0,
ê1,
ê2,
#tmp = $register($vj , $vk) ?(

#tmp.check(($lj , $lk, $ll, $vj , $vk, $vl),
$vi = $vj [$vk]($vl),
$li = #tmp.label($vi, $lj , $lk, $ll, $vj , $vk, $vl)

)
: (ê)

Capi〈e0[e1](e2)i〉 = 〈ê0, ê1, ê2, e
′ | i〉

Figure 6.3: Extended Compiler - CAPI

Interestingly, API plugins can be viewed as observer aspects. Observer aspects are aspects that
“do not modify the base program’s state and control flow.” In fact, the mechanism proposed in
this thesis for extending the semantics of Core JavaScript is very similar to the one proposed
in [Djoko 2008]. The main difference between the two mechanisms is that, in our case, the
API register selects which plugin to execute based on the values of the first two subexpressions
of the intercepted expression, whereas in [Djoko 2008] the domain of the aspect weaver is the
entire program configuration. Moreover, while aspects can change intercepted configurations in
arbitrary ways, API plugins can neither change the Core JavaScript memory nor the syntax
of the program that is executing. However, the additional expressivity of the aspect weaving
mechanism is not needed for the concrete case of Web APIs, which interact with the JavaScript
runtime in a more restricted way.

6.4 Discussion

6.4.1 Toward the Inlining of Extensible Information Flow Monitors

This section presents an informal description of a methodology for the inlining of monitors
extended with arbitrary APIs. A call to an API plugin cannot be instrumented in the same
way one instruments a normal JavaScript method call, simply because the code of API plugins
is usually not available for instrumentation. Assuming that API labellings are instrumented
in memory, we propose to associate each API plugin with three special JavaScript methods
– domain, check and label, called the IFlow Signature of the API plugin. Each one of these
methods, serves a different purpose:

• domain checks whether or not to apply the API plugin.



86 Chapter 6. An Extensible Monitored Semantics for Securing Web APIs

• check checks whether the constraints associated with the API plugin are verified,

• label updates the instrumented labelling and outputs the reading effect associated with a
call to the API plugin.

The functions check and label must be specified separately because check has to be executed
before calling the plugin (in order to prevent its execution when it can potentially trigger a
security violation), whereas label must be executed after calling the plugin (so that it can label
the memory resulting from its execution).

This approach to the inlining of extensible security monitors also requires the existence of a
runtime function that simulates the API Register, which is assumed to be bound to the global
variable $register. The function bound to $registermakes use of the methods domain of each
plugin to decide whether the current method call or property look-up triggers the invocation of
an API plugin, in which case it returns an object containing the corresponding IFlow Signature
(otherwise it simply returns null).

Figure 6.3 presents the extension of the inlining compiler introduced in Chapter 4 that takes
into account the possible invocation of external APIs. We denote the new compiler by CAPI .
This compiler coincides with the previous one for every program construct with the exception
of method calls and property look-ups, in which case it has to take into account the possible
invocation of external APIs. For these two constructs, the code generated by the compiler
proceeds as follows:

1. It executes the statements corresponding to the compilation of its subexpressions;

2. It checks, using the values of to the first two subexpressions, whether that property look-
up or method call is associated with an IFlow signature (using the function bound to
$register);

3. And, finally, it does one of the following:

• If the call to the function bound to $register returns an IFlow signature, the com-
piled program:
– executes the method check of the IFlow signature,
– executes an expression obtained from the original one by replacing its subexpres-

sions with the bookkeeping variables that hold their current values,
– executes the method label of the IFlow signature in order to update the generated

memory and to obtain the reading effect of the call to that API.
• If the call to the function bound to $register returns null, the compiled program acts

as the compilation of the original program using the nonextensible inlining compiler.

6.4.2 Further Comments on Confinement for APIs

While it is true that the definition of noninterference for API plugins is the standard inductive
invariant needed to prove noninterference in dynamic monitors [Austin 2009], the definition of
confinement is not that usual. In fact, the definition of confinement for APIs depends on the
features of the proposed mechanism for plugging APIs into the language runtime. Different
mechanisms require different confinement properties.

The extensible semantics selects which API plugin to execute depending on the values of the
first two subexpressions of the intercepted expression. Hence, in order to follow the no-sensitive-
upgrade discipline, the selected plugin can only change its internal resources whose levels are
higher than or equal to the levels of its first two arguments. Suppose, however, that one changes
the proposed mechanism so that the values of all the subexpressions of the intercepted expression



6.4. Discussion 87

are used to determine which API plugin to execute. In this case, the confinement property should
state that the selected plugin can only change its internal resources whose levels are higher than
or equal to the lub between the levels of all of its arguments. In a nutshell: the more flexible is
the mechanism for plugging APIs into the language runtime, the more restrictive must be the
confinement property that the plugged APIs verify.





Chapter 7

Monitoring Secure Information Flow in
a DOM-like API

Contents
7.1 Core DOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1.1 Core DOM - Formal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2 Monitoring Secure Information Flow in the Core DOM API . . . . . . 95

7.2.1 Challenges for Information Flow Control in Core DOM . . . . . . . . . . . 95
7.2.2 An Attacker Model for the Core DOM API . . . . . . . . . . . . . . . . . . 98
7.2.3 Monitor Plugins for the Core DOM API . . . . . . . . . . . . . . . . . . . . 100
7.2.4 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.3 Secure Information Flow for Live Collections . . . . . . . . . . . . . . . . 103
7.3.1 Extending the Formal DOM API with Live Collections . . . . . . . . . . . . 104
7.3.2 Information Leaks introduced by Live Collections . . . . . . . . . . . . . . . 107
7.3.3 An Attacker Model for Live Collections . . . . . . . . . . . . . . . . . . . . 108
7.3.4 Monitor Plugins for the Core DOM API + Live Collections . . . . . . . . . 111
7.3.5 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.5.1 Order Leaks in the DOM API . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.5.2 A Comparison with the Model of Russo et al. [Russo 2009] . . . . . . . . . 114

Interaction between client-side JavaScript programs and the HTML document is done
via the DOM API [W3C Recommendation 2005]. In contrast to the ECMA Stan-
dard [5th edition of ECMA 262 2011] that specifies in full detail the internals of objects created
during the execution of JavaScript programs, the DOM API only specifies the behaviour that
DOM interfaces are supposed to exhibit when a program interacts with them. Hence, browser
vendors are free to implement the DOM API as they see fit. In fact, in all major browsers,
the DOM is not managed by the JavaScript engine but by a separate engine, often called the
render engine [Grosskurth 2005], especially dedicated to that purpose. Therefore, the design of
an information flow monitor for client-side JavaScript Web applications must take into account
the DOM API.

This chapter presents a formal monitored API (check Chapter 6) called Core DOM. The Core
DOM API is an API for creating and manipulating dynamic tree structures, while at the same
time enforcing secure information flow. This formal API models an important fragment of the
DOM Core Level 1 API, that includes references and live collections. Furthermore, Core DOM
is proven to be noninterferent according to Definition 6.4. Hence, as we have seen in Chapter 6,
the plugging of Core DOM into the extensible Core JavaScript monitor yields a noninterferent
monitor.



90 Chapter 7. Monitoring Secure Information Flow in a DOM-like API

Russo et al. [Russo 2009] were the first to study the problem of information flow control in
dynamic tree structures, for a model where programs are assumed to operate on a single current
working node at a time. However, in real client-side JavaScript, tree nodes are first-class values,
which means that a program can store in memory several references to different nodes in the
DOM forest at the same time. In contrast to the model of [Russo 2009], in Core DOM, tree
nodes are treated as first-class values and thus they support operations available to other types
of values, such as assignment to variables. Interestingly, this language design feature enables us
to implement a more fine-grained information flow control mechanism than previous approaches
(discussed in detail in Section 7.4), since it becomes possible to distinguish the security level of
the node itself from both the security level of the value that is stored in the node and from the
level of its position in the DOM forest.

Live collections are a special kind of data structures featured in the DOM Core Level 1
API that automatically and dynamically reflect the changes that occur in the document. There
are several types of live collections. For instance, the method getElementsByTagName returns
the live collection that contains the DOM nodes with the tag name given as input. In the
following example, after retrieving the initial collection of DIV nodes, the program iterates over
the current size of this collection, while introducing a new DIV node at each step:

divs = document.getElementsByTagName("DIV"),
i = 0,
while (i <= divs.length) {

document.appendChild(document.createElement("DIV")),
i = i + 1

}

(7.1)

Every time a new DIV node is inserted in the document (no matter where in its structure), it is
also inserted in the live collection bound to divs. Due to the live update of the loop condition,
if the initial document contains at least one DIV node, the program does not terminate.

Live collections can be exploited to encode new types of information leaks. Therefore, we
include in the Core DOM API several plugins for creating and traversing live collections in
tree structures. We further demonstrate that these plugins effectively augment the observa-
tional power of an attacker and we show how to monitor their execution in order to preserve
noninterference.

Outline This chapter is structured as follows: Section 7.1 formally introduces the targeted
Core DOM API. Section 7.2 begins with a discussion of the challenges of controlling information
flow in Core DOM and, then, presents its monitored version. Section 7.3 extends the monitored
version of the Core DOM API with additional plugins for the secure creation and manipulation
of live collections. Section 7.4 presents a discussion of the related work. Finally, in Section 7.5,
we analyse the following questions: (1) How are the newly identified types of leaks present in
the real DOM API? (2) How is the proposed monitoring mechanism more precise than that
of [Russo 2009]?

7.1 Core DOM

The DOM data structure can be viewed as a forest of DOM nodes containing a special tree that
corresponds to the document being displayed by the browser. Indeed, most of the information
flows that are specific to the DOM API have to do with dynamic tree operations [Russo 2009],
such as the creation, insertion, or removal of DOM nodes. Hence, in Core DOM, we include the
most relevant methods and properties of the DOM Core Level 1 API used for traversing and



7.1. Core DOM 91

r0, · · · , ri ∈ RDOM ⊂ Ref % Core DOM References

#doc ∈ RDOM % Document Reference

n ∈ Node 3 doc ::= 〈m, v, r,−→r 〉 % Core DOM Node

f ∈ FDOM ::= [#doc 7→ doc, r0 7→ n0, · · · , ri 7→ ni] % Core DOM Forest

dplug ∈ PDOM % Core DOM Plugins

RDOM : Ref× Prim→ PDOM % Core DOM Register

CoreDOM ∈ A 〈FDOM ,PDOM ,RDOM 〉 % Core DOM API

Table 7.1: Components of the Core DOM API Formal Model

updating tree structures. Concretely, in Core DOM, every node has a type, called its tag (for
instance, DIV) and can store a single value taken from Prim. All the nodes in memory form a
forest. Hence, every node has a possibly empty list of children and at most a single parent. A
node with no parent is called a root node, while a node with no children is called a leaf node.
Nodes with the same parent are called siblings. Whenever a node has a parent, the position that
it occupies in the list of children of its parent is called the index of the node. For instance, if a
node n1 is the first child of a given node n0, the index of n1 is 0.

The Core DOM API is assumed to be available through a special reference #doc bound to
the global variable document and to expose the following methods and properties:

• document.createElement(tag): creates a new node with tag name tag;

• node0.appendChild(node1): appends node1 to the list of children of node0, provided that
node1 is a root node;

• node0.removeChild(node1): removes node1 from the list of children of node0, provided
that node1 is indeed a child of node0;

• node[i]: evaluates to the i+1th child of node, provided that it has at least i + 1 children;

• node.length: evaluates to the number of children of node;

• node.parentNode: retrieves the parent of node;

• node.nodeValue: retrieves the value that is stored in node;

• node.store(value): stores value inside node.

One important aspect in which the Core DOM API differs from the real DOM specifica-
tion [W3C Recommendation 2005] is that, in Core DOM, the child nodes of a given DOM
node are directly accessed through that node. Instead, in the real DOM specification, the
child nodes of a given node are accessed through a special object bound to the node’s property
"childNodes". This object behaves as a list that contains the child nodes of the given node.
Hence, instead of writing div1.childNodes[i] to access the i+ 1th child of the DIV node bound
to div1, we simply write div1[i].

7.1.1 Core DOM - Formal Model

As discussed in Chapter 6, a formal API is modelled as a triple of the form 〈S,P,R〉 consisting
of a set of API states, a set of plugins that operate on those states, and an API register. Hence,
the Core DOM API is formally modelled as triple the 〈FDOM ,PDOM ,RDOM 〉, where FDOM



92 Chapter 7. Monitoring Secure Information Flow in a DOM-like API

RDOMIF (r0, v1) =



(new, newlab) if r0 = #doc ∧ v1 = "createElement"
(append, appendlab) if r0 ∈ RDOM ∧ v1 = "appendChild"
(remove, removelab) if r0 ∈ RDOM ∧ v1 = "removeChild"
(item, itemlab) if r0 ∈ RDOM ∧ v1 ∈ Num
(length, lengthlab) if r0 ∈ RDOM ∧ v1 = "length"
(parent, parentlab) if r0 ∈ RDOM ∧ v1 = "parentNode"
(value, valuelab) if r0 ∈ RDOM ∧ v1 = "nodeValue"
(store, storelab) if r0 ∈ RDOM ∧ v1 = "storeValue"

Figure 7.1: The Core DOM Monitored API Register

is the set of Core DOM states, called forests, PDOM is the set of Core DOM plugins, and
RDOM : Ref× Prim→ PDOM is the Core DOM register. In the following, we use CoreDOM to
refer to the Core DOM API.

A Core DOM forest f ∈ FDOM : RDOM → Node is as a partial mapping from a set RDOM of
DOM references to the set Node of DOM nodes. A DOM node is a tuple of the form: 〈m, v, r,−→r 〉,
where: (1)m is the node’s tag, (2) v the value it stores, (3) r the reference pointing to its parent,
and (4) −→r its list of children (more precisely, a list of references, each pointing to one of its
children). For simplicity, given a DOM node n ∈ Node, we denote by n.tag, n.value, n.parent,
and n.children its tag, value, parent, and list of children, respectively.

As discussed in Chapter 6, the formal semantics of the Core DOM API assumes that the set
of references used by this API does not overlap with the set of references used by the semantics
of Core JavaScript. While Core DOM references are used for the allocation of Core DOM
nodes, Core JavaScript references are used for the allocation of Core JavaScript objects. Hence,
the Core DOM node allocator, freshDOM : L → RDOM is assumed to generate references in
a set that does not overlap with the set used for the same purpose by the allocator of Core
JavaScript. Furthermore, we assume that every Core DOM forest contains a special Core DOM
node doc ∈ Node that is the root of the tree corresponding to the document displayed by
the browser. The document node doc is pointed to by a fixed reference #doc ∈ RDOM . The
components of the Core DOM API formal model are summarised in Table 7.1.

The API register is used by the extended semantics to determine in which conditions a
method call or a property look-up should be handled by the API that is plugged into the
extensible monitor. Since the set of references used by the Core DOM API does not overlap
with the set of references used by the Core JavaScript semantics, the DOM register can easily
identify the conditions under which a property look-up or a method call should trigger the
execution of a Core DOM plugin. Intuitively, that should happen when a program inspects a
property of a Core DOM node or when a program performs a method call on a Core DOM
node. In both cases, the string corresponding to the inspected property or to the name of the
method determines which Core DOM plugin is to be executed. In order to avoid repetition, we
omit the specification of the Core DOM API register. Instead, Figure 7.1 presents its monitored
version RDOMIF : Ref × Prim → PDOM × PDOMlab . To the obtain the unmonitored register from
its monitored version, it suffices to ignore the second component of the output. The conditions
under which each Core DOM plugin is executed are explained below.

• When a program invokes a method named "createElement" on the document node doc
(which is pointed to by #doc), the Core DOM plugin new is executed.

• When a program invokes a method named "appendChild" on a Core DOM node, the Core
DOM plugin append is executed.



7.1. Core DOM 93

• When a program invokes a method named "removeChild" on a Core DOM node, the Core
DOM plugin remove is executed.

• When a program inspects an integer property of a Core DOM node, the Core DOM plugin
item is executed.

• When a program inspects the property "length" of a Core DOM node, the Core DOM
plugin length is executed.

• When a program inspects the property "parentNode" of a Core DOM node, the Core
DOM plugin parent is executed.

• When a program inspects the property "nodeValue" of a Core DOM node, the Core DOM
plugin value is executed.

• When a program invokes a method named "storeValue" on a Core DOM node, the Core
DOM plugin store is executed.

It is worth emphasising that the document node doc plays the role of the entry point to the Core
DOM API. Indeed, programs use the document node to create Core DOM nodes. Then, they
can interact with these nodes directly using the plugins that they expose.

The specification of the Core DOM plugins makes use of a semantic function Ancestor :
RDOM × FDOM → 2Node, formally given in Definition 7.1, that, given a node reference r and a
forest f , outputs a the set that contains all the ancestors of the node pointed to by r in f (which
contains the node itself). Hence, r1 ∈ Ancestor(r0, f) means that the node pointed to by r1 is
an ancestor of the node pointed to by r0 in f .

Definition 7.1 (Ancestor). The function Ancestor : RDOM×FDOM → 2Node is defined as follows:

Ancestor(r, f) =

{
{r} if f(r).parent = null
{r} ∪ Ancestor(f(r).parent, f) otherwise

The formal specification of the plugins that compose the Core DOM API is presented in
Figure 7.2.1 As described in Chapter 6, each DOM API plugin is modelled as a relation of the
form 〈f,−→v 〉α dplug 〈f ′, v〉β , where: (1) f is the Core DOM forest on which the API plugin is
invoked, (2) −→v the sequence of values that it receives as input, (3) α an arbitrary annotation to
be used by the programmer to provide additional information to the monitor plugin, (4) f ′ the
forest that results from the execution of the plugin, (5) v the return value of the plugin, and (6)
β an internal event generated by the plugin for the use of its monitor counterpart. The Core
DOM API plugins are briefly described below.

• The plugin new expects as arguments: (1) the reference #doc pointing to the document
node doc, (2) the string "createElement", and (3) the tag name m of the node to be
created. The plugin first creates a new node, which is allocated in a new node reference
r, computed using the allocator freshDOM . The explanation of the argument given to the
allocator is presented in Section 7.2, where the mechanism for labelling Core DOM nodes
is introduced. The tag component of the newly created node is set to m. Both the value
and the parent components of the new node are set to null. Finally, the children component
is set to the empty sequence, as newly created nodes do not have any child nodes. The
plugin return value is the reference of the new node.

1The specification makes use of the operators introduced in Chapter 2 for the manipulation of sequences of
values.



94 Chapter 7. Monitoring Secure Information Flow in a DOM-like API

New
r = freshDOM (σ0) f ′ = f [r 7→ 〈m, null, null, ε〉]

〈f,#doc :: "createElement" :: m〉(σ0,σ1,σ2) new 〈f ′, r〉(r,σ0,σ1,σ2)

Append
r′ 6∈ Ancestor(r, f) f(r) = 〈m, v, r̂,−→r 〉 f(r′) = 〈m′, v′, null,−→r ′〉

−→r = ε⇒ r′′ = null −→r 6= ε⇒ r′′ = −→r .last
f ′ = f

[
r 7→ 〈m, v, r̂,−→r :: r′〉, r′ 7→ 〈m′, v′, r,−→r ′〉

]
〈f, r :: "appendChild" :: r′〉 append 〈f ′, r′〉(r,r′,r′′)

Remove
f(r) = 〈m, v, r̂,−→r 〉 f(r).children(i) = r′ f(r′) = 〈m′, v′, r,−→r ′〉

f ′ = f
[
r 7→ 〈m, v, r̂,ShiftL(−→r , i)〉, r′ 7→ 〈m′, v′, null,−→r ′〉

]
〈f, r :: "removeChild" :: r′〉 remove 〈f ′, r′〉(r,r′)

Item
f(r).children(i) = r′

〈f, r :: i〉 item 〈f, r′〉(r′)

Length
i = |f(r).children|

〈f, r :: "length"〉 length 〈f, i〉(r)

Parent
f(r).parent = v

〈f, r :: "parentNode"〉 parent 〈f, v〉(r)

Value
f(r).value = v

〈f, r :: "nodeValue"〉 value 〈f, v〉(r)

Store
f(r) = 〈m, v, r̂,−→r 〉

f ′ = f
[
r 7→ 〈m, v′, r̂,−→r 〉

]
〈f, r :: "storeValue" :: v′〉 store 〈f ′, v′〉(r)

Core DOM Plugins
PDOM =

{
new, append, remove, item, length, parent, value, store

}

Figure 7.2: Core DOM API Plugins

• The plugin append expects as arguments: (1) the reference r of the node to which another
node is to be appended, (2) the string "appendChild", and (3) the reference r′ of the node
to be appended. It then appends the node pointed to by r′ to the list of children of the
node pointed to by r, provided that the node pointed to by r′ is not an ancestor of the
node pointed to by r in the Core DOM forest. This constraint prevents the forming of
cycles in the DOM forest. The plugin generates an internal event consisting of a 3-tuple
that contains r, r′, and the reference of the new left sibling of the node pointed to by r′.
Finally, the plugin return value is r′.

• The plugin remove expects as arguments: (1) the reference r of the node from which
another node is to be removed, (2) the string "removeChild", and (3) the reference r′ of
the node to be removed. Provided that the node pointed to by r′ is a child of the node



7.2. Monitoring Secure Information Flow in the Core DOM API 95

pointed to by r, the plugin removes r′ from the list of children of the node pointed to by
r. Additionally, it sets the parent component of the node pointed to by r′ to null, since,
after removing this node from the list of children of its parent, it becomes a root node.
Finally, the plugin return value is r′.

• The plugin item expects as arguments: the reference r of the node whose child is to be
inspected and the position i that that child occupies in the list of children of the node
pointed to by r. The plugin return value is the i + 1th reference in the list of children of
the node pointed to by r (provided that such reference exists).

• The plugin length expects as arguments: the reference r of the node whose number of
children is to be inspected and the string "length". The plugin return value is the number
of children of the node pointed to by r.

• The plugin parent expects as arguments: the reference r of the node whose parent is to be
inspected and the string "parentNode". The plugin return value is the parent component
of the node pointed to by r. Hence, if the node pointed to by r is not a root node, the
return of the plugin is the reference that points to its parent. Otherwise, the plugin returns
null.

• The plugin value expects as arguments: the reference r of the node whose value is to be
inspected and the string "nodeValue". The plugin returns the value stored in the node
pointed to by r (which corresponds to its component value).

• The plugin store expects as arguments: (1) the reference r of the node whose stored value
is to be updated, (2) the string "storeValue", and (3) the new value v to be stored in the
node pointed to by r. The plugin simply sets the value component of the node pointed to
by r to v and returns v.

7.2 Monitoring Secure Information Flow in the Core DOM API

Before proceeding to the description of the monitor plugins for securing information flow in the
Core DOM API, we discuss the main challenges imposed by the particular features of this API
and how we propose to tackle them.

7.2.1 Challenges for Information Flow Control in Core DOM

The range of tree operations offered by the Core DOM API allows information to be stored in
and inspected from Core DOM nodes in several ways:

• A node can be created and its existence tested;

• A value can be stored in a node and later read from that node;

• A node can be inserted at/removed from a certain position of the Core DOM forest and
its new position can be later checked;

• A node can be inserted at/removed from a certain position of the Core DOM forest and the
number of children of both its former parent and new parent can be retrieved afterwards.

Here, we define the position of a node as the pair consisting of its parent in the Core DOM
forest and its index. Observe that, according to this definition, if we know the positions of all
the nodes in the Core DOM forest, we can reconstruct its shape.



96 Chapter 7. Monitoring Secure Information Flow in a DOM-like API

The operations discussed above can be used to encode security leaks via the different infor-
mation components that are associated with every node. We now examine these leaks in detail
and introduce the formal techniques we use for tackling them. We assume in the examples that
the original forest contains three initial DIV nodes, bound to div0, div1, and div2 respectively
and created as follows:

div0 = document.createElement("DIV")L,L,H ,
div1 = document.createElement("DIV")L,H,L,
div2 = document.createElement("DIV")L,H,L

(7.2)

The security levels that annotate the three methods calls are explained in Subsection 7.2.3.

7.2.1.1 Differentiating Information Components

Each node in a Core DOM forest can be seen to carry four main information components:
its existence, its value, its position and its number of children. These components can be
manipulated separately, and, therefore, there is value in treating them individually. In other
words, it is useful to assign a different security label to each of these components. For instance,
in the following program, the final position of the node bound to div2 carries high information
(because it is inserted in a high context), in spite of containing the low level value originally
bound to l0.

div2.storeValue(l0),
h ? (div0.appendChild(div2)) : (div1.appendChild(div2))

(7.3)

After the execution of this program, the position of the node bound to div2 should not be
revealed to a low observer. Its value, however, can be made public. Hence, while the evaluation
of div2.parentNode should yield a high value, the evaluation of the div2.nodeValue can yield
a low value. Similarly, there is no reason why the position of a node that stores a secret value
should not be public.

By treating tree nodes as first-class values, we can naturally differentiate the security levels
that are associated to each of the node’s information components. We propose to associate every
tree node with four security levels:

• The value level of a node is the level of the value that it stores.

• The position level of a node is the level of its position in the Core DOM forest.

• The structure security level of a node is the level associated to that node’s number of
children.

• The node level is the level associated to the existence of the node itself. This level can be
seen as the level of the context in which the node is created.

7.2.1.2 Security Leaks in the Core DOM API

When removing a node from the list of children of another node, the indexes of its right siblings
change, thereby entailing a new kind of implicit flow. Consider the following example:

div0.appendChild(div1),
div0.appendChild(div2),
h ? (div0.removeChild(div1)),
l0 = div0[0]

(7.4)



7.2. Monitoring Secure Information Flow in the Core DOM API 97

that serves as the running example in this subsection. This program appends the nodes bound
to div1 and to div2 to the list of children of the node bound to div0 (which is originally empty).
Then, depending on the value of the high variable h, it removes the node bound to div1 from
the list of children of the node bound to div0. Hence, depending on the value of h, the program
assigns either the reference of the node bound to div1 or the reference of the node bound to
div2 to the low variable l0. We refer to these forms of security leaks as order leaks, as they
leverage information about the order of Core DOM nodes in the list of children of their parents.

In a nutshell, when removing one node from the list of children of another, the positions of
its right siblings also change. Complementarily, when appending a node to the list of children of
another node, the position it will occupy depends on the positions of its left siblings. Therefore,
the monitor API enforces that, for every node in the Core DOM forest, the position levels of
its child nodes are monotonically increasing. Hence, the position level of a node is always
(1) higher than or equal to the position levels of its left siblings and (2) lower than or equal to
the position levels of its right siblings.

Suppose, for instance, that: (1) a node nB is removed from the list of children of a node nA
within an invisible context and that (2) nB has a right sibling nC . For the monitor to allow this
removal to go through, nB must have an invisible position level (in order to prevent the implicit
flow resulting from changing the position of a node with a visible position inside an invisible
context). When removing nB, the position of nC is also changed. However, the monitor does
not have to check whether the position level of nC is higher than or equal to the level of the
context. The reason for this is that the monitor enforces the position level of nC to be higher
than or equal to the position level of nB. Since the position level of nB is higher than or equal to
the level of the context, it follows that the position level of nC is also higher than or equal to the
level of the context. Hence, even assuming that the level of the context is invisible, the removal
of nB does not produce any visible changes. Because, in this scenario, the monitor blocks the
execution if either the position level of nB or the position level of nC are visible.

The fact that a program can inspect the number of children of a given node can also be
exploited to encode implicit information flows. If we add the assignment l1 = div0.length to
the end of the Program 7.4, l1 will be either set to 2 or to 1 depending on the value of the high
variable h. The structure security level of a Core DOM node is meant to control this kind of
leaks. One can look at the structure security level of a Core DOM node as an upper bound on
the levels of the contexts in which one can add or remove nodes to or from its list of children.
Hence, if a node has low structure security level, one cannot insert/remove nodes in/from its
list of children in high contexts. Therefore, the level associated with looking-up the number of
children of a given node corresponds to its structure security level.

7.2.1.3 Flow-sensitive versus Flow-insensitive Monitoring in Core DOM

Both the structure security level and the position level of a node are used to control
the implicit flows that can be encoded by inserting/removing nodes in/from the Core DOM
forest. Hence, in order to apply the no-sensitive-upgrade discipline [Zdancewic 2002], these
levels cannot be upgraded. This point is exemplified in Table 7.2, which illustrates two
pairs of monitored executions of the program shown on its left column. Each pair consists of a
monitored execution that follows the no-sensitive-upgrade discipline and a monitored execution
(called naive) that simply raises the levels of the resources updated in secret contexts to the
levels of those contexts. Each pair consists of two executions that start from the same memory
and the same forest. The initial labelled memories corresponding to each pair only differ in the
value of the high variable h. In one case the high variable h is initially set to 0, whereas in the
other it is set to 1. All initial memories and labellings are such that div0 and div1 each bind
a root node with low structure security level. The node bound to div0 is pointed to by r0 and



98 Chapter 7. Monitoring Secure Information Flow in a DOM-like API

Program: h = 0 h = 1

Both Approaches Naive Approach No-Sensitive-Upgrade

l = true Σv(r · "l") := L Σv(r · "l") := L Σv(r · "l") := L

h ? branch not taken branch taken branch taken
div0.appendChild(div1) — Ξ(r0).struct := H stuck

(div0.length == 0) ? branch taken branch not taken —
l = false Σv(r · "l") := L — —

Final Low Memory: l = false l = true —

Table 7.2: The Structure Security Level of Core DOM nodes Must Be Flow Insensitive

the node bound to div1 is pointed to by r1 (in the four forests). The reference r points to the
current active scope object. Table 7.2 shows how the Core JavaScript property-value labelling
Σv as well as the forest labelling Ξ evolve during the two pairs of monitored executions. Since
the monitored executions starting from the memory that initially maps h to 0 coincide, they are
represented together.

Consider the monitored executions starting from the memory that initially maps h to 1.
While the monitor following the naive approach raises the structure security level of the node
bound to div0 to H (allowing the execution to go through), the monitor following the no-
sensitive-upgrade discipline blocks the execution when the program tries to append the node
bound to div1 to the list of children of the node bound to div0 in a high context. Observe that,
despite of executing the same program in two low-equal memories, the monitor that follows the
naive approach generates two memories that are not low-equal.

By replacing the test of the second conditional expression with div1.parentNode, one obtains
an analogous example that illustrates why position levels cannot be flow-sensitive. In contrast
to the position level and to the structure security level, the value level of a node can be
upgraded, since the value stored in a node is explicitly set. However, such upgrades cannot be
caused by implicit information flows.

7.2.2 An Attacker Model for the Core DOM API

In order to formally characterise what part of a Core DOM forest an attacker can observe
at a given security level, one must define a low-equality relation ∼DOM for Core DOM forests
parameterizable with a security level σ. Intuitively, the low-equality relation ∼DOM , for labelled
Core DOM forests, must be such that: whenever two labelled forests are related by ∼DOM at a
given level σ, an attacker at level σ cannot distinguish the two of them.

In order to define the low-equality for Core DOM forests, we start by defining the notion of
node labelling. A node labelling Ξ ∈ LabDOM : RDOM → L4 maps each node reference to a tuple
of four security levels. Hence, given a DOM reference r and a labelling Ξ, Ξ(r) = 〈σn, σv, σp, σs〉,
where: (1) σn is the node level, (2) σv is the value level, (3) σp is the position level, and (4)
σs is the structure security level. For clarity, given a node n pointed to by a reference r and a
node labelling Ξ, we denote by Ξ(r).node, Ξ(r).value, Ξ(r).pos, and Ξ(r).struct its node level,
value level, position level, and structure security level, respectively. We impose four restrictions
on the levels assigned to a given node.

1. One cannot store a visible value inside an invisible node. Formally, for every node reference
r ∈ dom(Ξ), it holds that: Ξ(r).node v Ξ(r).value.



7.2. Monitoring Secure Information Flow in the Core DOM API 99

2. An invisible node cannot have a visible position. Formally, for every node reference r ∈
dom(Ξ), it holds that: Ξ(r).node v Ξ(r).pos.

3. An invisible node cannot have a visible number of children. Formally, for every node
reference r ∈ dom(Ξ), it holds that: Ξ(r).node v Ξ(r).struct.

4. An invisible node cannot have a visible child. This means that programs are not allowed
to add visible nodes to the list of children of invisible nodes. Formally, for every two node
references r, r′ ∈ dom(Ξ) such that f(r).children(i) = r′ for some integer i, it holds that
Ξ(r).node v Ξ(r′).node.

Finally, as discussed in Section 7.2, the position levels of the children of labelled nodes must be
monotonically increasing. All the constraints that DOM labellings must verify (and which are
enforced by the monitor plugins introduced in the following subsection) are formally presented
in Definition 7.2.

Definition 7.2 (Well-Labelled Forest). A Core DOM forest f ∈ FDOM is said to be well-labelled
by a labelling Ξ ∈ LabDOM , if for every reference r ∈ dom(Ξ), it holds that:

• Ξ(r).node v Ξ(r).value u Ξ(r).pos u Ξ(r).struct,

• ∀0≤i<|f(r).children| Ξ(r).node v Ξ(f(r).children(i)).node,

• ∀0≤i<j<|f(r).children| Ξ(f(r).children(i)).pos v Ξ(f(r).children(j)).pos.

Informally, given a forest f labelled by Ξ, an attacker at level σ can see:

• the existence of nodes with observable node levels,

• the value stored in nodes with observable value levels,

• the position of nodes with observable position levels, and

• the number of children of nodes with observable structure security levels.

Furthermore, if a node is observable, then its tag, node level, position level, and structure security
level are also assumed to be observable. The low-projection of a Core DOM forest f ∈ FDOM
labelled by Ξ ∈ LabDOM at a given security level σ is formally given in Definition 7.3.

Definition 7.3 (Low-Projection and Low-Equality for Core DOM forests). The low-projection
of a forest f ∈ FDOM w.r.t. a security level σ and a labelling Ξ ∈ LabDOM is given by:

f �Ξ,σ= {(r, f(r).tag,Ξ(r).node,Ξ(r).pos,Ξ(r).struct) | Ξ(r).node v σ}
∪ {(r, f(r).value,Ξ(r).value) | Ξ(r).value v σ}
∪ {(r, i, r′) | f(r).children(i) = r′ ∧ Ξ(r′).pos v σ}
∪ {(r, null) | f(r).parent = null ∧ Ξ(r).pos v σ}
∪ {(r, |f(r).children|) | Ξ(r).struct v σ}

Two forests f0 and f1, respectively labelled by Ξ0 and Ξ1 are said to be low-equal at security level
σ, written f0,Ξ0 ∼σDOM f1,Ξ1, if they coincide in their respective low-projections, meaning that
f0 �Ξ0,σ= f1 �Ξ1,σ.



100 Chapter 7. Monitoring Secure Information Flow in a DOM-like API

Final Forest Final Forest Low-Projection

h = 0 h = 1 Both h = 0 and h = 1

H H

divL,H0

divL,L1 divL,L2

H

divL,H0 divL,L1

divL,L2

divL,L1divL,H0 divL,L2

Table 7.3: Two Core DOM forests and Their Low-Projections

Table 7.3 illustrates the final forests obtained from the execution of the Program 7.4 in two
distinct memories that initially map the high variable h to 0 and to 1, respectively. On the left
side of the table, we represent the two the final forests. And, on the right side of the table,
we represent their coinciding low-projections. The position levels of the nodes bound to div1
and div2 as well as the structure security level of the node bound to div0 are assumed to be
originally set to H (high). All the other labels are assumed to be originally set to L (low).
Each node is labelled with its corresponding node level and structure security level. Each edge
connects a node (represented above) to one of its child nodes (represented below). The edge is
labelled with the position level of the corresponding child node. Siblings are represented from
left to right. Concretely, if n1 and n2 are siblings and the index of n1 is lower than the index of
n2, then n1 is represented on the left of n2.

7.2.3 Monitor Plugins for the Core DOM API

As discussed in Chapter 6, a formal monitored API is modelled as a tuple
〈S,Slab,P,Plab,RIF ,∼api〉 consisting of a set of API states, a set of API labellings, a set of
plugins that operate on the API states, a set of monitor plugins that operate on the monitor
labellings, a monitored API register, and a low-equality relation between labelled API states.
Hence, the monitored Core DOM API is formally modelled as the tuple:

〈FDOM , LabDOM ,PDOM ,PDOMlab ,RDOMIF ,∼DOM 〉 (7.5)

In the following, we use CoreDOMIF to refer to the monitored Core DOM API. The only element
of the monitored Core DOM API model that remains to be defined is the set PDOM of monitor
plugins.

The formal specification of the monitor plugins in PDOMlab is presented in Figure 7.3. As
described in Chapter 6, each monitor plugin dpluglab ∈ PDOMlab is modelled as a relation of the
form 〈Ξ,−→σ 〉β dpluglab 〈Ξ′, σ〉 where: (1) Ξ and Ξ′ are the DOM labellings immediately before
and after the execution of the plugin, (2) −→σ the sequence of levels that label the arguments given
to the plugin, (3) β an internal event generated by the plugin to provide additional information
to the monitor plugin, and (4) σ the level of the return value of the plugin – called the reading
effect of the plugin.

Before proceeding to the description the monitor plugins, it is important to recall that the
choice of which plugin to apply exclusively depends on the values of its first two arguments.
Hence, in order to verify confinement (as defined in Definition 6.3) every monitor plugin must
check whether the levels of the resources which it updates/creates are higher than or equal to
the levels of the first two arguments. The monitor plugins of the monitored Core DOM API are
briefly described below.



7.2. Monitoring Secure Information Flow in the Core DOM API 101

New
σ′ = σ0 t σ1 t σ2 v σn v σp u σs Ξ′ = Ξ [r 7→ 〈σn, σn, σp, σs〉]

〈Ξ, σ0 :: σ1 :: σ2〉(r,σn,σp,σs) newlab 〈Ξ′, σ′〉

Append
r′′ = null ∨ Ξ(r′′).pos v Ξ(r′).pos Ξ(r).node v Ξ(r′).node

σ′ = σ0 t σ1 t σ2 v Ξ(r).struct u Ξ(r′).pos

〈Ξ, σ0 :: σ1 :: σ2〉(r,r
′,r′′) appendlab 〈Ξ, σ′〉

Remove
σ0 t σ1 t σ2 v Ξ(r).struct u Ξ(r′).pos

〈Ξ, σ0 :: σ1 :: σ2〉(r,r
′) removelab 〈Ξ,Ξ(r′).pos〉

Item
σ = σ0 t σ1 t Ξ(r).pos

〈Ξ, σ0 :: σ1〉(r) itemlab 〈Ξ, σ〉

Length
σ = σ0 t σ1 t Ξ(r).struct

〈Ξ, σ0 :: σ1〉(r) lengthlab 〈Ξ, σ〉

Parent
σ = σ0 t σ1 t Ξ(r).pos

〈Ξ, σ0 :: σ1〉(r) parentlab 〈Ξ, σ〉

Value
σ = σ0 t σ1 t Ξ(r).value

〈Ξ, σ0 :: σ1〉(r) valuelab 〈Ξ, σ〉

Store
σ = σ0 t σ1 t σ2 t Ξ(r).node σ0 t σ1 v Ξ(r).value

Ξ′ = Ξ [r 7→ 〈Ξ(r).node, σ,Ξ(r).pos,Ξ(r).struct〉]
〈Ξ, σ0 :: σ1 :: σ2〉(r) storelab 〈Ξ′, σ〉

Core DOM Monitor Plugins
PDOMlab =

{
newlab, appendlab, removelab, itemlab, lengthlab, parentlab, valuelab, storelab

}

Figure 7.3: Core DOM Monitor - Primitives for Tree Operations

• [New] The internal event given to this monitor plugin is a 4-tuple that contains: the
reference r in which the new Core DOM node is to be allocated as well as its node level
σn, position level σp, and structure security level σs. While r is dynamically created
by new, the three levels σn, σp, and σs are supposed to annotate the method call that
triggered the invocation of the plugin. The extensible Core JavaScript Monitor “transmits”
this annotation to new, which in turn “re-transmits” it to newlab using the internal event
mechanism. (Observe that in the specification of new, the DOM allocator is given σn as
an argument. This means, as described in Section 3.3, that the node allocation takes place
at level σn).

The monitor plugin first checks whether the node level of the node to be created is higher
than or equal to lub between the levels of the arguments of the plugin. This constraint
prevents both the creation of a visible node depending on secret information and the
creation of a visible node using an invisible tag name. Then, the monitor plugin checks
whether the node level of the newly created node is lower than or equal to its structure
security level and position level. This constraint prevents the creation of a node that does
not verify the well-labelling predicate (established in Definition 7.2). Finally, the reading
effect of the API method call is the node level of the newly created node.

• [Append] The internal event given to this monitor plugin is a 3-tuple that contains: (1)
the reference r of the node to which a new node is to be appended, (2) the reference r′ of
the node to be appended, and (3) the reference of the current last child of the node pointed



102 Chapter 7. Monitoring Secure Information Flow in a DOM-like API

to by r (which is to be the new left sibling of the node pointed to by r′). The monitor
plugin first checks whether the structure security level of the node pointed to by r and the
position level of the node pointed to by r′ are greater than or equal to the lub between
the levels of the arguments of the plugin. This constraint prevents (1) the insertion of
a node with a visible position depending on secret information and (2) the changing of
the number of children of a node with a visible number of children depending on secret
information. When r′′ 6= null, this monitor plugin also checks whether the position level of
the node pointed to by r′ is higher than or equal to the position level of the node pointed
to by r′′, which is to be its new left-sibling. This constraint ensures that the position levels
of the children of every Core DOM node are always monotonically increasing. The reading
effect of the plugin is the lub between the levels of its arguments.

• [Remove] The internal event given to this monitor plugin is a 2-tuple that contains: (1)
the reference r of the node from which a node is to be removed and (2) the reference r′ of
the node to be removed. The monitor plugin first checks whether the structure security
level of the node pointed to by r and the position level of the node pointed to by r′ are
greater than or equal to the lub between the levels of the arguments of the plugin. This
constraint prevents (1) the removal of a node with a visible position depending on secret
information and (2) the changing of the number of children of a node with a visible number
of children depending on secret information. The reading effect of the plugin is the lub
between the levels of its arguments.

• [Item] The internal event given to this monitor plugin is a 1-tuple that contains the refer-
ence r of the node that is to be obtained from the list of children of its parent. The reading
effect of this plugin is the lub between the levels of its arguments and the position level
of the node pointed to by r.

• [Length] The internal event given to this monitor plugin is a 1-tuple that contains the
reference r of the node whose number of elements is being inspected. The reading effect
of this plugin is the lub between the levels of its arguments and the structure security
level of the node pointed to by r.

• [Parent] The internal event given to this monitor plugin is a 1-tuple that contains the
reference r whose parent is to be inspected. The reading effect of this plugin is the lub
between the levels of its arguments and the position level of the node pointed to by r.

• [Value] The internal event given to this monitor plugin is a 1-tuple that contains the
reference r of the node whose value is to be inspected. The reading effect of this plugin is
the lub between the levels of its arguments and the value level of the node pointed to by
r.

• [Store] The internal event given to this monitor plugin is a 1-tuple that contains the
reference r pointing to the node in which a new value is to be stored. The monitor plugin
first checks whether the value level of that node is higher than or equal to the lub between
the levels of the first two arguments of the plugin. This constraint prevents sensitive
upgrades. That is, it prevents the value level of a node with an observable value level
from being upgraded within an unobservable context. The monitor plugin then updates
the value level of the node pointed to by r with the lub between its node level and the
levels of the arguments of the plugin. This level is also used as the reading effect of the
plugin. Observe that this monitor plugin updates the API labelling in way that preserves
the well-labelling predicate for nodes (since the new value level of the node pointed to by
r is higher than or equal to its node level).



7.3. Secure Information Flow for Live Collections 103

7.2.4 Soundness

This section presents the three main properties of the monitor extensions for the Core DOM
API:

• Lemma 7.1 states that the monitored execution of every Core DOM plugin preserves the
well-labelling predicate for Core DOM forests (Definition 7.2).

• Lemma 7.2 states that the monitored Core DOM API is confined according to Defini-
tion 6.3.

• Finally, Theorem 7.1 states that the monitored Core DOM API is noninterferent according
to Definition 6.4.

The proofs of the results can be found in Appendix D.1.

Lemma 7.1 (Well-labelling Preservation). For any Core DOM monitored plugin
(dplug, dpluglab) ∈ rng(RDOMIF ), forests f0, f1 ∈ FDOM , labellings Ξ0,Ξ1 ∈ LabDOM , an-
notation α, sequence of values −→v , sequence of levels −→σ , value v, level σ, and internal event β,
such that:

• f0 is well-labelled by Ξ0,

• 〈f0,
−→v 〉α dplug 〈f1, v〉β, and

• 〈Ξ0,
−→σ 〉β dpluglab 〈Ξ1, σ〉

It holds that: f1 is well-labelled by Ξ1.

Lemma 7.2 (Confinement of the Monitored Core DOM API). The API CoreDOMIF is confined.

Theorem 7.1 (Noninterference of the Monitored Core DOM API). NI(CoreDOMIF ).

An immediate corollary of Theorems 7.1 and 6.1 is that the plugging of the Core DOM API
into the extensible Core JavaScript monitor yields a noninterferent extended monitor.

Corollary 7.1 (Noninterference - (Core JavaScript + Core DOM) Monitor). NI(⇓CoreDOMIF
IF ).

7.3 Secure Information Flow for Live Collections

Live collections are a special type of data structure featured in the DOM API that automatically
and dynamically reflect modifications to the document. The DOM API includes several methods
that return live collections. For instance, the method getElementsByTagName returns a live
collection containing all the nodes in the document tree whose tag matches the string given as
input. Since a live collection automatically reflects modifications to the document, every time
a node matching the query that generated a given live collection is inserted/removed in/from
the document, it is also automatically inserted/removed in/from that live collection. Therefore,
rather than a simple static data structure, a live collection is in fact a dynamic query to the
document.

The nodes of a live collection are arranged in document order. According to the specification,
the order of a node is determined by the position in which “the first character of [its] XML
representation occurs in the XML representation of the document after expansion of general
entities” [W3C Recommendation 2005]. In other words, the document order is an ordering ≤ on
the nodes of the Core DOM forest such that for every two nodes n0 and n1 in the same DOM



104 Chapter 7. Monitoring Secure Information Flow in a DOM-like API

r ∈ RDOM ⊂ Ref % DOM References

r0, · · · , ri ∈ R ⊂ Ref % Live References

ln ∈ Node ::= 〈r,m〉 % Live Node

lives ∈ Lives ::= [r0 7→ ln0, · · · , ri 7→ lni] % Live Record

ν ∈ F ::= 〈f, lives〉 % DOM State

dplug ∈ P % Core DOM Plugins + Live Collections

R : Ref× Prim→ P % Core DOM Register

CoreDOM ∈ A 〈FDOM ,P ,R 〉 % Core DOM API

Table 7.4: DOM - Semantic Domains

tree, n0 ≤ n1 if and only if n0 is found before n1 in a depth-first left-to-right search starting
from the root of that tree.

In this section, we extend the Core DOM API with the following methods and properties for
handling live collections:

• node.getElementsByTagName(tag): creates a new live collection containing all the descen-
dants of node with tag tag in document order;

• lc[i]: retrieves the i+1th node in the live collection bound to lc;

• lc.length: returns the number of nodes in the live collection bound to lc.

7.3.1 Extending the Formal DOM API with Live Collections

Live collections are not part of the DOM forest, but a different type of data structure. Hence,
we consider a new type of node, called a live collection node, taken from a set Node , which are
used to model the live collections created during the execution. Consequently, the set of Core
DOM states must be redefined so that Core DOM states may include live collections. Hence,
a Core DOM API state ν ∈ F is now modelled as a pair 〈f, lives〉 consisting of a Core DOM
forest f ∈ FDOM and a partial function lives ∈ Lives : R → Node , which we call live collection
register. A live collection register maps live collection references in a set R to live collection
nodes. For clarity, given a DOM API state ν, we denote by ν.f and ν.lives its corresponding
Core DOM forest and live collection register. Furthermore, the elements of FDOM are called tree
nodes, whereas the elements of Node are called live collection nodes.

The Core DOM API extended with live collections is formally modelled as the triple
〈F ,P ,R 〉, where P is the set of the Core DOM plugins extended with the plugins required
for the manipulation of live collections and R : Ref× Prim→ P is the extension of the Core
DOM register that includes those additional plugins. In the following, we use CoreDOM to
refer to the Core DOM API extended with live collections. The new components of the Core
DOM API formal model extended with live collections are summarised in Table 7.4.

In modelling the semantics of live collections, we chose to re-compute the content of a live
collection every time a program tries to look-up one of its elements or its number of elements.
The alternative approach would be to compute it only once and, every time there were changes
in the document’s structure, to reflect those changes in all existing live collections. This second
approach has the disadvantage of scattering the semantics of live collections through all the Core
DOM plugins that modify the structure of the document.



7.3. Secure Information Flow for Live Collections 105

R IF (r0, v1) =


(new , new 

lab) if r0 ∈ RDOM ∧ v1 = "getElementsByTagName"
(item , item 

lab) if r0 ∈ R ∧ v1 ∈ Num
(length , length lab) if r0 ∈ R ∧ v1 = "length"
(redirect , redirect lab) if (r0, v1) ∈ dom(RDOMIF )

Figure 7.4: The Live Collection API Register: R 

Node Not Found - Leaf Node
|f(r).children| = 0 f(r).tag 6= m

f ` r  m ε

Node Not Found - Non-Leaf Node−→r = f(r).children |−→r | = n f(r).tag 6= m
∀0≤i<n f ` −→r (i) m

−→r i
f ` r  m

−→r 0 :: · · · :: −→r n−1

Node Found - Leaf Node
|f(r).children| = 0 f(r).tag = m

f ` r  m r :: ε

Node Found - Non-Leaf Node−→r = f(r).children |−→r | = n f(r).tag = m
∀0≤i<n f ` −→r (i) m

−→r i
f ` r  m r :: −→r 0 :: · · · :: −→r n−1

Figure 7.5: Search Predicate

Formally, a live collection node is modelled as a tuple of the form 〈r,m〉, where r is the
reference of the DOM node on which the query was issued and m the corresponding query. For
instance, the evaluation of div0.getElementsByTagName("DIV") generates a live collection that
contains the reference of the node bound to div0 and the string "DIV". Analogously to tree
nodes, live collections are allocated in a set of references, that does not overlap with either the
one used for the allocation of Core JavaScript objects or the one used for the allocation of tree
nodes. Consequently, the allocator of live collections freshlive : L → R is assumed to generate
references in a set that does not overlap with the sets used for the allocation of Core DOM nodes
and Core JavaScript objects.

In order to avoid repetition, we omit the specification of the API register R . Instead,
Figure 7.4 presents its monitored version R 

IF : Ref× Prim→ P ×P lab.
2 The conditions under

which each plugin for handling live collections is executed are explained below.

• When a program invokes a method named "getElementsByTagName" on a tree node, the
plugin new is executed.

• When a program inspects an integer property of a live collection node, the plugin item is
executed.

• When a program inspects the property "length" of a live collection node, the plugin
length is executed.

• Finally, every expression intercepted by the API register of the Core DOMmonitor without
live collections is also intercepted by its extension with live collections. In those cases, the
plugin redirect redirects the call to the appropriate Core DOM API plugin.

The semantics of live collections makes use of a search predicate of the form f ` r  m
−→r ,

formally given in Figure 7.5. This predicate formalises the search for the nodes matching a given
2As mentioned before, to the obtain the unmonitored register from its monitored version, it suffices to ignore

the second component of the output.



106 Chapter 7. Monitoring Secure Information Flow in a DOM-like API

Live New
r′ = freshlive(σl) lives′ = ν.lives [r′ 7→ 〈r,m〉]

〈ν, r :: "getElementByTagName" :: m〉σl new 〈〈ν.f, lives′〉, r′〉(r
′,σl)

Live Item
ν.lives(r) = 〈r′,m〉 ν.f ` r′  m

−→r −→r (i) = r′′

〈ν, r :: i〉 item 〈ν, r′′〉(ν.f,r,r
′,r′′)

Live Length
ν.lives(r) = 〈r′,m〉 ν.f ` r′  m

−→r
〈ν, r :: "length"〉 length 〈ν, |−→r |〉(ν.f,r,r

′,m)

Core DOM Redirection
dplug = RDOM (−→v (0),−→v (1)) 〈ν.f,−→v 〉 dplug 〈f ′, v〉β

〈ν,−→v 〉 redirect 〈〈f ′, ν.lives〉, v〉β

Core DOM + Live Collections Plugins
P =

{
new , item , length , redirect 

}

Figure 7.6: Core DOM API + Live Collections Plugins

tag in a DOM tree in document order. Intuitively, given a forest f , a node reference r, a
tag name m, and a list of node references −→r , f ` r  m

−→r means that −→r is the sequence that
contains all the nodes with tag m found when traversing the tree of f rooted at r in document
order. The plugins for handling live collections are formally presented in Figure 7.6 and are
briefly described below.

• The plugin new expects as arguments: (1) the reference r of the node on which the live
collection query was issued, (2) the string "getElementByTagName", and (3) the tag name
m of the nodes that will form the live collection. It then creates the live collection node
〈r,m〉 and allocates it in a new reference r′ (computed using freshlive). Finally, the plugin
return value is the reference of the newly created live collection node.

• The plugin item expects arguments: (1) the reference r of the live collection node whose
element is to be inspected, and (2) the position i that the element occupies in the live
collection. It then inspects the live collection node, thereby obtaining the reference r′

pointing to the Core DOM node on which the query was issued as well as the tag name
m of the nodes that form the live collection. Using these two values, the rule computes
a sequence −→r that contains the references of the descendants of the node pointed to by
r′ with tag name m in document order. Finally, the plugin return value is the i + 1th

reference of −→r .

• The plugin length expects as arguments: a node reference r and the string "length". It
proceeds as in the previous rule except that, instead of returning the i + 1th reference of
−→r , the return value of this plugin is the number of elements of −→r .

• The plugin redirect is called every time a plugin in PDOM is to be executed. Hence, the
plugin redirect fetches from the Core DOM API register (without live collections) the
Core DOM API plugin to execute. The second plugin is executed using as API state only
the forest component of the current state.



7.3. Secure Information Flow for Live Collections 107

7.3.2 Information Leaks introduced by Live Collections

Live collections can be exploited to encode new types of information leaks. We now discuss the
main challenges imposed by the introduction of live collections as well as how we propose to
tackle them.

7.3.2.1 Leaks via the Size of Live Collections

Consider the program below, which is to be executed in a forest that originally contains five
orphan DIV nodes respectively bound to the variables div0, div1, div2, div3, and div4.

div0.appendChild(div1),
div0.appendChild(div2),
div0.appendChild(div3),
lc0 = div0.getElementsByTagName("DIV"),
h ? (div1.appendChild(div4)),
l0 = lc0.length

(7.6)

Depending on the initial value of the high variable h, the initially low variable l0 is either either
set to 4 or set to 5.

In order to tackle this type of leak, we require the programmer to pre-establish for each
possible tag name m an upper bound on the position levels of the nodes with that tag name,
which we denote by σm and call global tag level. For instance, σDIV corresponds to the pre-
established upper bound on the position levels of DIV nodes. When the monitor evaluates the
expression lc0.length, it first checks whether the position levels of all DIV nodes in the Core
DOM forest are lower than or equal to the global position level. If that is the case, the execution
is allowed to go through and the reading effect of the whole expression is σDIV. Otherwise, the
execution is aborted. Therefore, for this program to be legal the global tag level of DIV nodes
σDIV must be set to H. Consequently, the reading effect of the whole expression is H.

The global tag level is used to control the implicit flows that can be encoded via the inspection
of the number of elements of live collections. Hence, it cannot be flow-sensitive, since upgrading
the global tag level constitutes a sensitive upgrade.

7.3.2.2 Order Leaks via the Inspection of Live Collections

The inspection of an element of a live collection leverages information about the position it
occupies in that live collection and therefore in the document structure. Hence, live collections
introduce a new type of order leak. Consider, for instance, the following program:

div0.appendChild(div1),
div0.appendChild(div2),
div0.appendChild(div3),
lc0 = div0.getElementsByTagName("DIV"),
h ? (div1.appendChild(div4)),
l0 = lc0[3]

(7.7)

Here, depending on the initial value of the high variable h, the initially low variable l0 is assigned
either to the node initially bound to div3 or to the node initially bound to div2. Hence, the
monitor must be able to detect that the evaluation of lc0[3] leaks information at level H.

Let us ignore by now the information flows triggered by the operations involving live collec-
tions during the execution of Program 7.7 and focus on the operations that only involve tree
nodes. For the execution of this program to be legal (according to the current enforcement



108 Chapter 7. Monitoring Secure Information Flow in a DOM-like API

Final Forest Final Forest Low-Projection

h = 0 h = 1 Both h = 0 and h = 1

L
L

L

divL,H0

divL,L1
divL,L2

divL,L3

divL,L4

H

L
L

L

divL,H0

divL,L1

divL,L2

divL,L3

divL,L4

L
L

L

divL,H0

divL,L1
divL,L2

divL,L3

divL,L4

Table 7.5: Two Core DOM forests and their Coinciding Low Projections
-

mechanism), the position level of the node bound to div4 as well as the structure security level
of the node bound to div1 must be high. All other labels may be set to L. On its left side,
Table 7.5 illustrates the final forests obtained from the execution of Program 7.7 in two distinct
memories that initially map the h to 0 and to 1, respectively. On the right, it represents their
(coinciding) low-projection. Although the two final forests are low-equal, the evaluation of the
expression of lc0[3] in each of them yields two different values.

The example given above clearly shows that the use of live collections enhances the observa-
tional power of an attacker. This happens because live collections allow an attacker to operate
on the nodes with the same tag in the same tree as if they were siblings. Hence, it is necessary
to adjust the notion of a node’s position in order to take into account this new way of traversing
the DOM forest. Let the live index of a node in a given tree be its position in the list of nodes
obtained by searching that tree for the nodes with its tag in document order. When a program
uses live collections to traverse a given a tree, the position of every node in that tree must be
understood as the triple consisting of its parent, its index, and its live index. Hence, changing
the position of a node in a tree causes the positions of the nodes with the same tag with higher
live indexes to change. In order to deal with this new type of order leak, the proposed enforce-
ment mechanism guarantees that one can only inspect a live collection if the position levels of
the nodes it “contains” monotonically increase in document order. For instance, in Table 7.5,
when h is initially set to 1, the final tree rooted at the node bound to div0 does not comply
with this requirement. Concretely, while the position level of the node bound to div4 is not
lower than or equal to the position level of the node bound to div2, the live index of the node
bound to div4 is lower than the live index of that bound to div2.

7.3.3 An Attacker Model for Live Collections

At the formal level, the introduction of live collections poses an important challenge: how to
model the enhanced observational power of an attacker that can use live collections to inspect
the Core DOM forest? To answer this question formally means: (1) restating the low-equality
definition for forests so as to correctly capture the observational power of such an attacker and
(2) introducing a new low-equality for live collection registers. In order to do this, we have to
extend the notion of DOM labelling to take into account live collection registers. Hence, an
extended DOM labelling Ξ ∈ Lab is modelled as pair 〈Ξ0,Ξ1〉 , where Ξ0 ∈ LabDOM is the
forest labelling as defined in the previous section and Ξ1 ∈: R → L is the live collection register
labelling. Informally, given a live collection reference r ∈ R , Ξ1(r) = σ means that the existence



7.3. Secure Information Flow for Live Collections 109

of the live collection pointed to by r is only visible at levels higher than or equal to σ. When a
live collection is visible, the reference of the node in which the query was issued as well as the
corresponding tag name are also visible. For simplicity, given a DOM labelling Ξ = 〈Ξ0,Ξ1〉, Ξ0

and Ξ1 are respectively denoted by Ξ.f and Ξ.lives.
The low-equality for live collection registers is given in Definition 7.4. As mentioned above,

this definition simply states that an attacker at level σ can only see the existence of live collections
labelled with levels v σ.

Definition 7.4 (Low-Projection and Low-Equality for Live Collection Registers). The low-
projection of a live collection register lives w.r.t. a security level σ and a live collection register
labelling Ξ is given by:

lives �Ξ,σ = {(r, r′,m,Ξ(r)) | Ξ(r) v σ ∧ lives(r) = 〈r′,m〉}

Two live collection registers lives0 and lives1, respectively labelled by Ξ0 and Ξ1, are said to be
low-equal at security level σ, written lives0,Ξ0 ∼σ lives1,Ξ1, if they coincide in their respective
low-projections – lives0 �

Ξ0,σ
 = lives1 �

Ξ1,σ
 .

Besides giving a definition of low-equality for live collection registers, one must modify the
definition of low-projection for Core DOM forests so that an attacker at level σ can additionally
see: (1) the live indexes of the nodes whose position levels are v σ and (2) the number of
descendants of visible nodes with a given tag whose global tag level is v σ. Definiton 7.5
formally presents the new low-equality for Core DOM forests.

Definition 7.5 (Low-Projection and Low-Equality for Core DOM forests with Live Collections).
The low-projection of a Core DOM forest f w.r.t. a security level σ and a labelling Ξ is given
by:

f �Ξ,σ = f �Ξ,σ

∪ {(r,m, i, r′) | f ` r  m
−→r ∧ −→r (i) = r′ ∧ Ξ(r′).pos v σ}

∪ {(r,m, n) | f ` r  m
−→r ∧ |−→r | = n ∧ σm t Ξ(r).node v σ}

Two Core DOM forests ν0 and ν1, respectively labelled by Ξ0 and Ξ1, are said to be low-equal
at security level σ, written f0,Ξ0 ∼σ f1,Ξ1, if they coincide in their respective low-projections,
meaning that f0 �

Ξ0,σ
 = f1 �

Ξ1,σ
 .

Finally, we define two different low-equality relations for labelled Core DOM API states.

• Two DOM states ν0 and ν1 respectively labelled by Ξ0 and Ξ1 are said to be low-equal
at a given level σ if the corresponding forests are low-equal according to ∼σDOM and the
corresponding live collection registers are low-equal according to ∼σ :

ν0.f,Ξ0.f ∼σDOM ν1.f,Ξ1.f ∧ ν0.lives,Ξ0.lives ∼σ ν1.lives,Ξ1.lives

• Two DOM states ν0 and ν1 respectively labelled by Ξ0 and Ξ1 are low-equal for live
collections at a given level σ if the corresponding forests are low-equal according to ∼σ 
(for forests) and the corresponding live collection registers are low-equal according to ∼σ :

ν0.f,Ξ0.f ∼σ ν1.f,Ξ1.f ∧ ν0.lives,Ξ0.lives ∼σ ν1.lives,Ξ1.lives



110 Chapter 7. Monitoring Secure Information Flow in a DOM-like API

7.3.3.1 Strengthening the Low-Equality for Core DOM forests

The new version of the low-equality for forests captures the additional power of an attacker who
disposes of live collections to interact with the document. Hence, a possible way to proceed is to
modify the previous monitor in order for it to enforce the stronger version of the low-equality.
However, doing so would lead to stricter constraints regarding the way programs can modify
the document, even if no live collection is used to inspect its content. Therefore, instead
of imposing additional constraints on operations that update the content of the Core DOM
forest, the new version of the monitor makes use of a predicate on Core DOM forests that checks
whether the inspection of the document via live collections is secure. In a nutshell,
any two labelled forests verifying this predicate and related by the first low-equality are also
related by the new low-equality and, therefore, can be securely inspected using live collections.
Informally, we say that a Core DOM forest f labelled by Ξ is secure for live collections, written
Sec(f,Ξ), if:

• the position level of every node in f is lower than or equal to the global tag level corre-
sponding to its tag,

• the position levels of the nodes with the same tag monotonically increase in document
order,

• the position level of every node is lower than or equal to the position levels of all its
descendants (this means that if the position of a node is secret, the positions of all its
descendants are also secret).

The predicate Sec(f,Ξ) is defined with the help of a predicate Secf,Ξ `r φ  φ′ , given in
Definition 7.6, that holds if the tree rooted at r is secure for live collections.

Definition 7.6 (Secure Forest for Live Collections). The predicate Secf,Ξ `r φ  φ′ is
recursively defined as follows:

Leaf Node
f(r).tag = m

|f(r).children| = 0
φ (m) v Ξ(r).pos v σm
φ′ = φ [m 7→ Ξ(r).pos]

Secf,Ξ `r φ  φ′ 

Non-Leaf Node
f(r).tag = m φ (m) v Ξ(r).pos v σm

|f(r).children| = n > 0 φ0
 = φ [m 7→ Ξ(r).pos]

∀0≤i<n Ξ(r).pos v Ξ(f(r).children(i)).pos

∀0≤i<n Secf,Ξ `f(r).children(i) φi  φi+1
 

Secf,Ξ `r φ  φn 

In the definition above, the function φ maps each tag name to the position level of the
last node with that tag name preceding the node pointed to by r in f in document order. The
function φ′ maps each tag name to the position level of the last node with that tag name in
the tree rooted at r (if no such node exists, φ′ coincides with φ ). Formally, the tree rooted
at the node pointed to by r in Core DOM forest f labelled by Ξ is said to be well-labelled for
live collections, written Sec(f,Ξ), if and only if there are two functions φ and φ′ such that
Secf,Ξ `r φ  φ′ . A Core DOM forest is well-labelled for live collections if all its trees are
well-labelled for live collections.

Theorem 7.2 (Low-Equality Strengthening). Given two forests f0 and f1 respectively labelled
by Ξ0 and Ξ1 and a security level σ such that Sec(f0,Ξ0) and Sec(f1,Ξ1) and f0,Ξ0 ∼σ f1,Ξ1,
it holds that: f0,Ξ0 ∼σ f1,Ξ1.

The proof of Theorem 7.2 can be found in Appendix D.2.



7.3. Secure Information Flow for Live Collections 111

Live New
σ0 t σ1 t σ2 v σ Ξ′ = 〈Ξ.f,Ξ.lives [r 7→ σ]〉

〈Ξ, σ0 :: σ1 :: σ2〉r,σ new 
lab 〈Ξ

′, σ〉

Live Length
σ = σ0 t σ1 t Ξ.lives(r) t σm

Sec(f,Ξ.f, r′)
〈Ξ, σ0 :: σ1〉(f,r,r

′,m) length lab 〈Ξ, σ〉

Live Item
σ = σ0 t σ1 t Ξ.lives(r) t Ξ.f(r′′).pos Sec(f,Ξ.f, r′)

〈Ξ, σ0 :: σ1〉(f,r,r
′,r′′) item 

lab 〈Ξ, σ〉

Core DOM Redirection
(dplug, dpluglab) = RDOMIF (r0, v1) 〈Ξ.f,−→σ 〉β dpluglab 〈Ξ′, σ〉

〈Ξ,−→σ 〉(r0,v1,β) redirect lab 〈〈Ξ
′,Ξ.lives〉, σ〉

Core DOM + Live Collections Monitor Plugins
PDOMlab =

{
new 

lab, length lab, item 
lab, redirect lab

}

Figure 7.7: Core DOM Monitor - Live Collections

7.3.4 Monitor Plugins for the Core DOM API + Live Collections

The monitored Core DOM API extended with live collections is formally modelled as the tuple:

〈F , Lab ,P ,P lab,R
 
IF ,∼DOM 〉 (7.8)

In the following, we use CoreDOM 
IF to refer to the extension of the monitored Core DOM API

with live collections. The only element of the monitored Core DOM API model that remains to
be defined is the set P lab of monitor plugins. Observe that the low-equality relation to be used
with CoreDOM 

IF is ∼DOM (and not ∼ ). Hence, when a program interacts with live collections
the corresponding monitor plugin verifies if the forest is well-labelled for live collections, in which
case the execution is allowed to proceed. Otherwise, the execution is blocked. The monitor
plugins for the Core DOM API extended with live collections are presented in Figure 7.7 and
are briefly described below.

• [Live New] The internal event given to this monitor plugin consists of a 2-tuple containing:
(1) the reference r of the newly allocated live collection node and (2) the levelσ of of the
newly allocated live collection. This monitor plugin extends the current live collection
register labelling with a mapping from r to σ. The monitor plugin checks whether the
level of the new live collection node is higher than or equal to the the lub between the
levels of all the arguments given to the plugin (σ0 t σ1 t σ2). This constraint prevents the
creation of a visible live collection node depending on secret information and the creation
of a visible live collection node associated with an invisible tag name. The reading effect
of the plugin is the level of the newly allocated live collection node.

• [Live Length] The internal event given to this monitor plugin consists of a 4-tuple contain-
ing: (1) the current Core DOM forest f , (2) the reference r pointing to the live collection
node whose number of elements is to be inspected, (3) the reference r′ of the node in which
the query was issued, and (4) the corresponding tag name m. This checks whether the tree
rooted at r′ is well-labelled for live collections. If it is the case, the reading effect of the
plugin is the lub between: (1) the levels of the arguments (σ0 and σ1), (2) the global tag



112 Chapter 7. Monitoring Secure Information Flow in a DOM-like API

level of m (σm), and (3) the level of the live collection node pointed to by r. Otherwise,
the execution is blocked.

• [Live Item] The internal event given to this monitor plugin consists of a 4-tuple containing:
(1) the current Core DOM forest f , (2) the reference r of the live collection node whose
element is to be inspected, (3) the reference r′ of the Core DOM node in which the query
was issued, and (4) the reference r′′ pointing to the Core DOM node to be returned by
the plugin. This monitor plugin checks whether the tree rooted at r′ is well-labelled for
live collections. If it is the case, the reading effect of the plugin is the lub between: (1)
the levels of the arguments (σ0 and σ1), (2) the position level of the node pointed to by
r′′, and (3) the level of the live collection node pointed to by r. Otherwise, the execution
is blocked.

• [Redirect] The internal event given to this plugin consists of a 3-tuple containing: (1) the
first argument r0 of the call to the plugin , (2) the second argument v1 of the call to the
plugin, and (3) the internal event to be given to the corresponding Core DOM monitor
plugin. The plugin uses the register of the monitored Core DOM API (not extended with
live collections) to obtain its monitor plugin that is to be executed and executes it.

7.3.5 Soundness

This section presents the two main properties of the monitored version of the Core DOM API
with live collections. Concretely:

• Lemma 7.3 states that the monitored Core DOM API is confined according to Defini-
tion 6.3.

• Finally, Theorem 7.3 states that the monitored Core DOM API is noninterferent according
to Definition 6.4.

The proofs of the results can be found in Appendix D.3.

Lemma 7.3 (Confinement - Monitored Core DOM+ Live Collections). The API CoreDOM 
IF

is confined.

Theorem 7.3 (Noninterference - Monitored Core DOM + Live Collections). NI(CoreDOM 
IF ).

An immediate corollary of Theorems 7.3 and 6.1 is that the plugging of the monitored Core
DOM API with live collections into the extensible Core JavaScript monitor yields a noninter-
ferent extended monitor.

Corollary 7.2 (Noninterference - (Core JavaScript + Core DOM) Monitor). NI(⇓CoreDOMIF
IF ).

7.4 Related Work

Secure Information Flow in Dynamic Tree Structures Russo et al. [Russo 2009] have
been the first to study the problem of securing information flow in DOM-like dynamic tree struc-
tures. Their paper presents a monitor for a WHILE language with primitives for manipulating
DOM-like trees as well as the corresponding proof of soundness. However, references are not
modelled in this language. Instead, program configurations include the current working node of
the program. This is, as the authors point out, the main difference between their model and
JavaScript DOM operations (since in JavaScript, tree nodes are treated as first-class values).



7.4. Related Work 113

By treating nodes as first-class values, we were able to give separate treatment to position leaks,
which cannot be directly expressed in the language of [Russo 2009].3

The monitor presented in [Hedin 2014]4 includes a set of statefull information-flow models for
tracking information flow in the DOM API including live collections. However, the authors only
provide a general explanation of the techniques they use to control information flow in the DOM
API and they do not prove any soundness property regarding these techniques. In particular, the
paper includes an informal description of how to label and monitor the live collections returned
by the method getElementsByName. In a nutshell, the proposed strategy consists of two steps.
First, when a live collection is created, the node on which the query is issued is marked with the
level of the newly created live collection. Second, the monitor restricts the operations that can
be applied to that node and to its descendants. More concretely, an operation that may have
an impact on the newly created live collection can only be performed in contexts lower than
or equal to the level of that live collection. It is our opinion that this general approach can be
used as an alternative to our enforcement mechanism. However, a detailed comparison between
the two mechanisms would require having a detailed specification of the mechanism introduced
in [Hedin 2014] as well as an argument justifying its soundness.

The authors of [Hedin 2012] include in their paper5 a description of a JavaScript implemen-
tation of a DOM-like API. Hence, by using this DOM library implemented in JavaScript with
the author’s browser-instrumentation for enforcing information flow policies, it is possible to
track secure information flow in JavaScript programs that interact with the DOM. Except that
it is not the real DOM API, but a library that acts as the DOM implemented in JavaScript. The
fact that the DOM API is neither implemented in JavaScript nor part of the JavaScript engine
(interaction with the DOM is managed by a separate module of the browser [Grosskurth 2005])
requires the specification of monitor extensions the whole DOM API.

DOM Semantics Gardner et al. [Gardner 2008] proposed a compositional and concise formal
specification of the DOM called Minimal DOM. The authors show that their semantics has no
redundancy and that it is sufficient to describe the structural kernel of DOM Core Level 1.
Informally, this means that the semantics of the un-modelled commands can be obtained from
that of the modelled ones. Additionally, they apply local reasoning based on Separation Logic to
prove invariant properties of JavaScript programs that interact with the DOM. Given that our
aim is to track information flow in the DOM, we use a simplified semantics for DOM APIs that
allows us to label DOM resources in a natural way. Like Minimal DOM, the Core DOM API
is also compositional. Furthermore, all the primitives of Minimal DOM can be easily translated
to the Core DOM API. Hence, we expect the authors’ sufficiency claim to be applicable to Core
DOM.

In his PhD thesis, Smith [Smith 2011] extended the fragment of the DOM API analysed
in. [Gardner 2008] with a formalisation of all the Fundamental Interfaces of Core DOM Level
1 [W3C Recommendation 2005]. Hence, this formalisation includes live collections. In this
formalisation, like in ours, live collections are lazy-evaluated. That is, the content of a live
collection is recomputed every time that live collection is inspected. This approach to the
modelling of live collections has the advantage of not scattering the semantics of live collections
through the semantics of all the methods that interact with the DOM forest.

3Section 7.5 presents a detailed comparison between our model and the model of [Russo 2009].
4This work is also discussed in the Related Work Section of Chapter 6.
5This work, which resents a browser-instrumentation for enforcing information flow policies, is discussed in

the Related Work Section of Chapter 4.



114 Chapter 7. Monitoring Secure Information Flow in a DOM-like API

7.5 Discussion

7.5.1 Order Leaks in the DOM API

The DOM specification states that the children of a node constitute a collection of type NodeList.
Every NodeList implements a method item(index) that “returns the indexth item in the
collection” or null if the “index is greater than or equal to the number of nodes [it con-
tains]” [W3C Recommendation 2005]. The Core DOM API allows the programmer to directly
obtain the ith child of a given node (like established in the DOM API), as well as to remove a
node from an arbitrary position of the list of children of another node. This fact requires the
enforcement mechanism to explicitly ensure that the position levels of sibling nodes are mono-
tonically increasing. If we assume that every implementation of the DOM API forces a NodeList
to be traversed from left to right, this problem automatically goes away due to standard label
propagation. However, the specification makes no such restriction on the implementation of
NodeLists and since such an implementation would be highly inefficient, it is reasonable to
assume the opposite case.

7.5.2 A Comparison with the Model of Russo et al. [Russo 2009]

As we mentioned before, by modelling Core DOM nodes as first class values, we can naturally
distinguish order leaks from value leaks. In other words, we can naturally distinguish the infor-
mation flows regarding the position of a node from the information flows regarding the value
which it stores. This distinction is not possible in the model of Russo et al. [Russo 2009] in that
model the position level of a node coincides with its node level. In fact, in that model, it is not
possible to change the position of a node in the DOM forest without deleting it and re-creating
it – its position remains the same during its whole “lifetime”. This makes it impossible to create
a node with an invisible position that stores a visible value.

In order to better illustrate the point discussed above, we consider a concrete program that,
when expressed in the model of [Russo 2009], causes the monitor to raise a security level of a
resource that is not raised in our case.

n = document.createElement("DIV")L,H,L,
n.storeValue(l1),
h ? (

document.appendChild(n),
... // expensive computations

),
l2 = n.nodeValue

(7.9)

Suppose that this is program is executed in a labelled forest in which the structure security level
of the document node is set to high (meaning that programs are allowed to append nodes to the
root of the document inside high contexts). Program 7.9 proceeds as follows:

1. The program creates a DIV node with a low node level, a high position level, and a low
structure security level,

2. The program assigns the node to variable n,

3. The program stores the value of the low variable l1 inside the node,

4. If the value of the high variable h is not in Falsy, the program appends the node to list
of children of the document node and then performs a series of expensive computations
involving the document structure inside the high branch.



7.5. Discussion 115

5. After executing the conditional, the program assigns the content of the node bound to n
to the low variable l2.

This program cannot be equivalently expressed in the model of [Russo 2009], because in that
model nodes must be created in the place they will occupy during the remaining of the execution.
In this example, it means that the new node would have to be created inside the high conditional.
Consequently, their monitor would need to upgrade the level of l2 to high.





Chapter 8

Conclusions

Contents
8.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

In recent years, a lot of work has been dedicated to the study of information flow security in
computing systems [Hedin 2011, Sabelfeld 2003a], with the double aim of preventing classified
information from falling into the hands of unauthorised parties and preventing high-integrity
resources from being updated depending on data coming from untrusted parties. However,
it has been frequently observed that despite the “ongoing attention from the research commu-
nity, information-flow based enforcement mechanisms have not been widely (or even narrowly!)
used” [Zdancewic 2004]. Hence, the real challenge in Information Flow Control research is “to
find applications to all the existing results or, in failing to do so, provide a reasonable expla-
nation for such failure” [Zdancewic 2004]. This thesis tries to abridge this gap between theory
and practice by studying a broad range of IFC mechanisms for a realistic core of a widely used
programming language – JavaScript – which holds a prominent spot in the internet of today.
Furthermore, we provide an implementation of the proposed mechanisms in order to illustrate
how they can be used in practice.

In this final chapter we summarise the main technical contributions of this thesis, and give
some perspective on future work.

8.1 Main Contributions

Hybrid Analysis While the dynamic features of JavaScript make it an exceedingly difficult
target for static analysis [Maffeis 2009], dynamic methods for tracking information flow often
impose a runtime overhead that is far from negligible [Hedin 2014]. Hence, we consider the hybrid
type system presented in Chapter 5 a central contribution of this thesis, as it proposes a novel way
to leverage the combination of runtime and static analyses in order to overcome some of the issues
of these two approaches. We believe that this novel way of combining fully static type systems for
checking secure information flow (such as those presented in [Volpano 1996] and [Banerjee 2002])
with program instrumentation can be replicated in other contexts for deriving more permissive
hybrid mechanisms.

Extensible Security Monitors Besides the dynamicity of JavaScript, another important
challenge to formal reasoning about client-side Web applications is the continuous emergence and
heterogeneity of the APIs to which client-side scripts can resort while executing. To overcome
this issue, we have presented an extensible security monitor for a core of JavaScript, which allows
us to prove noninterference for Web APIs in a modular way and then plug the verified APIs into
the extensible monitor in a way that preserves the security of the whole system. Furthermore,
we have presented a general architecture for designing extensible monitor-inlining compilers so
as to take practical advantage of the proposed mechanism for monitors.



118 Chapter 8. Conclusions

Information Flow Analysis for the DOMAPI We have studied a set of monitor extensions
to enforce secure information flow in a representative fragment of the Core DOM Level 1 API.
The proposed solution tackles open issues in information flow security such as references and
live collections in dynamic tree structures. By including references and live collections, the Core
DOM API offers the expressive power of the real Core DOM Level 1 API in the form of a simple
set of formal API specifications that is well tailored for automatic program analysis

8.2 Further Work

We envision the following tracks for future work:

• Semantic Subtyping for Security Types. Our subtyping relation for security types
is very restrictive, since it requires the corresponding raw types to coincide. This may
lead to the rejection of many secure programs. Hence, it would be interesting to use a
more flexible notion of subtyping for security types with the proposed type systems, as
that would render the two of them less restrictive. However, the design of such a notion of
subtyping for security types is far from an easy challenge because of the use of recursion
in the specification of security types.

As in the works of Castagna et al. [Castagna 2005] in the context of safety types, a possible
way to proceed is to ground the subtyping relation in a semantic criterion. For instance,
by interpreting safety types as sets, one can use standard set-inclusion to define subtyping.
Then, a safety type is a subtype of another if its denotational interpretation is contained in
the denotational interpretation of the other. In fact, Sabelfeld and Sands [Sabelfeld 2001]
already opened this way for information flow types with the study of an “extensional
semantics-based formal specification of secure information-flow properties based on repre-
senting degrees of security by partial equivalence relations”. In other words, in the authors’
work, information flow types are interpreted as partial equivalence relations (pers) over a
pre-established semantic domain. Then, an information flow type is less strict than an-
other if the per of the former is contained in the per of the latter, meaning that stricter
security types relate more “objects” in the semantic domain.

• Hybrid Type Systems with Complex Assertions. The hybrid type system we pro-
pose uses a simple program logic to reason about local scope. We conjecture that the use
of a more expressive program logic (such as that of [Gardner 2012]) in the generation of
the assertions to be verified at runtime would allow the hybrid mechanism to use smaller
constraints. Therefore, it would have a positive impact on the performance of instrumented
code and, consequently, on its applicability.

• Automatic Synthesis of IFlow Signatures. The development of sound IFlow Signa-
tures for the secure extension of information flow monitors with new APIs is a technical
undertaking that can be hardly left as task for the common programmer. Moreover, even
if an API is implemented in JavaScript, its monitored execution is much more costly than
the execution of its hypothetical IFlow Signature. Therefore, automatic synthesis of IFlow
Signatures is an important issue to be considered in the design of extensible information
flow monitors.

However, it is worth noting that a precise analysis of this kind for fully-fledged JavaScript
libraries is very unlikely to be attained because of the dynamic features of the language.
Observe that such an analysis would even obviate the need for monitoring. Instead, one
would just run the IFlow Signature of the whole program. Nevertheless, even if this type
of analysis is not possible in general, the use of static flow-sensitive analyses, such as that



8.2. Further Work 119

of [Hunt 2006], is a reasonable path to pursue for synthesising IFlow signatures of programs
that do not take advantage of the most dynamic features of the language.





Bibliography

[3rd edition of ECMA 262 1999] The 3rd edition of ECMA 262. ECMAScript Language Speci-
fication. Rapport technique, ECMA, 1999. (Cited on pages 9, 10, 14 and 20.)

[5th edition of ECMA 262 2011] The 5th edition of ECMA 262. ECMAScript Language Speci-
fication. Rapport technique, ECMA, 2011. (Cited on pages 1, 9, 20, 21, 28 and 89.)

[Agat 2000] Johan Agat. Transforming out Timing Leaks. In Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’00,
pages 40–53. ACM Press, 2000. (Cited on page 28.)

[Almeida Matos 2009] Ana Almeida Matos and Gérard Boudol. On Declassification and the
Non-Disclosure Policy. volume 17, pages 549–597. IOS Press, 2009. (Cited on pages 3,
25 and 72.)

[Amadio 1991] Roberto M. Amadio and Luca Cardelli. Subtyping the Recursive Types. In
Proceedings of the 18th ACM Symposium on Principles of Programming Languages,
pages 104–118. ACM Press, 1991. (Cited on page 56.)

[Anderson 2005] Christopher Anderson, Paola Giannini and Sophia Drossopoulou. Proceedings
of the Towards Type Inference for JavaScript. In 19th European Conference Object-
Oriented Programming, Lecture Notes in Computer Science, pages 428–452. Springer,
2005. (Cited on pages 20 and 73.)

[Austin 2009] Thomas H. Austin and Cormac Flanagan. Efficient Purely-Dynamic Information
Flow Analysis. In Proceedings of the 4th ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security, PLAS ’09, pages 113–124. ACM Press, 2009. (Cited
on pages 32, 37, 47 and 86.)

[Austin 2010] Thomas H. Austin and Cormac Flanagan. Permissive Dynamic Information Flow
Analysis. In Proceedings of the 5th ACM SIGPLAN Workshop on Programming Lan-
guages and Analysis for Security, PLAS ’10. ACM Press, 2010. (Cited on pages 37
and 47.)

[Austin 2012] Thomas H. Austin and Cormac Flanagan. Multiple Facets for Dynamic Infor-
mation Flow. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’12, pages 165–178. ACM Press, 2012.
(Cited on pages 31 and 47.)

[Banerjee 2002] Anindya Banerjee and David A. Naumann. Secure Information Flow and
Pointer Confinement in a Java-like Language. In Proceedings of the 15th IEEE Com-
puter Security Foundations Workshop, CSF’15, pages 253–267. IEEE Computer Society,
2002. (Cited on pages 3, 15, 28, 72 and 117.)

[Barth 2009] Adam Barth, Collin Jackson and John C. Mitchell. Securing Frame Communica-
tions in Browsers. Commun. ACM, vol. 52, no. 6, pages 83–91, 2009. (Cited on page 2.)

[Barth 2011] A. Barth. The web origin concept. In IETF, 2011. (Cited on page 1.)

[Bell 1976] David Elliott Bell and Leonard J. LaPadula. Secure Computer Systems: Mathemat-
ical Foundations. Rapport technique, Mitre Corp. Rep. MTR-2997 Rev. 1, 1976. (Cited
on page 28.)



122 Bibliography

[Biba 1977] J. K. Biba. Integrity Considerations for Secure Computer Systems, 1977. (Cited on
page 3.)

[Bielova 2011] Nataliia Bielova, Dominique Devriese, Fabio Massacci and Frank Piessens. Re-
active non-interference for a browser model. In Proceedings of the 5th International
Conference on Network and System Security, NSS’11, pages 97–104. IEEE Computer
Society, 2011. (Cited on page 48.)

[Birgisson 2012] Arnar Birgisson, Daniel Hedin and Andrei Sabelfeld. Boosting the Permissive-
ness of Dynamic Information-Flow Tracking by Testing. In Proceedings of 19th European
Symposium on Research in Computer Security, Lecture Notes in Computer Science, pages
55–72. Springer, 2012. (Cited on page 48.)

[Bodin 2013] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Maffeis, Daiva Naudziuniene, Alan Schmitt and Gareth Smith. A Trusted Mechanised
JavaScript Specification. In Proceedings of the 41st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL’13, pages 87–100. ACM Press,
2013. (Cited on page 20.)

[Bohannon 2009] Aaron Bohannon, Benjamin C. Pierce, Vilhelm Sjöberg, Stephanie Weirich and
Steve Zdancewic. Reactive noninterference. In Proceedings of the 16th ACM Conference
on Computer and Communications Security, pages 79–90. ACM Press, 2009. (Cited on
page 48.)

[Buiras 2014] Pablo Buiras, Deian Stefan and Alejandro Russo. On Dynamic Flow-sensitive
Floating Label Systems. In Proceedings of the 27th IEEE Computer Security Foundations
Symposium, CSF’27. IEEE Computer Society, 2014. (Cited on page 48.)

[Castagna 2005] Giuseppe Castagna and Alain Frisch. A Gentle Introduction to Semantic Sub-
typing. In Proceedings of the 32nd International Colloquium on Automata, Languages
and Programming (ICALP), volume 3580 of Lecture Notes in Computer Science, pages
30–34. Springer, 2005. (Cited on page 118.)

[Charguéraud 2013] Arthur Charguéraud. Pretty-Big-Step Semantics. In Programming Lan-
guages and Systems, volume 7792 of Lecture Notes in Computer Science, pages 41–60.
Springer Berlin Heidelberg, 2013. (Cited on page 20.)

[Chudnov 2010] Andrey Chudnov and David A. Naumann. Information Flow Monitor Inlining.
In Proceedings of the 23rd IEEE Computer Security Foundations Symposium, CSF’10,
pages 200–214. IEEE Computer Society, 2010. (Cited on pages 31, 43, 48 and 49.)

[Clements 2008] John Clements, Ayswarya Sundaram and David Herman. Implementing con-
tinuation marks in JavaScript. In Proceedings of the 9th Scheme and Functional Pro-
gramming Workshop, 2008. (Cited on page 20.)

[Cohen 1977] Ellis Cohen. Information Transmission in Computational Systems. In Proceedings
of the 6th ACM Symposium on Operating Systems Principles, SOSP ’77, pages 133–139.
ACM Press, 1977. (Cited on page 28.)

[Cousot 1977] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation of Fixpoints.
In Proceedings of the Fourth ACM Symposium on Principles of Programming Languages
(POPL’77), pages 238–252. ACM Press, 1977. (Cited on page 3.)



Bibliography 123

[Crockford ] Douglas Crockford. ADSafe. http://www.adsafe.org. (Not cited.)

[Crockford 2008] Douglas Crockford. Javascript: The good parts. O’Reilly, 2008. (Cited on
pages 20 and 51.)

[Davey 2002] Brian A. Davey and Hilary A. Priestley. Introduction to lattices and order (2.
ed.). Cambridge University Press, 2002. (Cited on pages 3 and 81.)

[Denning 1976] Dorothy E. Denning. A Lattice Model of Secure Information Flow. Commun.
ACM, vol. 19, no. 5, pages 236–243, 1976. (Cited on page 28.)

[Devriese 2010] Dominique Devriese and Frank Piessens. Noninterference through Secure Multi-
execution. In Proceedings of the 31st IEEE Symposium on Security and Privacy, SP’10,
pages 109–124. IEEE Computer Society, 2010. (Cited on pages 31 and 48.)

[Disney 2011] Tim Disney and Cormac Flanagan. Gradual Information Flow Typing. In
STOP’11, 2011. (Cited on page 73.)

[Djoko 2008] Simplice Djoko, Rémi Douence and Pascal Fradet. Specialized Aspect Languages
Preserving Classes of Properties. In Proceedings of the 6th IEEE International Con-
ference on Software Engineering and Formal Methods, pages 227–236. IEEE Computer
Society, 2008. (Cited on pages 84 and 85.)

[FBJS ] The FaceBook Team: FBJS. http://wiki.developers.facebook.com/index.php/FBJS.
(Not cited.)

[Feldthaus 2014] Asger Feldthaus and Anders Møller. Checking Correctness of TypeScript In-
terfaces for JavaScript Libraries. In Proceedings of the 29th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA, 2014. (Cited on page 73.)

[Fennell 2013] Luminous Fennell and Peter Thiemann. Gradual Security Typing with References.
In Proceedings of the 26th IEEE Computer Security Foundations Symposium, CSF’26,
pages 224–239. IEEE Computer Society, 2013. (Cited on page 73.)

[Flanagan 2011] David Flanagan. Javascript - the definitive guide. O’Reilly, 2011. (Cited on
page 10.)

[Fragoso Santos 2014] José Fragoso Santos. Online Materials - Inlining Compiler + Hybrid
Type System. http://www-sop.inria.fr/members/Jose.Santos/, 2014. (Cited on pages 32
and 49.)

[Gardner 2008] Philippa Gardner, Gareth Smith, Mark J. Wheelhouse and Uri Zarfaty. DOM:
Towards a Formal Specification. In Proceedings of the ACM SIGPLANWorkshop PLAN-
X on Programming Language Technologies for XML. ACM Press, 2008. (Cited on
page 113.)

[Gardner 2012] Philippa Gardner, Sergio Maffeis and Gareth Smith. Towards a program logic
for JavaScript. In Proceedings of the 40th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL’13, pages 31–44. ACM Press, 2012. (Cited
on page 118.)

[Goguen 1982] Joseph A. Goguen and José Meseguer. Security Policies and Security Models. In
Proceedings of the 3rd IEEE Symposium on Security and Privacy, SP’82, pages 11–20.
IEEE Computer Society, 1982. (Cited on pages 3, 28 and 73.)



124 Bibliography

[Grosskurth 2005] Alan Grosskurth and Michael W. Godfrey. A Reference Architecture for Web
Browsers. In Proceedings of the 21st International Conference on Software Maintenance,
ICSM ’05, pages 661–664. IEEE Computer Society, 2005. (Cited on pages 4, 89 and 113.)

[Guernic 2007] Gurvan Le Guernic. Confidentiality Enforcement Using Dynamic Information
Flow Analyses. PhD thesis, Kansas State University, 2007. (Cited on pages 47 and 72.)

[Guha 2010] Arjun Guha, Claudiu Saftoiu and Shriram Krishnamurthi. The Essence of
Javascript. In Proceedings of the 24th European Conference on Object-Oriented Pro-
gramming (ECOOP), Lecture Notes in Computer Science, pages 126–150. Springer, 2010.
(Cited on pages 20 and 21.)

[Guha 2012] Arjun Guha, Benjamin Lerner, Joe Gibbs Politz and Shriram Krishnamurthi. Web
API Verification: Results and Challenges. 2012. (Cited on pages 4 and 75.)

[Hedin 2011] Daniel Hedin and Andrei Sabelfeld. A Perspective on Information Flow Control.
Marktoberdorf, 2011. (Cited on pages 3 and 117.)

[Hedin 2012] Daniel Hedin and Andrei Sabelfeld. Information-Flow Security for a Core of
JavaScript. In Proceedings of the 25th IEEE Computer Security Foundations Sym-
posium, CSF’12, pages 3–18. IEEE Computer Society, 2012. (Cited on pages 25, 28, 29,
31, 33, 48 and 113.)

[Hedin 2014] Daniel Hedin, Arnar Birgisson, Luciano Bello and Andrei Sabelfeld. JSFlow:
Tracking Information Flow in JavaScript and its APIs. In Proceedings of the 29th Sym-
posium on Applied Computing, pages 1663–1671. ACM Press, 2014. (Cited on pages 4,
84, 113 and 117.)

[Hunt 2006] Sebastian Hunt and David Sands. On Flow-sensitive Security Types. In Proceed-
ings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’06, pages 79–90. ACM Press, 2006. (Cited on pages 3, 32 and 119.)

[Jang 2009] Dongseok Jang and Kwang-Moo Choe. Points-to Analysis for JavaScript. In Pro-
ceedings of the 24th ACM Symposium on Applied Computing, pages 1930–1937. ACM
Press, 2009. (Cited on page 20.)

[Jang 2010] Dongseok Jang, Ranjit Jhala, Sorin Lerner and Hovav Shacham. An Empirical Study
of Privacy-Violating Information Flows in JavaScript Web Applications. In Proceedings
of the 17th ACM Conference on Computer and Communications Security, pages 270–283.
ACM Press, 2010. (Cited on page 1.)

[Jensen 2009] Simon Holm Jensen, Anders Møller and Peter Thiemann. Type Analysis for
JavaScript. In Proceedings of the 16th International Static Analysis Symposium (SAS),
volume 5673 of Lecture Notes in Computer Science, pages 238–255. Springer, 2009. (Cited
on pages 20, 73 and 74.)

[Keil 2013] Matthias Keil and Peter Thiemann. Type-based dependency analysis for JavaScript.
In Proceedings of the 8th ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security, pages 47–58. ACM Press, 2013. (Cited on page 74.)

[Kiczales 1997] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier and John Irwin. Aspect-Oriented Program-
ming. In Proceedings of the 11th European Conference on Object-Oriented Programming
(ECOOP), pages 220–242, 1997. (Cited on page 84.)



Bibliography 125

[Li 2003] Peng Li, Yun Mao and S. Zdancewic. Information Integrity Policies. In Proceedings
Formal Aspects in Security & Trust (FAST), 2003. (Cited on page 3.)

[Louw 2012] Mike Ter Louw, Karthik Thotta Ganesh and V. N. Venkatakrishnan. AdJail: Prac-
tical Enforcement of Confidentiality and Integrity Policies on Web Advertisements. In
Proceedings of the 19th USENIX Security Symposium, pages 371–388. USENIX Associ-
ation, 2012. (Cited on page 2.)

[Luo 2012] Zhengqin Luo and Tamara Rezk. Mashic Compiler: Mashup Sandboxing based on
Inter-frame Communication. In 25th IEEE Computer Security Foundations Symposium,
pages 157–170. IEEE Computer Society, 2012. (Cited on pages 2 and 20.)

[Maffeis 2008] Sergio Maffeis, John C. Mitchell and Ankur Taly. An Operational Semantics for
JavaScript. In Proceedings of the 6th Asian Symposium on Programming Languages and
Systems, volume 5356 of Lecture Notes in Computer Science, pages 307–325. Springer,
2008. (Cited on pages 15, 20 and 21.)

[Maffeis 2009] Sergio Maffeis and Ankur Taly. Language-Based Isolation of Untrusted
JavaScript. In Proceedings of the 22nd IEEE Computer Security Foundations Sym-
posium, CSF’09, pages 77–91. IEEE Computer Society, 2009. (Cited on pages 4, 53, 54,
73, 74 and 117.)

[Magazinius 2010a] Jonas Magazinius, Aslan Askarov and Andrei Sabelfeld. A Lattice-based
Approach to Mashup Security. In Proceedings of the 5th ACM Symposium on Informa-
tion, Computer and Communications Security (ASIACCS ’10), pages 15–23. ACM Press,
2010. (Cited on page 2.)

[Magazinius 2010b] Jonas Magazinius, Phu H. Phung and David Sands. Safe Wrappers and
Sane Policies for Self Protecting JavaScript. In Nordic Conference in Secure IT Systems,
Lecture Notes in Computer Science, pages 239–255. Springer, 2010. (Cited on page 49.)

[Magazinius 2010c] Jonas Magazinius, Alejandro Russo and Andrei Sabelfeld. On-the-fly Inlin-
ing of Dynamic Security Monitors. In Proceedings of the 25th IFIP TC-11 International
Information Security Conference, volume 330 of IFIP Advances in Information and Com-
munication Technology, pages 173–186. Springer, 2010. (Cited on page 49.)

[Magazinius 2012] Jonas Magazinius, Alejandro Russo and Andrei Sabelfeld. On-the-fly Inlining
of Dynamic Security Monitors. Computers & Security, vol. 31, no. 7, pages 827–843, 2012.
(Cited on pages 31, 43 and 49.)

[Matthews 2009] Jacob Matthews and Robert Bruce Findler. Operational Semantics for Multi-
language Programs. ACM Trans. Program. Lang. Syst., vol. 31, no. 3, pages 12:1–12:44,
2009. (Cited on page 84.)

[Microsoft 2014] Microsoft. TypeScript language specification. Rapport technique, Microsoft,
2014. (Cited on page 73.)

[Moore 2011] Scott Moore and Stephen Chong. Static Analysis for Efficient Hybrid Information-
Flow Control. In Proceedings of the 24th IEEE Computer Security Foundations Sympo-
sium, CSF’24, pages 146–160. IEEE Computer Society, 2011. (Cited on page 72.)

[Phung 2009] Phu H. Phung, David Sands and Andrey Chudnov. Lightweight Self-Protecting
JavaScript. In Proceedings of the 2009 ACM Symposium on Information, Computer
and Communications Security (ASIACCS’09), pages 47–60. ACM Press, 2009. (Cited on
page 49.)



126 Bibliography

[Politz 2011] Joe Gibbs Politz, Spiridon Aristides Eliopoulos, Arjun Guha and Shriram Krishna-
murthi. ADsafety: Type-Based Verification of JavaScript Sandboxing. In Proceedings of
the 20th USENIX Security Symposium. USENIX Association, 2011. (Cited on pages 73
and 74.)

[Pottier 2002] François Pottier and Vincent Simonet. Information flow inference for ML. In
Proceedings of the 29th SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 319–330. ACM Press, 2002. (Cited on pages 3, 59 and 72.)

[Ramsey 2011] Norman Ramsey. Embedding an interpreted language using higher-order func-
tions and types. J. Funct. Program., vol. 21, no. 6, pages 585–615, 2011. (Cited on
page 84.)

[Richards 2010] Gregor Richards, Sylvain Lebresne, Brian Burg and Jan Vitek. An Analysis of
the Dynamic Behaviour of JavaScript Programs. In Proceedings of the 2010 ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI’10),
volume 45, pages 1–12. ACM Press, 2010. (Not cited.)

[Russo 2008] Alejandro Russo, Koen Claessen and John Hughes. A library for light-weight
information-flow security in haskell. In Proceedings of the 1st ACM SIGPLAN Sym-
posium on Haskell, pages 13–24. ACM Press, 2008. (Cited on page 48.)

[Russo 2009] Alejandro Russo, Andrei Sabelfeld and Andrey Chudnov. Tracking Information
Flow in Dynamic Tree Structures. In Proceedings 14th European Symposium on Research
in Computer Security, volume 5789 of Lecture Notes in Computer Science, pages 86–103.
Springer, 2009. (Cited on pages vi, 5, 6, 89, 90, 112, 113, 114 and 115.)

[Russo 2010] Alejandro Russo and Andrei Sabelfeld. Dynamic vs. Static Flow-Sensitive Security
Analysis. In Proceedings of the 23rd IEEE Computer Security Foundations Symposium,
CSF’10, pages 186–199. IEEE Computer Society, 2010. (Cited on pages 47, 48, 49 and 72.)

[Sabelfeld 2001] Andrei Sabelfeld and David Sands. A Per Model of Secure Information Flow
in Sequential Programs. Higher Order and Symbolic Computation, vol. 14, no. 1, pages
59–91, 2001. (Cited on page 118.)

[Sabelfeld 2003a] Andrei Sabelfeld and Andrew C. Myers. Language-Based Information-Flow
Security. IEEE Journal on Selected Areas in Communications, vol. 21, no. 1, pages 5–19,
2003. (Cited on pages 3, 4, 32, 48, 56 and 117.)

[Sabelfeld 2003b] Andrei Sabelfeld and Andrew C. Myers. A Model for Delimited Information
Release. In Proceedings of the 9th Asian Symposium on Programming Languages and
Systems, Lecture Notes in Computer Science, pages 220–237. Springer, 2003. (Cited on
page 2.)

[Shroff 2007] Paritosh Shroff, Scott F. Smith and Mark Thober. Dynamic Dependency Moni-
toring to Secure Information Flow. In Proceedings of the 20th IEEE Computer Security
Foundations Symposium, CSF’07, pages 203–217. IEEE Computer Society, 2007. (Cited
on pages 47 and 72.)

[Smith 2011] Gareth Smith. Local Reasoning about Web Programs. PhD thesis, Imperial College
London, 2011. (Cited on page 113.)

[Stefan 2011] Deian Stefan, Alejandro Russo, John C. Mitchell and David Mazières. Flexible
dynamic information flow control in Haskell. In Proceedings of the 4th ACM SIGPLAN
Symposium on Haskell, pages 95–106, 2011. (Cited on page 48.)



Bibliography 127

[Stefan 2014] Deian Stefan, Amit Levy, Alejandro Russo and David Mazières. Building secure
systems with LIO (demo). In Proceedings of the 2014 ACM SIGPLAN Symposium on
Haskell, pages 93–94, 2014. (Cited on page 48.)

[Taly 2011] Ankur Taly, Úlfar Erlingsson, John C. Mitchell, Mark S. Miller and Jasvir Nagra.
Automated Analysis of Security-Critical JavaScript APIs. In Proceedings of the 32nd
IEEE Symposium on Security and Privacy, pages 363–378. IEEE Computer Society,
2011. (Cited on pages 54, 83 and 84.)

[Thiemann 2005] Peter Thiemann. Towards a Type System for Analysing JavaScript Programs.
In Proceedings of the 14th European Symposium on Programming Languages and Sys-
tems, Lecture Notes in Computer Science, pages 408–422. Springer, 2005. (Cited on
pages 20, 56 and 73.)

[Venkatakrishnan 2006] Venkat N. Venkatakrishnan, Wei Xu, Daniel C. DuVarney and R. Sekar.
Provably Correct Runtime Enforcement of Non-interference Properties. In Proceedings
of 8th International Conference on Information and Communications Security, Lecture
Notes in Computer Science, pages 332–351. Springer, 2006. (Cited on pages 47 and 72.)

[Volpano 1996] Dennis M. Volpano, Cynthia E. Irvine and Geoffrey Smith. A Sound Type System
for Secure Flow Analysis. Journal of Computer Security, vol. 4, no. 2-3, pages 167–187,
1996. (Cited on pages 3, 28, 42, 72 and 117.)

[W3C Recommendation 2000] W3C Recommendation. DOM: Document Object Model (DOM)
Level 1 Specification (2nd Ed.). Rapport technique, W3C, 2000. (Cited on page 4.)

[W3C Recommendation 2005] W3C Recommendation. DOM: Document Object Model (DOM).
Rapport technique, W3C, 2005. (Cited on pages 4, 89, 91, 103, 113 and 114.)

[Yang 2013] Edward Yang, Deian Stefan, John Mitchell, David Mazières, Petr Marchenko and
Brad Karp. Toward Principled Browser Security. In 14th Workshop on Hot Topics in
Operating Systems. USENIX Association, 2013. (Cited on pages 2 and 3.)

[Zdancewic 2002] Stephan Zdancewic. Programming Languages for Information Security. PhD
thesis, Cornell University, Ithaca, New York, 2002. (Cited on pages 32, 37, 47 and 97.)

[Zdancewic 2004] Steve Zdancewic. Challenges for information-flow security. In Proceedings of
the 1st International Workshop on Programming Language Interference and Dependence,
2004. (Cited on page 117.)





Appendix A

Proofs of Chapter 4

A.1 Noninterference - Security Montior

The security monitor presented in Chapter was designed in such a way that the computed
reading effect of an expression is always higher than or equal to the level of the program counter.
Lemma A.1 formally states this property of the monitor.

Lemma A.1 (PC-Conservation). Given an expression e, a memory µ, a labelling Σ, a level
σpc, and a reference r such that: r, σpc ` 〈µ, e,Σ〉 ⇓IF 〈µ′, v,Σ′, σ〉 for some memory µ′, value
v, labelling Σ′, and security level σ; then it is always the case that σpc v σ.

Proof: The result follows by induction on the derivation of r, σpc ` 〈µ, e,Σ〉 ⇓IF 〈µ′, v,Σ′, σ〉. It
suffices to note that the rules [Value], [This], [Variable], [Property Deletion], and [Object
Literal] explicitly set the reading effect of the current expression to a level higher than or equal
to the level of the program counter. All the other rules set the reading effect of the current
expression to a level higher than or equal to the reading effect of one of its subexpressions.
Applying the induction hypothesis, the result immediately follows. �

A.1.1 Proving Confinement

In order to prove that security monitor is confined, one first needs to state for each type of oper-
ation that modifies the memory, the conditions under which that type of operation is confined.
In other words, the conditions under which that type of operation does not modify low memory.
We identify four types of operations that change the memory:

• Property Assignment. A property assignment changes the memory either by creating
a new property in an existing object or by updating the value of an existing property of an
existing object. Proposition A.1 states that a property update is confined if the value
level of the updated property is not observable, whereas a property creation is confined
if the existence level of the created property is not observable.

• Property Deletion. A property deletion changes the memory by deleting an existing
property in an existing object. Proposition A.2 states that a property deletion is confined
if the existence level of the deleted property is not observable.

• Object Creation. Proposition A.3 states that an object creation is confined if both the
the object level and the structure security level of the created object are not observable.

• Scope Allocation. Proposition A.4 states that the allocation of a scope object is not
observable provided that the level of the context in which the body of the function to be
executed is not observable.

Proposition A.1 (Confined Property Assignment). Given two memories µ and µ′, respectively
labelled by Σ and Σ′, a reference r, a property p, a value v, and three security levels σ, σ′, σ′′ ∈ L,
such that: (1) µ′ = µ[r · p 7→ v], (2) Σ′ = updt(Σ, (r, p), (σ′, σ′′)), and (3) p 6∈ dom(µ(r)) ⇒
σ′ u σ′′ u Σ.struct(r) 6v σ, and (4) p ∈ dom(µ(r)) ⇒ σ′′ u Σ.val(r · p) 6v σ; then, it follows that
µ,Σ ∼σ µ′,Σ′.



130 Appendix A. Proofs of Chapter 4

Proof: The result follows immediately from the definitions of low-equality and updt. �

Proposition A.2 (Confined Property Deletion). Given two memories µ and µ′, respectively
labelled by Σ and Σ′, a reference r, a property p, and a security level σ ∈ L, such that: (1)
µ′ = µ

[
r 7→ µ(r)|dom(µ(r))\p

]
, (2) Σ′ = contract(Σ, r, p), and (3) Σ.exist(r · p) 6v σ; then, it

follows that µ,Σ ∼σ µ′,Σ′.

Proof: The result follows immediately from the definitions of low-equality and contract. �

Proposition A.3 (Confined Object Creation). Given two memories µ and µ′, respectively
labelled by Σ and Σ′, a reference r 6∈ dom(µ), and three security levels σ, σo, σs ∈ L, such
that: (1) µ′ = µ [r 7→ ["_prot_" 7→ null]], (2) Σ′ = updt(Σ′′, (r, "_prot_"), (σo, σo)) where
Σ′′ = extend(Σ, r, σo, σs), and (3) σo u σs 6v σ; then, it follows that µ,Σ ∼σ µ′,Σ′.

Proof: The result follows immediately from the definitions of low-equality. �

Proposition A.4 (Confined Scope Allocation). Given two memories µ and µ′, respectively
labelled by Σ and Σ′, three references rf , rthis, rscope ∈ Ref, a value varg, and three security levels
σ, σarg, σpc ∈ L, such that: (1) 〈µ′, e, rscope,Σ′〉 = NewScope(µ, rf , varg, rthis,Σ, σpc, σarg) and
(2) σpc u σarg 6v σ; then, it follows that µ,Σ ∼σ µ′,Σ′.

Proof: The result follows immediately from the definitions of low-equality and NewScopelab.
�

Finally, below, we present the proof of the main confinement theorem.

Lemma 4.1 - Confinement

Proof: Hypothesis of the Lemma:

• σpc, r ` 〈µ, e,Σ〉 ⇓IF 〈µ′, v,Σ′, σ〉 (hyp.1)

• σpc 6v σ′ (hyp.2)

The claim of the lemma is that: µ,Σ ∼σ′ µ′,Σ′. The proof proceeds by induction on the
derivation of (hyp.1). We distinguish two types of base cases:

• Those that do neither change the memory nor the labeling: [Value], [This], and [Vari-
able]. Since in all of these cases µ′ = µ and Σ = Σ′, it immediately follows that:
µ,Σ ∼σ′ µ′,Σ′.

• Those that change the heap by adding a new object: [Function Literal] and [Object
Literal].

Analogously, we distinguish three types of inductive cases:

1. Those that do not directly change the memory: [Binary Operation], [Property Look-up],
[Membership Testing], [Sequence], and [Conditional].

2. Those that directly change the memory by allocating a new object: [Function Call] and
[Method Call].

3. Those that directly change the memory either by creating a new property, updating the
value of an existing property, or by deleting an existing property: [Variable Assignment],
[Property Assignment], and [Property Deletion].



A.1. Noninterference - Security Montior 131

We prove one case of each type (the others are analogous).

[Function Literal] Suppose that e = function(x){var y1, · · · , yn; e} (hyp.3). We conclude that
there is a reference rf and two labellings Σ0 and Σ1 such that:

• µ′ = µ [r′ 7→ ["@fscope" 7→ r, "@code" 7→ λx. {var y1, · · · , yn; e}]] (1) - (hyp.1) + (hyp.3)

• Σ0 = extend(Σ, rf , σpc, σpc), Σ1 = updt(Σ0, (rf , "@fscope"), (σpc, σpc)), and Σ′ =
updt(Σ1, (rf , "@code"), (σpc, σpc)), (2) - (hyp.1) + hyp3

• µ,Σ ∼σ′ µ′,Σ′ (3) - (hyp.2) + (1) + (2)

[Property Assignment] Suppose that e = e0[e1] = e2 (hyp.3). We conclude that there are three
memories µ0, µ1, and µ2, three labelings Σ0, Σ1, and Σ2, a reference r0, a string m1 ∈ Str, and
three security levels σ0, σ1, and σ2 such that:

• r, σpc ` 〈µ, e0,Σ〉 ⇓IF 〈µ0, r0,Σ0, σ0〉 (1) - (hyp.1) + (hyp.3)

• r, σpc ` 〈µ0, e1,Σ0〉 ⇓IF 〈µ1,m1,Σ1, σ1〉 (2) - (hyp.1) + (hyp.3)

• r, σpc ` 〈µ1, e2,Σ1〉 ⇓IF 〈µ2, v2,Σ2, σ2〉 (3) - (hyp.1) + (hyp.3)

• µ,Σ ∼σ′ µ0,Σ0 (4) - (hyp.2) + (1) + ih

• µ0,Σ0 ∼σ′ µ1,Σ1 (5) - (hyp.2) + (2) + ih

• µ1,Σ1 ∼σ′ µ2,Σ2 (6) - (hyp.2) + (3) + ih

• µ,Σ ∼σ′ µ2,Σ2 (7) - (4) - (6) + Transitivitiy of ∼σ′

• σpc v σ0 u σ1 u σ2 (8) - (1) - (3) + PC-Conservation (Lemma A.1)

• σ0 u σ1 u σ2 6v σ′ (9) - (hyp.2) + (8)

• µ′ = µ2[r0 ·m1 7→ v2] (10) - (hyp.1) + (hyp.3)

• Σ′ = updt(Σ3, (v0, v1), (σ0 t σ1, σ0 t σ1 t σ2)) (11) - (hyp.1) + (hyp.3)

• Case m1 ∈ µ2(r0) ((hyp.4)):

– σ0 t σ1 v Σ2.val(r0 ·m1) (12.1) - (hyp.1) + (hyp.3) + (hyp.4)

– Σ2.val(r0 ·m1) 6v σ′ (12.2) - (9) + (12.1)

– µ2,Σ2 ∼σ′ µ′,Σ′

(12.3) - (10) - (11) + (12.2) + Confined Property Assignment (Proposition A.1)

– µ,Γ,Σ ∼σ′ µ′,Σ′ (12.4) - (7) + (12.3) + Transitivity of ∼σ′

• Case m1 6∈ µ2(r0) ((hyp.4)):

– σ0 t σ1 v Σ2.struct(r0) (13.1) - (hyp.1) + (hyp.3) + (hyp.4)

– Σ2.struct(r0) 6v σ′ (13.2) - (9) + (13.1)

– µ2,Σ2 ∼σ′ µ′,Σ′

(13.3) - (10) - (11) + (13.2) + Confined Property Assignment (Proposition A.1)

– µ,Σ ∼σ′ µ′,Σ′ (13.4) - (7) + (13.3) + Transitivity of ∼σ′

• µ,Σ ∼σ′ µ′,Σ′ (14) - (12) + (13)

[Function Call] Suppose that e = e0(e1)i (hyp.3). We conclude that there are three memories
µ0, µ1, and µ̂, three labellings Σ0, Σ1, and Σ̂, a reference r0, a value v1, four security levels σ0,
σ1, σ2, and σ̂, and an expression ê such that:

• r, σpc ` 〈µ, e0,Σ〉 ⇓IF 〈µ0, r0,Σ0, σ0〉 (1) - (hyp.1) + (hyp.3)

• r, σpc ` 〈µ0, e1,Σ0〉 ⇓IF 〈µ1, v1,Σ1, σ1〉 (2) - (hyp.1) + (hyp.3)

• 〈r̂, µ̂, ê, Σ̂〉 = NewScope(µ1, r0, v1,#glob,Σ1, σ0, σ1) (3) - (hyp.1) + (hyp.3)



132 Appendix A. Proofs of Chapter 4

• r̂, σ0 ` 〈µ̂, ê, Σ̂〉 ⇓IF 〈µ′, v,Σ′, σ〉 (4) - (hyp.1) + (hyp.3)

• µ,Σ ∼σ′ µ0,Σ0 (5) - (hyp.2) + (1) + ih

• µ0,Σ0 ∼σ′ µ1,Σ1 (6) - (hyp.2) + (2) + ih

• µ,Σ ∼σ′ µ1,Σ1 (7) - (5) + (6) + Transitivitiy of ∼σ′

• σpc v σ0 u σ1 (8) - (1) + (2) + PC-Level-Conservation Lemma

• σ0 u σ1 6v σ′ (9) - (hyp.2) + (8)

• µ1,Σ1 ∼σ′ µ̂, Σ̂ (10) - (3) + (9) + Confined Scope Allocation (Proposition A.4)

• µ̂, Σ̂ ∼σ′ µ′,Σ′ (11) - (4) + (9) + ih

• µ,Σ ∼σ′ µ′,Σ′ (13) - (7) + (10) + (11) + Transitivity of ∼σ′

�

A.1.2 Proving Noninterference

In order to prove noninterference, it is useful to establish some intermediate results to reason
about the conditions under which observable operations that change the memory preserve the
low-equality relation. To this end, we start by establishing two indistinguishability results con-
cerning the scope-chain and the prototype-chain look-up procedures. Concretely, Lemma A.2
states that the results of applying the scope-chain look-up procedure in two low-equal memories
in visible scopes are the same. Lemma A.3 states that the results of applying the prototype-
chain look-up procedure in two low-equal memories are low-equal. That is, either both results
are observable and coincide or they are both unobservable.

Lemma A.2 (Scope-Chain Indistinguishability). Given two memories µ0 and µ1 respectively
labelled by Σ0 and Σ1, a reference r, a security level σ, and a string m ∈ Str such that: (1)
µ0,Σ0 ∼σ µ1,Σ1, (2) r0 = Scope(µ0, r,m), (3) r1 = Scope(µ1, r,m), and (4) Σ0.obj(r) t
Σ1.obj(r) v σ; it follows that: r0 = r1.

Proof: We restate the hypotheses: µ0,Σ0 ∼σ µ1,Σ1 (hyp.1), r0 = Scope(µ0, r,m) (hyp.2),
r1 = Scope(µ1, r,m) (hyp.3), Σ0.struct(r) t Σ1..struct(r) v σ (hyp.4). We proceed by induction
on the derivation of r0 = Scope(µ0, r, x). The base cases are [Null] and [Base], whereas the
inductive case is [Look-up].

[Null] Suppose that r = null (hyp.5). We conclude that:

• r0 = r1 = null (1) - (hyp.2) + (hyp.3) + (hyp.6)

[Base] Suppose that m ∈ dom(µ0(r0)) (hyp.5). We conclude that:

• r0 = r (1) - (hyp.3) + (hyp.5)

• dom(µ0(r)) = dom(µ1(r)) (2) - (hyp.1) + (hyp.4)

• m ∈ dom(µ1(r)) (3) - (hyp.5) + (2)

• r1 = r (4) - (hyp.3) + (3)

• r0 = r (5) - (hyp.2) + (1) + (4)

[Look-up] Suppose that m 6∈ dom(µ0(r)) (hyp.5) and r 6= null (hyp.6). We conclude that:

• r0 = Scope(µ0, r
′
0,m), where: r′0 = µ0(r · "@scope") (1) - (hyp.2) + (hyp.5) + (hyp.6)

• dom(µ0(r)) = dom(µ1(r)) (2) - (hyp.1) + (hyp.4)



A.1. Noninterference - Security Montior 133

• m 6∈ dom(µ1(r)) (3) - (hyp.5) + (2)

• r1 = Scope(µ1, r
′
1,m), where: r′1 = µ1(r1 · "@scope") (4) - (hyp.4) + (3)

• Σi.struct(r′i) v Σi.struct(r) = Σi.val(ri · "@scope") for i = 0, 1
(5) - (1) + (4) + Well-Labelled Scope-Chains

• Σi.val(ri · "@scope") v σ, for i = 0, 1 (6) - (hyp.4) + (5)

• r′0 = r′1 (7) - (hyp.1) + (6)

• Σi.struct(r′i) v σ, for i = 0, 1 (8) - (hyp.4) + (5)

• r0 = r′1 (9) - (hyp.1) + (1) + (4) + (7) + (8) + ih

�

Lemma A.3 (Prototype-Chain Indistinguishability). Given two memories µ0 and µ1 respec-
tively labelled by Σ0 and Σ1, a reference r, a security level σ, and a string m ∈ Str such that:
(1) µ0,Σ0 ∼σ µ1,Σ1, (2) 〈r0, σ0〉 = Proto(µ0, r,m,Σ0), and (3) 〈r1, σ1〉 = Proto(µ1, r,m,Σ1); it
holds that: r0, σ0 ∼σ r1, σ1.

Proof: We restate the hypotheses: µ0,Σ0 ∼σ µ1,Σ1 (hyp.1), 〈r0, σ0〉 = Proto(µ0, r,m,Σ0)
(hyp.2), and 〈r1, σ1〉 = Proto(µ1, r,m,Σ1) (hyp.3). To prove the result one has to prove that
the implication:

σi v σ ⇒ (r0 = r1 ∧ σ0 = σ1)

holds for i = 0, 1. We prove the result for i = 0. The proof for i = 1 is symmetric. We proceed
by induction on the derivation of (hyp.2) and we assume that σ0 v σ (hyp.4). The base cases
are [Null] and [Base], whereas the inductive case is [Look-up].

[Null] Suppose that r = null (hyp.5). We conclude that:

• r0 = null and σ0 = ⊥ (1) - (hyp.2) + (hyp.5)

• r1 = null and σ1 = ⊥ (2) - (hyp.3) + + (hyp.5)

• r0 = r1 and σ0 = σ1 (3) - (1) + (2)

[Base] Suppose that m ∈ dom(µ0(r)) (hyp.5). We conclude that:

• r0 = r and σ0 = Σ0.exist(r ·m) (1) - (hyp.3) + (hyp.6)

• Σ0.exist(r ·m) v σ (2) - (hyp.4) + (1)

• m ∈ dom(µ1(r)) and Σ0(r ·m) = Σ1(r ·m) v σ (3) - (hyp.1) + (2)

• r1 = r and σ1 = Σ1(r ·m) = σ0 (4) - (hyp.3) + (3)

• r0 = r1 and σ0 = σ1 v σ (5) - (1) + (4)

[Look-up] Suppose that m 6∈ dom(µ0(r)) (hyp.5) and r 6= null (hyp.6). We conclude that there
is a security level σ′0 such that:

• 〈r0, σ
′
0〉 = Proto(µ0, r

′
0,m,Σ0) and σ0 = Σ0.val(r · "_prot_") t Σ0.struct(r) t σ′0

where r′0 = µ0(r0 · "_prot_") (1) - (hyp.2) + (hyp.5) + (hyp.6)

• Σ0.struct(r) v σ (2) - (hyp.4) + (1)

• dom(µ0(r)) = dom(µ1(r)) and Σ0.struct(r) = Σ1.struct(r) v σ (3) - (hyp.1) + (2)

• m 6∈ dom(µ1(r)) (4) - (hyp.5) + (3)

• 〈r1, σ
′
1〉 = Proto(µ1, r

′
1,m,Σ1) and σ1 = Σ1.val(r · "_prot_") t Σ1.struct(r) t σ′1

where r′1 = µ1(r1 · "_prot_") (5) - (hyp.3) + (hyp.6) + (4)



134 Appendix A. Proofs of Chapter 4

• Σ0.val(r · "_prot_") v σ (6) - (hyp.4) + (1)

• r′0 = r′1 and Σ0.val(r · "_prot_") = Σ1.val(r · "_prot_") v σ (7) - (hyp.1) + (1) + (5) + (6)

• σ′0 v σ ⇒ (r0 = r1 ∧ σ′0 = σ′1 v σ) (8) - (hyp.1) + (1) + (5) + (7) + ih

• σ′0 v σ (9) - (hyp.4) + (1)

• σ′0 = σ′1 v σ and r0 = r1 (10) - (8) + (9)

• σ1 = σ0 v σ (11) - (1) + (3) + (5) + (7) + (10)

�

In order to prove noninterference, it is useful to state for each type of operation that modifies
the memory, the conditions under which, when performed in low-equal memories in observable
contexts, they produce two low-equal memories. As we did for confinement, we consider each
type of operation that modifies the memory individually.

• Property Assignment. Proposition A.5 states that if one assigns two low-equal values
to the same property of two objects pointed to by the same reference in two low-equal
memories, the resulting memories are still low-equal.

• Property Deletion. Proposition A.6 states that if one deletes the same property in
two objects pointed to by the same reference in two low-equal memories, the resulting
memories are still low-equal.

• Object Creation. Proposition A.7 states that the allocation of a new empty object in
the same new reference in two low-equal memories yields two low-equal memories.

• Scope Allocation. Proposition A.8 states that the allocation of a new scope object in
the same new reference in two-equal memories yields two low-equal memories.

Proposition A.5 (Noninterferent Property Assignment). Given four memories µ0, µ′0, µ1, and
µ′1, respectively labelled by Σ0, Σ′0, Σ1, and Σ′1, a reference r, a property p, two values v0 and
v1, and four security levels σ, σ′, σ0, σ1 ∈ L, such that:

• µ0,Σ0 ∼σ µ1,Σ1,

• µ′0 = µ0[r · p 7→ v0] and µ′1 = µ1[r · p 7→ v1],

• Σ′0 = updt(Σ0, (r, p), (σ
′, σ0)) and Σ′1 = updt(Σ1, (r, p), (σ

′, σ1)),

• v0, σ0 ∼σ v1, σ1;

then, it follows that µ′0,Σ
′
0 ∼σ µ′1,Σ′1.

Proof: The result follows immediately from the definitions of low-equality and updt. �

Proposition A.6 (Noninterferent Property Deletion). Given four memories µ0, µ′0, µ1, and
µ′1, respectively labelled by Σ0, Σ′0, Σ1, and Σ′1, a reference r, a property p, and a security level
σ, such that:

• µ0,Σ0 ∼σ µ1,Σ1,

• µ′0 = µ0

[
r 7→ µ0(r)|dom(µ0(r))\p

]
and µ′1 = µ1

[
r 7→ µ1(r)|dom(µ1(r))\p

]
,

• Σ′0 = contract(Σ0, r, p) and Σ′1 = contract(Σ1, r, p);



A.1. Noninterference - Security Montior 135

then, it follows that µ′0,Σ
′
0 ∼σ µ′1,Σ′1.

Proof: The result follows immediately from the definitions of low-equality and contract. �

Proposition A.7 (Noninterferent Object Creation). Given four memories µ0, µ′0, µ1, and µ′1,
respectively labelled by Σ0, Σ′0, Σ1, and Σ′1, and three security levels σ, σo, σs ∈ L, such that:

• r 6∈ dom(µ0) ∪ dom(µ1),

• µ0,Σ0 ∼σ µ1,Σ1,

• µ′0 = µ0 [r 7→ ["_prot_" 7→ null]] and µ′1 = µ1 [r 7→ ["_prot_" 7→ null]],

• Σ′0 = updt(Σ′′0, (r, "_prot_"), (σo, σo)) and Σ′1 = updt(Σ′′1, (r, "_prot_"), (σo, σo)),

where Σ′′0 = extend(Σ0, r, σo, σs) and Σ′′1 = extend(Σ1, r, σo, σs); then, it follows that µ′0,Σ
′
0 ∼σ

µ′1,Σ
′
1.

Proof: The result follows immediately from the definitions of low-equality. �

Proposition A.8 (Noninterferent Scope Allocation). Given four memories µ0, µ′0, µ1, and µ′1,
respectively labelled by Σ0, Σ′0, Σ1, and Σ′1, three references rf , rthis, rscope ∈ Ref, two values
v0
arg and v1

arg, and four security levels σ, σ0
arg, σ

1
arg, σpc ∈ L, such that:

• σpc v σ,

• v0
arg, σ

0
arg ∼σ v1

arg, σ
1
arg,

• 〈µ′0, e0, r
0
scope,Σ

′
0〉 = NewScope(µ0, rf , v

0
arg, rthis,Σ0, σpc, σ

0
arg),

• 〈µ′1, e1, r
1
scope,Σ

′
1〉 = NewScope(µ1, rf , v

1
arg, rthis,Σ1, σpc, σ

1
arg)

then, it holds that µ′0,Σ
′
0 ∼σ µ′1,Σ′1, r0

scope = r1
scope, and e0 = e1.

Proof: The result follows immediately from the definitions of low-equality and NewScopelab.
�

The proof of the Noninterference Theorem requires the

Definition A.1 (Well-labelled (Function Objects)). Given a memory µ labelled by Σ, the func-
tion objects in µ are said to be well-labelled by Σ if for every function object of in the range of
µ pointed to by a reference rf , it holds that:

∀rs∈dom(µ) µ(rs ·m) = rf ⇒
{

Σ.exist(rf · "@code") t Σ.val(rf · "@code") v Σ.val(rs ·m)
Σ.exist(rf · "@fscope") t Σ.val(rf · "@fscope") v Σ.val(rs ·m)

Lemma A.4 (Well-labelled Memory). Given a memory µ labelled by Σ, a reference r, an
expression e, and two security levels σpc and σ, such that:

• the function objects in µ are well-labelled by Σ (hyp.1),

• r, σpc ` 〈µ, e,Σ〉 ⇓IF 〈µf , vf ,Σf , σf 〉 (hyp.2),

• Σ.struct(r) v σpc (hyp.3)

It holds that:



136 Appendix A. Proofs of Chapter 4

• the function objects in µf are well-labelled by Σf and

• Σf .struct(r) v σpc

Proof: The proof proceeds by induction on the derivation of (hyp.2). �

Finally, below, we present the proof of the main noninterference theorem.

Theorem 4.2 - Monitor Noninterference

Proof: We restate the hypotheses of the theorem:

• µ,Σ ∼σ µ′,Σ′ (hyp.1),

• r, σpc ` 〈µ, e,Σ〉 ⇓IF 〈µf , vf ,Σf , σf 〉 (hyp.2),

• r, σpc ` 〈µ′, e,Σ′〉 ⇓IF 〈µ′f , v′f ,Σ′f , σ′f 〉 (hyp.3).

If σpc 6v σ, we apply the Confinement Lemma (Lemma 4.1) to (hyp.2) and (hyp.3) and
conclude that µ,Σ ∼σ µf ,Σf and µ′,Σ′ ∼σ µ′f ,Σ′f . Using the transitivity of ∼σ, we conclude
that µ′,Σ′ ∼σ µ′f ,Σ′f . Applying the PC-Conservation Lemma (Lemma A.1), we conclude that
σpc v σf u σ′f . Since we are assuming that σpc 6v σ, we conclude that both vf and v′f are not
observable and the result follows.

In the following, we assume σpc v σ (hyp.4). We proceed by induction on the depth of
the derivation tree of (hyp.2). With respect to the second claim of the theorem, in every case,
we only prove σf v σ ⇒ vf = v′f ∧ σf = σ′f v σ. The proof of the symmetric implication
σ′f v σ ⇒ vf = v′f ∧ σf = σ′f v σ is always done in the exact same way.

[Value] Suppose that e = v (hyp.5). We conclude that:

• r, σpc ` 〈µ, v,Σ〉 ⇓IF 〈µ, v,Σ, σpc〉 (1) - (hyp.5)

• r, σpc ` 〈µ′, v,Σ′〉 ⇓IF 〈µ′, v,Σ′, σpc〉 (2) - (hyp.5)

• µf = µ, Σf = Σ, vf = v, and σf = σpc (3) - (hyp.2) + (1)

• µ′f = µ′, Σ′f = Σ′, v′f = v′, and σ′f = σpc (4) - (hyp.3) + (2)

• µf ,Σf ∼σ µ′f ,Σ′f (5) - (hyp.1) + (3) + (4)

• vf , σf ∼σ v′f , σ′f (6) - (3) + (4)

[This] Suppose that e = this (hyp.5). We conclude that:

• r, σpc ` 〈µ, this,Σ〉 ⇓IF 〈µ, vf ,Σ, σf 〉, vf = µ(r · "@this"), and σf = Σ.val(r · "@this") t σpc
(1) - (hyp.2) + (hyp.5)

• r′, σpc ` 〈µ′, this,Σ′〉 ⇓IF 〈µ′, v′f ,Σ′, σ′f 〉, v′f = µ′(r′ · "@this"), and σ′f = Σ′.val(r · "@this") t σpc
(2) - (hyp.3) + (hyp.5)

• µf = µ, Σf = Σ, µ′f = µ′, and Σ′f = Σ′ (3) - (hyp.2) + (hyp.3) + (1) + (2)

• µf ,Σf ∼σ µ′f ,Σ′f (4) - (hyp.1) + (3)

• Σ.val(r · "@this") v σ ⇒ (vf = v′f ∧ Σ.val(r · "@this") = Σ′.val(r · "@this") v σ)
(5) - (hyp.1) + (1) + (2)

• σf v σ ⇒ Σ.val(r · "@this") v σ (6) - (1)

• Σ.val(r · "@this") = Σ′.val(r · "@this")⇒ σf = σ′f v σ (7) - (hyp.4) + (1) + (2)

• vf , σf ∼σ v′f , σ′f (8) - (5) - (7)



A.1. Noninterference - Security Montior 137

[Binary Operation] Suppose that e = e0 op e1 (hyp.5). We conclude that there are two
memories µ0 and µ′0, two labellings Σ0 and Σ′0, four values v0, v1, v′0, and v′1, and four security
levels σ0, σ1, σ′0, and σ′1 such that:

• r, σpc ` 〈µ, e0,Σ〉 ⇓IF 〈µ0, v0,Σ0, σ0〉, r, σpc ` 〈µ0, e1,Σ0〉 ⇓IF 〈µf , v1,Σf , σ1〉, and vf = v0 op v1,
and σf = σ0 t σ1 (1) - (hyp.2) + (hyp.5)

• r, σpc ` 〈µ′, e0,Σ
′〉 ⇓IF 〈µ′0, v′0,Σ′0, σ′0〉, r, σpc ` 〈µ′0, e1,Σ

′
0〉 ⇓IF 〈µ′f , v′1,Σ′f , σ′1〉, v′f = v′0 op v′1, and

σ′f = σ′0 t σ′1 (2) - (hyp.3) + (hyp.5)

• µ0,Σ0 ∼σ µ′0,Σ′0 and v0, σ0 ∼σ v′0, σ′0 (3) - (hyp.1) + (1) + (2) + ih

• µf ,Σf ∼σ µ′f ,Σ′f and v1, σ1 ∼σ v′1, σ′1 (4) - (1) - (3) + ih

• vf , σf ∼σ v′f , σ′f (5) - (1)-(4)

[Variable] Suppose that e = x (hyp.5). Letting mx = string(x), we conclude that there are two
references rx and r′x such that:

• µf = µ, Σf = Σ, rx = Scope(µ, r, x), vf = µ(rx ·mx), and σf = Σ.val(rx ·mx) t σpc
(1) - (hyp.2) + (hyp.5)

• µ′f = µ′, Σ′f = Σ′, r′x = Scope(µ′, r, x), v′f = µ′(r′x ·mx), σf = Σ′.val(r′x ·mx) t σpc
(2) - (hyp.3) + (hyp.5)

• µf ,Σf ∼σ µ′f ,Σ′f (3) - (hyp.1) + (1) + (2)

• Σ.struct(r) t Σ′.struct(r) v σpc (4) - (hyp.2) + (hyp.3) + Well-Labelled Memory (Lemma A.4)

• Σ.struct(r) t Σ′.struct(r) v σ (5) - (hyp.4) + (4)

• rx = r′x (6) - (hyp.1) + (1) + (2) + (5) + Scope-Chain Indistinguishability (Lemma A.2)

• µ(rx ·mx),Σ.val(rx ·mx) ∼σ µ′(rx ·mx),Σ′.val(rx ·mx) (7) - (hyp.1) + (1) + (2) + (6)

• vf , σf ∼σ v′f , σ′f (8) - (hyp.4) + (1) + (2) + (7)

• µf ,Σf ∼σ µ′f ,Σ′f (9) - (hyp.1) + (1) + (2)

[Variable Assignment] Suppose that e = x = e (hyp.5). Letting mx = string(x), we conclude
that there are two memories µ0 and µ′0, two labellings Σ0 and Σ′0, and two references rx and r′x,
such that:

• r, σpc ` 〈µ, e,Σ〉 ⇓IF 〈µ0, vf ,Σ0, σf 〉, rx = Scope(µ0, r, x), µf = µ0[rx · x 7→ vf ], and Σf =
updt(Σ0, (rx, x), (Σ0.exist(rx · x), σf )) (1) - (hyp.2) + (hyp.5)

• r, σpc ` 〈µ′, e,Σ′〉 ⇓IF 〈µ′0, v′f ,Σ0, σf 〉, rx = Scope(µ0, r, x), µf = µ0[rx · x 7→ vf ], and Σf =
updt(Σ0, (rx, x), (Σ0.exist(rx · x), σf )) (2) - (hyp.3) + (hyp.5)

• µ0,Σ0 ∼σ µ′0,Σ′0 and vf , σf ∼σ v′f , σ′f (3) - (hyp.1) + (1) + (2) + ih

• Σ0.struct(r) t Σ′0.struct(r) v σpc (4) - (1) + (2) + Well-Labelled Memory (Lemma A.4)

• rx = r′x (5) - (hyp.1) + (1) + (2) + (4) + Scope-Chain Indistinguishability (Lemma A.2)

• µf ,Σf ∼σ µ′f ,Σ′f (6) - (1) - (3) + (5) + Noninterferent Property Assignment (Proposition A.5)

[Property Look-up] Suppose that e = e0[e1] (hyp.5). We conclude that there are two interme-
diate memories µ0 and µ′0, two labellings Σ0 and Σ′0, four references r0, r′0, r̂, and r̂′, two strings
m1 and m′1, and six security levels σ0, σ1, σ̂, σ′0, σ′1, and σ̂′ such that:

• r, σpc ` 〈µ, e0,Σ〉 ⇓IF 〈µ0, r0,Σ0, σ0〉, r, σpc ` 〈µ0, e1,Σ0〉 ⇓IF 〈µf ,m1,Σf , σ1〉, 〈r̂, σ̂〉 =
Proto(µf , r0,m1,Σ1), r̂ = null ⇒ vf = undefined ∧ σf = σ0 t σ1 t σ̂, and r̂ 6= null ⇒ vf =
µf (r̂ ·m1) ∧ σf = σ0 t σ1 t σ̂ t Σ.val(r′ ·m1) (1) - (hyp.2) + (hyp.5)

• r, σpc ` 〈µ′, e0,Σ
′〉 ⇓IF 〈µ′0, r′0,Σ′0, σ′0〉, r, σpc ` 〈µ′0, e1,Σ

′
0〉 ⇓IF 〈µ′f ,m′1,Σ′f , σ′1〉, 〈r̂′, σ̂′〉 =

Proto(µ′f , r
′
0,m

′
1,Σ

′
1), r̂′ = null ⇒ v′f = undefined ∧ σ′f = σ′0 t σ′1 t σ̂′, and r̂′ 6= null ⇒ v′f =

µ′f (r̂′ ·m′1) ∧ σ′f = σ′0 t σ′1 t σ̂′ t Σ′.val(r̂′ ·m′1) (2) - (hyp.2) + (hyp.5)



138 Appendix A. Proofs of Chapter 4

• µ0,Σ0 ∼σ µ′0,Σ′0 and r0, σ0 ∼σ r′0, σ′0 (3) - (hyp.1) + (1) + (2) + ih

• µf ,Σf ∼σ µ′f ,Σ′f and m1, σ1 ∼σ m′1, σ′1 (4) - (1) - (3) + ih

Supoose that σf v σ (hyp.6), we conclude that:

• r0 = r′0, m1 = m′1, σ0 = σ′0 v σ, and σ1 = σ′1 v σ (5) - (hyp.6) + (1)-(4)

• σ̂ v σ (6) - (hyp.6) + (1)

• r̂ = r̂′ and σ̂ = σ̂′ v σ
(7) - (1) + (2) + (4)-(6) + Prototype-Chain Indistinguishability (Lemma A.3)

• Suppose: r̂ 6= null (hyp.7):

– r̂′ 6= null (8.1) - (hyp.7) + (7)
– vf = µf (r̂ ·m1) and σf = σ0 t σ1 t σ̂ t Σ.val(r′ ·m1) (8.2) - (hyp.7) + (1)
– v′f = µ′f (r̂′ ·m′1) and σ′f = σ′0 t σ′1 t σ̂′ t Σ′.val(r̂′ ·m′1) (8.3) - (2) + (8.1)
– Σ.val(r̂ ·m1) v σ (8.4) - (hyp.6) + (8.2)
– µf (r̂ ·m1) = µ′f (r̂′ ·m′1) and Σ.val(r′ ·m1) = Σ′.val(r̂′ ·m′1) v σ (8.5) - (4) + (5) + (8.4)
– vf = v′f and σf = σ′f v σ (8.6) - (5) + (7) + (8.2) + (8.3) + (8.5)

• Suppose: r̂ = null (hyp.7):

– r̂′ = null (9.1) - (hyp.7) + (7)
– vf = undefined and σf = σ0 t σ1 t σ̂ (9.2) - (hyp.7) + (1)
– v′f = undefined and σ′f = σ′0 t σ′1 t σ̂′ (9.3) - (2) + (9.1)
– vf = v′f and σf = σ′f v σ (9.4) - (5) + (7) + (9.2) + (9.3)

[Membership Testing] This case is similar to the previous case. Therefore, the proof is omitted.

[Property Assignment] Suppose that e = e0[e1] = e2 (hyp.5). We conclude that there are six
intermediate memories µ0, µ1, µ2, µ′0, µ′1, and µ′2, six intermediate labellings Σ0, Σ1, Σ2, Σ′0,
Σ′1, Σ′2, two references r0 and r′0, two strings m1 and m′1, and four security levels σ0, σ1, σ′0, and
σ′1, such that:

• r, σpc ` 〈µ, e0,Σ〉 ⇓IF 〈µ0, r0,Σ0, σ0〉, r, σpc ` 〈µ0, e1,Σ0〉 ⇓IF 〈µ1,m1,Σ1, σ1〉, r, σpc `
〈µ1, e2,Σ1〉 ⇓IF 〈µ2, vf ,Σ2, σf 〉, µf = µ2[r0 ·m1 7→ vf ], and Σf = updt(Σ2, (r0,m1), (σ0 t σ1, σ0 t
σ1 t σf )) (1) - (hyp.2) + (hyp.5)

• r, σpc ` 〈µ′, e0,Σ
′〉 ⇓IF 〈µ′0, r′0,Σ′0, σ′0〉, r, σpc ` 〈µ′0, e1,Σ

′
0〉 ⇓IF 〈µ′1,m′1,Σ′1, σ′1〉, r, σpc `

〈µ′1, e2,Σ
′
1〉 ⇓IF 〈µ′2, v′f ,Σ′2, σ′f 〉, µ′f = µ′2[r′0 ·m′1 7→ v′f ], and Σ′f = updt(Σ′2, (r

′
0,m

′
1), (σ′0 t σ′1, σ′0 t

σ′1 t σ′f )) (2) - (hyp.3) + (hyp.5)

• µ0,Σ0 ∼σ µ′0,Σ′0 and r0, σ0 ∼σ r′0, σ′0 (3) - (hyp.1) + (1) + (2) + ih

• µ1,Σ1 ∼σ µ′1,Σ′1 and m1, σ1 ∼σ m′1, σ′1 (4) - (1) - (3) + ih

• µ2,Σ2 ∼σ µ′2,Σ′2 and vf , σf ∼σ v′f , σ′f (5) - (1) + (2) + (4) + ih

• Suppose σ0 t σ1 v σ (hyp.6):

– r0 = r′0, m1 = m′1, σ0 = σ′0 v σ, and σ1 = σ′1 v σ (6.1) - (hyp.6) + (3) + (4)
– µf ,Σf ∼σ µ′f ,Σ′f

(6.2) - (1) + (2) + (5) + (6.1) + Noninterferent Property Assignment (Proposition A.5)

• Suppose σ0 t σ1 6v σ (hyp.6). This case has four different sub-cases: (1) m1 ∈ dom(µ2(r0)) and
m′1 ∈ dom(µ′2(r′0)), (2) m1 ∈ dom(µ2(r0)) and m′1 6∈ dom(µ′2(r′0)), (3) m1 6∈ dom(µ2(r0)) and
m′1 ∈ dom(µ′2(r′0)), and (4) m1 6∈ dom(µ2(r0)) and m′1 6∈ dom(µ′2(r′0)). We only prove (2), the
other cases are equivalent. Hence, suppose that: m1 ∈ dom(µ2(r0)) (hyp.7) and m′1 6∈ dom(µ′2(r′0))
(hyp.8):



A.1. Noninterference - Security Montior 139

– σ0 t σ1 v Σ2.val(r0 ·m1) (7.1) - (hyp.2) + (hyp.7) + (1)

– Σ2.val(r0 ·m1) 6v σ (7.2) - (hyp.6) + (7.1)

– µ2,Σ2 ∼σ µf ,Σf
(7.3) - (hyp.7) + (1) + (7.2) + Confined Property Assignment (Proposition A.1)

– σ′0 t σ′1 6v σ (7.4) - (hyp.6) + (3) + (4)

– µ′2,Σ
′
2 ∼σ µ′f ,Σ′f

(7.5) - (2) + (7.4) + Confined Property Assignment (Proposition A.1)

– µf ,Σf ∼σ µ′f ,Σ′f (7.6) - (5) + (7.3) + (7.5)

[Property Deletion] This case is similar to the previous case. Therefore, the proof is omitted.

[Function Literal] Suppose that e = functioni(x){var y1, · · · , yn; e} (hyp.5). We conclude
that:

• µf = µ [rf 7→ ["@fscope" 7→ r, "@code" 7→ λx. {var y1, · · · , yn; e}]],
Σf .val = Σ.val [rf 7→ ["@fscope" 7→ σpc, "@code" 7→ σpc]],
Σf .exist = Σ.exist [rf 7→ ["@fscope" 7→ σpc, "@code" 7→ σpc]],
Σf .struct = Σ.struct [rf 7→ σpc], vf = rf = fresh(σpc), and σf = σpc (1) - (hyp.2) + (hyp.5)

• µ′f = µ′
[
r′f 7→ ["@fscope" 7→ r, "@code" 7→ λx. {var y1, · · · , yn; e}]

]
,

Σ′f .val = Σ′.val
[
r′f 7→ ["@fscope" 7→ σpc, "@code" 7→ σpc]

]
,

Σ′f .exist = Σ′.exist
[
r′f 7→ ["@fscope" 7→ σpc, "@code" 7→ σpc]

]
,

Σ′f .struct = Σ′.struct
[
r′f 7→ σpc

]
, v′f = r′f = fresh(σpc), and σ′f = σpc (2) - (hyp.3) + (hyp.5)

• rf = r′f (3) - (hyp.1) + (1) + (2) + Low-Equal Allocation

• vf = v′f and σf = σ′f (4) - (1) - (3)

• µf ,Σf ∼σ µ′f ,Σ′f (5) - (hyp.1) + (1) - (3)

[Object Literal] Suppose that e = { }σs (hyp.5). We conclude that:

• µf = µ [ro 7→ ["_prot_" 7→ null]],
Σf .val = Σ.val [ro 7→ ["_prot_" 7→ σpc t σs]],
Σf .exist = Σ.exist [ro 7→ ["_prot_" 7→ σpc t σs]],
Σf .struct = Σ.struct [ro 7→ σpc t σs], vf = ro = fresh(σpc), and σf = σpc (1) - (hyp.2) + (hyp.5)

• µ′f = µ′ [r′o 7→ ["_prot_" 7→ null]],
Σ′f .val = Σ′.val [r′o 7→ ["_prot_" 7→ σpc t σs]],
Σ′f .exist = Σ′.exist [r′o 7→ ["_prot_" 7→ σpc t σs]],
Σf .struct = Σ.struct [ro 7→ σpc t σs], v′f = r′o = fresh(σpc), and σ′f = σpc (2) - (hyp.3) + (hyp.5)

• ro = r′o (3) - (hyp.1) + (1) + (2) + Low-Equal Allocation

• vf = v′f and σf = σ′f (4) - (1) - (3)

• µf ,Σf ∼σ µ′f ,Σ′f (5) - (hyp.1) + (1) - (3)

[Function Call] Suppose that e = e0(e1)i (hyp.5). We conclude that there are six intermediate
memories µ0, µ1, µ̂, µ′0, µ′1, and µ̂′, six labellings Σ0, Σ1, Σ̂, Σ′0, Σ′1, and Σ̂′, four references r0,
rs, r′0, and r′s, two values v2 and v′2, and four security levels σ0, σ1, σ′0, and σ′1, such that:

• r, σpc ` 〈µ, e0,Σ〉 ⇓IF 〈µ0, r0,Σ0, σ0〉, r, σpc ` 〈µ0, e1,Σ0〉 ⇓IF 〈µ1, v1,Σ1, σ1〉,
〈r̂, µ̂, ê, Σ̂〉 = NewScope(µ1, r0, v1,#glob,Σ1, σ0, σ1), and r̂, σ0 ` 〈µ̂, ê, Σ̂〉 ⇓IF 〈µf , vf ,Σf , σf 〉

(1) - (hyp.2) + (hyp.6)



140 Appendix A. Proofs of Chapter 4

• r, σpc ` 〈µ′, e0,Σ
′〉 ⇓IF 〈µ′0, r′0,Σ′0, σ′0〉, r, σpc ` 〈µ′0, e1,Σ

′
0〉 ⇓IF 〈µ′1, v′1,Σ′1, σ′1〉,

〈r̂′, µ̂′, ê′, Σ̂′〉 = NewScope(µ′1, r
′
0, v
′
1,#glob,Σ

′
1, σ
′
0, σ
′
1), and r̂′, σ̂′pc ` 〈µ̂′, ê′, Σ̂′〉 ⇓IF 〈µ′f , v′f ,Σ′f , σ′f 〉

(2) - (hyp.3) + (hyp.6)

• µ0,Σ0 ∼σ µ′0,Σ′0 and r0, σ0 ∼σ r′0, σ′0 (3) - (hyp.1) + (1) + (2) + ih

• µ1,Σ1 ∼σ µ′1,Σ′1 and v1, σ1 ∼σ v′1, σ′1 (4) - (1) - (3) + ih

We consider two distinct cases: σ0 v σ and σ0 6v σ. Suppose that σ0 v σ (hyp.6):

• r0 = r′0 and σ0 = σ′0 v σ (5) - (hyp.6) + (3)

• µ̂, Σ̂ ∼σ µ̂′, Σ̂′ and ê = ê′

(6) - (1) + (2) + (4) + (5) + Noninterferent Scope Allocation (Proposition A.8)

• µf ,Σf ∼σ µ′f ,Σ′f and vf , σf ∼σ v′f , σ′f (7) - (1) + (2) + (6) + ih

Suppose that σ0 6v σ (hyp.6):

• σ′0 6v σ (9) - (hyp.6) + (3)

• µ1,Σ1 ∼σ µ̂, Σ̂ (10) - (hyp.6) + (1) + Confined Scope Allocation (Proposition A.4)

• µ′1,Σ′1 ∼σ µ̂′, Σ̂′ (11) - (2) + (9) + Confined Scope Allocation (Proposition A.4)

• µ̂, Σ̂ ∼σ µf ,Σf (12) - (hyp.6) + (1) + Confinement (Lemma 4.1)

• µ̂′, Σ̂′ ∼σ µ′f ,Σ′f (13) - (2) + (9) + Confinement (Lemma 4.1)

• µ1,Σ1 ∼σ µf ,Σf (14) - (10) + (12) + Transitivity of ∼σ
• µ′1,Σ′1 ∼σ µ′f ,Σ′f (15) - (11) + (13) + Transitivity of ∼σ
• µf ,Σf ∼σ µ′f ,Σ′f (16) - (4) + (14) + (15) + Symmetry and Reflexivity of ∼σ
• σf 6v σ and σ′f 6v σ (17) - (hyp.6) + (1) + (2) + (9) + PC-Conservation (Lemma A.1)

[Method Call] Suppose that e = e0[e1](e2)i (hyp.5). We conclude that there are eight inter-
mediate memories µ0, µ1, µ2, µ̂, µ′0, µ′1, µ′2, and µ̂′, eight labellings Σ0, Σ1, Σ2, Σ̂, Σ′0, Σ′1, Σ′2,
and Σ̂′, six references r0, ro, rf , r′0, r′o, and r′f , two strings m1 and m′1, two values v2 and v′2,
and ten security levels σ0, σ1, σ2, σo, σs, σ′0, σ′1, σ′2, σ′o, and σ′s, such that:

• r, σpc ` 〈µ, e0,Σ〉 ⇓IF 〈µ0, r0,Σ0, σ0〉, r, σpc ` 〈µ0, e1,Σ0〉 ⇓IF 〈µ1,m1,Σ1, σ1〉,
r, σpc ` 〈µ1, e2,Σ1〉 ⇓IF 〈µ2, v2,Σ2, σ2〉, 〈ro, σo〉 = Proto(µ2, r0,m1,Σ2),
rf = µ2(ro ·m1), σs = σ0 t σ1 t Σ2.val(ro ·m1) t σo,
〈r̂, µ̂, ê, Σ̂〉 = NewScope(µ2, rf , v2, r0,Σ2, σs, σ2), and r̂, σ̂pc ` 〈µ̂, ê, Σ̂〉 ⇓IF 〈µf , vf ,Σf , σf 〉

(1) - (hyp.2) + (hyp.5)

• r, σpc ` 〈µ′, e0,Σ
′〉 ⇓IF 〈µ′0, r′0,Σ′0, σ′0〉, r, σpc ` 〈µ′0, e1,Σ

′
0〉 ⇓IF 〈µ′1,m′1,Σ′1, σ′1〉,

r, σpc ` 〈µ′1, e2,Σ
′
1〉 ⇓IF 〈µ′2, v′2,Σ′2, σ′2〉, 〈r′o, σ′o〉 = Proto(µ′2, r

′
0,m

′
1,Σ

′
2),

r′f = µ′2(r′o ·m′1), σ′s = σ′0 t σ′1 t Σ′2.val(r′o ·m′1) t σ′o,
〈r̂′, µ̂′, ê′, Σ̂′〉 = NewScope(µ′2, r

′
f , v
′
2, r
′
0,Σ

′
2, σ
′
s, σ
′
2), r̂′, σ̂′pc ` 〈µ̂′, ê′, Σ̂′〉 ⇓IF 〈µ′f , v′f ,Σ′f , σ′f 〉

(2) - (hyp.3) + (hyp.5)

• µ0,Σ0 ∼σ µ′0,Σ′0 and r0, σ0 ∼σ r′0, σ′0 (3) - (hyp.1) + (1) + (2) + ih

• µ1,Σ1 ∼σ µ′1,Σ′1 and m1, σ1 ∼σ m′1, σ′1 (4) - (1) - (3) + ih

• µ2,Σ2 ∼σ µ′2,Σ′2 and v2, σ2 ∼σ v′2, σ′2 (5) - (1) + (2) + (4) + ih

We consider two distinct cases: either σs v σ or σs 6v σ. Suppose that σs v σ (hyp.6), we then conclude
that:

• r0 = r′0 and σ0 = σ′0 v σ (6) - (hyp.6) + (1) + (3)

• m1 = m′1 and σ1 = σ′1 v σ (7) - (hyp.6) + (1) + (4)



A.1. Noninterference - Security Montior 141

• ro = r′o and σo = σ′o v σ
(8) - (hyp.6) + (1) + (2) + (5) + (6) + (7) + Prototype-Chain Indistinguishability (Lemma A.3)

• rf = r′f and Σ2.val(ro ·m1) = Σ′2.val(r′o ·m′1) v σ (9) - (hyp.6) + (1) + (2) + (5)

• σs = σ′s v σ (10) - (6) - (9)

• µ̂, Σ̂ ∼σ µ̂′, Σ̂′ and ê = ê′

(11) - (1) + (2) + (5) + (10) + Noninterferent Scope Allocation (Proposition A.8)

• µf ,Σf ∼σ µ′f ,Σ′f and vf , σf ∼σ v′f , σ′f (12) - (1) + (2) + (11) + ih

Suppose that σs 6v σ (hyp.6), we then conclude that:

• σ′s 6v σ (13) - Multiple Steps

• µ2,Σ2 ∼σ µ̂, Σ̂ (14) - (hyp.6) + (1) + Confined Scope Allocation (Proposition A.4)

• µ′2,Σ′2 ∼σ µ̂′, Σ̂′ (15) - (2) + (13) + Confined Scope Allocation (Proposition A.4)

• µ̂, Σ̂ ∼σ µf ,Σf (16) - (hyp.6) + (1) + (14) + Confinement (Lemma 4.1)

• µ̂′, Σ̂′ ∼σ µ′f ,Σ′f (17) - (2) + (13) + (15) + Confinement (Lemma 4.1)

• µ2,Σ2 ∼σ µf ,Σf (18) - (14) + (16) + Transitivity of ∼σ
• µ′2,Σ′2 ∼σ µ′f ,Σ′f (19) - (15) + (17) + Transitivity of ∼σ
• µf ,Σf ∼σ µ′f ,Σ′f (20) - (5) + (18) + (19) + Symmetry and Reflexivity of ∼σ
• σf 6v σ and σ′f 6v σ (21) - (hyp.6) + (1) + (2) + (13) + PC-Conservation (Lemma A.1)

[Sequence] Suppose that e = e0, e1 (hyp.5). We conclude that there are two memories µ0 and
µ′0, two labellings Σ0 and Σ′0, two values v0 and v′0, and two security levels σ0 and σ′0 such that:

• r, σpc ` 〈µ, e0,Σ〉 ⇓IF 〈µ0, v0,Σ0, σ0〉 and r, σpc ` 〈µ0, e1,Σ0〉 ⇓IF 〈µf , vf ,Σf , σf 〉
(1) - (hyp.2) + (hyp.5)

• r, σpc ` 〈µ′, e0,Σ
′〉 ⇓IF 〈µ′0, v′0,Σ′0, σ′0〉 and r, σpc ` 〈µ′0, e1,Σ

′
0〉 ⇓IF 〈µ′f , v′f ,Σ′f , σ′f 〉

(2) - (hyp.3) + (hyp.5)

• µ0,Σ0 ∼σ µ′0,Σ′0 and v0, σ0 ∼σ v′0, σ′0 (3) - (hyp.1) + (1) + (2) + ih

• µf ,Σf ∼σ µ′f ,Σ′f and vf , σf ∼σ v′f , σ′f (4) - (1) - (3) + ih

[Conditional] Suppose that e = ê ? (e0) : (e1) (hyp.5). We conclude that there are two
memories µ̂ and µ̂′, two labellings Σ̂ and Σ̂′, two values v̂ and v̂′, and two levels σ̂ and σ̂′ such
that:

• r, σpc ` 〈µ, e,Σ〉 ⇓IF 〈µ̂, v̂, Σ̂, σ̂〉 and r, σ̂ ` 〈µ̂, ei, Σ̂〉 ⇓IF 〈µf , vf ,Σf , σf 〉, where i = 0 when
v̂ 6∈ Falsy and i = 1 when v̂ ∈ Falsy (1) - (hyp.2) + (hyp.5)

• r, σpc ` 〈µ′, e,Σ′〉 ⇓IF 〈µ̂′, v̂′, Σ̂′, σ̂′〉 and r, σpc t σ̂′ ` 〈µ̂′, ej , Σ̂′〉 ⇓IF 〈µ′f , v′f ,Σ′f , σf 〉, where j = 0
if v̂′ 6∈ Falsy and j = 1 v̂′ ∈ Falsy (2) - (hyp.3) + (hyp.5)

• µ̂, Σ̂ ∼σ µ̂′, Σ̂′ and v̂, σ̂ ∼σ v̂′, σ̂′ (3) - (hyp.1) + (1) + (2) + ih

Without loss of generality, we assume i = 0 (hyp.6) (the case i = 1 is symmetric). We proceed by case
analysis. Suppose that σ̂ v σ (hyp.7). We conclude:

• v̂ = v̂′ and σ̂ = σ̂′ v σ (4) - (hyp.7) + (3)

• v̂ = v̂′ 6∈ Falsy (5) - (1) + (hyp.6)

• j = 0 (6) - (2) + (4) + (5)

• µf ,Σf ∼σ µ′f ,Σ′f and vf , σf ∼σ v′f , σ′f (7) - (hyp.7) + (1)-(4) + (6) + ih

Suppose that σ̂ 6v σ (hyp.7). We conclude:



142 Appendix A. Proofs of Chapter 4

• σ̂′ 6v σ (8) - (hyp.7) + (3)

• µ̂, Σ̂ ∼σ µf ,Σf (9) - (hyp.8) + (1) + Confinement (Lemma 4.1)

• µ̂′, Σ̂′ ∼σ µ′f ,Σ′f (10) - (2) + (8) + Confinement (Lemma 4.1)

• µf ,Σf ∼σ µ′f ,Σ′f (11) - (3) + (9) + (10) + Reflexivity and Transitivity of ∼σ

• σf u σ′f 6v σ (12) - (hyp.8) + (1) + (2) + (8) + PC-Conservation (Lemma A.1)

�

A.2 Correctness - Inlining Compiler

In order to prove correctness, one must be able to relate the outcome of applying the prototype-
chain and the scope-chain look-up procedures in similar memories. Lemma A.9 states that the
results of applying the scope-chain look-up procedure in two similar memories coincide. Analo-
gously, Lemma A.10 states that the results of applying the prototype-chain look-up procedure
in two similar memories coincide.

Proposition A.9 (Scope-Chain Similarity). Given two memories µ and µ′ and a labelling Σ
such that µ,Σ S µ′; then, for any reference r ∈ µ and identifier x, rx = Scope(µ, r, x) iff
rx = Scope(µ′, r, x).

Proof: In order to prove the result, one must prove both sides of the equivalence. The proof of
the direct side is follows by induction on the derivation of rx = Scope(µ, r, x), while the proof
of the converse side is done by induction on the derivation of rx = Scope(µ, r, x). �

Proposition A.10 (Prototype-Chain Similarity). Given two memories µ and µ′ and a labelling
Σ such that µ,Σ S µ′; then, for any two references reference r, r′ ∈ dom(µ), property p, and
security level σ, 〈r′, σ〉 = Proto(µ, r, p,Σ) iff r′ = Proto(µ′, r, p).

Proof: In order to prove the result, one must prove both sides of the equivalence. The proof of
the direct side is follows by induction on the derivation of 〈r′, σ〉 = Proto(µ, r, p,Σ), while the
proof of the converse side is done by induction on the derivation of r′ = Proto(µ′, r, p). �

The following two lemmas state two important properties concerning the prototype-chain
and the scope-chain inspection procedures that instrumented memories are proven to verify.
Lemma A.6 establishes that the scope object that defines a given variable in a scope-chain is
also the scope object that defines its corresponding shadow variable. Analogously, Lemma A.6
establishes that the object that defines a given property in a prototype-chain is also the object
that defines its two corresponding shadow properties.

Lemma A.5 (Well-Instrumented Scope-Chain). For any instrumented memory µ, two refer-
ences r and rx, and variable x, it holds that: rx = Scope(µ, r, x) iff rx = Scope(µ, r, $x).

Proof: In order to prove the result, one must prove both sides of the equivalence. The proof of
the direct side is follows by induction on the derivation of rx = Scope(µ, r, x), while the proof
of the converse side is done by induction on the derivation of rx = Scope(µ, r, $x). �

Lemma A.6 (Well-Instrumented Prototype-Chain). For any instrumented memory µ, two ref-
erences r and rp, and property name p, it holds that: rp = Proto(µ, r, p) iff rp = Proto(µ, r, $p)
iff rp = Proto(µ, r, $p̄).



A.2. Correctness - Inlining Compiler 143

Finally, Lemma A.7 states that the value of a bookkeeping variable whose index does not
belong to the indexes of the program to compile is not changed by the execution of its respec-
tive compilation. In other words, the execution of a compiled program only updates values of
bookkeeping variables whose indexes belong to the set of indexes of its original counterpart.

Lemma A.7 (Invariance of Bookkeeping Variables). For any two instrumented memories µ and
µ′, scope reference r, expression e, indexes i and j, and value value v, such that C〈e〉 = 〈ê | j〉,
i 6∈ indexes(e), $vi, $li ∈ dom(µ(r)), and r ` 〈µ, ê〉 ⇓ 〈µ′, v〉, it holds that: µ(r · $vi) = µ′(r · $vi)
and µ(r · $li) = µ′(r · $li).

Theorem 4.3 - Compiler Correctness

Proof: In order to prove the claim, we have to prove both sides of the equivalence. Since the
proof is analogous, we choose to prove the right-to-left implication, which immediately implies
security. Below, we restate the hypotheses of the theorem:

• µ,Σ S µ′ (hyp.1),

• C〈e〉 = 〈e′ | i〉 (hyp.2),

• r ` 〈µ′, e′〉 ⇓ 〈µ′f , v′f 〉 (hyp.3),

• σpc = µ′(r · "$pc") (hyp.4)

We have to prove that:

• r, σpc ` 〈µ, e,Σ〉 ⇓IF 〈µf , vf ,Σf , σf 〉, for some configuration 〈µf , vf ,Σf , σf 〉,

• µf ,Σf S µ′f

• vf = v′f = µ′f (r · $vi),

• σf = µ′f (r · $li),

• σpc = µ′f (r · "$pc")

The proof proceeds by induction on the derivation of (hyp.1).

[Value] Suppose that e = vi (hyp.5). Letting mvi = string($vi) and mli = string($li), we
conclude that:

• e′ = $li = $pc, $vi = v (1) - (hyp.2) + (hyp.5)

• µ′f = µ′[r ·mli 7→ σpc, r ·mvi 7→ v] (2) - (hyp.4) + (1)

• r, σpc ` 〈µ, v,Σ〉 ⇓IF 〈µf , vf ,Σf , σf 〉 with µf = µ, Σf = Σ, vf = v, and σf = σpc (3) - (hyp.5)

• µf ,Σf S µ′f (4) - (hyp.1) + (2) + (3)

• σpc = µ′f (r · "$pc") (5) - (hyp.4) + (3)

• vf = v′f = v = µ′f (r ·mvi) and σf = µ′f (r ·mli) = σpc (6) - (2) + (3)

[This] Suppose that e = thisi (hyp.5). Letting mvi = string($vi) and mli = string($li), we
conclude that:

• e′ = $li = $pc, $vi = this (1) - (hyp.2) + (hyp.5)

• µ′f = µ′[r ·mli 7→ σpc, r ·mvi 7→ v′f ] and v′f = µ′(r · "@this") (2) - (hyp.3) + (1)

• µ′f (r ·mli) = σpc and µ′f (r ·mvi) = µ′(r · "@this") (3) - (hyp.4) + (2)



144 Appendix A. Proofs of Chapter 4

• r, σpc ` 〈µ, this,Σ〉 ⇓IF 〈µ, vf ,Σ, σpc〉 and vf = µ(r · "@this") (4) - (hyp.5)

• µf ,Σf S µ′f (5) - (hyp.1) + (2) + (4)

• vf = v′f = µ′f (r ·mvi) (6) - (hyp.1) + (2) + (4)

• σpc = µ′f (r · "$pc") (7) - (hyp.4) + (2)

• σf = µ′f (r ·mli) (8) - (2) + (4)

[Variable] Suppose that e = xi (hyp.5). Letting mvi = string($vi), mli = string($li), mx =
string(x), and mlx = string($x), we conclude that there is a reference rx such that:

• e′ = $li = $pc t $x, $vi = x (1) - (hyp.2) + (hyp.5)

• rx = Scope(µ′, r, x), rx 6= null, v′f = µ′(rx ·mx), and
µ′f = µ′[r ·mli 7→ (µ′(rx ·mlx) t σpc), r ·mvi 7→ v′f ]

(2) - (hyp.3) + (hyp.4) + (hyp.5) + Well-Instrumented Scope-Chain (Proposition A.6)

• rx = Scope(µ, r, x) (3) - (hyp.1) + (2) + Scope-Chain Similarity (Proposition A.9)

• r, σpc ` 〈µ, this,Σ〉 ⇓IF 〈µf , vf ,Σf , σf 〉 with µf = µ, Σf = Σ, vf = µ(rx ·mx),
and σf = σpc t Σ.val(rx ·mx) (4) - (hyp.5) + (3)

• µf ,Σf S µ′f (5) - (hyp.1) + (2) + (4)

• vf = v′f = µ′f (r ·mvi) (6) - (hyp.1) + (2) + (4)

• σpc = µ′f (r · "$pc") (7) - (hyp.4) + (2)

• σf = µ′f (r ·mli) (8) - (hyp.1) + (2) + (4)

[Binary Operation] Suppose that e0 opi e1 (hyp.5). Letting mvi = string($vi), mli = string($li),
mvj = string($vj), mlj = string($lj), mvk = string($vk), and mlk = string($lk), we conclude that:

• e′ = e′0, e
′
1, $li = $lj t $lk, $vi = $vj op $vk, where: C〈e0〉 = 〈e′0 | j〉 and C〈e1〉 = 〈e′1 | k〉

(1) - (hyp.2) + (hyp.5)

• r′ ` 〈µ′, e′0〉 ⇓ 〈µ′0, v′0〉, r′ ` 〈µ′0, e′1〉 ⇓ 〈µ′f , v′1〉, v′f = µ′f (r ·mvj ) op µ′f (r ·mvk), σ′f = σ′0 t σ′1,
µ′f = µ′[r ·mli 7→ σ′f , r ·mvi 7→ v′f ], where σ′0 = µ′f (r ·mlj ) and σ′1 = µ′f (r ·mlk)

(2) - (hyp.3) + (hyp.5) + (1)

• There is a configuration 〈µ0, v0,Σ0, σ0〉 such that:

– r, σpc ` 〈µ, e0,Σ〉 ⇓IF 〈µ0, v0,Σ0, σ0〉
– µ0,Σ0 S µ′0
– v0 = v′0 = µ′0(r ·mvj ),

– σ0 = µ′0(r ·mlj ),

– σpc = µ′0(r · "$pc")
(3) - (hyp.1) + (hyp.4) + (1) + (2) + ih

• There is a configuration 〈µ1, v1,Σ1, σ1〉 such that:

– r, σpc ` 〈µ0, e1,Σ0〉 ⇓IF 〈µ1, v1,Σ1, σ1〉
– µ1,Σ1 S µ′f
– v1 = v′1 = µ′f (r ·mvk),

– σ1 = µ′f (r ·mlk),

– σpc = µ′f (r · "$pc")
(4) - (1) + (2) + (3) + ih

• v0 = v′0 = µ′f (r ·mvj ) and σ0 = µ′f (r ·mlj )
(5) - (3) + (4) + Invariance of Bookkeeping Variables (Lemma A.7)



A.2. Correctness - Inlining Compiler 145

• There is a configuration 〈µf , vf ,Σf , σf 〉 such that r, σpc ` 〈µ, e0 op e1,Σ〉 ⇓IF 〈µf , vf ,Σf , σf 〉,
where µf = µ1, Σf = Σ1, vf = v0 op v1, and σf = σ0 t σ1 (6) - (hyp.5) + (3) + (4)

• µf ,Σf S µ′f and σpc = µ′f (r · "$pc") (7) - (4) + (6)

• vf = v′f = µ′f (r ·mvi) and σf = σ′f = µ′f (r ·mli) (8) - (2) + (4) + (5)

[Variable Assignment] Suppose that x = e0 (hyp.5). Letting mvi = string($vi), mli =
string($li), mx = string(x), and mlx = string($x), we conclude that there is a ref. rx s.t.:

• e′ = e′0, $check($pc v $x), $x = $li, x = $vi, where: x 6∈ Scomp and C〈e0〉 = 〈e′0 | i〉
(1) - (hyp.2) + (hyp.5)

• r ` 〈µ, e′0〉 ⇓ 〈µ′0, v′0〉, rx = Scope(µ′0, r, x), rx 6= null, µ′f = µ′[rx · mx 7→ v′f , rx · mlx 7→ σ′f ],
µ′0(r · "$pc") v µ′0(rx ·mlx), where: v′f = µ′0(r ·mvi) and σ′f = µ′0(r ·mli)

(2) - (hyp.3) + (1) + Well-Instrumented Scope-Chain (Proposition A.6)

• There is a configuration 〈µ0, v0,Σ0, σ0〉 such that:

– r, σpc ` 〈µ, e0,Σ〉 ⇓IF 〈µ0, v0,Σ0, σ0〉
– µ0,Σ0 S µ′0
– v0 = v′f = µ′0(r ·mvi),
– σ0 = σ′f = µ′0(r ·mli),
– σpc = µ′0(r · "$pc")

(3) - (hyp.1) + (hyp.4) + (1) + (2) + ih

• rx = Scope(µ0, r, x) (4) - (2) + (3) + Scope-Chain Similarity (Proposition A.9)

• µ′0(r · "$pc") = σpc and µ′0(rx ·mlx) = Σ0.val(rx · x) (5) - (3) + (4)

• σpc v Σ0.val(rx · x) (6) - (2) + (5)

• There is a configuration 〈µf , vf ,Σf , σf 〉 such that r, σpc ` 〈µ, x = e0,Σ〉 ⇓IF 〈µf , vf ,Σf , σf 〉,
where: µ′ = µ0[rx · mx 7→ v0], Σf = updt(Σ0, (rx,mx), (Σ0.exist(rx · mx), σ0)), vf = v0, and
σf = σ0 (7) - (1) + (3) + (6)

• vf = v0 = v′f = µ′f (r ·mvi) and σf = σ′f = µ′f (r ·mli) (8) - (2) + (3) + (7)

• µ′f (r · "$pc") = σpc (9) - (2) + (3)

• µf ,Σf S µ′f (10) - (2) + (3) + (7) + (8)

[Sequence] Suppose that e0, e1 (hyp.5). Letting mvj = string($vj), mlj = string($lj), mvk =
string($vk), and mlk = string($lk), we conclude that:

• e′ = e′0, e
′
1 where: C〈e0〉 = 〈e′0 | j〉 and C〈e1〉 = 〈e′1 | k〉 (1) - (hyp.2) + (hyp.5)

• r ` 〈µ′, e′0〉 ⇓ 〈µ′0, v′0〉 and r ` 〈µ′0, e′1〉 ⇓ 〈µ′f , v′f 〉 (2) - (hyp.3) + (hyp.5) + (1)

• There is a configuration 〈µ0, v0,Σ0, σ0〉 such that:

– r, σpc ` 〈µ, e0,Σ〉 ⇓IF 〈µ0, v0,Σ0, σ0〉
– µ0,Σ0 S µ′0
– v0 = v′0 = µ′0(r ·mvj ),
– σ0 = µ′0(r ·mlj ),
– σpc = µ′0(r · "$pc")

(3) - (hyp.1) + (hyp.4) + (1) + (2) + ih

• There is a configuration 〈µ1, v1,Σ1, σ1〉 such that:

– r, σpc ` 〈µ0, e1,Σ0〉 ⇓IF 〈µ1, v1,Σ1, σ1〉
– µ1,Σ1 S µ′f
– v1 = v′1 = µ′1(r ·mvk),



146 Appendix A. Proofs of Chapter 4

– σ1 = µ′1(r ·mlk),
– σpc = µ′0(r · "$pc")

(3) - (hyp.1) + (hyp.4) + (1) + (2) + ih

• Letting µf = µ1, Σf = Σ1, vf = v1, and σf = σ1, it holds that:

– r, σpc ` 〈µ, e0, e1,Σ〉 ⇓IF 〈µf , vf ,Σf , σf 〉
– µf ,Σf S µ′f
– vf = v′f = µ′f (r ·mvk),
– σf = µ′f (r ·mlk),
– σpc = µ′f (r · "$pc")

(4) - (2) + (3)

[Conditional] Suppose that e = e0 ?s,t (e1) : (e2) (hyp.5). We conclude that:

• The compilation of e is given by:

ê =


ê0, $ls = $pc, $pc = $pc t $li,
$vi ?(

ê1, $vt = $vj , $lt = $lj
)

:
(
ê2, $vt = $vk, $lt = $lk

)
,

$pc = $ls, $vt
where 〈e′0 | i〉 = C〈e0〉, 〈e′1 | j〉 = C〈e1〉, and and 〈e′2 | k〉 = C〈e2〉. (1) - (hyp.2) + (hyp.5)

• There is a configuration 〈µ′0, v′0〉 and a level σ′0 such that: r ` 〈µ′, e′0〉 ⇓ 〈µ′0, v′0〉 and µ′0 =
µ′0[r ·mvi 7→ v′0, r ·mli 7→ σ′0] (2) - (hyp.3) + (1)

• There is a configuration 〈µ0, v0,Σ0, σ0〉 such that:

– r, σpc ` 〈µ, e0,Σ〉 ⇓IF 〈µ0, v0,Σ0, σ0〉
– µ0,Σ0 S µ′0
– v0 = v′0 = µ′0(r ·mvi),
– σ0 = σ′0 = µ′0(r ·mli),
– σpc = µ′0(r · "$pc")

(3) - (hyp.1) + (hyp.4) + (1) + (2) + ih

There are two cases to consider: either v′0 ∈ Falsy or v′0 6∈ Falsy. The treatment of these two
cases is symmetrical and therefore we only present the case v′0 6∈ Falsy (hyp.6). We conclude
that:

• There are two intermediate memories µ′′0 and µ′1 such that: µ′′0 = µ′0[r · $ls 7→ σpc, r · "$pc" 7→ σ′0],
r ` 〈µ′′0 , e′1〉 ⇓ 〈µ′1, v′t〉, µ′f = µ′1[r · $vt 7→ v′1, r · $lt 7→ σ′1, r · "$pc" 7→ σpc], and v′f = v′1

(4) - (hyp.1) + (hyp.3) + (hyp.4) + (1) + (3)

• v0 6∈ Vf (5) - (hyp.6) + (3)

• µ0,Γ0,Σ0 S µ′′0 (6) - (3) + (4)

• There is a configuration 〈µf , vf ,Σf , σf 〉 such that:

– r, σpc ` 〈µ, e1,Σ0〉 ⇓IF 〈µf , vf ,Σf , σf 〉
– µf ,Σf S µ′1
– vf = v′1 = µ′1(r ·mvj ),
– σf = σ′1 = µ′1(r ·mlj ),
– σpc = µ′1(r · "$pc")

(7) - (1) + (3) + (4) + ih

• r, σpc ` 〈µ, e0 ? (e1) : (e2) ,Σ〉 ⇓IF 〈µf , vf ,Σf , σf 〉, µf ,Σf S µ′f , vf = v′f = µ′f (r · $vt), σf =
µ′f (r · $lt), and σpc = µ′f (r · "$pc") (8) - (4) + (7)

The remaining cases are similar. �



Appendix B

Proofs of Chapter 5

B.1 Soundness of the Static Type System

This section presents the proof of Theorem 5.1. This proof is preceded by a series of lemmas
that establish useful properties of both the low-equality relation and typable programs.

B.1.1 Properties of Well-Typed Memories

Consider a given memory µ well-typed by a given type-based labelling Σ. Furthermore, consider
an object o pointed to by a reference r, which has access to a given property p through its
prototype-chain. Let r′ be the reference of the object that defines p in the prototype-chain of o
and τ̇ and τ̇ ′ the security types of o and of the object that defines p. Lemma B.1 states that τ̇
and τ̇ ′ associate the same security type and the same existence level with property p.

Lemma B.1 (Well-Typed Prototype Chains). Given a memory µ well-typed by Σ, a reference r,
and property p, such that r′ = Proto(µ, r, p), then � (Σ(r), p) = � (Σ(r′), p), whenever � (Σ(r′), p)
is defined.

Proof: We have to prove that given that:

• µ is well-typed by Σ (hyp.1)

• r′ = Proto(µ, r, p) (hyp.2)

• � (Σ(r′), p) = (σ, τ̇) is defined (hyp.3)

then, it holds that: � (Σ(r), p) = � (Σ(r′), p) = (σ, τ̇). We proceed by induction on the derivation
of (hyp.2).

[Base] p ∈ dom(µ(r)) (hyp.4). We conclude that:

• r = r′ (1) - (hyp.2) + (hyp.4)

• � (Σ(r), p) = (σ, τ̇) (2) - (hyp.3) + (1)

[Look-up] p 6∈ dom(µ(r)) (hyp.4). We conclude that:

• r′ = Proto(µ, r′′, p) and µ(r · "_prot_") = r′′. (1) - (hyp.2) + (hyp.4)

• � (Σ(r′′), p) = � (Σ(r′), p) = (σ, τ̇) (2) - (hyp.1) + (1) + ih

• Σ(r′′) � πtype(� (Σ(r), "_prot_")) (3) - (hyp.1) + (1)

• bπtype(� (Σ(r), "_prot_"))c ≡ bΣ(r′′)c (4) - (3)

• � (πtype(� (Σ(r), "_prot_")), p) = � (Σ(r′′), p) (5) - (4)

• � (Σ(r), p) = � (πtype(� (Σ(r), "_prot_")), p) (6) - Consistent Prototype

• � (Σ(r), p) = (σ, τ̇) (7) - (hyp.3) + (2) + (5) + (6)

�



148 Appendix B. Proofs of Chapter 5

B.1.2 Properties of Low-Equal Memories

We now list some properties of the low-equality definition given in Section 5.2, which are later
used in the proofs of soundness of both type systems presented in the chapter.

B.1.2.1 Prototype-Chain Indistinguishability

Suppose a reference r is visible in two low-equal memories µ0 and µ1, respectively well-typed by
Σ0 and Σ1. Furthermore, suppose that the object type Σ0(r) associates the property p with a
visible existence level and that p is defined in the prototype-chain of the object µ0(r). In this
scenario, Lemma B.2 states that p is also defined in the prototype-chain of µ1(r) and that the
reference of the object that actually defines p in the prototype-chain of µ0(r0) coincides with
the reference of the object that defines p in the prototype-chain of µ1(r1).

Lemma B.2 (Prototype-Chain Indistinguishability). For any two memories µ0 and µ1 re-
spectively well-typed by Σ0 and Σ1, reference r, and property p such that r0 = Proto(µ0, r, p),
r1 = Proto(µ1, r, p), µ0,Σ0 ∼σ µ1,Σ1, and πlev(� (Σ0(r), p)) t lev(Σ0(r)) v σ, it holds that:
r0 = r1.

Proof: We have to prove that given that:

• µ0 and µ1 are well-typed by Σ0 and Σ1 respectively (hyp.1)

• r0 = Proto(µ0, r, p) (hyp.2)

• r1 = Proto(µ1, r, p) (hyp.3)

• µ0,Σ0 ∼σ µ1,Σ1 (hyp.4)

• πlev(� (Σ0(r), p)) t lev(Σ0(r)) v σ (hyp.5)

then, it holds that: r0 = r1. We proceed by induction on the derivation of (hyp.2).

[Null] r = null (hyp.6). We conclude that:

• r0 = r1 = null (1) - (hyp.2) + (hyp.3) + (hyp.6)

[Base] p ∈ dom(µ0(r)) (hyp.6). We conclude that:

• r0 = r (1) - (hyp.2) + (hyp.6)

• Σ0(r) = Σ1(r) (2) - (hyp.4) + (hyp.6)

• πlev(� (Σ0(r), p)) = πlev(� (Σ1(r), p)) v σ (3) - (hyp.5) + (2)

• p ∈ dom(µ1(r)) (4) - (hyp.4) + (hyp.6) + (3)

• r1 = r (5) - (hyp.3) + (4)

• r0 = r1 (6) - (1) + (5)

[Look-up] p 6∈ dom(µ0(r)) (hyp.6) and r0 = Proto(µ0, r
′
0, p) (hyp.7) where: r′0 = µ0(r ·"_prot_")

(hyp.8). We conclude that:

• Σ0(r) = Σ1(r), πlev(� (Σ0(r), p)) = πlev(� (Σ1(r), p)) v σ, and lev(Σ0(r)) = lev(Σ1(r)) v σ
(1) - (hyp.4) + (hyp.5)

• p 6∈ dom(µ1(r)) (2) - (hyp.4) + (hyp.6) + (1)

• r1 = Proto(µ1, r
′
1, p), where: r′1 = µ1(r · "_prot_") (4) - (hyp.2) + (3)

• πtype(� (Σi(r), "_prot_")) �proto Σi(r) for i = 0, 1 (5) - (hyp.1) + (hyp.8) + (4)



B.1. Soundness of the Static Type System 149

• lev(πtype(� (Σi(r), "_prot_"))) v lev(Σi(r)) v σ, for i = 0, 1 (6) - (1) + (5) + Syntax of Types

• r′0 = r′1 (7) - (hyp.4) + (hyp.8) + (1) + (6)

• Σi(r
′
i) � πtype(� (Σi(r), "_prot_")), for i = 0, 1

(8) - (hyp.1) + (hyp.8) + (5)

• πlev(� (Σi(r
′
i), p)) t lev(Σi(r

′
i)) v σ, for i = 0, 1 (9) - (5) + (8)

• r0 = r1 (10) - (hyp.4) + (hyp.5) +(hyp.7) + (4) + (7) + (9) + ih

�

B.1.2.2 Confined Memory Updates

The following two lemmas state two simple confinement properties for memory updates.
Lemma B.3 states that the scope-chain obtained by updating the value of a variable that is
associated with a high security type is low-equal to the original one. Analogously, Lemma B.4
states that the memory obtained by updating the property of a given object associated with a
high existence level is low-equal to the original one.

Lemma B.3 (Confined Variable Assignment). For any two memories µ and µ′, typing environ-
ment Γ, reference r, security level σ, variable x, and value v such that:

• µ′ = µ[rx · px 7→ v] where: px = string(x) and rx = Scope(µ, r, x),

• lev(Γ(x)) 6v σ;

It holds that: Γ, r  µ ∼σ µ′.

Proof: Immediate from Definition 5.4. �

Lemma B.4 (Confined Property Assignment). For any two memories µ and µ′, type-based
labelling Σ, reference r, security level σ, property name p, and value v such that:

• µ′ = µ[r · p 7→ v],

• lev(Σ.exist(r · p)) 6v σ;

It holds that: Γ, r  µ ∼σ µ′.

Proof: Immediate from Definition 5.5. �

B.1.2.3 Indistinguishable Memory Updates

The following two lemmas characterise in which conditions two low-equal memories (according
to Definition 5.5) can be updated in a way that preserves the low-equality relation. Lemma B.5
states that the assignment of two low-equal values to the same variable in two low-equal scope-
chains yields two low-equal scope-chains. Lemma B.6 states that if one assigns two low-equal
values to the same property of two objects pointed to by the same reference in two low-equal
memories, the resulting memories are still low-equal.

Lemma B.5 (Indistinguishable Variable Assignment). For any four memories µ0, µ1, µ′0, and
µ′1, typing environment Γ, reference r, security level σ, variable x, and values v0 and v1 such
that:

• Γ, r  µ0 ∼σ µ1,



150 Appendix B. Proofs of Chapter 5

• µ′0 = µ0[rx · px 7→ v0] where: rx = Scope(µ0, r, x) and px = string(x),

• µ′1 = µ1[r′x · px 7→ v1] where: r′x = Scope(µ1, r, x) and px = string(x),

• lev(Γ(x)) v σ ⇒ v0 = v1 ∧ rx = r′x;

It holds that: Γ, r  µ′0 ∼σ µ′1.

Proof: Immediate from Definition 5.4. �

Lemma B.6 (Indistinguishable Property Assignment). For any four memories µ0, µ1, µ′0, and
µ′1, labellings Σ0 and Σ1, reference r, string p, security level σ, and values v0 and v1 such that:

• µ0,Σ0 ∼σ µ1,Σ1,

• µ′0 = µ0[r · p 7→ v0],

• µ′1 = µ1[r · p 7→ v1],

• lev(Σ0(r)) t lev(πtype(� (Σ0(r), p))) v σ ⇒ v0 = v1;

It holds that: µ′0,Σ0 ∼σ µ′1,Σ1.

Proof: Immediate from Definition 5.5. �

B.1.3 Main Properties of the Static Type System

This section presents the proofs of the the results given in Section 5.3.1. These results correspond
to the following properties of the static type system:

• Well-Labeling Preservation - Lemma 5.1

• Confinement - Lemma 5.2

• Soundness (Noninterference) - Theorem 5.1

Lemma 5.1 - Well-Labelling Preservation

Proof: We have to prove that given that:

• r ` 〈µ,Σ, e〉 ⇓ 〈µ′,Σ′, v〉 (hyp.1)

• Γ, σpc ` e : τ̇ (hyp.2)

• µ is well-typed by Σ and the current scope-chain is well-typed by Γ and Σ (hyp.3)

It holds that:

• µ′ is well-typed by Σ′ and the current scope-chain after the execution of e is well-typed by
Γ and Σ′,

• v ∈ Ref⇒ Σ′(v) � τ̇

The result follows by induction on the derivation of (hyp.1). We distinguish four types of cases:

1. The cases that do not change the memory: [Value], [This], and [Var].

2. The cases that do not directly change the memory: [Binary Operation], [Property Look-
up], [Membership Expression], [Conditional Expression], and [Sequence].



B.1. Soundness of the Static Type System 151

3. The cases that directly change the memory either by creating a new property, updating the
value of an existing property, or by deleting an existing property: [Variable Assignment],
[Property Assignment], and [Property Deletion].

4. The cases that directly change the memory by allocating a new object: [Function Call],
[Method Call], and [Object Literal].

We prove one case of each type. The proofs of the remaining cases follow by similar arguments.

[Variable] Suppose e = x, for some variable x (hyp.4). We conclude that there is a reference
rx ∈ Ref such that:

• µ′ = µ, Σ′ = Σ, v = µ(rx ·mx), where: rx = Scope(µ, r, x) and mx = string(x)
(1) - (hyp.1) + (hyp.4)

• µ(rx ·mx) ∈ Ref⇒ Σ(µ(rx ·mx)) � Γ(x) (2) - (hyp.3) + (hyp.4) + (1)

• τ̇ = Γ(x) (3) - (hyp.2) + 4

• v ∈ Ref⇒ Σ′(v) � τ̇ (4) - (1) - (3)

• µ′ is well-typed by Σ′ and the current scope-chain is well-typed by Γ and Σ′ (5) - (hyp.3) + (1)

[Binary Operation] Suppose e = e0 op e1 for two expressions e0 and e1 (hyp.4). We conclude
that there is a memory µ0, type-based labelling Σ0, values v0 and v1, and types τ̇0 and τ̇1 such
that:

• r ` 〈µ,Σ, e0〉 ⇓ 〈µ0,Σ0, v0〉 and r ` 〈µ0,Σ0, e1〉 ⇓ 〈µ′,Σ′, v1〉 where: v = v0 op v1

(1) - (hyp.1) + (hyp.4)

• Γ, σpc ` e0 : τ̇0 and Γ, σpc ` e1 : τ̇1, where: τ̇ = τ̇0 g τ̇1 (2) - (hyp.1) + (hyp.2)

• v 6∈ Ref (3) - (1)

• µ0 is well-typed by Σ0 and the current scope-chain after the execution of e0 is well-typed by Γ and
Σ0 (4) - (hyp.3) + (1) + (2) + ih

• µ′ is well-typed by Σ′ and the current scope-chain after the execution of e1 is well-typed by Γ and
Σ′ (5) - (1) + (2) + (4) + ih

• v ∈ Ref⇒ Σ′(v) � τ̇ (6) - (3)

[Variable Assignment] Suppose e = x = e0 for some variable e and expression e0 (hyp.4). We
conclude that there is a memory µ0, and a reference rx such that:

• r ` 〈µ,Σ, e0〉 ⇓ 〈µ0,Σ
′, v〉, rx = Scope(µ0, r, x), and µ′ = µ0[rx.mx 7→ v] where: mx = string(x)

(1) - (hyp.1) + (hyp.4)

• Γ, σpc ` e0 : τ̇ and τ̇σpc � Γ(x) (2) - (hyp.2) + (hyp.4)

• µ0 is well-typed by Σ′, the current scope-chain after the execution of e0 is well-typed by Γ and Σ′,
and v ∈ Ref⇒ Σ′(v) � τ̇ (3) - (hyp.3) + (1) + (2) + ih

• v ∈ Ref⇒ Σ′(v) � Γ(x) (4) - (2) + (3)

• µ′(rx ·mx) ∈ Ref⇒ Σ′(µ(rx ·mx)) � Γ(x) (5) - (1) + (5)

• µ′ is well-typed by Σ′, the current scope-chain after the execution of e is well-typed by Γ and Σ′,
(6) - (3) + (5)

[Object Literal] Suppose e = { }τ̇ ′ (hyp.4). We conclude that there is a reference r̂ such that:

• v = r̂ = fresh(lev(τ̇ ′)), µ′ = µ [r̂ 7→ ["_prot_" 7→ null]], and Σ′ = Σ [r̂ 7→ τ̇ ′]
(1) - (hyp.1) + (hyp.4)



152 Appendix B. Proofs of Chapter 5

• τ̇ ′ = τ̇ and σpc v lev(τ̇ ′) (2) - (hyp.2) + (hyp.4)

• µ′ is well-typed by Σ′ and the current scope-chain after the execution of e is well-typed by Γ and
Σ′ (3) - (hyp.3) + (1)

• Σ′(v) = τ̇ (4) - (1) + (2)

�

Lemma 5.2 - Confinement - Static Type System

Proof: We have to prove that given that:

• r ` 〈µ,Σ, e〉 ⇓ 〈µ′,Σ′, v〉 (hyp.1)

• Γ, σpc ` e : τ̇ (hyp.2)

• µ is well-typed by Σ and the current scope-chain is well-typed by Γ and Σ (hyp.3)

• σpc 6v σ (hyp.4)

It holds that:

• µ �Σ,σ= µ′ �Σ
′,σ

• (µ, r) �Γ,σ= (µ′, r) �Γ,σ.

The result follows by induction on the derivation of (hyp.4). As in the previous lemma, we
distinguish four types of cases:

1. The cases that do not change the memory: [Value], [This], and [Var].

2. The cases that do not directly change the memory: [Binary Operation], [Property Look-
up], [Membership Expression], [Conditional Expression], and [Sequence].

3. The cases that directly change the memory either by creating a new property, updating the
value of an existing property, or by deleting an existing property: [Variable Assignment],
[Property Assignment], and [Property Deletion].

4. The cases that directly change the memory by allocating a new object: [Function Call],
[Method Call], and [Object Literal].

We prove one case of each type. The proofs of the remaining cases follow by similar arguments.

[Variable] Suppose e = x, for some variable x (hyp.5). We conclude that there is a reference
rx ∈ Ref such that:

• µ′ = µ, Σ′ = Σ, (1) - (hyp.1) + (hyp.5)

• µ �Σ,σ= µ′ �Σ
′,σ and (µ, r) �Γ,σ= (µ′, r) �Γ,σ (2) - (1)

[Binary Operation] Suppose e = e0 op e1 for two expressions e0 and e1 (hyp.5). We conclude
that there is a memory µ0, type-based labelling Σ0, values v0 and v1, and types τ̇0 and τ̇1 such
that:

• r ` 〈µ,Σ, e0〉 ⇓ 〈µ0,Σ0, v0〉 and r ` 〈µ0,Σ0, e1〉 ⇓ 〈µ′,Σ′, v1〉 where: v = v0 op v1

(1) - (hyp.1) + (hyp.4)

• Γ, σpc ` e0 : τ̇0 and Γ, σpc ` e1 : τ̇1, where: τ̇ = τ̇0 g τ̇1 (2) - (hyp.1) + (hyp.2)

• µ �Σ,σ= µ0 �Σ0,σ and (µ, r) �Γ,σ= (µ0, r) �Γ,σ (3) - (hyp.3) + (hyp.4) + (1) + (2) + ih



B.1. Soundness of the Static Type System 153

• µ0 is well-typed by Σ0 and the current scope-chain is well-typed by Γ and Σ0 after the evaluation
of e0 (4) - (hyp.3) + (1) + (2) + Well-Labelling Preservation (Lemma 5.1)

• µ0 �Σ0,σ= µ′ �Σ
′,σ and (µ0, r) �Γ,σ= (µ′, r) �Γ,σ (5) - (hyp.4) + (1) + (2) + (4) + ih

• µ �Σ,σ= µ′ �Σ
′,σ and (µ, r) �Γ,σ= (µ′, r) �Γ,σ (6) - (3) + (5)

[Variable Assignment] Suppose e = x = e0 for some variable e and expression e0 (hyp.5). We
conclude that there is a memory µ0, and a reference rx such that:

• r ` 〈µ,Σ, e0〉 ⇓ 〈µ0,Σ
′, v〉, rx = Scope(µ0, r, x), and µ′ = µ0[rx.mx 7→ v] where: mx = string(x)

(1) - (hyp.1) + (hyp.5)

• Γ, σpc ` e0 : τ̇ and τ̇σpc � Γ(x) (2) - (hyp.2) + (hyp.5)

• µ0 is well-typed by Σ′ and the current scope-chain after the execution of e0 is well-typed by Γ and
Σ′ (3) - (hyp.3) + (1) + (2) + Well-Labelling Preservation (Lemma 5.1)

• µ �Σ,σ= µ0 �Σ0,σ and (µ, r) �Γ,σ= (µ0, r) �Γ,σ (4) - (hyp.3) + (hyp.4) + (1) + (2) + ih

• lev(Γ(x)) 6v σ (5) - (hyp.4) + (2)

• (µ′, r) �Γ,σ= (µ0, r) �Γ,σ (6) - (1) + (5) + Confined Variable Assignment (Lemma B.3)

• µ′ �Σ′,σ= µ �Σ,σ (7) - (1) + (4)

[Object Literal] Suppose e = { }τ̇ ′ (hyp.5). We conclude that there is a reference r̂ such that:

• v = r̂ = fresh(lev(τ̇ ′)), µ′ = µ [r̂ 7→ ["_prot_" 7→ null]], and Σ′ = Σ [r̂ 7→ τ̇ ′]
(1) - (hyp.1) + (hyp.5)

• τ̇ ′ = τ̇ and σpc v lev(τ̇ ′) (2) - (hyp.2) + (hyp.5)

• lev(τ̇ ′) = lev(Σ′(r̂)) 6v σ (3) - (hyp.4) + (1) + (2)

• µ′ �Σ′,σ= µ �Σ,σ (4) - (1) + (3)

�

Theorem 5.1 - Noninterference - Static Type System

Proof: We have to prove that given that:

• Γ, σpc ` e : τ̇ (hyp.1)

• r ` 〈µ,Σ, e〉 ⇓ 〈µf ,Σf , vf 〉 (hyp.2)

• r ` 〈µ′,Σ′, e〉 ⇓ 〈µ′f ,Σ′f , v′f 〉 (hyp.3)

• µ,Σ ∼σ µ′,Σ′ (hyp.4)

• Γ, r  µ ∼σ µ′ (hyp.5)

It holds that:

1. µf ,Σf ∼σ µ′f ,Σ′f

2. Γ, r  µf ∼σ µ′f

3. lev(τ̇) v σ ⇒ v = v′

We proceed by induction on the derivation of (hyp.2).

[Val] Suppose e = v for some value v (hyp.6). We conclude that:



154 Appendix B. Proofs of Chapter 5

• vf = v′f = v (1) - (hyp.2) + (hyp.3) + (hyp.6)

• lev(τ̇) v σ ⇒ vf = v′f (2) - (1)

• µf = µ, µ′f = µ′, Σf = Σ, Σ′f = Σ′ (3) - (hyp.2) + (hyp.3) + (hyp.6)

• µf ,Σf ∼σ µ′f ,Σ′f (4) - (hyp.4) + (3)

• Γ, r  µf ∼σ µ′f (5) - (hyp.5) + (3)

[This] Suppose e = this (hyp.6). We conclude that:

• vf = µ(r · "@this") and v′f = µ′(r · "@this") (1) - (hyp.2) + (hyp.3) + (hyp.6)

• lev(Γ(this)) v σ ⇒ vf = v′f (2) - (hyp.5) + (1)

• τ̇ = Γ(this) (3) - (hyp.1)

• lev(τ̇) v σ ⇒ vf = v′f (4) - (2) + (3)

• µf = µ, µ′f = µ′, Σf = Σ, and Σ′f = Σ′. (5) - (hyp.2) + (hyp.3) + (hyp.6)

• µf ,Σf ∼σ µ′f ,Σ′f (6) - (hyp.4) + (5)

• Γ, r  µf ∼σ µ′f (7) - (hyp.5) + (5)

[Variable] Suppose e = x, for some variable x (hyp.6). We conclude that there are two references
rx and r′x such that:

• vf = µ(rx · x) and rx = Scope(µ, r, x) (1) - (hyp.2) + (hyp.6)

• v′f = µ′(r′x · x) and r′x = Scope(µ′, r, x) (2) - (hyp.3) + (hyp.6)

• lev(Γ(x)) v σ ⇒ vf = v′f (3) - (hyp.5) + (1) + (2)

• τ̇ = Γ(x) (4) - (hyp.1) + (hyp.6)

• lev(τ̇) v σ ⇒ vf = v′f (5) - (3) + (4)

• µ = µf , µ′ = µ′f , Σ = Σf , and Σ′ = Σ′f . (6) - (hyp.2) + (hyp.3) + (hyp.6)

• µf ,Σf ∼σ µ′f ,Σ′f (7) - (hyp.4) + (6)

• Γ, r  µf ∼σ µ′f (8) - (hyp.5) + (6)

[Binary Operation] Suppose e = e0 op e1 for two exprs. e0 and e1 (hyp.6). We conclude that
there are two memories µ0 and µ′0, two labellings Σ0 and Σ′0, four primitive values v0, v1, v′0,
and v′1, and two security types τ̇0 and τ̇1 such that:

• r ` 〈µ,Σ, e0〉 ⇓ 〈µ0,Σ0, v0〉, r ` 〈µ0,Σ0, e1〉 ⇓ 〈µf ,Σf , v1〉, and vf = v0 op v1

(1) - (hyp.2) + (hyp.6)

• r ` 〈µ′,Σ′, e0〉 ⇓ 〈µ′0,Σ′0, v′0〉, r ` 〈µ′0,Σ′0, e′1〉 ⇓ 〈µ′f ,Σ′f , v′1〉, and v′f = v′0 op v′1
(2) - (hyp.3) + (hyp.6)

• Γ, σpc ` e0 : τ̇0, Γ, σpc ` e1 : τ̇1, and τ̇ = τ̇0 g τ̇1 (3) - (hyp.1) + (hyp.6)

• µ0,Σ0 ∼σ µ′0,Σ′0, Γ, r  µ0 ∼σ µ′0, lev(τ̇0) v σ ⇒ v0 = v′0
(4) - (hyp.4) + (hyp.5) + (1) + (2) + (3) + ih

• µf ,Σf ∼σ µ′f ,Σ′f , Γ, r  µf ∼σ µ′f , lev(τ̇1) v σ ⇒ v1 = v′1 (5) - (1) + (2) + (3) + (4) + ih

• v0 = v′0 ∧ v1 = v′1 ⇒ vf = v′f (6) - (1) + (2)

• lev(τ̇) v σ ⇒ (lev(τ̇0) v σ) ∧ (lev(τ̇1) v σ) (7) - (3)

• lev(τ̇) v σ ⇒ vf = v′f (8) - (4)-(7)



B.1. Soundness of the Static Type System 155

[Variable Assignment] Suppose e = x = e0 for some variable e and expression e0 (hyp.6). Let
mx = string(x), we conclude that there are two memories µ0 and µ′0 and two references rx and
r′x such that:

• r ` 〈µ,Σ, e0〉 ⇓ 〈µ0,Σf , vf 〉, rx = Scope(µ0, r, x), and µf = µ0[rx.mx 7→ vf ]
(1) - (hyp.2) + (hyp.6)

• r ` 〈µ′,Σ′, e0〉 ⇓ 〈µ′0,Σ′f , v′f 〉, r′x = Scope(µ′0, r, x), and µ′f = µ′0[r′x.mx 7→ v′f ]
(2) - (hyp.3) + (hyp.6)

• Γ, σpc ` e0 : τ̇ and τ̇σpc � Γ(x) (3) - (hyp.1) + (hyp.6)

• µ0,Σ0 ∼σ µ′0,Σ′0, Γ, r  µ0 ∼σ µ′0, lev(τ̇) v σ ⇒ vf = v′f
(4) - (hyp.4) + (hyp.5) + (1) + (2) + (3) + ih

• µf ,Σf ∼σ µ′f ,Σ′f (5) - (1) + (2) + (4)

• lev(Γ(x)) v σ ⇒ lev(τ̇) v σ (6) - (3)

• lev(Γ(x)) v σ ⇒ vf = v′f (7) - (4) + (6)

• Γ, r  µf ∼σ µ′f
(8) - (1) + (2) + (4) + (7) + Indistinguishable Variable Assignment (Lemma B.5)

[Object Literal] Suppose e = { }τ̇ ′ (hyp.6) for some security type τ̇ ′. We conclude that there
are two reference r̂ and r̂′:

• τ̇ ′ = τ̇ and σpc v lev(τ̇) (1) - (hyp.1) + (hyp.6)

• r̂ = fresh(lev(τ̇)), µf = µ [r̂ 7→ ["_prot_" 7→ null]], Σf = Σ [r̂ 7→ τ̇ ], and vf = r̂
(2) - (hyp.2) + (hyp.6) + (1)

• r̂′ = fresh(lev(τ̇)), µ′f = µ′ [r̂′ 7→ ["_prot_" 7→ null]], Σ′f = Σ′ [r̂′ 7→ τ̇ ], and v′f = r̂′

(3) - (hyp.3) + (hyp.6) + (1)

• Γ, r  µf ∼σ µ′f (4) - (hyp.5) + (2) + (3)

We consider two cases: either the program does a visible object allocation (lev(τ̇) v σ) or the
program does an invisible object allocation (lev(τ̇) 6v σ). Suppose lev(τ̇) v σ (hyp.7):

• r̂ = r̂′ (5) - (hyp.4) + (hyp.7) + (2) + (3)

• µf �Σf ,σ= µ �Σ,σ ∪ {(r̂, τ̇)} ∪ {(r̂, "_prot_", null), (r̂, "_prot_")} (6) - (hyp.7) + (2)

• µ′f �
Σ′

f ,σ= µ′ �Σ
′,σ ∪{(r̂, τ̇)} ∪ {(r̂, "_prot_", null), (r̂, "_prot_")} (7) - (hyp.7) + (3) + (6)

• µf ,Σf ∼σ µ′f ,Σ′f (8) - (hyp.4) + (6) + (7)

• lev(τ̇) v σ ⇒ vf = v′f (9) - (2) + (3) + (5)

Suppose lev(τ̇) 6v σ (hyp.7):

• µf �Σf ,σ= µ �Σ,σ (10) - (hyp.7) + (2)

• µ′f �
Σ′

f ,σ= µ′ �Σ
′,σ (11) - (hyp.7) + (3)

• µf ,Σf ∼σ µ′f ,Σ′f (12) - (hyp.4) + (10) + (11)

• lev(τ̇) v σ ⇒ vf = v′f (13) - (hyp.7)

[Property Look-up] Suppose e = e0[e1, P ] for two expressions e0 and e1 (hyp.6). It follows
there are two memories µ0 and µ′0, type-based labellings Σ0 and Σ′0, references r0, r′0, r̂, r̂′,
strings m1 and m′1, and security types τ̇0 and τ̇1, such that:

• r ` 〈µ,Σ, e0〉 ⇓ 〈µ0,Σ0, r0〉, r ` 〈µ0,Σ0, e1〉 ⇓ 〈µf ,Σf ,m1〉, r̂ = Proto(µf , r0,m1), r̂ 6= null⇒ vf =
µf (r̂ ·m1), and r̂ = null⇒ vf = undefined (1) - (hyp.2) + (hyp.6)

• r ` 〈µ′,Σ′, e0〉 ⇓ 〈µ′0,Σ′0, r′0〉, r ` 〈µ′0,Σ′0, e1〉 ⇓ 〈µ′f ,Σ′f ,m′1〉, r̂′ = Proto(µ′f , r
′
0,m

′
1), r̂′ 6= null ⇒

v′f = µ′f (r̂′ ·m′1), and r̂′ = null⇒ v′f = undefined (2) - (hyp.3) + (hyp.6)



156 Appendix B. Proofs of Chapter 5

• Γ, σpc ` e0 : τ̇0, Γ, σpc ` e1 : τ̇1, πtype(�↑ (τ̇0, P )) = τ̇lu, and τ̇ = τ̇
lev(τ̇0)tlev(τ̇1)
lu

(3) - (hyp.1) + (hyp.6)

• µ0,Σ0 ∼σ µ′0,Σ′0, Γ, r  µ0 ∼σ µ′0, lev(τ̇0) v σ ⇒ r0 = r′0
(4) - (hyp.4) + (hyp.5) + (1) + (2) + (3) + ih

• µf ,Σf ∼σ µ′f ,Σ′f , Γ, r  µf ∼σ µ′f , lev(τ̇1) v σ ⇒ m1 = m′1
(5) - (1) + (2) + (3) + (4) + ih

It remains to prove that lev(τ̇) v σ ⇒ vf = v′f . Assuming that lev(τ̇) v σ (hyp.7), it follows
that:

• lev(τ̇0) t lev(τ̇1) t lev(τ̇lu) v σ (6) - (hyp.7) + (3)

• r0 = r′0 and m1 = m′1 (7) - (4)-(6)

• m1 = m′1 ∈ P (8) - (1) + (2) + (7) + Correct Annotation

• lev(πtype(� (τ̇0,m1))) v lev(πtype(�↑ (τ̇0, P ))) = lev(τ̇lu) (9) - (3) + (8)

• lev(πtype(� (τ̇0,m1))) t lev(τ̇0) v σ (10) - (6) + (9)

• Σf (r0) = Σ′f (r′0) � τ̇0 (11) - (1) - (3) + (5) - (7) + Well-Labelling Preservation (Lemma 5.1)

• lev(Σf (r0)) = lev(Σ′f (r′0)) v lev(τ̇0) (12) - (11)

• bΣf (r0)c = bΣ′f (r′0)c = bτ̇0c (13) - (11)

• � (τ̇0,m1) = � (Σf (r0),m1) = � (Σ′f (r′0),m′1) (14) - (13)

• lev(πtype(� (Σf (r0),m1))) = lev(πtype(� (Σ′f (r′0),m′1))) v σ (15) - (10) + (14)

• lev(πtype(� (Σf (r0),m1))) t lev(Σf (r0)) v σ (16) - (12) + (15)

• r̂ = r̂′ and r̂ 6= null⇒ lev(Σf (r̂)) = lev(Σ′f (r̂′)) v σ
(17) - (1) + (2) + (5) + (16) + Prototype-Chain Indistinguishability (Lemma B.2)

We consider two cases: r̂ 6= null or r̂ = null. Suppose r̂ 6= null (hyp.8):

• r̂′ 6= null (18) - (hyp.8) + (17)

• r̂ = r̂′ 6= null and lev(Σf (r̂)) = lev(Σ′f (r̂′)) v σ (19) - (hyp.8) + (17)

• � (Σf (r0),m1) = � (Σf (r̂),m1)
(20) - (hyp.8) + (1) + Well-Typed Prototype Chains (Lemma B.1)

• � (Σ′f (r′0),m1) = � (Σ′f (r̂′),m1)
(21) - (2) + (19) + Well-Typed Prototype Chains (Lemma B.1)

• lev(πtype(� (Σf (r̂),m1))) = lev(πtype(� (Σ′f (r̂),m1))) v σ (22) - (15) + (20) + (21)

• vf = v′f (23) - (1) + (2) + (5) + (19) + (22)

Suppose r̂ = null (hyp.8):

• r̂′ = null (24) - (hyp.8) + (17)

• vf = v′f = undefined (25) - (hyp.8) + (1) + (2) + (24)

[Membership Testing] Suppose e = e0 inP e1 for two expressions e0 and e1 (hyp.6). It follows
that there are two memories µ0 and µ′0, two type-based labellings Σ0 and Σ′0, two references r1

and r′1, two strings m0 and m′0, two security types τ̇0 and τ̇1, and a security level σ′ such that:

• r ` 〈µ,Σ, e0〉 ⇓ 〈µ0,Σ0,m0〉, r ` 〈µ0,Σ0, e1〉 ⇓ 〈µf ,Σf , r1〉, r̂ = Proto(µf , r1,m0), r̂ 6= null⇒ vf =
true, and r̂ = null⇒ v = false (1) - (hyp.2) + (hyp.6)

• r ` 〈µ′,Σ′, e0〉 ⇓ 〈µ′0,Σ′0,m′0〉, r ` 〈µ′0,Σ′0, e1〉 ⇓ 〈µf ,′Σ′f , r′1〉, r̂′ = Proto(µ′f , r
′
1,m

′
0), r̂′ 6= null ⇒

v′f = true, and r̂′ = null⇒ v′f = false (2) - (hyp.2) + (hyp.6)



B.1. Soundness of the Static Type System 157

• Γ, σpc ` e0 : τ̇0, Γ, σpc ` e1 : τ̇1, σ′ = lev(τ̇0) t lev(τ̇1) t πlev(�↑ (τ̇1, P )), and τ̇ = PRIMσ′

(3) - (hyp.1) + (hyp.6)

• µ0,Σ0 ∼σ µ′0,Σ′0, Γ, r  µ0 ∼σ µ′0, lev(τ̇0) v σ ⇒ m0 = m′0
(4) - (hyp.4) + (hyp.5) + (1) - (3) + ih

• µf ,Σf ∼σ µ′f ,Σ′f , Γ, r  µf ∼σ µ′f , lev(τ̇1) v σ ⇒ r1 = r′1 (5) - (1) - (4) + ih

It remains to prove that lev(τ̇) v σ ⇒ vf = v′f . Assuming that lev(τ̇) v σ (hyp.7), it follows
that:

• lev(τ̇0) t lev(τ̇1) t πlev(�↑ (τ̇1, P )) v σ (6) - (hyp.7) + (3)

• m0 = m′0 and r1 = r′1 (7) - (4)-(6)

• m0 = m′0 ∈ P (8) - (1) + (2) + (7) + Correct Annotation

• πlev(� (τ̇1,m0)) v πlev(�↑ (τ̇1, P )) v σ (9) - (6) + (8)

• πlev(� (τ̇1,m0)) v σ (10) - (9)

• Σf (r1)g Σ′f (r′1) � τ̇1 (11) - (1) - (3) + Well-Labelling Preservation (Lemma 5.1)

• Σf (r1) = Σ′f (r′1) � τ̇1 (12) - (5) + (6) + (11)

• bΣf (r1)c ≡ bτ̇1c and lev(Σf (r1)) v lev(τ̇1) (13) - (12)

• πlev(� (Σf (r1),m0)) = πlev(� (τ̇1,m0)) v σ (14) - (10) + (13)

• lev(Σf (r1)) v σ (15) - (6) + (11)

• πlev(� (Σf (r1),m0)) t lev(Σf (r1)) v σ (16) - (14) + (15)

• r̂ = r̂′ and r̂ 6= null⇒ lev(Σf (r̂)) = lev(Σ′f (r̂′)) v σ
(17) - (1) + (2) + (5) + (7) + (16) + Prototype-Chain Indistinguishability (Lemma B.2)

• vf = v′f (18) - (1) + (2) + (17)

[Property Assignment] Suppose e = e0[e1] = e2 for three expressions e0, e1, and e2 (hyp.6).
We conclude that there are six memories µ0, µ1, µ2, µ′0, µ′1, and µ′2, four type-based labellings
Σ0, Σ1, Σ′0, Σ′1, two references r0 and r′0, two strings m1 and m′1, and three security types τ̇0,
τ̇1, and τ̇2, such that:

• r ` 〈µ,Σ, e0〉 ⇓ 〈µ0,Σ0, r0〉, r ` 〈µ0,Σ0, e1〉 ⇓ 〈µ1,Σ1,m1〉, r ` 〈µ1,Σ1, e2〉 ⇓ 〈µ2,Σf , vf 〉, and
µf = µ2[r0 ·m1 7→ vf ] (1) - (hyp.2) + (hyp.6)

• r ` 〈µ′,Σ′, e0〉 ⇓ 〈µ′0,Σ′0, r′0〉, r ` 〈µ′0,Σ′0, e1〉 ⇓ 〈µ′1,Σ′1,m′1〉, r ` 〈µ′1,Σ′1, e2〉 ⇓ 〈µ′2,Σ′f , v′f 〉, and
µ′f = µ′2[r′0 ·m′1 7→ v′f ] (2) - (hyp.3) + (hyp.6)

• Γ, σpc ` e0 : τ̇0, Γ, σpc ` e1 : τ̇1, Γ, σpc ` e2 : τ̇2, τ̇ = τ̇2, τ̇2 � πtype(�↓ (τ̇0, P )), σpc t lev(τ̇0) t
lev(τ̇1) v πlev(�↓ (τ̇0, P )) (3) - (hyp.1) + (hyp.6)

• µ0,Σ0 ∼σ µ′0,Σ′0, Γ, r  µ0 ∼σ µ′0, lev(τ̇0) v σ ⇒ r0 = r′0
(4) - (hyp.4) + (hyp.5) + (1) - (3) + ih

• µ1,Σ1 ∼σ µ′1,Σ′1, Γ, r  µ1 ∼σ µ′1, lev(τ̇1) v σ ⇒ m1 = m′1 (5) - (1) - (4) + ih

• µ2,Σf ∼σ µ′2,Σ′f , Γ, r  µ2 ∼σ µ′2, lev(τ̇2) v σ ⇒ vf = v′f (6) - (1) - (3) + (5) + ih

We distinguish two different cases, either σpct lev(τ̇0)t lev(τ̇1) v σ or σpct lev(τ̇0)t lev(τ̇1) 6v σ.
Suppose σpc t lev(τ̇0) t lev(τ̇1) v σ (hyp.7), it follows that:

• r0 = r′0 and m1 = m′1 (7) - (hyp.7) + (4) + (5)

• Σf (r0)g Σ′f (r0) � τ̇0 (8) - (1) - (3) + (7) + Well-Labelling Preservation (Lemma 5.1)

• Σf (r0) = Σ′f (r0) � τ̇0 (9) - (hyp.7) + (6) + (8)

• bΣf (r0)c ≡ bΣ′f (r0)c ≡ bτ̇0c (10) - (9)



158 Appendix B. Proofs of Chapter 5

• lev(Σf (r0)) = lev(Σ′f (r0)) v lev(τ̇0) v σ (11) - (hyp.7) + (9)

• m1 = m′1 ∈ P (12) - (1) + (2) + (7) + Correct Annotation

• πtype(�↓ (τ̇0, P )) � πtype(� (τ̇0,m1)) (13) - (12)

• πtype(� (τ̇0,m1)) = πtype(� (Σf (r0),m1)) (14) - (10)

• τ̇2 � πtype(� (Σf (r0),m1)) (15) - (3) + (13) + (14)

• lev(Σf (r0)) t lev(πtype(� (Σf (r0),m1))) v σ ⇒ lev(τ̇2) v σ (16) - (11) + (15)

• lev(Σf (r0)) t lev(πtype(� (Σf (r0),m1))) v σ ⇒ vf = v′f (17) - (6) + (16)

• µf ,Σf ∼σ µ′f ,Σ′f
(18) - (1) + (2) + (6) + (17) + Indistinguishable Property Assignment (Lemma B.6)

• Γ, r  µf ∼σ µ′f (19) - (1) + (2) + (6)

Suppose lev(τ̇0) t lev(τ̇1) 6v σ (hyp.7), it follows that:

• Σf (r0)g Σ′f (r′0) � τ̇0 (20) - (1) - (3) + Well-Labelling Preservation (Lemma 5.1)

• bΣf (r0)c ≡ bΣ′f (r′0)c ≡ bτ̇0c (21) - (20)

• {m1,m
′
1} ⊆ P (22) - (1) + (2) + Correct Annotation

• πlev(�↓ (τ̇0, P )) v πlev(� (τ̇0,m1)) u πlev(� (τ̇0,m
′
1)) (23) - (22)

• πlev(� (τ̇0,m1)) u πlev(� (τ̇0,m
′
1)) 6v σ (24) - (3) + (23)

• πlev(� (Σf (r0),m1)) u πlev(� (Σ′f (r′0),m′1)) 6v σ (25) - (21) + (24)

• µ2,Σ2 ∼σ µf ,Σf (26) - (1) + (25) + Confined Property Assignment (Lemma B.4)

• µ′2,Σ′2 ∼σ µ′f ,Σ′f (27) - (2) + (25) + Confined Property Assignment (Lemma B.4)

• µf ,Σf ∼σ µ′f ,Σ′f (28) - (6) + (26) + (27)

• Γ, r  µf ∼σ µ′f (29) - (1) + (2) + (6)

[Function Call] Suppose e = e0(e1) for two expressions e0 and e1 (hyp.6). We conclude that
there are six memories µ0, µ1, µ̂, µ′0, µ′1, and µ̂′, four type-based labellings Σ0, Σ1, Σ′0, and Σ′1,
four references r0, r̂, r′0, and r̂′, two values v1 and v′1, two expressions ê and ê′, two types τ̇1 and
τ̇2, and a security level σ′, such that:

• r ` 〈µ,Σ, e0〉 ⇓ 〈µ0,Σ0, r0〉, r ` 〈µ0,Σ0, e1〉 ⇓ 〈µ1,Σ1, v1〉, r̂ ` 〈µ̂,Σ1, ê〉 ⇓ 〈µf ,Σf , vf 〉, 〈µ̂, ê, r̂〉 =
NewScope(µ1, r0, v1,#glob,Σ1) (1) - (hyp.2) + (hyp.6)

• r ` 〈µ′,Σ′, e0〉 ⇓ 〈µ′0,Σ′0, r′0〉, r ` 〈µ′0,Σ′0, e1〉 ⇓ 〈µ′1,Σ′1, v′1〉, r̂′ ` 〈µ̂′,Σ′1, ê′〉 ⇓ 〈µ′f ,Σ′f , v′f 〉,
〈µ̂′, ê′, r̂′〉 = NewScope(µ′1, r

′
0, v
′
1,#glob,Σ

′
1) (2) - (hyp.3) + (hyp.6)

• Γ, σpc ` e0 : τ̇0, Γ, σpc ` e1 : τ̇1, τ̇0 = 〈τ̇ ′0.τ̇ ′1
σ̂→ τ̇ ′2〉σ̂

′
, σ′ = lev(τ̇0) t σpc v σ̂, τ̇σ

′

global � τ̇ ′0, τ̇σ
′

1 � τ̇ ′1,
and τ̇ = (τ̇ ′2)σ

′
(3) - (hyp.1) + (hyp.6)

• µ0,Σ0 ∼σ µ′0,Σ′0, Γ, r  µ0 ∼σ µ′0, lev(τ̇0) v σ ⇒ r0 = r′0
(4) - (hyp.4) + (hyp.5) + (1) + (2) + (3) + ih

• µ1,Σ1 ∼σ µ′1,Σ′1, Γ, r  µ1 ∼σ µ′1, lev(τ̇1) v σ ⇒ m1 = m′1 (5) - (1) + (2) + (3) + (4) + ih

We consider two cases: σ′ = lev(τ̇0) t σpc v σ and σ′ 6v σ. Suppose σ′ v σ (hyp.7). It follows
that:

• r0 = r′0 (6) - (hyp.7) + (4)

• Σ1(r0)g Σ′1(r′0) � τ̇0 (7) - (1) - (3) + Well-Labelling Preservation (Lemma 5.1)

• Σ1(r0) = Σ′1(r′0) � τ̇0 (8) - (hyp.7) + (5) - (7)

• bΣ1(r0)c ≡ bΣ′1(r′0)c ≡ bτ̇0c ≡ 〈τ̇ ′0.τ̇ ′1
σ̂→ τ̇ ′2〉 (9) - (8)



B.1. Soundness of the Static Type System 159

• lev(Σ1(r0)) = lev(Σ′1(r′0)) v lev(τ̇0) v σ (10) - (hyp.7) + (8)

•


µ1(r0 · "@code") = µ′1(r′0 · "@code") = λΓ̂,Σ1(r0)x.

{
varτ̇y1 ,··· ,τ̇yn y1, · · · , yn; ê

}
µ1(r0 · "@fscope") = µ′1(r′0 · "@fscope") = r̂ = r̂′

Γ̂, r̂  µ1 ∼σ µ′1
ê = ê′

for some typing environment Γ̂ and variables x, y1, · · · , yn (11) - (5) + (9) + (10)

• Γ̄, σ̂ ` ê : τ̇ ′2, where Γ̄ = Γ̂ [this 7→ τ̇ ′0, x 7→ τ̇ ′1, y1 7→ τ̇y1 , · · · , yn 7→ τ̇yn ]
(12) - (11) + Well-Labelling Preservation (Lemma 5.1)

• lev(τ̇ ′0) v σ ⇒ #glob = #glob (13) - tautology

• lev(τ̇ ′1) v σ ⇒ lev(τ̇1) v σ (14) - (3)

• lev(τ̇ ′1) v σ ⇒ v1 = v′1 (15) - (5) + (14)

• Γ̄, r̂  µ̂ ∼σ µ̂′ (16) - (1) + (2) + (5) + (10) - (13) + (15)

• µ̂,Σ1 ∼σ µ̂′,Σ′1 (17) - (1) + (2) + (5)

• µf ,Σf ∼σ µ′f ,Σ′f , Γ, r  µf ∼σ µ′f , lev(τ̇ ′2) v σ ⇒ vf = v′f
(18) - (1) + (2) + (12) + (17) + ih

• lev(τ̇) v σ ⇒ vf = v′f (19) - (3) + (18)

Suppose lev(τ̇0) 6v σ (hyp.7). It follows that:

• σ̂ 6v σ (20) - (hyp.7) + (3)

• Σ1(r0)g Σ′1(r′0) � τ̇0 (21) - (1) - (3) + Well-Labelling Preservation (Lemma 5.1)

• bΣ1(r0)c ≡ bΣ′1(r′0)c ≡ bτ̇0c ≡ 〈τ̇ ′0.τ̇ ′1
σ̂→ τ̇ ′2〉 (22) - (21)

•


µ1(r0 · "@code") = λΓ̂,Σ1(r0)x.

{
varτ̇y1 ,··· ,τ̇yn y1, · · · , yn; ê

}
µ1(r0 · "@fscope") = r̂

Γ̄ = Γ̂ [this 7→ τ̇ ′0, x 7→ τ̇ ′1, y1 7→ τ̇y1 , · · · , yn 7→ τ̇yn ]
Γ̄, σ̂ ` ê : τ̇ ′2

(23) - (21) + (22) + Well-Labelling Preservation (Lemma 5.1)

•


µ′1(r′0 · "@code") = λΓ̂′,Σ′

1(r′0)x′.
{

var
τ̇y′

1
,··· ,τ̇y′

k y′1, · · · , y′k; ê′
}

µ′1(r′0 · "@fscope") = r̂′

Γ̄′ = Γ̂′
[
this 7→ τ̇ ′0, x

′ 7→ τ̇ ′1, y
′
1 7→ τ̇y′1 , · · · , y

′
n 7→ τ̇y′n

]
Γ̄′, σ̂ ` ê′ : τ̇ ′2

(24) - (21) + (22) + Well-Labelling Preservation (Lemma 5.1)

• µ̂ �Σ1,σ= µ1 �Σ1,σ and (µ̂, r) �Γ,σ= (µ1, r) �Γ,σ (25) - (hyp.7) + (1)

• µf �Σf ,σ= µ̂ �Σ1,σ and (µf , r̂) �Γ̄,σ= (µ̂, r̂) �Γ̄,σ (26) - (1) + (20) + (23) + Confinement
(Lemma 5.2)

• µ̂′ �Σ′
1,σ= µ′1 �

Σ′
1,σ and (µ̂′, r) �Γ,σ= (µ′1, r) �

Γ,σ (27) - (hyp.7) + (2)

• µ′f �
Σ′

f ,σ= µ̂′ �Σ
′
1,σ and (µ′f , r̂

′) �Γ̄
′,σ= (µ̂′, r̂′) �Γ̄

′,σ

(28) - (2) + (20) + (24) + Confinement (Lemma 5.2)

• µ1 �Σ1,σ= µ′1 �
Σ′

1,σ and (µ1, r) �Γ,σ= (µ′1, r) �
Γ,σ (29) - (5)

• µf �Σf ,σ= µ′f �
Σ′

f ,σ⇔ µf ,Σf ∼σ µ′f ,Σ′f (30) - (25)-(29)

• Γ, r  µf ∼σ µ′f (31) - (25)-(29)

• lev(τ̇) 6v σ (32) - (hyp.7) + (3)

• lev(τ̇) v σ ⇒ vf = v′f (33) - (32)



160 Appendix B. Proofs of Chapter 5

[Method Call] Suppose e = e0[e1, P ](e2) for two expressions e0 and e1 (hyp.6). We conclude
that there are eight memories µ0, µ1, µ2, µ̂, µ′0, µ′1, µ′2, µ̂′, six type-based labellings Σ0, Σ1, Σ2,
Σ′0, Σ′1, and Σ′2, four references r0, r̂, r′0, and r̂′, two strings m1 and m′1, two values v2 and v′2,
two expressions ê and ê′, three security types τ̇0, τ̇1, and τ̇2, and security level σ′, such that:

• r ` 〈µ,Σ, e0〉 ⇓ 〈µ0,Σ0, r0〉, r ` 〈µ0,Σ0, e1〉 ⇓ 〈µ1,Σ1,m1〉, r ` 〈µ1,Σ1, e2〉 ⇓ 〈µ2,Σ2, v2〉,
r̂ ` 〈µ̂,Σ2, ê〉 ⇓ 〈µf ,Σf , vf 〉, rm = Proto(µ2, r0,m1), rf = µ2(rm · m1), and 〈µ̂, ê, r̂〉 =
NewScope(µ2, rf , v2, r0,Σ2) (1) - (hyp.2) + (hyp.6)

• r ` 〈µ′,Σ′, e0〉 ⇓ 〈µ′0,Σ′0, r′0〉, r ` 〈µ′0,Σ′0, e1〉 ⇓ 〈µ′1,Σ′1,m′1〉, r ` 〈µ′1,Σ′1, e2〉 ⇓ 〈µ′2,Σ′2, v2〉,
r̂′ ` 〈µ̂′,Σ′2, ê′〉 ⇓ 〈µ′f ,Σ′f , v′f 〉, r′m = Proto(µ′2, r

′
0,m

′
1), r′f = µ′2(r′m · m′1), and 〈µ̂′, ê′, r̂′〉 =

NewScope(µ′2, r
′
f , v
′
2, r
′
0,Σ

′
2) (2) - (hyp.3) + (hyp.6)

• Γ, σpc ` ei : τ̇i, σi: i ∈ {0, 1, 2}, πtype(�↑ (τ̇0, P )) = 〈τ̇ ′0.τ̇ ′1
σ̂→ τ̇ ′2〉σ̂

′
, σ′ = σpc t σ̂′ t lev(τ̇0)t lev(τ̇1),

τ̇σ
′

0 � τ̇ ′0, τ̇σ
′

2 � τ̇ ′1, σ′ v σ̂, and τ̇ = (τ̇ ′2)σ
′

(3) - (hyp.1) + (hyp.6)

• µ0,Σ0 ∼σ µ′0,Σ′0, Γ, r  µ0 ∼σ µ′0, lev(τ̇0) v σ ⇒ r0 = r′0
(4) - (hyp.4) + (hyp.5) + (1) + (2) + (3) + ih

• µ1,Σ1 ∼σ µ′1,Σ′1, Γ, r  µ1 ∼σ µ′1, lev(τ̇1) v σ ⇒ m1 = m′1 (5) - (1) + (2) + (3) + (4) + ih

• µ2,Σ2 ∼σ µ′2,Σ′2, Γ, r  µ2 ∼σ µ′2, lev(τ̇2) v σ ⇒ v2 = v′2 (6) - (1) + (2) + (3) + (5) + ih

We consider two cases: either σ′ v σ or σ′ 6v σ. Suppose σ′ v σ (hyp.7). It follows that:

• σpc t σ̂′ t lev(τ̇0) t lev(τ̇1) v σ (7) - (hyp.7) + (3)

• r0 = r′0 and m1 = m′1 (8) - (4) + (5) + (7)

• m1 = m′1 ∈ P (9) - (1) + (2) + (8) + Correct Annotation

• πtype(� (τ̇0,m1)) � πtype(�↑ (τ̇0, P )) = 〈τ̇ ′0.τ̇ ′1
σ̂→ τ̇ ′2〉σ̂

′
(10) - (3) + (9)

• Σ2(r0)g Σ′2(r′0) � τ̇0 (11) - (1) + (2) + (3) + Well-Labelling Preservation (Lemma 5.1)

• Σ2(r0) = Σ′2(r0) � τ̇0 (12) - (hyp.7) + (6)-(8) + (11)

• lev(Σ2(r0)) = lev(Σ′2(r0)) v lev(τ̇0) (13) - (12)

• bΣ2(r0)c = bΣ′2(r0)c = bτ̇0c (14) - (12)

• � (τ̇0,m1) = � (Σ2(r0),m1) = � (Σ′2(r0),m1) (15) - (14)

• πtype(� (Σ2(r0),m1)) = πtype(� (Σ′2(r0),m1)) = πtype(� (τ̇0,m1)) (16) - (15)

• πlev(� (Σ2(r0),m1)) v lev(πtype(� (Σ2(r0),m1))) (17) - Syntax of Types

• lev(πtype(� (Σ2(r0),m1))) = lev(πtype(� (τ̇0,m1))) v σ̂′ v σ (18) - (7) + (10) + (15)

• πlev(� (Σ2(r0),m1)) v σ (19) - (17) + (18)

• lev(Σ2(r0)) v σ (20) - (7) + (12)

• πlev(� (Σ2(r0),m1)) t lev(Σ2(r0)) v σ (21) - (19) + (20)

• rm = r′m and rm 6= null⇒ lev(Σ2(rm)) = lev(Σ′2(r′m)) v σ
(22) - (1) + (2) + (6) + (21) + Prototype-Chain Indistinguishability (Lemma B.2)

• lev(Σ2(rm)) = lev(Σ′2(r′m)) v σ (23) - (1) + (2) + (22)

• Σ2(rm) = Σ′2(rm) (24) - (6) + (22) + (23)

• � (Σ2(r0),m1) = � (Σ2(rm),m1) (25) - (1) + Well-Labelling Preservation (Lemma 5.1)

• � (Σ′2(r0),m1) = � (Σ′2(rm),m1) (26) - (2) + Well-Labelling Preservation (Lemma 5.1)

• lev(πtype(� (Σ2(rm),m1))) = lev(πtype(� (Σ′2(rm),m1))) v σ (27) - (18) + (25) + (26)

• rf = r′f (28) - (1) + (2) + (6) + (8) + (22) + (23) + (27)

• Σ2(rf )g Σ′2(rf ) � πtype(� (τ̇0, P )) (29) - (1) - (3) + Well-Labelling Preservation (Lemma 5.1)



B.1. Soundness of the Static Type System 161

• Σ2(rf ) = Σ′2(rf ) � πtype(� (τ̇0, P )) (30) - (6) + (27) + (29)

• bΣ2(rf )c ≡ bΣ′2(rf )c ≡ bπtype(� (τ̇0, P ))c ≡ 〈τ̇ ′0.τ̇ ′1
σ̂′

→ τ̇ ′2〉 (31) - (30)

• lev(Σ2(rf )) = lev(Σ′2(rf )) v σ̂′ v σ (32) - (8) + (30)

•


µ2(rf · "@code") = µ′2(rf · "@code") = λΓ̂,Σ2(rf )x.

{
varτ̇y1 ,··· ,τ̇yn y1, · · · , yn; ê

}
µ2(rf · "@fscope") = µ′2(rf · "@fscope") = r̂ = r̂′

Γ̂, r̂  µ2 ∼σ µ′2
ê = ê′

for some typing environment Γ̂ and variables x, y1, · · · , yn (33) - (6)

• Γ̄, σ̂ ` ê : τ̇ ′2, where Γ̄ = Γ̂ [this 7→ τ̇ ′0, x 7→ τ̇ ′1, y1 7→ τ̇y1 , · · · , yn 7→ τ̇yn ]
(34) - (33) + Well-Labelling Preservation (Lemma 5.1)

• lev(τ̇ ′0) v σ ⇒ r0 = r0 (35) - tautology

• lev(τ̇ ′1) v σ ⇒ lev(τ̇2) v σ (36) - (3)

• lev(τ̇ ′1) v σ ⇒ v2 = v′2 (37) - (6) + (36)

• Γ̄, r̂  µ̂ ∼σ µ̂′ (38) - (1) + (2) + (6) + (32) + (35) + (37)

• µ̂,Σ2 ∼σ µ̂′,Σ′2 (39) - (1) + (2) + (6)

• µf ,Σf ∼σ µ′f ,Σ′f , Γ, r  µf ∼σ µ′f , lev(τ̇ ′2) v σ ⇒ vf = v′f
(40.1) - (1) + (2) + (34) + (39) + ih

• lev(τ̇) v σ ⇒ lev(τ̇ ′2) v σ (40.2) - (3)

• lev(τ̇) v σ ⇒ vf = v′f (40.3) - (40.1) + (40.2)

Suppose σ′ v σ (hyp.7). It follows that:

• σ̂ 6v σ (41) - (hyp.7) + (3)

• Σ2(rf )g Σ′2(r′f ) � πtype(� (τ̇0, P )) (42) - (1) - (3) + Well-Labelling Preservation (Lemma 5.1)

• bΣ2(rf )c ≡ bΣ′2(r′f )c ≡ bπtype(� (τ̇0, P ))c ≡ 〈τ̇ ′0.τ̇ ′1
σ̂′

→ τ̇ ′2〉 (43) - (42)

•


µ2(rf · "@code") = λΓ̂,Σ2(rf )x.

{
varτ̇y1 ,··· ,τ̇yn y1, · · · , yn; ê

}
µ2(rf · "@fscope") = r̂
Γ̄ ` ê : τ̇ ′2, σ̂

′

Γ̄ = Γ̂ [this 7→ τ̇ ′0, x 7→ τ̇ ′1, y1 7→ τ̇y1 , · · · , yn 7→ τ̇yn ]

for some typing environment Γ̂ and variables x, y1, · · · , yn
(44) - (1) + (3) + (43) + Well-Labelling Preservation (Lemma 5.1)

•


µ′2(r′f · "@code") = λΓ̂′,Σ′

2(r′f )x′.
{

var
τ̇ ′
y′
1
,··· ,τ̇ ′

y′
k y′1, · · · , y′k; ê′

}
µ′2(r′f · "@fscope") = r̂′

Γ̄′ ` ê′ : τ̇ ′2, σ̂
′

Γ̄′ = Γ̂′
[
this 7→ τ̇ ′0, x

′ 7→ τ̇ ′1, y
′
1 7→ τ̇ ′y′1

, · · · , y′n 7→ τ̇ ′y′n

]
(45) - (2) + (3) + (43) + Well-Labelling Preservation (Lemma 5.1)

• µ̂ �Σ2,σ= µ2 �Σ2,σ and (µ̂, r) �Γ,σ= (µ2, r) �Γ,σ (46) - (1)

• µf �Σf ,σ= µ̂ �Σ2,σ and (µf , r̂) �Γ̄,σ= (µ̂, r̂) �Γ̄,σ (47) - (1) + (44) + Confinement (Lemma 5.2)

• µ̂′ �Σ′
2,σ= µ′2 �

Σ′
2,σ and (µ̂′, r) �Γ,σ= (µ′2, r) �

Γ,σ (48) - (2)

• µ′f �
Σ′

f ,σ= µ̂′ �Σ
′
2,σ and (µ′f , r̂

′) �Γ̄
′,σ= (µ̂′, r̂′) �Γ̄

′,σ (49) - (2) + (45) + Confinement (Lemma 5.2)

• µ2 �Σ2,σ= µ′2 �
Σ′

2,σ and (µ2, r) �Γ,σ= (µ′2, r) �
Γ,σ (50) - (6)

• µf �Σf ,σ= µ′f �
Σ′

f ,σ⇔ µf ,Σf ∼σ µ′f ,Σ′f (51) - (46)-(50)

• Γ, r  µf ∼σ µ′f (52) - (46)-(50)



162 Appendix B. Proofs of Chapter 5

• lev(τ̇) 6v σ (53) - (hyp.7) + (3)

• lev(τ̇) v σ ⇒ vf = v′f (54) - (53)

[Property Deletion] Suppose e = delete e0[p] for some expression e0 and property p (hyp.6).
It follows that there are two memories µ0 and µ′0, two references r0 and r′0, a security type τ̇0,
and a security level σ0 such that:

• r ` 〈µ,Σ, e0〉 ⇓ 〈µ0,Σf , r0〉, µf = µ0

[
r0 7→ µ0(r0)|dom(µ0(r0)−p)

]
, and vf = true

(1) - (hyp.2) + (hyp.6)

• r ` 〈µ′,Σ′, e0〉 ⇓ 〈µ′0,Σ′f , r′0〉, µ′f = µ′0
[
r′0 7→ µ′0(r′0)|dom(µ′

0(r′0)−p)
]
, and v′f = true

(2) - (hyp.3) + (hyp.6)

• Γ, σpc ` e0 : τ̇0, πlev(� (τ̇0, p)) = σ0, lev(τ̇0) v σ0, and τ̇ = PRIM
⊥ (3) - (hyp.1) + (hyp.6)

• µ0,Σ0 ∼σ µ′0,Σ′0, Γ, r  µ0 ∼σ µ′0, lev(τ̇0) v σ ⇒ r0 = r′0
(4) - (hyp.4) + (hyp.5) + (1) + (2) + (3) + ih

• Γ, r  µf ∼σ µ′f (5) - (1) + (2) + (4)

• vf = v′f = true (6) - (1) + (2)

• lev(τ̇) v σ ⇒ vf = v′f (7) - (6)

We consider two cases: either lev(τ̇0) v σ or lev(τ̇0) 6v σ. Suppose lev(τ̇0) v σ (hyp.7). It
follows that:

• r0 = r′0 (8) - (hyp.7) + (4)

• µf ,Σf ∼σ µ′f ,Σ′f (9) - (1) + (2) + (4) + (8)

Suppose lev(τ̇0) 6v σ (hyp.7). It follows that:

• σ0 = πlev(� (τ̇0, p)) 6v σ (10) - (hyp.7) + (4)

• Σf (r0)g Σ′f (r′0) � τ̇0 (11) - (1)-(3) + Well-Labelling Preservation (Lemma 5.1)

• bΣf (r0)c ≡ bΣ′f (r′0)c ≡ bτ̇0c (12) - (11)

• πlev(� (τ̇0, p)) = πlev(� (Σf (r0), p)) = πlev(� (Σ′f (r′0), p)) (13) - (12)

• πlev(� (Σf (r0), p)) = πlev(� (Σ′f (r′0), p)) 6v σ (14) - (10) + (13)

• µf ,Σf ∼σ µ′f ,Σ′f (15) - (1) + (2) + (4) + (14)

[Sequence] Suppose e = e0, e1 for two expressions e0 and e1 (hyp.6). We conclude that there
are two memories µ0 and µ′0, two type-based labellings Σ0 and Σ′0, two values v0 and v′0, and
two security types τ̇0 and τ̇1, such that:

• r ` 〈µ,Σ, e0〉 ⇓ 〈µ0,Σ0, v0〉 and r ` 〈µ0,Σ0, e1〉 ⇓ 〈µf ,Σf , vf 〉 (1) - (hyp.2) + (hyp.6)

• r ` 〈µ′,Σ′, e0〉 ⇓ 〈µ′0,Σ′0, v′0〉 and r ` 〈µ′0,Σ′0, e′1〉 ⇓ 〈µ′f ,Σ′f , v′f 〉 (2) - (hyp.3) + (hyp.6)

• Γ, σpc ` e0 : τ̇0, Γ, σpc ` e1 : τ̇1, and τ̇ = τ̇1 (3) - (hyp.1) + (hyp.6)

• µ0,Σ0 ∼σ µ′0,Σ′0, Γ, r  µ0 ∼σ µ′0, lev(τ̇0) v σ ⇒ v0 = v′0
(4) - (hyp.4) + (hyp.5) + (1) + (2) + (3) + ih

• µf ,Σf ∼σ µ′f ,Σ′f , Γ, r  µf ∼σ µ′f , lev(τ̇) v σ ⇒ vf = v′f (5) - (1) + (2) + (3) + (4) + ih

[Conditional Expression] Suppose e = e0 ? (e1) : (e2) for three expressions e0, e1, and e2

(hyp.6). We conclude that there are two memories µ0 and µ′0, two type-based labellings Σ0 and
Σ′0, two values v0 and v′0, and two three types τ̇0, τ̇1, and τ̇2, such that:

• r ` 〈µ,Σ, e0〉 ⇓ 〈µ0,Σ0, v0〉 and r ` 〈µ0,Σ0, ei〉 ⇓ 〈µf ,Σf , vf 〉 where: v0 6∈ VF ⇒ i = 1 and
v0 ∈ VF ⇒ i = 2 (1) - (hyp.2) + (hyp.6)



B.1. Soundness of the Static Type System 163

• r ` 〈µ′,Σ′, e0〉 ⇓ 〈µ′0,Σ′0, v′0〉 and r ` 〈µ′0,Σ′0, ej〉 ⇓ 〈µ′f ,Σ′f , v′f 〉 where: v′0 6∈ VF ⇒ j = 1 and
v′0 ∈ VF ⇒ j = 2 (2) - (hyp.3) + (hyp.6)

• Γ, σpc ` e0 : τ̇0, Γ, σpc t lev(τ̇0) ` ei : τ̇i for i = 1, 2, and τ̇ = (τ̇1 g τ̇2)lev(τ̇0)

(3) - (hyp.1) + (hyp.6)

• µ0,Σ0 ∼σ µ′0,Σ′0, Γ, r  µ0 ∼σ µ′0, lev(τ̇0) v σ ⇒ v0 = v′0
(4) - (hyp.4) + (hyp.5) + (1) + (2) + (3) + ih

We consider two cases: lev(τ̇0) v σ and lev(τ̇0) 6v σ. Suppose lev(τ̇0) v σ (hyp.7). It follows
that:

• v0 = v′0 (5) - (hyp.7) + (4)

• i = j (6) - (1) + (2) + (5)

• µf ,Σf ∼σ µ′f ,Σ′f , Γ, r  µf ∼σ µ′f , lev(τ̇i) v σ ⇒ vf = v′f
(7) - (1) + (2) + (3) + (4) + (6) + ih

• lev(τ̇) v σ ⇒ lev(τ̇i) v σ (8) - (3)

• lev(τ̇) v σ ⇒ vf = v′f (9) - (7) + (8)

Suppose lev(τ̇0) 6v σ (hyp.7)

• σpc t lev(τ̇0) 6v σ (10) - (hyp.7) + (3)

• µf �Σf ,σ= µ0 �Σ0,σ and (µf , r) �Γ,σ= (µ0, r) �Γ,σ (11) - (1) + (10) + Confinement (Lemma 5.2)

• µ′f �
Σ′

f ,σ= µ′0 �
Σ′

0,σ and (µ′f , r) �
Γ,σ= (µ′0, r) �

Γ,σ (12) - (2) + (10) + Confinement (Lemma 5.2)

• µ0 �Σ0,σ= µ′0 �
Σ′

0,σ and (µ0, r) �Γ,σ= (µ′0, r) �
Γ,σ (13) - (4)

• µf �Σf ,σ= µ′f �
Σ′

f ,σ⇔ µf ,Σf ∼σ µ′f ,Σ′f (14) - (11)-(13)

• Γ, r  µf ∼σ µ′f (15) - (11)-(13)

• lev(τ̇) 6v σ (16) - (hyp.7)

• lev(τ̇) v σ ⇒ vf = v′f (17) - (16)

[Function Literal] Suppose e = functionΓ,τ̇ ,i(x){varτ̇1,··· ,τ̇n y1, · · · , yn; ê} (hyp.6).
Let f = λΓ,τ̇x.

{
varτ̇1,··· ,τ̇n y1, · · · , yn; ê

}
, we conclude that there are two references r̂ and r̂′,

such that:

• µf = µ [r̂ 7→ ["@fscope" 7→ r, "@code" 7→ f ]], Σf = Σ [r̂ 7→ τ̇ ], and r̂ = fresh(lev(τ̇))
(1) - (hyp.1) + (hyp.2) + (hyp.6)

• µ′f = µ′ [r̂′ 7→ ["@fscope" 7→ r, "@code" 7→ f ]], Σ′f = Σ′ [r̂′ 7→ τ̇ ], and r̂′ = fresh(lev(τ̇))
(2) - (hyp.1) + (hyp.3) + (hyp.6)

We consider two cases: either lev(τ̇) v σ or lev(τ̇) 6v σ. Suppose lev(τ̇) v σ (hyp.7):

• r̂ = r̂′ (3) - (hyp.4) + (hyp.7) + (1) + (2)

• µf �Σf ,σ= µ �Σ,σ ∪{(r̂, f, r, (µ, r) �Γ,σ)} (4) - (hyp.7) + (1)

• µ′f �
Σ′

f ,σ= µ′ �Σ
′,σ ∪{(r̂, f, r, (µ′, r) �Γ,σ)} (5) - (hyp.7) + (1)

• µ �Σ,σ= µ′ �Σ
′,σ (6) - (hyp.4)

• (µ, r) �Γ,σ= (µ′, r) �Γ,σ (7) - (hyp.5)

• µf ,Σf ∼σ µ′f ,Σ′f (8) - (4)-(7)

• Γ, r  µf ∼σ µ′f (9) - (1) + (2)

• lev(τ̇) v σ ⇒ vf = v′f (10) - (1) + (2) + (3)

Suppose lev(τ̇) 6v σ (hyp.7):



164 Appendix B. Proofs of Chapter 5

• µf �Σf ,σ= µ �Σ,σ (11) - (hyp.7) + (1)

• µ′f �
Σ′

f ,σ= µ′ �Σ
′,σ (12) - (hyp.7) + (2)

• µf ,Σf ∼σ µ′f ,Σ′f (13) - (hyp.4) + (11) + (12)

• Γ, r  µf ∼σ µ′f (14) - (1) + (2)

• lev(τ̇) v σ ⇒ vf = v′f (15) - (hyp.7)

�

B.2 Soundness of the Hybrid Type System

The following lemma states that the execution of a typable expression preserves the well-typing
predicate for memories. In other words, the execution of a typable expression in a well-typed
memory always generates a well-typed memory.

Lemma B.7 ( Well-Typing Preservation). For any two memories µ and µ′, type-based labellings
Σ and Σ′, reference r, expressions e, e′, and e′′, value v, typing environment Γ, level set L, and
type set T , such that:

• Γ, L ` e e′/e′′ : T (hyp.1)

• r ` 〈µ,Σ, e〉 ⇓ 〈µ′,Σ′, v〉 (hyp.2)

• µ is well-typed by Σ (hyp.3)

It holds that: µ′ is well-typed by Σ′ and if v ∈ Ref, it holds that: ∀(τ̇ ,ω)∈T µ
′, r � ω ⇒ Σ′(v) � τ̇ .

Proof: The result follows by induction on (hyp.2). �
Suppose that a program is typable using the hybrid type system with a level set L (that

represents the possible levels of the program counter). Lemma B.8 states that for every pair
(σ, ω) ∈ L, if the assertion ω holds in the final memory, then the execution of the instrumented
expression generated by the type system is confined at level σ. In other words, if σ is a possible
context level, whenever its corresponding assertion holds, the execution of the instrumented
expression generated by the type system only changes the resources whose levels are higher than
or equal to σ.

Lemma B.8 (Confinement). For any two memories µ and µ′, type-based labellings Σ and Σ′,
reference r, expressions e, e′, and e′′, value v, typing environment Γ, level set L, type set T , and
security level σ, such that:

• Γ, L ` e e′/e′′ : T (hyp.1)

• r ` 〈µ,Σ, e〉 ⇓ 〈µ′,Σ′, v〉 (hyp.2)

• µ is well-typed by Σ (hyp.3)

It holds that: ∀(σ′,ω)∈L µ
′, r � ω ∧ σ′ 6v σ ⇒ µ �Σ,σ= µ′ �Σ

′,σ ∧ (µ, r) �Γ,σ= (µ′, r) �Γ,σ.

Proof: The result follows by induction on (hyp.2). �
Theorem 5.2 - Transparency

Proof: We have to prove that given that:

• Γ ` e e′/e′′ : T, L (hyp.1)



B.2. Soundness of the Hybrid Type System 165

• r ` 〈µ′,Σ, e′〉 ⇓ 〈µ′f ,Σf , vf 〉 (hyp.2)

• µ 'hts µ′ (hyp.3)

then, it holds that there exists a memory µf such that:

• r ` 〈µ,Σ, e〉 ⇓ 〈µf ,Σf , vf 〉;

• µf 'hts µ′f ;

•
(
e′′ ∈ Prim ∧ e′′ = vf

)
∨
(
e′′ ∈ Var ∧ me′′ = string(e′′) ∧ µ′f (r · e′′) = vf

)
We proceed by induction on the derivation of (hyp.2). For simplicity, we structure our analysis
of the cases according to the last rule used in the typing of e.

[Val] e = v for some value v (hyp.4). We conclude that:

• e′ = v and e′′ = v (1) - (hyp.1) + (hyp.4)

• vf = v (2) - (hyp.2) + (hyp.4)

• µ′f = µ′ and Σf = Σ (3) - (hyp.2) + (hyp.4)

If we make µf = µ (hyp.5), we conclude that:

• r ` 〈µ,Σ, e〉 ⇓ 〈µf ,Σf , vf 〉 (4) - (hyp.4) + (hyp.5) + (2) + (3)

• µf 'hts µ′f (5) - (hyp.3) + (hyp.5) + (3)

• e′′ ∈ Prim ∧ e′′ = vf (6) - (1) + (2)

[This] e = thisi (hyp.4). We conclude that:

• e′ = $vi = this and e′′ = $vi (1) - (hyp.1) + (hyp.4)

• vf = µ′(r · "@this") (2) - (hyp.2) + (hyp.4)

• µ′f = µ′[r · $vi 7→ vf ] and Σf = Σ (3) - (hyp.2) + (hyp.4)

• e′′ ∈ Var ∧ mi = string($vi) ∧ µ′f (r ·mi) = vf (4) - (1) + (2)

• µ′(r · "@this") = µ(r · "@this") (5) - (hyp.3)

If we make µf = µ (hyp.5), we conclude that:

• r ` 〈µ,Σ, e〉 ⇓ 〈µf ,Σf , vf 〉 (6) - (hyp.4) + (hyp.5) + (2) + (5)

• µf 'hts µ′f (7) - (hyp.3) + (hyp.5) + (3)

[Variable] e = xi for some variable x and index i (hyp.4). Letting mx = string(x) and mi =
string($vi), we conclude that there is a reference rx such that:

• e′ = $vi = x and e′′ = $vi (1) - (hyp.1) + (hyp.4)

• vf = µ′(rx ·mx) and rx = Scope(µ′, r, x) (2) - (hyp.2) + (1)

• µ′f = µ′[r ·mi 7→ vf ] and Σf = Σ (3) - (hyp.2) + (hyp.4)

• e′′ ∈ Var ∧ µ′f (r · $vi) = vf (4) - (1) + (2)

• rx = Scope(µ, r, x) and µ(rx ·mx) = µ′(rx ·mx) (5) - (hyp.3) + (2)

Letting µf = µ (hyp.5), we conclude that:

• r ` 〈µ,Σ, e〉 ⇓ 〈µf ,Σf , vf 〉 (6) - (hyp.4) + (hyp.5) + (3) + (5)

• µf 'hts µ′f (7) - (hyp.3) + (hyp.5) + (3)



166 Appendix B. Proofs of Chapter 5

[Binary Operation] e = e0 opj e1 for two expressions e0 and e1 and index j (hyp.4). We
conclude that there are four memories µ0, µ′0, µ1, and µ′1, a type-based labelling Σ0, and two
values v0 and v1 such that:

• Γ ` ei  e′i/e
′′
i : Ti, Li, where i ∈ {0, 1} and e′ = e′0, e

′
1, $vj = e′′0 op e′′1 (1) - (hyp.1) + (hyp.4)

• r ` 〈µ′,Σ, e′0〉 ⇓ 〈µ′0,Σ0, v0〉 and r ` 〈µ′0,Σ0, e
′
1〉 ⇓ 〈µ′1,Σf , v1〉 (2) - (hyp.2) + (hyp.4)

• r ` 〈µ,Σ, e0〉 ⇓ 〈µ0,Σ0, v0〉, µ0 'hts µ′0, and:(
e′′0 ∈ Prim ∧ e′′0 = v0

)
∨
(
e′′0 ∈ Var ∧ µ′0(r · string(e′′0)) = v0

)
(3) - (hyp.3) + (1) + (2) + ih

• r ` 〈µ0,Σ0, e1〉 ⇓ 〈µ1,Σ1, v1〉, µ1 'hts µ′1, and:(
e′′1 ∈ Prim ∧ e′′1 = v1

)
∨
(
e′′1 ∈ Var ∧ µ′1(r · string(e′′1)) = v1

)
(4) - (hyp.3) + (1) + (2) + ih

• r ` 〈µ′1,Σf , e′′0〉 ⇓ 〈µ′′1 ,Σf , v0〉 and r ` 〈µ′1,Σf , e′′1〉 ⇓ 〈µ′′1 ,Σf , v1〉
(5) - (3) + (4) + Invariance of Bookkeeping Expressions

• vf = v0 op v1 and µ′f = µ′1[r · string($vj) 7→ vf ] (6) - (1) + (2) + (5)

• e′′ ∈ Var ∧ µ′f (r · string($vj)) = vf (7) - (1) + (6)

• r ` 〈µ,Σ, e〉 ⇓ 〈µf ,Σf , vf 〉 (8) - (hyp.4) + (3) + (4)

• µf 'hts µ′f (9) - (4) + (6)

[Object Literal] e = { }τ̇ ,i for an index i and a type τ̇ (hyp.4). We conclude that:

• e′ = $vi = { }τ and e′′ = $vi (1) - (hyp.1) + (hyp.4)

• vf = rf = fresh(lev(τ̇)) (2) - (hyp.2) + (1)

• µ′f = µ[rf 7→ ["_prot_" 7→ null] , r 7→ µ(r)[string($vi) 7→ rf ]] and Σf = Σ [rf 7→ τ̇ ] (3) - (hyp.2)

• e′′ ∈ Var ∧ µ′f (r · string($vi)) = vf (4) - (1) - (3)

Letting µf = µ(r · string($vi)) (hyp.5), we conclude that:

• r ` 〈µ,Σ, e〉 ⇓ 〈µf ,Σf , vf 〉 (5) - (hyp.4) + (hyp.5) + (2) + (3)

• µf 'hts µ′f (6) - (hyp.3) + (hyp.5) + (3)

[Variable Assignment] e = x = e0 for some variable x and expression e0 (hyp.4). Letting
mx = string(x), we conclude that there are two memories µ0 and µ′0 such that:

• e′ = e′0,Wrap(ω, x = e′′0) and e′′ = e′′0 and Γ ` e0  e′0/e
′′
0 : T0, L0 (1) - (hyp.1) + (hyp.4)

• r ` 〈µ′,Σ, e′0〉 ⇓ 〈µ′0,Σf , v0〉 and µ′f = µ′0[r ·mx 7→ v0] (2) - (hyp.2) + (1)

• r ` 〈µ,Σ, e0〉 ⇓ 〈µ0,Σ0, v0〉, µ0 'hts µ′0, and:(
e′′0 ∈ Prim ∧ e′′0 = v0

)
∨
(
e′′0 ∈ Var ∧ µ′0(r · string(e′′0)) = v0

)
(3) - (hyp.3) + (1) + (2) + ih

• µ′f = µ′0[r ·mx 7→ v0] (4) - (hyp.2) + (3)

• e′′0 ∈ Prim ∧ e′′0 = v0 ∨ e′′0 ∈ Var ∧ µ′f (r · e′′0) = v0 (5) - (3) + (4)

Letting µf = µ0[r ·mx 7→ v0] (hyp.5), we conclude that:

• r ` 〈µ,Σ, e〉 ⇓ 〈µf ,Σf , vf 〉 (6) - (hyp.4) + (hyp.5) + (3)-(5)

• µf 'hts µ′f (7) - (hyp.3) + (hyp.5) + (3)-(5)

[Property Look-up] e = e0[e1, P ]j for two expressions e0 and e1 (hyp.4). It follows that there
are three memories µ0, µ1, µ′0, and µ′1, a labelling Σ0, two references r0 and r̂, and a string m1

such that:



B.2. Soundness of the Hybrid Type System 167

• Γ ` ei  e′i/e
′′
i : Ti, Li for i = 0, 1 and e′ = e′0, e

′
1, $vj = e′′0 [e′′1 ] (1) - (hyp.1) + (hyp.4)

• r ` 〈µ′,Σ, e′0〉 ⇓ 〈µ′0,Σ0, r0〉, and r ` 〈µ′0,Σ0, e
′
1〉 ⇓ 〈µ′1,Σf ,m1〉 (2) - (hyp.2) + (hyp.4)

• r ` 〈µ,Σ, e0〉 ⇓ 〈µ0,Σ0, r0〉, µ0 'hts µ′0, and:(
e′′0 ∈ Prim ∧ e′′0 = r0

)
∨
(
e′′0 ∈ Var ∧ µ′0(r · string(e′′0)) = r0

)
(3) - (hyp.3) + (1) + (2) + ih

• r ` 〈µ0,Σ0, e1〉 ⇓ 〈µf ,Σf ,m1〉, µf 'hts µ′1, and:(
e′′1 ∈ Prim ∧ e′′1 = m1

)
∨
(
e′′1 ∈ Var ∧ µ′1(r · string(e′′1)) = m1

)
(4) - (1) - (3) + ih

• µ′f = µ′1[r · string($vj) 7→ vf ], r̂ = Proto(µ′1, r0,m1), and vf = µ′1(r̂ ·m1) (5) - (hyp.2) + (2) - (4)

•
(
r̂ = Proto(µf , r0,m1) ∧ µ1(r̂ ·m1) = vf

)
∨
(
null = Proto(µf , r0,m1) ∧ vf = undefined

)
(6) - (4) + (5)

• r ` 〈µ,Σ, e〉 ⇓ 〈µf ,Σf , vf 〉 (7) - (hyp.4) + (3) + (4) + (6)

• µf 'hts µ′f (8) - (4) + (5)

The remaining cases are proven in a similar fashion.

Theorem 5.3 - Noninterference - Hybrid Type System

Proof: We have to prove that given that:

• Γ, Lpc ` e e′/e′′ : T (hyp.1)

• r ` 〈µ,Σ, e′〉 ⇓ 〈µf ,Σf , vf 〉 (hyp.2)

• r ` 〈µ′,Σ′, e′〉 ⇓ 〈µ′f ,Σ′f , v′f 〉 (hyp.3)

• µ,Σ ∼σ µ′,Σ′ (hyp.4)

• Γ, r  µ ∼σ µ′ (hyp.5)

then, it holds that:

• µf ,Σf ∼σ µ′f ,Σ′f ,

• Γ, r  µf ∼σ µ′f ,

• for all (τ̇ , ω) ∈ T , if lev(τ̇) v σ then: µf , r � ω ⇔ µ′f , r � ω and µ, r � ω ⇒ vf = v′f .

We proceed by induction on the derivation of (hyp.2). For simplicity, we structure our analysis
of the cases according to the last rule used in the typing of e.

[Val] Suppose e = v for some value v (hyp.6). We conclude that:

• e′ = v (1) - (hyp.1) + (hyp.6)

• vf = v′f = v (2) - (hyp.2) + (hyp.3) + (hyp.6)

• µf = µ, µ′f = µ′, Σf = Σ, Σ′f = Σ′ (3) - (hyp.2) + (hyp.3) + (hyp.6) + (1)

• µf ,Σf ∼σ µ′f ,Σ′f (4) - (hyp.4) + (3)

• Γ, r  µf ∼σ µ′f (5) - (hyp.5) + (3)

• T = {(PRIM⊥, true)} (6) - (hyp.1) + (hyp.6)

• µf , r � true and µ′f , r � true (7) - tautology

• µf , r � true⇒ vf = v′f (8) - (2)

• µf , r � true⇔ µ′f , r � true (9) - (7)



168 Appendix B. Proofs of Chapter 5

[This] Suppose e = this (hyp.6). We conclude that:

• e′ = $vi = this (1) - (hyp.1) + (hyp.6)

• vf = µ(r · "@this") and v′f = µ′(r · "@this") (2) - (hyp.2) + (hyp.3) + (1)

• lev(Γ(this)) v σ ⇒ vf = v′f (3) - (hyp.5) + (2)

• µf = µ, µ′f = µ′, Σf = Σ, and Σ′f = Σ′. (4) - (hyp.2) + (hyp.3) + (1)

• µf ,Σf ∼σ µ′f ,Σ′f (5) - (hyp.4) + (4)

• Γ, r  µf ∼σ µ′f (6) - (hyp.5) + (4)

• T = {(Γ(this), true)} (7) - (hyp.1) + (hyp.6)

In order to prove the third claim of the lemma, suppose that lev(Γ(this)) v σ (hyp.7). It follows
that:

• µf , r � true⇔ µ′f , r � true (8) - tautology

• vf = v′f (9) - (hyp.7) + (3)

• µf , r � true⇒ vf = v′f (10) - (9)

[Variable] Suppose e = xi, for some variable x and index i (hyp.6). Let mx = string(x), we
conclude that there are two references rx and r′x such that:

• e′ = $vi = x (1) - (hyp.2) + (hyp.6)

• µ = µf , Σ = Σf , vf = µ(rx ·mx), and rx = Scope(µ, r, x)
(2) - (hyp.2) + (1)

• µ′ = µ′f , Σ′ = Σ′f , v
′
f = µ′(r′x · x), and r′x = Scope(µ′, r, x)

(3) - (hyp.3) + (1)

• lev(Γ(x)) v σ ⇒ vf = v′f (4) - (hyp.5) + (2) + (3)

• µf ,Σf ∼σ µ′f ,Σ′f (5) - (hyp.4) + (2) + (3)

• Γ, r  µf ∼σ µ′f (6) - (hyp.5) + (2) + (3)

• T = {(Γ(x), true)} (7) - (hyp.1) + (hyp.6)

Suppose that lev(Γ(x)) v σ (hyp.7). It follows that:

• µf , r � true⇔ µ′f , r � true (8) - tautology

• vf = v′f (9) - (hyp.7) + (4)

• µf , r � true⇒ vf = v′f (10) - (9)

[Binary Operation] Suppose e = e0 opj e1 for two exprs. e0 and e1 (hyp.6). We conclude that
there are four memories µ0, µ1, µ′0, and µ′1, four type-based labellings Σ0 and Σ′0, four values
v0, v1, v′0, and v′1, two type sets T0 and T1, four expressions e′0, e′′0, e′1, e′′1 such that:

• Γ, Lpc ` ei  e′i/e′′i : Ti for i ∈ {0, 1}, e′ = e′0, e
′
1, $vj = e′′0 op e′′1 , and T = T0 ⊕g T1.

(1) - (hyp.1) + (hyp.6)

• r ` 〈µ,Σ, e′0〉 ⇓ 〈µ0,Σ0, v0〉, r ` 〈µ0,Σ0, e
′
1〉 ⇓ 〈µ1,Σf , v1〉, and vf = v0 op v1

(2) - (hyp.2) + (1)

• r ` 〈µ′,Σ′, e′0〉 ⇓ 〈µ′0,Σ′0, v′0〉, r ` 〈µ′0,Σ′0, e′1〉 ⇓ 〈µ′1,Σ′f , v′1〉, and v′f = v′0 op v′1
(3) - (hyp.3) + (1)

• µ0,Σ0 ∼σ µ′0,Σ′0, Γ, r  µ0 ∼σ µ′0, and:

∀(τ̇0,ω0)∈T0
lev(τ̇0) v σ ⇒ (µ0, r � ω0 ⇔ µ′0, r � ω0) ∧ (µ0, r � ω0 ⇒ v0 = v′0)

(4) - (hyp.4) + (hyp.5) + (1) + (2) + (3) + ih



B.2. Soundness of the Hybrid Type System 169

• µ1,Σ1 ∼σ µ′1,Σ′1, Γ, r  µ1 ∼σ µ′1, and:

∀(τ̇1,ω1)∈T1
lev(τ̇1) v σ ⇒ (µ1, r � ω1 ⇔ µ′1, r � ω1) ∧ (µ1, r � ω1 ⇒ v1 = v′1)

(5) - (1) + (2) + (3) + (4) + ih

• µf ,Σf ∼σ µ′f ,Σ′f and Γ, r  µf ∼σ µ′f (6) - (2) + (3) + (5)

• ∀(τ̇ ,ω)∈T ∀µ̂,r̂ µ̂, r̂ � ω ⇔ ∃(τ̇0,ω0)∈T0
∃(τ̇1,ω1)∈T1

µ̂, r̂ � (ω0 ∧ ω1) ∧ τ̇ = τ̇0 g τ̇1 (7) - (1)

Suppose that (τ̇ , ω) ∈ T (hyp.7), lev(τ̇) v σ (hyp.8), and µf , r � ω (hyp.9). It follows that there
are (τ̇0, ω0) ∈ T0 and (τ̇1, ω1) ∈ T1 such that:

• µf , r � (ω0 ∧ ω1) and τ̇ = τ̇0 g τ̇1 (8) - (hyp.7) + (hyp.8) + (7)

• µf , r � ω0, µf , r � ω1, and τ̇ = τ̇0 g τ̇1. (9) - (8)

• µf , r � ω0 ⇔ µ0, r � ω0 and µf , r � ω1 ⇔ µ1, r � ω1

(10) - (hyp.7) + (1) + (2) + Invariance of Dynamic Assertions

• µ′f , r � ω0 ⇔ µ′0, r � ω0 and µ′f , r � ω1 ⇔ µ′1, r � ω1

(11) - (hyp.7) + (1) + (3) + Invariance of Dynamic Assertions

• µ0, r � ω0 and µ1, r � ω1 (12) - (9) + (10)

• lev(τ̇0) v σ and lev(τ̇1) v σ (13) - (hyp.8) + (9)

• µ′0, r � ω0 and v0 = v′0 (14) - (4) + (12) + (13)

• µ′1, r � ω1 and v1 = v′1 (15) - (5) + (12) + (13)

• µ′f , r � ω0 and µ′f , r � ω1 (16) - (11) + (14) + (15)

• µ′f , r � ω0 ∧ ω1 (17) - (16)

• vf = v′f (18) - (2) + (3) + (14) + (15)

[Object Literal] Suppose e = { }τ̇ ,i for an index i and a type τ̇ (hyp.6). We conclude that
there are two references r̂ and r̂′ such that:

• T = {(τ̇ , true)} and e′ = $vi = { }τ (1) - (hyp.1) + (hyp.6)

• r̂ = fresh(lev(τ̇)), µ̂ = µ [r̂ 7→ ["_prot_" 7→ null]], Σf = Σ [r̂ 7→ τ̇ ], and vf = r̂
(2) - (hyp.2) + (hyp.6)

• r̂′ = fresh(lev(τ̇ ′)), µ̂′ = µ′ [r̂′ 7→ ["_prot_" 7→ null]], Σ′f = Σ′ [r̂′ 7→ τ̇ ], and v′f = r̂′

(3) - (hyp.3) + (hyp.6)

• Γ, r  µf ∼σ µ′f (4) - (hyp.5) + (2) + (3)

Suppose that (τ̇ ′, ω) ∈ T (hyp.7), it follows that τ̇ ′ = τ̇ and ω = true. We consider two cases:
either lev(τ̇) v σ or lev(τ̇) 6v σ. Suppose lev(τ̇) v σ (hyp.8):

• r̂ = r̂′ (5) - (hyp.4) + (hyp.8) + (2) + (3)

• µf �Σf ,σ= µ �Σ,σ ∪{(r̂, τ̇), (r̂, "_prot_", null), (r̂, "_prot_")} (6) - (hyp.8) + (2)

• µ′f �
Σ′

f ,σ= µ′ �Σ
′,σ ∪{(r̂, τ̇), (r̂, "_prot_", null), (r̂, "_prot_")} (7) - (hyp.8) + (3) + (5)

• µf ,Σf ∼σ µ′f ,Σ′f (8) - (hyp.4) + (6) + (7)

• µf , r � true⇔ µ′f , r � true (9) - tautology

• vf = v′f (10) - (2) + (3) + (5)

• µf , r � true⇒ vf = v′f (11) - (10)

Suppose lev(τ̇) 6v σ (hyp.8):

• µf �Σf ,σ= µ �Σ,σ (12) - (hyp.8) + (2)



170 Appendix B. Proofs of Chapter 5

• µ′f �
Σ′

f ,σ= µ′ �Σ
′,σ (13) - (hyp.8) + (3)

• µf ,Σf ∼σ µ′f ,Σ′f (13) - (hyp.4) + (12) + (13)

[Variable Assignment] Suppose e = x = e0 for some variable e and expression e0 (hyp.6). Let
mx = string(x), we conclude that there are two memories µ0 and µ′0, two type-based labellings
Σ0 and Σ′0, two references rx and r′x such that:

• Γ, Lpc ` e0  e′0/e′′0 : T , ω = When?
�(T,Γ(x)), and e′ = e′0,Wrap(ω, x = e′′0)

(1) - (hyp.1) + (hyp.6)

• r ` 〈µ,Σ, e′0〉 ⇓ 〈µ0,Σf , vf 〉, rx = Scope(µ0, r, x), µf = µ0[rx ·mx 7→ vf ], and µ0, r � ω
(2) - (hyp.2) + (hyp.6)

• r ` 〈µ′,Σ′, e′0〉 ⇓ 〈µ′0,Σ′f , v′f 〉, r′x = Scope(µ′0, r, x), µ′0 = µ′0[r′x ·mx 7→ v′f ], and µ′f , r � ω
(3) - (hyp.3) + (hyp.6)

• µ0,Σ0 ∼σ µ′0,Σ′0, Γ, r  µ0 ∼σ µ′0, and:

∀(τ̇0,ω0)∈T lev(τ̇0) v σ ⇒ (µ0, r � ω0 ⇔ µ′0, r � ω0) ∧ (µ0, r � ω0 ⇒ vf = v′f )

(5) - (hyp.4) + (hyp.5) + (1) + (2) + (3) + ih

• µf ,Σf ∼σ µ′f ,Σ′f (6) - (2) + (3) + (5)

• ∀µ̂,r̂ µ̂, r̂ � ω ⇔ ∃(τ̇0,ω0)∈T τ̇0 � Γ(x) ∧ µ̂, r̂ � ω0 (7) - (1)

• µ0, r � ω ⇔ ∃(τ̇0,ω0)∈T τ̇0 � Γ(x) ∧ µ0, r � ω0 (8) - (7)

• ∃(τ̇0,ω0)∈T τ̇0 � Γ(x) ∧ µ0, r � ω0 (9) - (2) + (8)

• lev(Γ(x)) v σ ⇒ ∃(τ̇0,ω0)∈T lev(τ̇0) v σ ∧ µ0, r � ω0 (10) - (9)

• lev(Γ(x)) v σ ⇒ vf = v′f (11) - (5) + (10)

• Γ, r  µf ∼σ µ′f
(12) - (2) + (3) + (5) + (11) + Indistinguishable Variable Assignment (Lemma B.5)

[Property Look-up] Suppose e = e0[e1, P ]j for two expressions e0 and e1 (hyp.6). It follows
that there are four memories µ0, µ1, µ′0, and µ′1, two type-based labelling Σ0 and Σ′0, four
references r0, r̂, r′0, and r̂′ and two strings m1 and m′1, such that:

• Γ, Lpc ` ei  e′i/e′′i : Ti for i = 0, 1, e′ = e′0, e
′
1, $vj = e′′0 [e′′1 ], and:

T =
(
πtype(�

? (T0, P, e
′′
1))
)lev(T0)⊕tlev(T1)

(1) - (hyp.1) + (hyp.6)

• r ` 〈µ,Σ, e′0〉 ⇓ 〈µ0,Σ0, r0〉, r ` 〈µ0,Σ0, e
′
1〉 ⇓ 〈µ1,Σf ,m1〉, r̂ = Proto(µ1, r0,m1), r̂ 6= null⇒ vf =

µf (r̂ ·m1), and r̂ = null⇒ v = undefined (2) - (hyp.2) + (hyp.6)

• r ` 〈µ′,Σ′, e′0〉 ⇓ 〈µ′0,Σ′0, r′0〉 and r ` 〈µ′0,Σ′0, e′1〉 ⇓ 〈µ′1,Σ′f ,m′1〉 r̂′ = Proto(µ′f , r
′
0,m

′
1), r̂′ 6= null⇒

v′f = µ′f (r̂′ ·m′1), and r̂ = null⇒ vf = undefined (3) - (hyp.3) + (hyp.6)

• µ0,Σ0 ∼σ µ′0,Σ′0, Γ, r  µ0 ∼σ µ′0, and:

∀(τ̇0,ω0)∈T0
lev(τ̇0) v σ ⇒ (µ0, r � ω0 ⇔ µ′0, r � ω0) ∧ (µ0, r � ω0 ⇒ r0 = r′0)

(4) - (hyp.4) + (hyp.5) + (1) + (2) + (3) + ih

• µ1,Σ1 ∼σ µ′1,Σ′1, Γ, r  µ1 ∼σ µ′1, and:

∀(τ̇1,ω1)∈T1
lev(τ̇1) v σ ⇒ (µ1, r � ω1 ⇔ µ′1, r � ω1) ∧ (µ1, r � ω1 ⇒ m1 = m′1)

(5) - (1) + (2) + (3) + (4) + ih



B.2. Soundness of the Hybrid Type System 171

• µf ,Σf ∼σ µ′f ,Σ′f and Γ, r  µf ∼σ µ′f (6) - (1) + (2) + (3) + (5)

It remains to prove that:

∀(τ̇ ,ω)∈T lev(τ̇) v σ ⇒ (µf , r � ω ⇔ µ′f , r � ω) ∧ (µf , r � ω ⇒ vf = v′f )

Suppose that (τ̇ , ω) ∈ T (hyp.7.1), lev(τ̇) v σ (hyp.7.2), and µf , r � ω (hyp.7.3). It follows that
there are (τ̇0, ω0), (τ̇ ′0, ω

′
0) ∈ T0, (τ̇1, ω1) ∈ T1 and p ∈ Str such that:

• ω ≡ ω0 ∧ ω1 ∧ ω′0 ∧ ωp and τ̇ = (πtype(� (τ̇ ′0, p)))
lev(τ̇0)tlev(τ̇1), where:

ωp =

{
e′′0 ∈ {p} if p ∈ dom(τ̇ ′0)
¬(e′′0 ∈ dom(τ̇ ′0) ∩ P ) otherwise (7) - (hyp.7.1)

• µf , r � ω0, µf , r � ω1, µf , r � ω′0, and µf , r � ωlu (8) - (hyp.7.3) + (7)

• τ̇ ′0 = τ̇0 and ω′0 = ω0 (9) - (1) + (7) + Incompatible Assertions

• τ̇ = (πtype(� (τ̇0, p)))
lev(τ̇0)tlev(τ̇1) and ω = ω0 ∧ ω1 ∧ ωp, where:

ωp =

{
e′′0 ∈ {p} if p ∈ dom(τ̇0)
¬(e′′0 ∈ dom(τ̇0) ∩ P ) otherwise (10) - (7) + (9)

• lev(τ̇0) t lev(τ̇1) t lev(πtype(� (τ̇0, p))) v σ (11) - (hyp.7.2) + (10)

• µf , r � ω0 ⇔ µ0, r � ω0, µf , r � ω1 ⇔ µ1, r � ω1, and µf , r � ωp ⇔ µ1, r � ωp
(12) - (1) + (2) + Invariance of Dynamic Assertions

• µ′f , r � ω0 ⇔ µ′0, r � ω0, µ′f , r � ω1 ⇔ µ′1, r � ω1, and µ′f , r � ωp ⇔ µ′1, r � ωp
(13) - (1) + (3) + Invariance of Dynamic Assertions

• µ′0, r � ω0 and r0 = r′0 (14) - (4) + (8) + (11) + (12)

• µ′1, r � ω1 and m1 = m′1 (15) - (5) + (8) + (11) + (12)

• µ′f , r � ω0 and µ′f , r � ω1 (16) - (13)-(15)

• µ1, r � ωp ⇒ (p ∈ dom(τ̇0) ∧m1 = p) ∨ (p 6∈ dom(τ̇0) ∧m1 6∈ dom(τ̇0)) (17) - (2) + (7)

• (p ∈ dom(τ̇0) ∧m1 = p) ∨ (p 6∈ dom(τ̇0) ∧m1 6∈ dom(τ̇0)) (18) - (8) + (12) + (17)

• � (τ̇0,m1) = � (τ̇0, p) (19) - (7) + (18)

• µ0, r � ω0 ⇒ Σ0(r0) � τ̇0 (20) - (hyp.7.1) + (1) + (2) + Well-Labelled Memory

• µ′0, r � ω0 ⇒ Σ′0(r′0) � τ̇0 (21) - (hyp.7.1) + (1) + (3) + Well-Labelled Memory

• µ0, r � ω0 ⇒ Σ0(r0)g Σ′0(r′0) � τ̇0 (22) - (4) + (11) + (20) + (21)

• µf , r � ω0 ⇒ Σf (r0)g Σ′f (r′0) � τ̇0
(23) - (2) + (3) + (22) + Invariance of Dynamic Assertions

• Σf (r0) = Σ′f (r0) � τ̇0 (24) - (4) + (8) + (11) + (14) + (23)

• bΣf (r0)c = bΣ′f (r′0)c = bτ̇0c (25) - (24)

• � (τ̇0, p) = � (τ̇0,m1) = � (Σf (r0),m1) = � (Σ′f (r′0),m′1) (26) - (19) + (24)

• lev(πtype(� (Σf (r0),m1))) = lev(πtype(� (Σ′f (r′0),m′1))) v σ (27) - (11) + (26)

• lev(πtype(� (Σf (r0),m1))) t lev(Σf (r0)) v σ (28) - (11) + (25)

• r̂ = r̂′ and r̂ 6= null⇒ lev(Σf (r̂)) = lev(Σ′f (r̂′)) v σ
(29) - (2) + (3) + (6) + (28) + Prototype-Chain Indistinguishability (Lemma B.2)

We consider two cases: r̂ 6= null or r̂ = null. Suppose r̂ 6= null (hyp.8):

• r̂′ 6= null and lev(Σf (r̂)) = lev(Σ′f (r̂′)) v σ (30) - (hyp.8) + (29)

• � (Σf (r0),m1) = � (Σf (r̂),m1) (31) - (1) + Well-Typed Prototype Chains (Lemma B.1)

• � (Σ′f (r′0),m1) = � (Σ′f (r̂′),m1) (32) - (2) + Well-Typed Prototype Chains (Lemma B.1)



172 Appendix B. Proofs of Chapter 5

• lev(πtype(� (Σf (r̂),m1))) = lev(πtype(� (Σ′f (r̂),m1))) v σ (33) - (27) + (31) + (32)

• vf = v′f (34) - (hyp.8) + (2) + (3) + (6) + (15) + (29) + (30) + (33)

Suppose r̂ = null (hyp.8):

• r̂′ = null (35) - (hyp.8) + (29)

• vf = v′f = undefined (36) - (hyp.8) + (2) + (3) + (35)

[Membership Testing] This case is similar to the previous case. Therefore, the proof is omitted.

[Property Assignment] Suppose e = e0[e1, P ] = e2 for three expressions e0, e1, and e2 (hyp.6).
It follows that there are four memories µ0, µ1, µ′0, and µ′1, two type-based labelling Σ0 and Σ′0,
four references r0, r̂, r′0, and r̂′ and two strings m1 and m′1, such that:

• Γ, Lpc ` ei  e′i/e′′i : Ti, LTP =�? (T0, P, e
′′
1), LP = πlev(LT ), TP = πtype(LT ), T = T2,

ω̂0 = When?
�(T2, TP ), ω̂1 = When?

v(Lpc ⊕t lev(T0)⊕t lev(T1), LP ), and
e = e′0, e

′
1, e
′
2,Wrap(ω0 ∧ ω1, e

′′
0 [e′′1 ] = e′′2) (1) - (hyp.1) + (hyp.6)

• r ` 〈µ,Σ, e′0〉 ⇓ 〈µ0,Σ0, r0〉, r ` 〈µ0,Σ0, e
′
1〉 ⇓ 〈µ1,Σ1,m1〉, r ` 〈µ1,Σ1, e

′
2〉 ⇓ 〈µ2,Σf , v2〉, µf =

µ2[r0 ·m1 7→ v2], µ2, r � ω̂0, and µ2, r � ω̂1 (2) - (hyp.2) + (hyp.6)

• r ` 〈µ′,Σ′, e′0〉 ⇓ 〈µ′0,Σ′0, r′0〉, r ` 〈µ′0,Σ′0, e′1〉 ⇓ 〈µ′1,Σ′1,m′1〉, r ` 〈µ′1,Σ′1, e′2〉 ⇓ 〈µ′2,Σ′2, v′2〉,
µf = µ2[r0 ·m1 7→ v2], µ2, r � ω̂0, and µ2, r � ω̂1 (3) - (hyp.3) + (hyp.6)

• µ0,Σ0 ∼σ µ′0,Σ′0, Γ, r  µ0 ∼σ µ′0,

∀(τ̇0,ω0)∈T0
lev(τ̇0) v σ ⇒ (µ0, r � ω0 ⇔ µ′0, r � ω0) ∧ (µ0, r � ω0 ⇒ r0 = r′0)

(4) - (hyp.4) + (hyp.5) + (1) + (2) + (3) + ih

• µ1,Σ1 ∼σ µ′1,Σ′1, Γ, r  µ1 ∼σ µ′1,

∀(τ̇1,ω1)∈T1
lev(τ̇1) v σ ⇒ (µ1, r � ω1 ⇔ µ′1, r � ω1) ∧ (µ1, r � ω1 ⇒ m1 = m′1)

(5) - (1) + (2) + (3) + (4) + ih

• µ2,Σ2 ∼σ µ′2,Σ′2, Γ, r  µ2 ∼σ µ′2,

∀(τ̇2,ω2)∈T2
lev(τ̇2) v σ ⇒ (µ2, r � ω2 ⇔ µ′2, r � ω2) ∧ (µ2, r � ω2 ⇒ v2 = v′2)

(6) - (1) + (2) + (3) + (5) + ih

• ∀µ̂,r̂ µ̂, r̂ � ω̂1 ⇔ ∃(τ̇0,ω0)∈T0,(τ̇1,ω1)∈T1,(τ̇2,ω2)∈T2,(σpc,ωpc)∈Lpc,p∈Str
µ̂, r̂ � ω0 ∧ µ̂, r̂ � ω1 ∧ µ̂, r̂ � ω2 ∧ µ̂, r̂ � ωpc ∧ µ̂, r̂ � ωp ∧

lev(τ̇0) t lev(τ̇1) t σpc v πlev(� (τ̇0, p)) ∧ τ̇2 � πtype(� (τ̇0, p))
where:
ωp =

{
e′′0 ∈ {p} if p ∈ dom(τ̇0)
¬(e′′0 ∈ dom(τ̇0) ∩ P ) otherwise (8) - (1)

• Γ, r  µf ∼σ µ′f (9) - (2) + (3) + (6)

From (2) and (8), we conclude that there are τ̇0, ω0) ∈ T0, (τ̇1, ω1) ∈ T1, (τ̇2, ω2) ∈ T2,
(σpc, ωpc) ∈ Lpc, and p ∈ Str, such that:

• µ2, r � ω0, µ2, r � ω1, µ2, r � ω2, µ2, r � ωpc, and µ2, r � ωp (10) - (2) + (8)

• lev(τ̇0) t lev(τ̇1) t σpc v πlev(� (τ̇0, p)) and τ̇2 � πtype(� (τ̇0, p)) (11) - (2) + (8)

• µ2, r � ω0 ⇔ µ0, r � ω0, µ2, r � ω1 ⇔ µ1, r � ω1, and µ2, r � ωp ⇔ µ1, r � ωp
(12) - (1) + (2) + Invariance of Dynamic Assertions

We consider two different cases: either lev(τ̇0)t lev(τ̇1)t levτ̇2tσpc v σ or lev(τ̇0)t lev(τ̇1)t
levτ̇2 t σpc 6v σ. Suppose lev(τ̇0) t lev(τ̇1) t levτ̇2 t σpc v σ (hyp.7). We conclude that:



B.2. Soundness of the Hybrid Type System 173

• µ′0, r � ω0 and r0 = r′0 (13) - (hyp.7) + (4) + (10) - (12)

• µ′1, r � ω1 and m1 = m′1 (14) - (hyp.7) + (5) + (10) - (12)

• µ′2, r � ω2 and v2 = v′2 (15) - (hyp.7) + (6) + (10) - (12)

• µf ,Σf ∼σ µ′f ,Σ′f (16) - (6) + (13)-(15)

Suppose lev(τ̇0) t lev(τ̇1) t levτ̇2 t σpc 6v σ (hyp.7). We conclude that:

• µf �Σf ,σ= µ2 �Σ2,σ (17) - (hyp.7) + (2)

• µ′f �
Σ′

f ,σ= µ′2 �
Σ′

2,σ (18) - (hyp.7) + (3)

• µf ,Σf ∼σ µ′f ,Σ′f (19) - (6) + (17) + (18)

[Property Deletion] Suppose e = deletei,P e0[e1] for some expression e0, property p, and index
i (hyp.6). It follows that there are four memories µ0, µ1, µ′0, and µ′1, and two type-based
labellings Σ0 and Σ1 such that:

• Γ, Lpc ` e0  e′0/e′′0 : T0, Γ, Lpc ` e1  e′1/e′′1 : T1, T = {(PRIM⊥, true)},
e′ = e′0, e

′
1,Wrap(ω, $vi = delete e′′0 [e′′1 ]), and

ω = When?
v(lev(T0)⊕t lev(T1), πlev(�? (T0, P, e

′′
1))) (1) - (hyp.1) + (hyp.6)

• r ` 〈µ,Σ, e′0〉 ⇓ 〈µ0,Σf , r0〉, r ` 〈µ0,Σ0, e
′
1〉 ⇓ 〈µ1,Σf ,m1〉 µf = µ1

[
r0 7→ µ1(r0)|dom(µ1(r0)\{m1})

]
,

and µ1, r � ω, vf = true (2) - (hyp.2) + (hyp.6)

• r ` 〈µ′,Σ′, e′0〉 ⇓ 〈µ′0,Σ′f , r′0〉, r ` 〈µ′0,Σ′0, e′1〉 ⇓ 〈µ′1,Σ′f ,m′1〉
µ′f = µ′1

[
r′0 7→ µ′1(r′0)|dom(µ′

1(r′0)\{m′
1})
]
, and µ′1, r � ω, v′f = true (3) - (hyp.3) + (hyp.6)

• µ0,Σ0 ∼σ µ′0,Σ′0, Γ, r  µ0 ∼σ µ′0, and

∀(τ̇0,ω0)∈T0
lev(τ̇0) v σ ⇒ (µ0, r � ω0 ⇔ µ′0, r � ω0) ∧ (µ0, r � ω0 ⇒ r0 = r′0)

(4) - (hyp.4) + (hyp.5) + (1) + (2) + (3) + ih

• µ1,Σ1 ∼σ µ′1,Σ′1, Γ, r  µ1 ∼σ µ′1, and

∀(τ̇1,ω1)∈T1
lev(τ̇1) v σ ⇒ (µ1, r � ω1 ⇔ µ′1, r � ω1) ∧ (µ1, r � ω1 ⇒ m1 = m′1)

(5) - (1) + (2) + (3) + (4) + ih

• Γ, r  µf ∼σ µ′f (6) - (2)-(5)

• vf = v′f = true (7) - (2) + (3)

• µf , r � true⇒ vf = v′f (8) - (7)

• µf , r � true⇔ µ′f , r � true (9) - tautology

• ∀(τ̇ ,ω)∈T lev(τ̇) v σ ⇒ (µf , r � ω ⇔ µ′f , r � ω) ∧ (µf , r � ω ⇒ vf = v′f ) (10) - (1) + (8) + (9)

• ∀µ̂,r̂ µ̂, r̂ � ω ⇔ ∃(τ̇0,ω0)∈T0,(τ̇1,ω1)∈T1,p∈Str
lev(τ̇0) t lev(τ̇1) � πlev(� (τ̇0, p)) ∧ µ̂, r̂ � ω0 ∧ µ̂, r̂ � ω1 ∧ µ̂, r̂ � ωp (11) - (1)

• µ1, r � ω ⇔
∃(τ̇0,ω0)∈T0,(τ̇1,ω1)∈T1,p∈Str lev(τ̇0)t lev(τ̇1) v πlev(� (τ̇0, p))∧µ1, r � ω0 ∧µ1, r � ω1 ∧µ1, r � ωp

(12) - (11)

• There are (τ̇0, ω0) ∈ T0, (τ̇1, ω1) ∈ T1, and string p ∈ Str such that:

lev(τ̇0) t lev(τ̇1) v πlev(� (τ̇0, p)) ∧ µ1, r � ω0 ∧ µ1, r � ω1 ∧ µ1, r � ωp

(13) - (2) + (11)

We consider two cases: lev(τ̇0) t lev(τ̇1) v σ and lev(τ̇0) t lev(τ̇1) 6v σ. Suppose lev(τ̇0) t lev(τ̇1) v σ
(hyp.7). It follows that:

• r0 = r′0 and m1 = m′1 (14) - (hyp.7) + (4) + (5) + (13)



174 Appendix B. Proofs of Chapter 5

• µf ,Σf ∼σ µ′f ,Σ′f (15) - (2) + (3) + (5) + (14)

Suppose lev(τ̇0) t lev(τ̇1) 6v σ (hyp.7). It follows that:

• πlev(� (Σf (r0),m1)) u πlev(� (Σ′f (r′0),m′1)) 6v σ (16) - (hyp.7) + (5) + (13)

• µf ,Σf ∼σ µ′f ,Σ′f (17) - (2) + (3) + (4) + (19)

The proofs of the remaining cases are done in a similar way. �



Appendix C

Proofs of Chapter 6

Lemma 6.1 - Confinement for the Extensible Monitor

Proof: Given an API APIIF = 〈S,Slab,P,Plab,RIF ,∼api〉, the hypothesis of the lemma are the
following:

• r, σpc ` 〈µ, e,Σ | ν,Ξ〉 ⇓APIIF
IF 〈µ′, v′,Σ′, σ′ | ν ′,Ξ′〉 (hyp.1)

• σpc 6v σ (hyp.2)

• APIIF is confined (hyp.3)

We have to prove that:

• µf ,Σf ∼σ µ′,Σ′,

• ν,Ξ ∼σapi ν ′f ,Ξ′f where ∼api= APIIF .equality,

• σ′ 6v σ.

As in the case of the proof of confinement for the Core JavaScript monitor (Theorem 4.1), we
proceed by induction on the derivation of (hyp.1). Instead of re-examining the whole monitor,
we only consider the rules: [External Property Look-up] and [External Method Call]. In
the following, we use RIF for APIIF .Reg.

[External Property Look-up Literal] We conclude that e = e0[e1]α (hyp.4) and that there
is a reference r0 and a string m1 such that 〈r0,m1〉 ∈ dom(RIF ) (hyp.5) and:

• r, σpc ` 〈µ, e0,Σ | ν,Ξ〉 ⇓APIIF
IF 〈µ0, r0,Σ0, σ0 | ν0,Ξ0〉 (1) - (hyp.1) + (hyp.4)

• r, σpc ` 〈µ0, e1,Σ0 | ν0,Ξ0〉 ⇓APIIF
IF 〈µ1,m1,Σ1, σ1 | ν1,Ξ1〉 (2) - (hyp.1) + (hyp.4)

• (pg, pglab) = RIF (r0,m1) (3) - (hyp.5)

• 〈ν1, r0 :: m1〉α pg 〈ν′, v′〉β and 〈Ξ1, σ0 :: σ1〉β pglab 〈Ξ′, σ〉 (4) - (hyp.1) + (hyp.3) + (hyp.4)

• µ,Σ ∼σ µ0,Σ0 and ν,Ξ ∼σapi ν0,Ξ0 (5) - (hyp.2) + (hyp.3) + (1) + ih

• µ0,Σ0 ∼σ µ1,Σ1 and ν0,Ξ0 ∼σapi ν1,Ξ1 (6) - (hyp.2) + (hyp.3) + (2) + ih

• µ1,Σ1 ∼σ µ′,Σ′ and ν2,Ξ2 ∼σapi ν′,Ξ′
(7) - (hyp.2) + (4) + Cofinement for APIs (Definition 6.3)

• µ,Σ ∼σ µ′,Σ′ and ν,Ξ ∼σapi ν′,Ξ′ (8) - (5) - (7) + Transitivity of the Low-Equality

[External Method Call] Suppose that e = e0[e1](e2)α (hyp.4). We conclude that there is a
reference r0 and a string m1 such that 〈r0,m1〉 ∈ dom(RIF ) (hyp.5) and:

• r, σpc ` 〈µ, e0,Σ | ν,Ξ〉 ⇓APIIF
IF 〈µ0, r0,Σ0, σ0 | ν0,Ξ0〉 (1) - (hyp.1) + (hyp.4)

• r, σpc ` 〈µ0, e1,Σ0 | ν0,Ξ0〉 ⇓APIIF
IF 〈µ1,m1,Σ1, σ1 | ν1,Ξ1〉 (2) - (hyp.1) + (hyp.4)

• r, σpc ` 〈µ1, e2,Σ1 | ν1,Ξ1〉 ⇓APIIF
IF 〈µ2, v2,Σ2, σ2 | ν2,Ξ2〉 (3) - (hyp.1) + (hyp.4)

• (pg, pglab) = RIF (r0,m1) (4) - (hyp.5)



176 Appendix C. Proofs of Chapter 6

• 〈ν2, r0 :: m1 :: v2〉α pg 〈ν′, v′〉β and 〈Ξ2, σ0 :: σ1 :: σ2〉β pglab 〈Ξ′, σ′〉
(5) - (hyp.1) + (hyp.3) + (hyp.4)

• µ,Σ ∼σ µ0,Σ0 and ν,Ξ ∼σapi ν0,Ξ0 (6) - (hyp.2) + (hyp.3) + (1) + ih

• µ0,Σ0 ∼σ µ1,Σ1 and ν0,Ξ0 ∼σapi ν1,Ξ1 (7) - (hyp.2) + (hyp.3) + (2) + ih

• µ1,Σ1 ∼σ µ2,Σ2 and ν1,Ξ1 ∼σapi ν2,Ξ2 (8) - (hyp.2) + (hyp.3) + (2) + ih

• µ2,Σ2 ∼σ µ′,Σ′ and ν2,Ξ2 ∼σapi ν′,Ξ′
(9) - (hyp.2) + (hyp.3) + (4) + (5) + Cofinement for APIs (Definition 6.3)

• µ,Σ ∼σ µ′,Σ′ and ν,Ξ ∼σapi ν′,Ξ′ (10) - (6) - (9) + Transitivity of the Low-Equality

�

Theorem 6.1 - Noninterference for the Extensible Monitor

Proof: Suppose that APIIF = 〈S,Slab,P,Plab,RIF ,∼api〉, ∼api = APIIF .equality and RIF =
APIIF .Reg. We restate the hypotheses of the theorem:

• µ,Σ ∼σ µ′,Σ′ (hyp.1),

• ν,Ξ ∼σapi ν ′,Ξ′ where (hyp.2),

• r, σpc ` 〈µ, e,Σ | ν,Ξ〉 ⇓APIIF
IF 〈µf , vf ,Σf , σf | νf ,Ξf 〉 (hyp.3),

• r, σpc ` 〈µ′, e,Σ′ | ν ′,Ξ′〉 ⇓APIIF
IF 〈µ′f , v′f ,Σ′f , σ′f | ν ′f ,Ξ′f 〉(hyp.4).

We have to prove that:

• µf ,Σf ∼σ µ′f ,Σ′f ,

• νf ,Ξf ∼σ ν ′f ,Ξ′f ,

• vf , σf ∼σ v′f , σ′f .

As in the case of the proof of noninterference for the Core JavaScript monitor, we proceed by
induction on the derivation of (hyp.3).

[External Property Look-up Literal] We conclude that e = e0[e1]α (hyp.5) and that there
exist a reference r0 and a string m1 such that 〈r0,m1〉 ∈ dom(RIF ) (hyp.6) and:

• r, σpc ` 〈µ, e0,Σ | ν,Ξ〉 ⇓APIIF
IF 〈µ0, r0,Σ0, σ0 | ν0,Ξ0〉 and r, σpc ` 〈µ′, e0,Σ

′ | ν′,Ξ′〉 ⇓APIIF
IF

〈µ′0, r′0,Σ′0, σ′0 | ν′0,Ξ′0〉 (1) - (hyp.1) + (hyp.3) + (hyp.4)

• r, σpc ` 〈µ0, e1,Σ0 | ν0,Ξ0〉 ⇓APIIF
IF 〈µ1,m1,Σ1, σ1 | ν1,Ξ1〉 and r, σpc ` 〈µ′0, e1,Σ

′
0 | ν′0,Ξ′0〉 ⇓

APIIF
IF

〈µ′1,m′1,Σ′1, σ′1 | ν′1,Ξ′1〉 (2) - (hyp.1) + (hyp.3) + (hyp.4)

• (pg, pglab) = RIF (r0,m1) (3) - (hyp.6)

• µ0,Σ0 ∼σ µ′0,Σ′0, ν0,Ξ0 ∼σapi ν′0,Ξ′0, and r0, σ0 ∼σ r′0, σ′0
(4) - (hyp.1) + (hyp.2) + (1) + ih

• µ1,Σ1 ∼σ µ′1,Σ′1, ν1,Ξ1 ∼σapi ν′1,Ξ′1, and m1, σ1 ∼σ m′1, σ′1 (5) - (2) + (4) + ih

• 〈ν1, r0 :: m1〉α pg 〈νf , vf 〉β and 〈Ξ1, σ0 :: σ1〉β pglab 〈Ξf , σf 〉
(6) - (hyp.3) - (hyp.6) + (3)

There are two cases to consider: σ0 t σ1 v σ or σ0 t σ1 6v σ. Suppose that σ0 t σ1 v σ (hyp.7):

• r0 = r′0, m1 = m′1, σ′0 = σ0, and σ1 = σ′1 (7) - (hyp.7) + (4) + (5)

• (pg, pglab) = RIF (r′0,m
′
1) (8) - (3) + (7)



177

• 〈ν′1, r0 :: m1〉α pg 〈ν′f , v′f 〉β and 〈Ξ′1, σ0 :: σ1〉β pglab 〈Ξ′f , σ′f 〉 (9) - (hyp.4) + (2) + (8)

• µf ,Σf ∼σ µ′f ,Σ′f , νf ,Ξf ∼σapi ν′f ,Ξ′f , and vf , σf ∼σ v′f , σ′f
(10) - (5) + (7)-(9) + Noninterferent API (Definition 6.4)

Suppose that σ0 t σ1 6v σ (hyp.7):

• σ′0 t σ′1 6v σ (11) - (hyp.7) + (4) + (5)

• µ1,Σ1 ∼σ µf ,Σf , ν1,Ξ1 ∼σapi νf ,Ξf , and σf 6v σ
(12) - (hyp.7) + (6) + Cofinement for APIs (Definition 6.3)

• µ′1,Σ′1 ∼σ µ′f ,Σ′f , ν′1,Ξ′1 ∼σapi ν′f ,Ξ′f , and σ′f 6v σ
(13) - (hyp.4) + (11) + Cofinement (Lemma 6.1)

• µf ,Σf ∼σ µ′f ,Σ′f , νf ,Ξf ∼σapi ν′f ,Ξ′f , and vf , σf ∼σ v′f , σ′f (14) - (5) + (12) + (13)

[External Method Call] We conclude that e = e0[e1](e2)α (hyp.5) and that there exist a
reference r0 and a string m1 such that 〈r0,m1〉 ∈ dom(RIF ) (hyp.6) and:

• r, σpc ` 〈µ, e0,Σ | ν,Ξ〉 ⇓APIIF
IF 〈µ0, r0,Σ0, σ0 | ν0,Ξ0〉 and r, σpc ` 〈µ′, e0,Σ

′ | ν′,Ξ′〉 ⇓APIIF
IF

〈µ′0, r′0,Σ′0, σ′0 | ν′0,Ξ′0〉 (1) - (hyp.1) + (hyp.3) + (hyp.4)

• r, σpc ` 〈µ0, e1,Σ0 | ν0,Ξ0〉 ⇓APIIF
IF 〈µ1,m1,Σ1, σ1 | ν1,Ξ1〉 and r, σpc ` 〈µ′0, e1,Σ

′
0 | ν′0,Ξ′0〉 ⇓

APIIF
IF

〈µ′1,m′1,Σ′1, σ′1 | ν′1,Ξ′1〉 (2) - (hyp.1) + (hyp.3) + (hyp.4)

• r, σpc ` 〈µ1, e2,Σ1 | ν1,Ξ1〉 ⇓APIIF
IF 〈µ2, v2,Σ2, σ2 | ν2,Ξ2〉 and r, σpc ` 〈µ′1, e2,Σ

′
1 | ν′1,Ξ′1〉 ⇓

APIIF
IF

〈µ′2, v′2,Σ′2, σ′2 | ν′2,Ξ′2〉 (3) - (hyp.1) + (hyp.3) + (hyp.4)

• (pg, pglab) = RIF (r0,m1) (4) - (hyp.5) + (hyp.6)

• µ0,Σ0 ∼σ µ′0,Σ′0, ν0,Ξ0 ∼σapi ν′0,Ξ′0, and r0, σ0 ∼σ r′0, σ′0 (5) - (hyp.1) + (hyp.2) + (1) + ih

• µ1,Σ1 ∼σ µ′1,Σ′1, ν1,Ξ1 ∼σapi ν′1,Ξ′1, and m1, σ1 ∼σ m′1, σ′1 (6) - (2) + (5) + ih

• µ2,Σ2 ∼σ µ′2,Σ′2, ν2,Ξ2 ∼σapi ν′2,Ξ′2, and v2, σ2 ∼σ v′2, σ′2 (7) - (3) + (6) + ih

• 〈ν2, r0 :: m1 :: v2〉α pg 〈νf , vf 〉β and 〈Ξ2, σ0 :: σ1 :: σ2〉β pglab 〈Ξf , σf 〉
(8) - (hyp.3) + (hyp.4) + (hyp.5) + (4)

There are two cases to consider: σ0 t σ1 v σ or σ0 t σ1 6v σ. Suppose that σ0 t σ1 v σ (hyp.7):

• r0 = r′0, m1 = m′1, σ′0 = σ0, and σ1 = σ′1 (9) - (hyp.7) + (5) + (6)

• (pg, pglab) = RIF (r′0,m
′
1) (10) - (4) + (9)

• r0 :: m1 :: v2, σ0 :: σ1 :: σ2 ∼σ r0 :: m1 :: v′2, σ0 :: σ1 :: σ′2 (11) - (7) + (9)

• 〈ν′2, r0 :: m1 :: v′2〉α pg 〈ν′f , v′f 〉β and 〈Ξ′1, σ0 :: σ1 :: σ′2〉β pglab 〈Ξ′f , σ′f 〉 (12) - (hyp.4) + (10)

• µf ,Σf ∼σ µ′f ,Σ′f , νf ,Ξf ∼σapi ν′f ,Ξ′f , and vf , σf ∼σ v′f , σ′f
(13) - (7) + (8) + (12) + Noninterferent API (Definition 6.4)

Suppose that σ0 t σ1 6v σ (hyp.7):

• σ′0 t σ′1 6v σ (14) - (hyp.7) + (5) + (6)

• µ2,Σ2 ∼σ µf ,Σf , ν2,Ξ2 ∼σapi νf ,Ξf , and σf 6v σ
(15) - (hyp.7) + (8) + Cofinement for APIs (Definition 6.3)

• µ′2,Σ′2 ∼σ µ′f ,Σ′f , ν′2,Ξ′2 ∼σapi ν′f ,Ξ′f , and σ′f 6v σ
(16) - (hyp.4) + (14) + Cofinement (Lemma 6.1)

• µf ,Σf ∼σ µ′f ,Σ′f , νf ,Ξf ∼σapi ν′f ,Ξ′f , and vf , σf ∼σ v′f , σ′f (17) - (7) + (15) + (16)

�





Appendix D

Proofs of Chapter 7

D.1 Noninterference - Basic DOM API

In this section we give the proofs of:

• Lemma 7.1 - Well-labelling Preservation

• Lemma 7.2 - Confinement of the Monitored Core DOM API

• Theorem 7.1 - Noninterference of the Monitored Core DOM API

Lemma 7.1 - Well-labelling Preservation

Proof: For every (pg, pglab) ∈ dom(RDOMIF ), we have to prove that given a forest f well-labelled
by Ξ and a sequence of values −→v labelled by a sequence of levels −→σ , such that:

• 〈f,−→v 〉α pg 〈f ′, v′〉β (hyp.1)

• 〈Ξ,−→σ 〉β pglab 〈Ξ′, σ′〉 (hyp.2)

Then, it holds that: f ′ is well-labelled by Ξ′.
We proceed by case analysis. We only consider the plugins that can change the memory.

[Store] Given that:

• 〈f, r :: "storeValue" :: v〉 store 〈f ′, v〉(r) (hyp.1)

• 〈Ξ, σ0 :: σ1 :: σ2〉(r) storelab 〈Ξ′, σ′〉 (hyp.2)

we have to prove that: f ′ is well-labelled by Ξ′. Letting −→r = f(r).children, m = f(r).tag,
r̂ = f(r).parent, we conclude that:

• f ′ = f [r 7→ 〈m, v, r̂,−→r 〉] (1) - (hyp.1)

• σ′ = σ0 t σ1 t σ2 t Ξ(r).node, (2) - (hyp.2)

• Ξ′ = Ξ [r 7→ 〈Ξ(r).node, σ′,Ξ(r).pos,Ξ(r).struct〉] (3) - (hyp.2)

• Ξ′(r).node v Ξ′(r).value (4) - (2) + (3)

Remark: the labellings of the other nodes do not change. Hence, they do not have to be
verified. The other components of the labelling of the node pointed to by r do not change.
Therefore, they do not have to be verified.

[Remove] Given that:

• 〈f, r :: "removeChild" :: r′〉 remove 〈f ′, r′〉(r,r′) (hyp.1)

• 〈Ξ, σ0 :: σ1 :: σ2〉(r,r
′) removelab 〈Ξ, σ′〉 (hyp.2)



180 Appendix D. Proofs of Chapter 7

we have to prove that: f ′ is well-labelled by Ξ. The removal of a node from the list of children
of the node pointed to by r (f(r)) does not compromise the fact that the position levels of the
children of f(r) are monotonically increasing. Therefore, there is nothing to prove.

[Append] Given that:

• 〈f, r :: "appendChild" :: r′〉 append 〈f ′, r′〉(r,r′,r′′) (hyp.1)

• 〈Ξ, σ0 :: σ1 :: σ2〉(r,r
′,r′′) appendlab 〈Ξ, σ′〉 (hyp.2)

we have to prove that: f ′ is well-labelled by Ξ. Letting m = f(r).tag, v = f(r).value, r̂ =
f(r).parent, −→r = f(r).children, m′ = f(r′).tag, v′ = f(r′).value, r̂′ = f(r′).parent, and −→r ′ =
f(r′).children, and i = |f(r).children| − 1, we conclude that:

• f(r′).parent = null (1) - (hyp.1)

• f ′ = f [r 7→ 〈m, v, r̂,−→r :: r′〉, r′ 7→ 〈m′, v′, r,−→r ′〉] (2) - (hyp.1)

• −→r 6= ε⇒ Ξ(−→r .last).pos v Ξ(r′).pos (3) - (hyp.1) + (hyp.2)

• Ξ(r).node v Ξ(r′).node (4) - (hyp.1) + (hyp.2)

• Ξ(f ′(r).children(i)).pos v Ξ(f ′(r).children(i+ 1)).pos (5) - (2) + (3)

[Node Creation] Given that:

• 〈f,#doc :: "createElement" :: m〉(σn,σp,σs) new 〈f ′, r〉(r,σn,σp,σs) (hyp.1)

• 〈Ξ, σ0 :: σ1 :: σ2〉(r,σn,σp,σs) newlab 〈Ξ′, σ′〉 (hyp.2)

we have to prove that f ′ is well-labelled by Ξ′. We conclude that:

• r = freshDOM (σn) (1) - (hyp.1)

• f ′ = f [r 7→ 〈m, null, null, ε〉] (2) - (hyp.1) + (1)

• Ξ′ = Ξ [r 7→ 〈σn, σn, σp, σs〉] (3) - (hyp.2) + (1)

• σ0 t σ1 t σ2 v σn v σp u σs (4) - (hyp.2)

�

Lemma 7.2 - Confinement of the Core DOM API

Proof: We proceed by case analysis. We only consider the monitored plugins that can change
the memory.
[Store] Given that:

• 〈f, r :: "storeValue" :: v〉 store 〈f ′, v〉(r) (hyp.1)

• 〈Ξ, σ0 :: σ1 :: σ2〉(r) storelab 〈Ξ′, σ′〉 (hyp.2)

• σ0 t σ1 6v σ (hyp.3)

we have to prove that: f,Ξ ∼σDOM f ′,Ξ′ and σ′ 6v σ. Letting −→r = f(r).children, m = f(r).tag,
v′ = f(r).value, r̂ = f(r).parent, we conclude that:

• f ′ = f [r 7→ 〈m, v, r̂,−→r 〉] (1) - (hyp.1)

• σ′ = σ0 t σ1 t σ2 t Ξ(r).node, (2) - (hyp.2)

• Ξ′ = Ξ [r 7→ 〈Ξ(r).node, σ′,Ξ(r).pos,Ξ(r).struct〉] (3) - (hyp.2)

• σ0 t σ1 v Ξ(r).value (4) - (hyp.2)



D.1. Noninterference - Basic DOM API 181

• Ξ(r).value 6v σ (5) - (hyp.3) + (4)

• (r, v′,Ξ(r).value) 6∈ f �Ξ,σ (6) - (5)

• σ′ 6v σ (7) - (hyp.3) + (4)

• (r, v,Ξ′(r).value) 6∈ f ′ �Ξ′,σ (8) - (1) - (3) + (7)

• f,Ξ ∼σDOM f ′,Ξ′ (9) - (1) + (6) + (8)

[Remove] Given that:

• 〈f, r :: "removeChild" :: r′〉 remove 〈f ′, r′〉(r,r′) (hyp.1)

• 〈Ξ, σ0 :: σ1 :: σ2〉(r,r
′) removelab 〈Ξ, σ′〉 (hyp.2)

• σ0 t σ1 6v σ (hyp.3)

we have to prove that: f,Ξ ∼σDOM f ′,Ξ and σ′ 6v σ. Letting −→r = f(r).children, m = f(r).tag,
v = f(r).value, r̂ = f(r).parent, m′ = f(r′).tag, v′ = f(r′).value, −→r ′ = f(r′).children, we
conclude that:

• There is an integer i such that: −→r (i) = r′ (1) - (hyp.1)

• f ′ = f [r 7→ 〈m, v, r̂,ShiftL(−→r , i)〉, r′ 7→ 〈m′, v′, null,−→r ′〉] (2) - (hyp.1) + (1)

• σ0 t σ1 t σ2 v Ξ(r).struct u Ξ(r′).pos (3) - (hyp.2)

• Ξ(r).struct u Ξ(r′).pos 6v σ (4) - (hyp.3) + (3)

• (r, i, r′) 6∈ f �Ξ,σ and (r′, null) 6∈ f ′ �Ξ,σ (5) - (hyp.1) + (hyp.2) + (4)

• (r, |−→r |) 6∈ f �Ξ,σ and (r, |ShiftL(−→r , i)|) 6∈ f ′ �Ξ,σ (6) - (hyp.1) + (hyp.2) + (4)

• ∀i<j<|−→r | Ξ(−→r (j)).pos 6v σ (7) - (4) + Well-labelled Forest

• ∀i<j<|−→r | (r, j,−→r (j)) 6∈ f �Ξ,σ (8) - (7)

• ∀i≤j<|ShiftL(−→r ,i)| (r, j,ShiftL(−→r , i)(j)) 6∈ f ′ �Ξ,σ (9) - (4) + (7)

• f �Ξ,σ= f ′ �Ξ,σ (10) - (5)+(6)+(8)+(9)

• σ′ = Ξ(r).pos (11) - (hyp.2)

• σ′ 6v σ (12) - (hyp.3) + (4)

[Append] Given that:

• 〈f, r :: "appendChild" :: r′〉 append 〈f ′, r′〉(r,r′,r′′) (hyp.1)

• 〈Ξ, σ0 :: σ1 :: σ2〉(r,r
′,r′′) appendlab 〈Ξ, σ′〉 (hyp.2)

• σ0 t σ1 6v σ (hyp.3)

we have to prove that: f,Ξ ∼σDOM f ′,Ξ and σ′ 6v σ. Letting −→r = f(r).children, m = f(r).tag,
v = f(r).value, r̂ = f(r).parent, m′ = f(r′).tag, v′ = f(r′).value, −→r ′ = f(r′).children, we
conclude that:

• f(r′).parent = null (1) - (hyp.1)

• f ′ = f [r 7→ 〈m, v, r̂,−→r :: r′〉, r′ 7→ 〈m′, v′, r,−→r ′〉] (2) - (hyp.1)

• σ0 t σ1 v Ξ(r).struct u Ξ(r′).pos (3) - (hyp.2)

• Ξ(r).struct u Ξ(r′).pos 6v σ (4) - (hyp.3) + (3)

• (r′, null) 6∈ f �Ξ,σ and (r, i, r′) 6∈ f ′ �Ξ,σ, where i = |−→r | (5) - (4)



182 Appendix D. Proofs of Chapter 7

• (r, |−→r |) 6∈ f �Ξ,σ and (r, |−→r |+ 1) 6∈ f ′ �Ξ,σ (6) - (4)

• f,Ξ ∼σDOM f ′,Ξ (7) - (5) + (6)

• σ′ = Ξ.pos(r′) (8) - (hyp.2)

• σ′ 6v σ (9) - (4) + (8)

[Node Creation] Given that:

• 〈f,#doc :: "createElement" :: m〉(σn,σp,σs) new 〈f ′, r〉(r,σn,σp,σs) (hyp.1)

• 〈Ξ, σ0 :: σ1 :: σ2〉(r,σn,σp,σs) newlab 〈Ξ′, σ′〉 (hyp.2)

• σ0 t σ1 6v σ (hyp.3)

we have to prove that: f,Ξ ∼σDOM f ′,Ξ′ and σ′ 6v σ. We conclude that:

• r = freshDOM (σn) (1) - (hyp.1)

• f ′ = f [r 7→ 〈m, null, null, ε〉] (2) - (hyp.1) + (1)

• Ξ′ = Ξ [r 7→ 〈σn, σn, σp, σs〉] (3) - (hyp.2) + (1)

• σ0 t σ1 t σ2 v σn v σp u σs (4) - (hyp.2)

• σn u σp u σs 6v σ (5) - (hyp.3) + (4)

• f �Ξ,σ= f ′ �Ξ
′,σ (6) - (2) + (3) + (5)

• σ′ = σ0 t σ1 t σ2 (8) - (hyp.2)

• σ′ 6v σ (9) - (hyp.3) + (8)

�

Theorem 7.1 - Noninterference of the Monitored Core DOM API

Proof: For every (pg, pglab) ∈ dom(RDOMIF ), we have to prove that given two forests f and
f ′ labelled by Ξ and Ξ′ and two sequences of values −→v and −→v ′ respectively labelled by two
sequences of levels −→σ and −→σ ′ and such that:

• −→v ,−→σ ∼σDOM
−→v ,−→σ ′ (hyp.1)

• f,Ξ ∼σDOM f ′,Ξ′ (hyp.2)

• 〈f,−→v 〉α pg 〈ff , vf 〉β (hyp.3) and 〈f ′,−→v ′〉α pg 〈f ′f , v′f 〉β
′ (hyp.4)

• 〈Ξ,−→σ 〉β pglab 〈Ξf , σf 〉 (hyp.5) and 〈Ξ′,−→σ ′〉β
′

pglab 〈Ξ′f , σ′f 〉 (hyp.6)

Then, it holds that: ff ,Ξf ∼σDOM f ′f ,Ξ
′
f and vf , σf ∼σ v′f , σ′f . In order to prove that vf , σf ∼σ

v′f , σ
′
f , we have to prove the following two implications: (1) σf v σ ⇒ vf = v′f ∧ σf = σ′f v σ

and (2) σ′f v σ ⇒ vf = v′f ∧ σf = σ′f v σ. Since the proofs of (1) and (2) are identical, we
only prove (1). However, we cannot introduce at this level the hypothesis σf v σ because it
cannot be used in the proof of ff ,Ξf ∼σDOM f ′f ,Ξ

′
f . Therefore, we are obliged to introduce this

hypothesis in every case. We now proceed by case analysis on the API methods in the range of
RDOMIF .

[Parent] Suppose (pg, pglab) = (parent, parentlab) (hyp.7). We conclude that there are two node
references r and r′ such that:

• −→v = r :: "parentNode", −→v ′ = r′ :: "parentNode", −→σ = σ0 :: σ1, and −→σ ′ = σ′0 :: σ′1
(1) - (hyp.3) - (hyp.7)



D.1. Noninterference - Basic DOM API 183

• σf = σ0 t σ1 t Ξ(r).pos and σ′f = σ′0 t σ′1 t Ξ′(r′).pos (2) - (hyp.3) - (hyp.7)

• σ0 u σ′0 v σ ⇒ r = r′ ∧ σ0 = σ′0 v σ (3) - (hyp.1) + (1)

• σ1 u σ′1 v σ ⇒ σ1 = σ′1 v σ (4) - (hyp.1) + (1)

• ff = f , Ξf = Ξ, vf = f(r).parent (5) - (hyp.3) + (hyp.5) + (hyp.7)

• f ′f = f ′, Ξ′f = Ξ′, and v′f = f ′(r′).parent (6) - (hyp.4) + (hyp.6) + (hyp.7)

• ff ,Ξf ∼σDOM f ′f ,Ξ
′
f (7) - (hyp.2) + (5) + (6)

In the following suppose that σf v σ (hyp.8):

• σ0 v σ, σ1 v σ, and Ξ(r).pos v σ (8) - (hyp.8) + (2)

• r = r′, σ0 = σ′0, and σ1 = σ′1 (9) - (3) + (4) + (8)

• f(r).parent = f ′(r′).parent and Ξ(r).pos = Ξ′(r′).pos (10) - (hyp.2) + (8) + (9)

• vf = v′f and σf = σ′f (11) - (2) + (5) + (6) + (9) + (10)

[Item] Suppose (pg, pglab) = (item, itemlab) (hyp.7). We conclude that there are two node refer-
ences r and r′ such that:

• −→v = r :: i, −→v ′ = r′ :: j, −→σ = σ0 :: σ1, and −→σ ′ = σ′0 :: σ′1 (1) - (hyp.3) - (hyp.7)

• vf = r̂ = f(r).children(i) 6= null and v′f = r̂′ = f ′(r′).children(j) 6= null
(2) - (hyp.3) + (hyp.4) + (hyp.7)

• σf = σ0 t σ1 t Ξ(r̂).pos and σ′f = σ′0 t σ′1 t Ξ′(r̂′).pos (3) - (hyp.5) + (hyp.6) + (hyp.7) + (2)

• ff = f and Ξf = Ξ (4) - (hyp.3) + (hyp.5) + (hyp.7)

• f ′f = f ′ and Ξ′f = Ξ′ (5) - (hyp.4) + (hyp.6) + (hyp.7)

• ff ,Ξf ∼σDOM f ′f ,Ξ
′
f (6) - (hyp.2) + (4) + (5)

In the following suppose that σf v σ (hyp.8):

• σ0 u σ′0 v σ ⇒ r = r′ ∧ σ0 = σ′0 v σ (7) - (hyp.1) + (1)

• σ1 u σ′1 v σ ⇒ i = j ∧ σ1 = σ′1 v σ (8) - (hyp.1) + (1)

• σ0 v σ, σ1 v σ, and Ξ(r̂).pos v σ (9) - (hyp.7) + (3)

• r = r′, σ0 = σ′0, i = j, and σ1 = σ′1 (10) - (7) - (9)

• r̂ = r̂′ and Ξ(r̂).pos = Ξ′(r̂′).pos v σ (11) - (hyp.2) + (9) + (10)

• vf = v′f and σf = σ′f (12) - (2) + (3) + (10) + (11)

[Length] Suppose (pg, pglab) = (length, lengthlab) (hyp.7). We conclude that there are two node
references r and r′ such that:

• −→v = r :: "length", −→v ′ = r′ :: "length", −→σ = σ0 :: σ1, and −→σ ′ = σ′0 :: σ′1 (1) - (hyp.3) - (hyp.7)

• vf = |f(r).children| and v′f = |f ′(r′).children| (2) - (hyp.3) + (hyp.4) + (hyp.7)

• σf = σ0 t σ1 t Ξ(r).struct and σ′f = σ′0 t σ′1 t Ξ′(r′).struct (3) - (hyp.5) + (hyp.6) + (hyp.7)

• ff = f and Ξf = Ξ (4) - (hyp.3) + (hyp.5) + (hyp.7)

• f ′f = f ′ and Ξ′f = Ξ′ (5) - (hyp.4) + (hyp.6) + (hyp.7)

• ff ,Ξf ∼σDOM f ′f ,Ξ
′
f (6) - (hyp.2) + (4) + (5)

In the following suppose that σf v σ (hyp.8):

• σ0 u σ′0 v σ ⇒ r = r′ ∧ σ0 = σ′0 v σ (7) - (hyp.1) + (1)

• σ1 u σ′1 v σ ⇒ σ1 = σ′1 v σ (8) - (hyp.1) + (1)



184 Appendix D. Proofs of Chapter 7

• σ0 v σ, σ1 v σ, and Ξ(r).struct v σ (9) - (hyp.8) + (3)

• r = r′, σ0 = σ′0, and σ1 = σ′1 (10) - (7) - (9)

• |f(r).children| = |f ′(r′).children| and Ξ(r).struct = Ξ′(r′).struct v σ (11) - (hyp.2) + (9) + (10)

• vf = v′f and σf = σ′f (12) - (2) + (3) + (10) + (11)

[Value] Suppose (pg, pglab) = (value, valuelab) (hyp.7). We conclude that there are two node
references r and r′ such that:

• −→v = r :: "nodeValue", −→v ′ = r′ :: "nodeValue", −→σ = σ0 :: σ1, and −→σ ′ = σ′0 :: σ′1
(1) - (hyp.3) - (hyp.7)

• vf = f(r).value and v′f = f ′(r′).value (2) - (hyp.3) + (hyp.4) + (hyp.7)

• σf = σ0 t σ1 t Ξ(r).value and σ′f = σ′0 t σ′1 t Ξ′(r′).value (3) - (hyp.5) + (hyp.6) + (hyp.7)

• ff = f and Ξf = Ξ (4) - (hyp.3) + (hyp.5) + (hyp.7)

• f ′f = f ′ and Ξ′f = Ξ′ (5) - (hyp.4) + (hyp.6) + (hyp.7)

• ff ,Ξf ∼σDOM f ′f ,Ξ
′
f (6) - (hyp.2) + (4) + (5)

In the following suppose that σf v σ (hyp.8):

• σ0 u σ′0 v σ ⇒ r = r′ ∧ σ0 = σ′0 v σ (7) - (hyp.1) + (1)

• σ1 u σ′1 v σ ⇒ σ1 = σ′1 v σ (8) - (hyp.1) + (1)

• σ0 v σ, σ1 v σ, and Ξ(r).value v σ (9) - (hyp.8) + (3)

• r = r′, σ0 = σ′0, and σ1 = σ′1 (10) - (7) - (9)

• f(r).value = f ′(r′).value and Ξ(r).value = Ξ′(r′).value v σ (11) - (hyp.2) + (9) + (10)

• vf = v′f and σf = σ′f (12) - (2) + (3) + (10) + (11)

[New] Suppose (pg, pglab) = (new, newlab) (hyp.7). We conclude that there are two strings m
and m′, nine security levels σ0, σ1, σ2, σ′0, σ′1, σ′2, σn, σp, and σs, two references r and r′, and
an index i, such that:

• −→v = #doc :: "createElement" :: m, −→v ′ = #doc :: "createElement" :: m′, −→σ = σ0 :: σ1 :: σ2,
and −→σ ′ = σ′0 :: σ′1 :: σ′2 (1) - (hyp.3) - (hyp.7)

• vf = r = freshDOM (σn) and v′f = freshDOM (σn) (2) - (hyp.3) + (hyp.4) + (hyp.7)

• σf = σn and σ′f = σn (3) - (hyp.5) + (hyp.6) + (hyp.7)

• σn v σp u σs (4) - (hyp.5) + (hyp.6) + (hyp.7)

• ff = f [r 7→ 〈m, null, null, ε〉] and Ξf = Ξ [r 7→ 〈σn, σn, σp, σs〉] (5) - (hyp.3) + (hyp.5) + (hyp.7)

• f ′f = f ′ [r′ 7→ 〈m′, null, null, ε〉] and Ξ′f = Ξ′ [r′ 7→ 〈σn, σn, σp, σs〉]
(6) - (hyp.4) + (hyp.6) + (hyp.7)

In the following suppose that σ0 t σ1 6v σ (hyp.8):

• σ′f 6v σ (7) - (hyp.1) + (hyp.8) + (3)

• f,Ξ ∼σDOM ff ,Ξf (8) - (hyp.3) + (hyp.5) + (hyp.8) + Confinement (Lemma 7.2)

• f ′,Ξ′ ∼σDOM f ′f ,Ξ
′
f (9) - (hyp.4) + (hyp.6) + (7) + Confinement (Lemma 7.2)

• ff ,Ξf ∼σDOM f ′f ,Ξ
′
f (10) - (hyp.2) + (8) + (9) + Reflexivity and Symmetry of ∼σDOM

In the following suppose that σf 6v σ (hyp.8):

• σ0 u σ′0 v σ ⇒ σ0 = σ′0 v σ (11) - (hyp.1) + (1)

• σ1 u σ′1 v σ ⇒ σ1 = σ′1 v σ (12) - (hyp.1) + (1)



D.1. Noninterference - Basic DOM API 185

• σ2 u σ′2 v σ ⇒ m = m′ ∧ σ2 = σ′2 v σ (13) - (hyp.1) + (1)

• σ0 v σ, σ1 v σ, and σ2 v σ (14) - (hyp.8) + (3)

• σ0 = σ′0, σ1 = σ′1, σ2 = σ′2, and m = m′ (15) - (11) - (14)

• r = r′ (16) - (hyp.2) + (2) + Parametric Allocation

• ff (r).tag = f ′f (r′).tag, ff (r).value = f ′f (r′).value, ff (r).children = f ′f (r′).children
(17) - (5) + (6) + (15) + (16)

• Ξf (r).node = Ξ′f (r′).node, Ξf (r).pos = Ξ′f (r′).pos, Ξf (r).value = Ξ′f (r′).value, and Ξf (r).struct =
Ξ′f (r′).struct (18) - (5) + (6) + (15)

• ff ,Ξf ∼σDOM f ′f ,Ξ
′
f and vf = v′f (19) - (hyp.2) + (17) + (18)

[Store] Suppose (pg, pglab) = (store, storelab) (hyp.7). We conclude that there are two references
r and r′ and two values v and v′ such that:

• −→v = r :: "storeValue" :: v, −→v ′ = r′ :: "storeValue" :: v′, −→σ = σ0 :: σ1 :: σ2, and−→σ ′ = σ′0 :: σ′1 :: σ′2 (1) - (hyp.3) - (hyp.7)

• vf = v and v′f = v′ (2) - (hyp.3) + (hyp.4) + (hyp.7)

• σf = σ0 t σ1 t σ2 t Σ(r).node and σ′f = σ′0 t σ′1 t σ′2 t Σ(r).node
(3) - (hyp.5) + (hyp.6) + (hyp.7)

• σf v Ξ(r).node and σ′f v Ξ′(r′).node (4) - (hyp.5) + (hyp.6) + (hyp.7)

• σ0 t σ1 v Ξ(r).value and σ′0 t σ′1 v Ξ′(r′).value (5) - (hyp.5) + (hyp.6) + (hyp.7)

• ff = f [r 7→ 〈f(r).tag, v, f(r).parent, f(r).children〉] and
Ξf = Ξ [r 7→ 〈Ξ(r).node, σf ,Ξ(r).pos,Ξ(r).struct〉] (6) - (hyp.3) + (hyp.5) + (hyp.7)

• f ′f = f ′ [r′ 7→ 〈f ′(r′).tag, v′, f ′(r′).parent, f ′(r′).children〉] and
Ξ′f = Ξ′

[
r′ 7→ 〈Ξ(r′).node, σ′f ,Ξ(r′).pos,Ξ(r′).struct〉

]
(7) - (hyp.4) + (hyp.6) + (hyp.7)

In the following suppose that σ0 t σ1 6v σ (hyp.8):

• σ′0 t σ′1 6v σ (8) - (hyp.1) + (hyp.8)

• f,Ξ ∼σDOM ff ,Ξf (9) - (hyp.3) + (hyp.5) + (hyp.8) + Confinement (Lemma 7.2)

• f ′,Ξ′ ∼σDOM f ′f ,Ξ
′
f (10) - (hyp.4) + (hyp.6) + (8) + Confinement (Lemma 7.2)

• ff ,Ξf ∼σDOM f ′f ,Ξ
′
f (11) - (hyp.2) + (9) + (10) + Reflexivity and Symmetry of ∼σDOM

In the following suppose that σ0 t σ1 t Ξ(r).value v σ (hyp.8):

• σ0 u σ′0 v σ ⇒ r = r′ ∧ σ0 = σ′0 v σ (12) - (hyp.1) + (1)

• σ1 u σ′1 v σ ⇒ σ1 = σ′1 v σ (13) - (hyp.1) + (1)

• v, σ2 ∼σ v′, σ′2 (14) - (hyp.1) + (1)

• σ0 = σ′0, σ1 = σ′1, and r = r′ (15) - (hyp.8) + (12) + (13)

• Ξ(r).value u Ξ′(r′).value v σ ⇒ Ξ(r).value = Ξ′(r′).value v σ (16) - (hyp.2) + (15)

• Ξ(r).value = Ξ′(r′).value v σ (17) - (hyp.8) + (16)

• v, σf ∼σ v′, σ′f (18) - (14) + (15) + (17)

• ff �Ξf ,σ= ff �Ξf ,σ \{(r, f(r).value,Ξ(r).value)} ∪ {(r, v, σf )} (19) - (hyp.8) + (6)

• f ′f �
Ξ′

f ,σ= f ′f �
Ξ′

f ,σ \{(r′, f ′(r′).value,Ξ′(r′).value)} ∪ {(r′, v′, σ′f )} (20) - (hyp.8) + (6)

• ff ,Ξf ∼σDOM f ′f ,Ξ
′
f (21) - (18) - (20)

In the following suppose that σ0 t σ1 t σ2 v σ (hyp.8):



186 Appendix D. Proofs of Chapter 7

• σ0 = σ′0 v σ, σ1 = σ′1 v σ, σ2 = σ2 v σ, r = r′, and v = v′ (22) - (hyp.1) + (hyp.2) + (1)

• vf = v′f and σf = σ′f (23) - (2) + (3) + (22)

[Append] (pg, pglab) = (append, appendlab) (hyp.7). We conclude that there are four references
r0, r′0, r1, and r′1 and six security levels σ0, σ1, σ2, σ′0, σ′1, and σ2, and such that:

• −→v = r0 :: "appendChild" :: r1, −→v ′ = r′0 :: "appendChild" :: r′1,
−→σ = σ0 :: σ1 :: σ2, and

−→σ ′ = σ′0 :: σ′1 :: σ′2 (1) - (hyp.3) - (hyp.7)

• vf = r2 and v′f = r′2 (2) - (hyp.3) + (hyp.4) + (hyp.7)

• σf = σ0 t σ1 t σ2 v Σ(r0).struct u Σ(r2).pos (3) - (hyp.5) + (hyp.6) + (hyp.7)

• σ′f = σ′0 t σ′1 t σ′2 v Σ′(r′0).struct u Σ′(r′2).pos (4) - (hyp.5) + (hyp.6) + (hyp.7)

• The final forest ff is given by:

ff = f

[
r0 7→ 〈f(r0).tag, f(r0).value, f(r0).parent, f(r0).children :: r2〉,
r2 7→ 〈f(r2).tag, f(r2).value, r0, f(r2).children〉

]
(5) - (hyp.3) + (hyp.7)

• The final forest f ′f is given by:

f ′f = f

[
r′0 7→ 〈f ′(r′0).tag, f ′(r′0).value, f ′(r′0).parent, f ′(r′0).children :: r′2〉,
r′2 7→ 〈f ′(r′2).tag, f ′(r′2).value, r′0, f

′(r′2).children〉

]
(6) - (hyp.4) + (hyp.7)

• Ξf = Ξ and Ξ′f = Ξ′ (7) - (hyp.5) + (hyp.6) + (hyp.7)

Suppose σ0 t σ1 t σ2 6v σ (hyp.8). We conclude that:

• σ′0 t σ′1t v σ′2 6v σ (8) - (hyp.1) + (hyp.8)

• f,Ξ ∼σDOM ff ,Ξf (9) - (hyp.3) + (hyp.5) + (hyp.8) + Confinement (Lemma 7.2 - Append)

• f ′,Ξ′ ∼σDOM f ′f ,Ξ
′
f (10) - (hyp.4) + (hyp.6) + (8) + Confinement (Lemma 7.2 - Append)

• ff ,Ξf ∼σDOM f ′f ,Ξ
′
f (11) - (hyp.2) + (9) + (10) + Reflexivity and Symmetry of ∼σDOM

Let i = |f(r0).children|, j = |f ′(r′0).children|, r̂ = f(r0).children(i−1), and r̂′ = f ′(r′0).children(j−
1). Suppose σ0 t σ1 t σ2 v σ (hyp.8). We conclude that:

• σ0 = σ′0 v σ, r0 = r′0, σ1 = σ′1, σ2 = σ′2, and r2 = r′2 (12) - (hyp.1) + (hyp.8) + (1)

• (Ξ(r0).struct = Ξ′(r0).struct v σ ∧ i = j) ∨ Ξ(r0).struct u Ξ′(r0).struct 6v σ
(13) - (hyp.2) + (12)

• Ξ(r0).pos = Ξ′(r0).pos v σ ∨ Ξ(r0).pos u Ξ′(r0).pos 6v σ (14) - (hyp.2) + (12)

• Ξ(r̂).pos v Ξ(r2).pos and Ξ′(r̂′).pos v Ξ′(r′2).pos (15) - (hyp.2) + (12)

• (Ξ(r0).pos = Ξ′(r0).pos v σ ∧ i = j) ∨ Ξ(r0).pos u Ξ′(r0).pos 6v σ (16) - (hyp.2) + (12) + (15)

• ff ,Ξf ∼σDOM f ′f ,Ξ
′
f (17) - (hyp.2) + (12) + (13) + (16)

[Remove] Suppose (pg, pglab) = (remove, removelab) (hyp.7). We conclude that there are four
references r0, r2, r′0, and r′2 and two integers i and j such that:

• −→v = r0 :: "removeChild" :: r2, −→v ′ = r′0 :: "removeChild" :: r′2,
−→σ = σ0 :: σ1 :: σ2, and

−→σ ′ = σ′0 :: σ′1 :: σ′2 (1) - (hyp.3) - (hyp.7)

• vf = r2 and v′f = r′2 (2) - (hyp.3) + (hyp.4) + (hyp.7)

• σ0 t σ1 t σ2 v Ξ(r0).struct u Ξ(r2).pos and σf = Ξ(r).pos (3) - (hyp.5) + (hyp.7)



D.2. Proving Low-Equality Strengthening 187

• σ′0 t σ′1 t σ′2 v Ξ′(r′0).struct u Ξ′(r′2).pos and σ′f = Ξ′(r′).pos (4) - (hyp.6) + (hyp.7)

• f(r0).children(i) = r2 and f ′(r′0).children(j) = r′2 (5) - (hyp.5) - (hyp.7)

• The final forest ff is given by:

ff = f

[
r0 7→ 〈f(r0).tag, f(r0).value, f(r0).parent,ShiftL(f(r0).children, i)〉,
r2 7→ 〈f(r2).tag, f(r2).value, null, f(r2).children〉

]
(6) - (hyp.3) + (hyp.7)

• The final forest f ′f is given by:

f ′f = f ′
[
r′0 7→ 〈f ′(r′0).tag, f ′(r′0).value, f ′(r′0).parent,ShiftL(f ′(r′0).children, j)〉,
r′2 7→ 〈f ′(r′2).tag, f ′(r′2).value, null, f ′(r′2).children〉

]
(7) - (hyp.4) + (hyp.7)

In the following suppose that σ0 t σ1 t σ2 6v σ (hyp.8):

• σ′0 t σ′1 t σ′2 6v σ (7) - (hyp.1) + (hyp.8)

• f,Ξ ∼σDOM ff ,Ξf (8) - (hyp.3) + (hyp.5) + (hyp.8) + Confinement (Lemma 7.2 - Remove)

• f ′,Ξ′ ∼σDOM f ′f ,Ξ
′
f (9) - (hyp.4) + (hyp.6) + (7) + Confinement (Lemma 7.2 - Remove)

• ff ,Ξf ∼σDOM f ′f ,Ξ
′
f (11) - (hyp.2) + (8) + (9) + Reflexivity and Symmetry of ∼σDOM

In the following suppose that σ0 t σ1 t σ2 v σ (hyp.8):

• r0 = r′0, σ0 = σ′0, σ1 = σ′1, σ2 = σ′2, and r2 = r′2 (12) - (hyp.1) + (hyp.8)

• (Ξ(r0).struct = Ξ′(r0).struct v σ ∧ |f(r0).children| = |f ′(r0).children|) ∨
∨ (Ξ(r0).struct u Ξ′(r0).struct 6v σ) (13) - (hyp.2) + (12)

• (Ξ(r2).pos = Ξ′(r′2).pos v σ ∧ i = j ∧ f(r2).parent = f ′(r2).parent) ∨(
∀k≥i Ξ(f(r0).children(k)).pos 6v σ ∧ ∀k≥j Ξ′(f ′(r0).children(k)).pos 6v σ ∧
∧Ξ(r2).parent u Ξ′(r2).parent 6v σ

)
(14) - (hyp.2) + (12)

• ff ,Ξf ∼σDOM f ′f ,Ξ
′
f (15) - (hyp.2) + (12)-(14)

�

D.2 Proving Low-Equality Strengthening

Definitions D.1 and D.2 strengthen the low-equality for sequences introduced in the previous
section. Definition D.1 requires that the two sequences coincide in their low prefix, while Defi-
nition D.2 require that they entirely coincide.

Definition D.1 (Asymmetric Low-Equality for Sequences). Two lists of values −→v and −→v ′
respectively labelled by two lists of security levels −→σ and −→σ ′ are said to be asymmetrically low-
equal w.r.t. a security level σ, written −→v ,−→σ 'σ −→v ′,−→σ ′ if the following hold there is an integer
i such that: (1) ∀0≤j<i

−→σ (i) = −→σ ′(i) v σ ∧ −→v (i) = −→v ′(i), (2) ∀i≤j<|−→v | −→σ (i) 6v σ, and (3)
∀i≤j<|−→v ′| −→σ ′(i) 6v σ. Furthermore, for all security levels σ, it holds that ε, ε 'σ ε, ε.

Definition D.2 (Strong Low-Equality for Sequences). Two lists of values −→v and −→v ′ respectively
labelled by two lists of security levels −→σ and −→σ ′ are said to be strongly low-equal w.r.t. a
security level σ, written −→v ,−→σ ≈σ −→v ′,−→σ ′ if: (1) |−→v | = |−→v ′| and (2) ∀0≤i<|−→v |

−→σ (i) = −→σ ′(i) v
σ ∧ −→v (i) = −→v ′(i).



188 Appendix D. Proofs of Chapter 7

In the following, given a function g mapping references to security levels and a sequence of
reference −→r , we use g(−→r ) to denote the sequence −→σ obtained by applying g to every element
of −→r . Formally, −→σ is such that: |−→r | = |−→σ | and for all 0 ≤ i < |−→r |: −→σ (i) = g(−→r (i)). We use
Ξ.pos to denote the function that maps each node reference to the corresponding position level.
Formally, Ξ.pos(r) = Ξ(r).pos. Moreover, given a list of security level −→σ and a security level σ,
we use σ v −→σ as an abbreviation for σ v u{−→σ (i) | 0 ≤ i < |−→σ |} and −→σ v σ as an abbreviation
for t{−→σ (i) | 0 ≤ i < |−→σ |} v σ.

Lemma D.1 states that, given a well-labelled tree for live collections, if one searches for the
nodes with a given tag m starting from the root of that tree, one obtains a sequence of nodes
whose position levels are monotonically increasing.

Lemma D.1 (Monotonocity of the search relation). Given a forest f labelled by Ξ, a node
reference r, a function φ , and a tag name m such that Secf,Ξ `r φ  φ′ and f ` r  m

−→r ,
for a given function φ′ and list of references −→r , it holds that: (1) Ξ.pos(−→r ) is monotonically
increasing and (2) φ (m) v Ξ.pos(−→r ) v φ′ (m) v σm.

Proof: We begin by restating the hypotheses of the lemma:

• Secf,Ξ `r φ  φ′ (hyp.1)

• f ` r  m
−→r (hyp.2)

The proof proceeds by induction on the structure of the derivation of f ` r  m
−→r . There are

two base cases to consider [Node Not Found - Leaf Node] and [Node Found - Leaf Node].
The inductive cases are [Node Not Found - Non-Leaf Node] and [Node Found - Non-Leaf
Node]. Since the inductive case are analogous, we only consider the case [Node Found - Non-
Leaf Node], which is the most complex.

[Node Not Found - Leaf Node] In this case: |f(r).children| = 0 and f(r).tag 6= m (hyp.3). We
conclude that:

• φ′ = φ and −→r = ε (1) - (hyp.1)-(hyp.3)

[Node Found - Leaf Node] In this case: |f(r).children| = 0, f(r).tag = m, (hyp.3). Letting
σ = Ξ(r).pos, we conclude that:

• φ (m) v σ v σm, φ′ = φ [m 7→ σ], and −→r = r :: ε (1) - (hyp.1)-(hyp.3)

• φ (m) v Ξ(−→r (0)).pos = φ′ (m) v σm (2) - (1)

[Node Found - Non-Leaf Node] In this case: |f(r).children| = n, n 6= 0, f(r).tag = m, (hyp.3).
Letting σ = Ξ(r).pos and −→r ′ = f(r).children, we conclude that:

• −→r = r :: −→r 0 :: · · · :: −→r n, where f ` −→r (i) m
−→r i for 0 ≤ i < n (1) - (hyp.1) + (hyp.3)

• φ (m) v σ v σm (2) - (hyp.2) + (hyp.3)

• φ (m) v Ξ(r).pos = φ0
 (m) v σm, where φ0

 = φ [m 7→ σ] (3) - (hyp.2) + (hyp.3) + (2)

• ∀0≤i<n Secf,Ξ `f(r).children(i) φi  φi+1
 and φ′ = φn (4) - (hyp.2) + (hyp.3)

• For all 0 ≤ i < n, Ξ.pos(−→r i) is monotonically increasing and:

φi (m) v Ξ.pos(−→r i) v φi+1
 (m) v σm

(5) - (1) + (4) + ih

• The list −→r is monotonically increasing and φ (m) v Ξ.pos(−→r ) v φ′ (m) v σm
(6) - (3) + (5)



D.2. Proving Low-Equality Strengthening 189

Leaf Node
f(r).tag = m |f(r).children| = 0
σ = Ξ(r).pos φ (m) v σ v σm

φ′ = φ [m 7→ σ] ϕ′ = ϕ [(m,σ) 7→ r]

Secf,Ξ `r φ , ϕ  φ′ , ϕ
′
 

Non-Leaf Node
f(r).tag = m σ = Ξ(r).pos

φ (m) v σ v σm |f(r).children| = n > 0
φ0
 = φ [m 7→ σ] ϕ0

 = ϕ [(m,σ) 7→ r]
∀0≤i<n Ξ(r).pos v Ξ(f(r).children(i)).pos

∀0≤i<n Secf,Ξ `f(r).children(i) φi , ϕ
i
  φi+1

 , ϕi+1
 

Secf,Ξ `r φ , ϕ  φn , ϕ
n
 

Figure D.1: Well-labelling Predicate for Live Primitives

�

In order to be able to prove Theorem 7.2, we need to reason about low-equal trees that are
well-labelled for live collections. Therefore, one must modify the well-labelling predicate for it
to compute the additional information required for the proofs. Concretely, the new version of
the predicate (which is presented in Figure D.1) computes for each tree a function ϕ , called
live record, that maps every pair (m,σ), consisting of a tag name and a security level, to the
last node in that tree (in document order) with tag m whose position level is v σ. Given a live
record ϕ , we define its low-projection at level σ, written ϕ �σ, as the live record ϕ′ given by:

ϕ′ (m,σ′) =

{
ϕ (m,σ′) if σ′ v σ
undefined otherwise

If a tree is well-labelled for a live collections and the position level of its root node is not
observable, then applying the definition, we conclude that the position levels of all the nodes
in that tree are not observable. This means that, if the the position level of a node n is not
observable at level σ, the low-projection at σ of the live record computed by searching the tree
rooted at n coincides with the low-projection at σ of the initial live record. This fact is formally
established in Lemma D.2. Furthermore, if two trees are well-labelled for live collections and
low-equal at a given security level σ (according to the first low-equality for trees - ∼σDOM ), then
the low-projections of their respective live records at level σ coincide. This is established in
Lemma D.3.

Lemma D.2 (Highly-Positioned Tree). Given a forest f labelled by Ξ, a node reference r, two
functions φ and ϕ , and a tag name m such that Secf,Ξ `r φ , ϕ  φ′ , ϕ

′
 and Ξ(r).pos 6v σ,

for some functions φ′ and ϕ′ , it holds that: ϕ �σ= ϕ′ �
σ.

Proof: Given that:

• Secf,Ξ `r φ , ϕ  φ′ , ϕ
′
 (hyp.1)

• Ξ(r).pos 6v σ (hyp.2)

we have to prove that ϕ �σ= ϕ′ �
σ. We proceed by induction on the derivation of (hyp.1). The

base case is [Leaf Node] and the inductive case is [Non-Leaf Node].

[Leaf Node] In this case: |f(r).children| = 0 (hyp.3). Letting m = f(r).tag and σ′ = Ξ(r).pos,
we conclude that:

• ϕ′ = ϕ [(m,σ′) 7→ r] (1) - (hyp.1) + (hyp.3)

• ϕ′ �σ= ϕ �σ (2) - (hyp.2) + (1)



190 Appendix D. Proofs of Chapter 7

[Non-Leaf Node] In this case: |f(r).children| = n for n > 0 (hyp.3). Letting m = f(r).tag,
σ′ = Ξ(r).pos, φ0

 = φ [m 7→ σ], and ϕ0
 = ϕ [(m,σ) 7→ r], we conclude that:

• ∀0≤i<n Ξ(r).pos v Ξ(f(r).children(i)).pos (1) - (hyp.1) + (hyp.3)

• ∀0≤i<n Secf,Ξ `f(r).children(i) φi , ϕ
i
  φi+1

 , ϕi+1
 and ϕ′ = ϕn (2) - (hyp.1) + (hyp.3)

• ϕ0
 �

σ= ϕ �σ (3) - definition

• ∀0≤i<n Ξ(f(r).children(i)).pos 6v σ (4) - (hyp.2) + (1)

• ∀0≤i<n ϕ
i
 �

σ= ϕi+1
 �σ (5) - (2) + (4) + ih

• ϕ0
 �

σ= ϕn �
σ= ϕ′ �

σ (6) - (2) + (5)

• ϕ �σ= ϕ′ �
σ (7) - (3) + (6)

�

Lemma D.3 (Live Records of Well-labelled Low-Equal Trees). Given two forests f and f̂
respectively well-labelled by Ξ and Ξ̂, two live functions φ and φ̂ , two live records ϕ and ϕ̂ ,
a node reference r, and a security level σ such that: Secf,Ξ `r φ , ϕ  φ′ , ϕ

′
 , Secf̂ ,Ξ̂ `

r

φ̂ , ϕ̂  φ̂′ , ϕ̂
′
 , f,Ξ ∼σDOM f̂ , Ξ̂, and ϕ �σ= ϕ̂ �σ, it holds that: ϕ′ �

σ= ϕ̂′ �
σ.

Proof: Given that:

• Secf,Ξ `r φ , ϕ  φ′ , ϕ
′
 (hyp.1)

• Secf̂ ,Ξ̂ `
r φ̂ , ϕ̂  φ̂′ , ϕ̂

′
 (hyp.2)

• f,Ξ ∼σDOM f̂ , Ξ̂ (hyp.3)

• ϕ �σ= ϕ̂ �σ (hyp.4)

we have to prove that ϕ′ �
σ= ϕ̂′ �

σ. Suppose that Ξ(r).pos 6v σ (hyp.5). We conclude that:

• ϕ′ �σ= ϕ �σ (1) - (hyp.1) + (hyp.5) + High Positioned Tree

• Ξ̂(r).pos 6v σ (2) - (hyp.3) + (hyp.5)

• ϕ̂′ �σ= ϕ̂ �σ (3) - (hyp.2) + (2) + High Positioned Tree

• ϕ′ �σ= ϕ̂′ �
σ (4) - (hyp.4) + (1) + (3)

In the rest of the proof we suppose that Ξ(r).pos = Ξ̂(r).pos v σ (hyp.5) and we proceed by
induction on the derivation of (hyp.1). The base case is [Leaf Node] and the inductive case is
[Non-Leaf Node].

[Leaf Node] In this case: |f(r).children| = 0 (hyp.6). Letting m = f(r).tag and σ′ = Ξ(r).pos =

Ξ̂(r).pos, m̂ = f̂(r).tag, and ϕ̂0
 = ϕ̂ [(m̂, σ′) 7→ r], we conclude that:

• ϕ′ = ϕ [(m,σ′) 7→ r] (1) - (hyp.1) + (hyp.6)

• Ξ(r).node = Ξ̂(r).node v σ (2) - (hyp.3) + (hyp.5)

• m = m̂ (3) - (hyp.3) + (2)

• ϕ′ �σ= ϕ̂0
 �

σ (4) - (hyp.4) + (hyp.5) + (1) + (3)

If |f̂(r).children| = 0, then ϕ̂′ = ϕ̂0
 and the result follows immediately by (4). Hence,

suppose that: |f̂(r).children| = n > 0 (hyp.7). We conclude that:

• ∀0≤i<n Secf̂ ,Ξ̂ `
f̂(r).children(i) φ̂i , ϕ̂

i
  φ̂i+1

 , ϕ̂i+1
 and ϕ̂′ = ϕn (5) - (hyp.2) + (hyp.7)



D.2. Proving Low-Equality Strengthening 191

• Ξ̂(r).struct 6v σ (6) - (hyp.3) + (hyp.6) + (hyp.7)

• ∀0≤i<n Ξ̂(f̂(r).children(i)).pos 6v σ (7) - (hyp.2) + (6)

• ∀0≤i<n ϕ̂
i
 �

σ= ϕ̂i+1
 �σ (8) - (5) + (7) + High-Positioned Tree

• ϕ̂0
 �

σ= ϕ̂n �
σ= ϕ̂′ �

σ (9) - (5) + (8)

• ϕ′ �σ= ϕ̂′ �
σ (10) - (4) + (9)

[Non-Leaf Node] In this case: |f(r).children| = n > 0 (hyp.6). Since the case in which
|f̂(r).children| = 0 is symmetric to the previous case. We shall assume that: |f̂(r).children| =

n̂ > 0 (hyp.7). Letting m = f(r).tag and σ′ = Ξ(r).pos = Ξ̂(r).pos, m̂ = f̂(r).tag,
ϕ0
 = ϕ [(m,σ′) 7→ r], ϕ̂0

 = ϕ̂ [(m̂, σ′) 7→ r], we conclude that:

• Ξ(r).node = Ξ̂(r).node v σ (1) - (hyp.3) + (hyp.5)

• m = m̂ (2) - (hyp.3) + (1)

• ∀0≤i<n Secf,Ξ `f(r).children(i) φi , ϕ
i
  φi+1

 , ϕi+1
 and ϕ′ = ϕn (3) - (hyp.1) + (hyp.6)

• ∀0≤i<n̂ Secf̂ ,Ξ̂ `
f̂(r).children(i) φ̂i , ϕ̂

i
  φ̂i+1

 , ϕ̂i+1
 and ϕ̂′ = ϕn̂ (4) - (hyp.2) + (hyp.7)

• ϕ0
 �

σ= ϕ̂0
 �

σ (5) - (hyp.4) + (1) + (2)

Since the position levels of the children of f(r) and f̂(r) are in increasing order, we conclude
from (hyp.3) that there is an unique integer j such that:

• ∀0≤i<j Ξ(f(r).children(i)).pos v σ (6) - (hyp.3)

• ∀j≤i<|f(r).children| Ξ(f(r).children(i)).pos 6v σ (7) - (hyp.3)

• ∀0≤i<j Ξ̂(f̂(r).children(i)).pos v σ (8) - (hyp.3)

• ∀j≤i<|f̂(r).children| Ξ̂(f̂(r).children(i)).pos 6v σ (9) - (hyp.3)

• ϕj �σ= ϕn �
σ= ϕ′ �

σ (10) - (3) + (7)

• ϕ̂j �σ= ϕ̂n �
σ= ϕ̂′ �

σ (11) - (4) + (9)

• ∀0≤i<j f(r).children(i) = f̂(r).children(i) (12) - (hyp.3)

We now prove by induction on j that ϕj �
σ= ϕ̂j �

σ. If j = 0, then the result immediately
holds by (5). Suppose that j = k + 1:

• ϕk �σ= ϕ̂k �
σ (13) - inner ih

• ϕk+1
 �σ= ϕ̂k+1

 �σ (14) - (hyp.3) + (3) + (4) + (12) + (13) + outer ih

�

The following two lemmas state two simple invariance properties that computed live records
observe. Suppose that one searches the nodes with tag m of a given subtree of a well-labelled
tree. And, before starting the search, the current live record (ϕ ) already contains a node with
tag m and position level σ ((m,σ) ∈ dom(ϕ )). Since, the whole tree is assumed to be well-
labelled, it follows that all the nodes with tag m in that subtree must have position levels greater
than or equal to σ. This means that for all levels σ′ such that σ 6v σ′, the final live record (ϕ′ )
coincides with the initial (ϕ′ (m,σ) = ϕ (m,σ)). This is established in Lemma D.4.

Lemma D.5 establishes a dual property of the one just explained above. It says that whenever
the final live record coincides with the initial live record for a given tag name m and security
level σ, it is because one of the following two propositions holds:



192 Appendix D. Proofs of Chapter 7

• No nodes with tag m and security level σ were found when traversing the tree;

• Every node with tag m found when traversing the tree had a security level strictly greater
than σ.

Lemma D.4 (Live Record Invariance - 1). Given a forest f labelled by Ξ, a live function φ ,
a live record ϕ , a node reference r, a tag name m, and two security levels σ and σ′ such that:
Secf,Ξ `r φ , ϕ  φ′ , ϕ

′
 , (m,σ) ∈ dom(ϕ ), and σ 6v σ′, it holds that: ϕ (m,σ′) = ϕ′ (m,σ′).

Proof: If (m,σ) ∈ dom(ϕ ), then in order for the subtree rooted in r to be well-labelled by Ξ
(which it is), all the nodes with tag m that it includes must have a position level higher than or
equal to σ. Therefore, we conclude that it does not include any node with tag m whose position
level is 6w σ, from which the result follows. �

Lemma D.5 (Live Record Invariance - 2). Given a forest f labelled by Ξ, a live function φ ,
a live record ϕ , a node reference r, a tag name m, and a security level σ such that: Secf,Ξ `r
φ , ϕ  φ′ , ϕ

′
 , f ` r  m

−→r , and ϕ (m,σ) = ϕ′ (m,σ), it holds that ∀0≤i<|−→r | Ξ(−→r (i)).pos 6v
σ.

Proof: Given that:

• Secf,Ξ `r φ , ϕ  φ′ , ϕ
′
 (hyp.1)

• f ` r  m
−→r (hyp.2)

• ϕ (m,σ) = ϕ′ (m,σ) (hyp.3)

it holds that ∀0≤i<|−→r | Ξ(−→r (i)).pos 6v σ. The proof proceeds by induction on the structure of
the derivation of f ` r  m

−→r . There are two base cases to consider [Node Not Found - Leaf
Node] and [Node Found - Leaf Node]. The inductive cases are [Node Not Found - Non-Leaf
Node] and [Node Found - Non-Leaf Node]. Since the inductive case are analogous, we only
consider the case [Node Found - Non-Leaf Node], which is the most complex.

[Node Not Found - Leaf Node] In this case: |f(r).children| = 0. Hence the result holds
vacuously.

[Node Found - Leaf Node] In this case: |f(r).children| = 0 and f(r).tag = m (hyp.4). Letting
σ′ = Ξ(r).pos, we conclude that:

• ϕ′ = ϕ [(m,σ′) 7→ r] (1) - (hyp.1) + (hyp.4)

• −→r = σ′ :: ε (2) - (hyp.2) + (hyp.4)

• σ′ 6= σ (3) - (hyp.3) + (1)

• σ′ 6v σ (4)
Suppose that: σ′ v σ (hyp.4). We conclude that:

– σ′ @ σ (4.1) - (hyp.4) + (3)
– σ 6v σ′ (4.2) - (4.1)
– ϕ (m,σ′) = ϕ′ (m,σ′) (4.3) - (4.2) + Live Record Invariance - 1

– Contradiction (4.4) - (1) + (4.3)

[Node Found - Non-Leaf Node] In this case: |f(r).children| = n > 0, and f(r).tag = m (hyp.4).
Letting σ′ = Ξ(r).pos and −→r ′ = f(r).children, we conclude that:

• −→r ′ = r :: −→r 0 :: · · · :: −→r n−1, where: f ` −→r (i) m
−→r i for 0 ≤ i < n (1) - (hyp.2) + (hyp.4)

• ϕ0
 = ϕ [(m,σ′) 7→ r] (2) - (hyp.1) + (hyp.4)



D.2. Proving Low-Equality Strengthening 193

• σ′ 6= σ (3) - (hyp.3) + (2)

• σ′ 6v σ (4) - (hyp.4) + (2) + (3)

• ∀0≤i<n Secf,Ξ `f(r).children(i) φi , ϕ
i
  φi+1

 , ϕi+1
 and ϕ′ = ϕn (5) - (hyp.1) + (hyp.4)

• ∀0≤i<n ϕ
i
 (m,σ) = ϕi+1

 (m,σ) (6) - (hyp.1) + (hyp.3) + (hyp.4)

• ∀0≤i<n ∀0≤j<|−→r i| Ξ(−→r i(j)).pos 6v σ (7) - (1) + (5) + (6) + ih

• ∀0≤i<|−→r | Ξ(−→r (i)).pos 6v σ (8) - (1) + (7)

�

Finally, Lemma D.6 states the main property required for the proof of Theorem 7.2. In
a nutshell, it says that the sequences of nodes obtained when searching for the nodes with a
given tag in two well-labelled and low-equal trees at a given level σ (∼σDOM ) are asymmetrically
low-equal when labelled with the respective position levels.

Lemma D.6 (Low-Equal DOM Searches). Given two forests f and f̂ respectively labelled by
Ξ and Ξ̂, two live functions φ and φ̂ , two live records ϕ and ϕ̂ , a node reference r, and a
security level σ such that: Secf,Ξ `r φ , ϕ  φ′ , ϕ

′
 , Secf̂ ,Ξ̂ `

r φ̂ , ϕ̂  φ̂′ , ϕ̂
′
 , f ` r  m

−→r , f̂ ` r  m
−̂→r , f,Ξ ∼σDOM f̂ , Ξ̂, and ϕ �σ= ϕ̂ �σ, it holds that: −→r ,Ξ.pos(−→r ) 'σ

−̂→r , Ξ̂.pos(−̂→r ).

Proof: Given that:

• Secf,Ξ `r φ , ϕ  φ′ , ϕ
′
 (hyp.1),

• Secf̂ ,Ξ̂ `
r φ̂ , ϕ̂  φ̂′ , ϕ̂

′
 (hyp.2),

• f ` r  m
−→r (hyp.3)

• f̂ ` r  m
−̂→r (hyp.4)

• f,Ξ ∼σDOM f̂ , Ξ̂ (hyp.5)

• ϕ �σ= ϕ̂ �σ (hyp.6)

It holds that: −→r ,Ξ.pos(−→r ) 'σ −̂→r , Ξ̂.pos(−̂→r ). Suppose that Ξ(r).pos 6v σ (hyp.7), we conclude
that:
• Ξ̂(r).pos 6v σ (1) - (hyp.5) + (hyp.7)

• ∀0≤i<|−→r | Ξ(−→r (i)).pos 6v σ
(2) - (hyp.1) + (hyp.3) + (hyp.7) + Monotonocity of the Search Relation

• ∀
0≤i<|−̂→r | Ξ̂(−̂→r (i)).pos 6v σ

(3) - (hyp.2) + (hyp.4) + (1) + Monotonocity of the Search Relation

• −→r ,Ξ.pos(−→r ) 'σ −̂→r , Ξ̂.pos(−̂→r ) (4) - (2) + (3)

In the rest of the proof we assume that Ξ(r).pos t Ξ̂(r).pos v σ (hyp.7) and we proceed
by induction on the structure of the derivation of f ` r  m

−→r . There are two base cases to
consider [Node Not Found - Leaf Node] and [Node Found - Leaf Node]. The inductive cases
are [Node Not Found - Non-Leaf Node] and [Node Found - Non-Leaf Node]. Since both the
base cases and the inductive cases are analogous, we only consider the cases [Node Not Found
- Leaf Node] and [Node Found - Non-Leaf Node].

[Node Not Found - Leaf Node] In this case: |f(r).children| = 0 and f(r).tag 6= m (hyp.8).
Letting −̂→r i be: f̂ ` f̂(r).children(i) m

−̂→r i, for 0 ≤ i < |f̂(r).children|, we conclude that:



194 Appendix D. Proofs of Chapter 7

• −→r = ε (1) - (hyp.3) + (hyp.8)

• f̂(r).tag 6= m (2) - (hyp.5) + (hyp.7) + (hyp.8)

• ∀0≤i<|f̂(r).children| Ξ̂(f̂(r).children(i)).pos 6v σ (3) - (hyp.5) + (hyp.7)

• For all 0 ≤ i < |f̂(r).children| and for all 0 ≤ j < |−̂→r i|: Ξ̂(−̂→r i(j)) 6v σ
(4) - (3) + Monotonocity of Search Predicate

• −→r ,Ξ.pos(−→r ) 'σ −̂→r , Ξ̂.pos(−̂→r ) (5) - (1) + (2) + (4)

[Node Found - Non-Leaf Node] In this case: |f(r).children| = n > 0 and f(r).tag = m (hyp.8).
Without loss of generality, let us assume that |f̂(r).children| = n̂ > 0 (hyp.9). We conclude that:

• −→r = r :: −→r 0 :: · · · :: −→r n−1, where f ` f(r).children(i) m
−→r i for 0 ≤ i < n

(1) - (hyp.3) + (hyp.8)

• −̂→r = r :: −̂→r 0 :: · · · :: −̂→r n̂−1, where f̂ ` f̂(r).children(i) m
−̂→r i for 0 ≤ i < n̂

(2) - (hyp.4) + (hyp.9)

• ∀0≤i<n Secf,Ξ `f(r).children(i) φi , ϕ
i
  φi+1

 , ϕi+1
 and φ′ = φn 

(3) - (hyp.1) + (hyp.8)

• ∀0≤i<n̂ Secf̂ ,Ξ̂ `
f̂(r).children(i) φ̂i , ϕ̂

i
  φ̂i+1

 , ϕ̂i+1
 and φ̂′ = φ̂n̂ 

(4) - (hyp.2) + (hyp.9)

Let i be the largest integer such that φi−1
 (m) v σ and φi (m) 6v σ and let j be the largest

integer such that φ̂j−1
 (m) v σ and φ̂j (m) 6v σ. We have to prove that:

1. Prove that i and j coincide.

2. Prove that for every integer 0 ≤ l < i = j, it holds that:

r :: −→r 0 :: · · · :: −→r l,Ξ(r).pos :: Ξ.pos(−→r 0) :: · · · :: Ξ.pos(−→r l) ≈σ
r :: −̂→r 0 :: · · · :: −̂→r l, Ξ̂(r).pos :: Ξ̂.pos(−̂→r 0) :: · · · :: Ξ̂.pos(−̂→r l)

3. Prove that:

r :: −→r 0 :: · · · :: −→r i,Ξ(r).pos :: Ξ.pos(−→r 0) :: · · · :: Ξ.pos(−→r i) 'σ
r :: −̂→r 0 :: · · · :: −̂→r i, Ξ̂(r).pos :: Ξ̂.pos(−̂→r 0) :: · · · :: Ξ̂.pos(−̂→r i)

4. Prove that: u{uΞ.pos(−→r l) | i < l < |f(r).children|} 6v σ

5. Prove that: u{uΞ̂.pos(−̂→r l) | i < l < |f̂(r).children|} 6v σ

Proof of 1. Suppose that φi−1
 (m) v σ and φi (m) 6v σ and let j be the largest integer such

that φ̂j−1
 (m) v σ and φ̂j (m) 6v σ (hyp.10). We conclude that:

• ϕi−1
 �σ= ϕ̂i−1

 �σ and ϕi �
σ= ϕ̂i �

σ

(5) - (hyp.1) + (hyp.2) + (hyp.5) + (hyp.6) + Lemma D.3

• φ̂i−1
 (m) v σ (6) - (hyp.10) + (5)

• φ̂i (m) 6v σ (7) - (hyp.10) + (5)

• j = i (8) - (6) + (7)

Proof of 2. We proceed by induction on l.
Base case: l = 0.

• −→r 0,Ξ.pos(−→r 0) 'σ −̂→r 0,Ξ.pos(−→r 0) (9) - (hyp.5) + (hyp.6) + (1)-(4) + outer ih



D.2. Proving Low-Equality Strengthening 195

• −→r 0,Ξ.pos(−→r 0) ≈σ −̂→r 0,Ξ.pos(−→r 0) (10) - (hyp.10) + (9)

Inductive case: l = l′ + 1.

•
r :: −→r 0 :: · · · :: −→r ′l,Ξ(r).pos :: Ξ.pos(−→r 0) :: · · · :: Ξ.pos(−→r ′l) ≈σ

r :: −̂→r 0 :: · · · :: −̂→r
′
l, Ξ̂(r).pos :: Ξ̂.pos(−̂→r 0) :: · · · :: Ξ̂.pos(−̂→r

′
l)

(11) - inner ih

• −→r l,Ξ.pos(−→r l) 'σ −̂→r l,Ξ.pos(−→r l) (12) - (hyp.5) + (hyp.6) + (1)-(4) + outer ih

• −→r l,Ξ.pos(−→r l) ≈σ −̂→r l,Ξ.pos(−→r l) (13) - (hyp.10) + (12)

•
r :: −→r 0 :: · · · :: −→r l,Ξ(r).pos :: Ξ.pos(−→r 0) :: · · · :: Ξ.pos(−→r l) ≈σ

r :: −̂→r 0 :: · · · :: −̂→r l, Ξ̂(r).pos :: Ξ̂.pos(−̂→r 0) :: · · · :: Ξ̂.pos(−̂→r l)
(14) - (11) + (13)

Proof of 3.

• −→r i,Ξ.pos(−→r i) 'σ −̂→r i,Ξ.pos(−→r i) (15) - (hyp.5) + (hyp.6) + (1)-(4) + ih

•
r :: −→r 0 :: · · · :: −→r i,Ξ(r).pos :: Ξ.pos(−→r 0) :: · · · :: Ξ.pos(−→r i) 'σ

r :: −̂→r 0 :: · · · :: −̂→r i, Ξ̂(r).pos :: Ξ̂.pos(−̂→r 0) :: · · · :: Ξ̂.pos(−̂→r i)
(16) - (14) + (15)

Proof of 4.

• ∀i<l<|f(r).children| ϕ
l
 (m,σ) = ϕl+1

 (m,σ) (17) - (hyp.1) + (hyp.10)

• ∀i<l<|f(r).children| ∀0≤k<|−→r l| Ξ(−→r l(k)).pos 6v σ (18) - (hyp.1) + (17) + Lemma D.5

Proof of 5.

• ∀i<l<|f̂(r).children| ϕ̂
l
 (m,σ) = ϕ̂l+1

 (m,σ) (19) - (hyp.2) + (hyp.10) + (8)

• ∀i<l<|f̂(r).children| ∀0≤k<|−̂→r l|
Ξ̂(−̂→r l(k)).pos 6v σ (20) - (hyp.2) + (19) + Lemma D.5

�

Theorem 7.2- Low-Equality Strengthening

Proof: Given that:

• Sec(f0,Ξ0) (hyp.1)

• Sec(f1,Ξ1) (hyp.1)

• f0,Ξ0 ∼σDOM f1,Ξ1 (hyp.3),

We have to prove that: f0,Ξ0 ∼σ f1,Ξ1. In order to prove this, we have to prove that if
(r,m, i, r′) ∈ f0 �

Ξ0,σ
 , then (r,m, i, r′) ∈ f1 �

Ξ1,σ
 and that if (r,m, n) ∈ f0 �

Ξ0,σ
 , then (r,m, n) ∈

f1 �
Ξ1,σ
 .

Suppose that: (r,m, i, r′) ∈ f0 �
Ξ0,σ
 (hyp.4). We conclude that:

• f0 ` r  m
−→r 0, −→r 0(i) = r′, and Ξ0(r′).pos v σ (1) - (hyp.4)

• Ξ0(r).pos v σ (2) - (hyp.1) + (1)

• Ξ0(r).node v σ (3) - (2)

• r ∈ dom(f1), Ξ1(r).node v σ, and Ξ1(r).pos v σ (4) - (hyp.3) + (2)

If we let −→r 1 be the list of nodes verifying f1 ` r  m
−→r 1 (hyp.5), we conclude that:

• −→r 0,Ξ0.pos(−→r 0) 'σ −→r 1,Ξ1.pos(−→r 1) (5) - (hyp.1)-(hyp.5) + Lemma D.6

• −→r 1(i) = r′ and Ξ1(r′).pos v σ (6) - (1) + (5)

• (r,m, i, r′) ∈ f1 �
Ξ1,σ
 (7) - (hyp.5) + (6)



196 Appendix D. Proofs of Chapter 7

Suppose that: (r,m, n) ∈ f0 �
Ξ0,σ
 (hyp.4). We conclude that:

• f0 ` r  m
−→r 0, |−→r 0| = n, and σm t Ξ(r).node v σ (1) - (hyp.4)

• r ∈ dom(f1) and Ξ1(r).node v σ (2) - (hyp.3) + (1)

If we let −→r 1 be the list of nodes verifying f1 ` r  m
−→r 1 (hyp.5), we conclude that:

• −→r 0,Ξ0.pos(−→r 0) 'σ −→r 1,Ξ1.pos(−→r 1) (3) - (hyp.1)-(hyp.5) + Lemma D.6

• t(Ξ0.pos(−→r 0)) v σm (4) - (hyp.1) + (hyp.4)

• t(Ξ1.pos(−→r 1)) v σm (5) - (hyp.2) + (hyp.5)

• |−→r 0| = |−→r 1| (6) - (3)-(5)

• (r,m, n) ∈ f1 �
Ξ1,σ
 (7) - (hyp.5) + (6)

�

D.3 Noninterference - Live Collections Monitor

Lemma 7.3 - Confinement - Monitored Core DOM + Live Collections

Proof: We proceed by case analysis. We only consider the monitored plugins that can change
the memory: (new , new 

lab) and (redirect , redirect lab).
[Core DOM Redirection] Given that:

• 〈ν, r0 :: v1 :: −→v ′〉 redirect 〈〈f ′, ν.lives〉, v〉β (hyp.1)

• 〈Ξ, σ0 :: σ1 :: −→σ ′〉(r0,v1,β) redirect lab 〈〈Ξ
′,Ξ.lives〉, σ′〉 (hyp.2)

• −→σ (0) t −→σ (1) 6v σ (hyp.3)

We conclude that:

• (dplug, dpluglab) = RDOMIF (r0, v1) (1) - (hyp.1) + (hyp.2)

• 〈ν.f, r0 :: v1 :: −→v ′〉 dplug 〈f ′, v〉β (2) - (hyp.1) + (hyp.2)

• 〈Ξ.f, σ0 :: σ1 :: −→σ ′〉β dpluglab 〈Ξ′, σ′〉 (3) - (hyp.1) + (hyp.2)

• f,Ξ ∼σDOM f ′,Ξ′ (4) - (hyp.3) + (2) + (3) + Confinement (Lemma 7.2)

• ν,Ξ ∼σDOM 〈f ′, ν.lives〉, 〈Ξ′,Ξ.lives〉 (5) - (2) - (4)

[Live New] Given that:

• 〈ν, r :: "getElementByTagName" :: m〉σl new 〈ν ′, r′〉(r
′,σl) (hyp.1)

• 〈Ξ, σ0 :: σ1 :: σ2〉r new 
lab 〈Ξ

′, σl〉 (hyp.2)

• σ0 t σ1 6v σ (hyp.3)

We conclude that:

• r′ = freshlive(σl), lives′ = ν.lives [r′ 7→ 〈r,m〉], and ν′ = 〈ν.f, lives′〉 (1) - (hyp.1)

• σ0 t σ1 t σ2 v σl and Ξ′ = 〈Ξ.f,Ξ.lives [r 7→ σl]〉 (2) - (hyp.2)

• σl 6v σ (3) - (hyp.3) + (2)

• ν,Ξ ∼σDOM ν′,Ξ′ (4) - (1) - (3)



D.3. Noninterference - Live Collections Monitor 197

Theorem 7.3 - Noninterference - Monitored Core DOM + Live Collections

Proof: For every (pg, pglab) in the range of R 
IF , we have to prove that given two

DOM states ν and ν ′ labelled by Ξ and Ξ′ and two sequences of values −→v and −→v ′ respectively
labelled by two sequences of levels −→σ and −→σ ′ and such that:

• −→v ,−→σ ∼σ −→v ,−→σ ′ (hyp.1)

• ν,Ξ ∼σDOM ν ′,Ξ′ (hyp.2)

• 〈ν,−→v 〉α pg 〈νf , vf 〉β (hyp.3) and 〈ν ′,−→v ′〉α pg 〈ν ′f , v′f 〉β
′ (hyp.4)

• 〈Ξ,−→σ 〉β pglab 〈Ξf , σf 〉 (hyp.5) and 〈Ξ′,−→σ ′〉β
′

pglab 〈Ξ′f , σ′f 〉 (hyp.6)

Then, it holds that: νf ,Ξf ∼σDOM ν ′f ,Ξ
′
f and vf , σf ∼σ v′f , σ′f . In order to prove that vf , σf ∼σ

v′f , σ
′
f , we have to prove the following two implications:

• σf v σ ⇒ vf = v′f ∧ σf = σ′f v σ

• σ′f v σ ⇒ vf = v′f ∧ σf = σ′f v σ.

Since the proofs are identical, we only prove first one. However, we cannot introduce at this level
the hypothesis σf v σ because it cannot be used in the proof of νf ,Ξf ∼σ ν ′f ,Ξ′f . Therefore,
we are obliged to introduce this hypothesis in every case. We now proceed by case analysis on
the monitored plugins in the range of R 

IF .

[Live New] Suppose (pg, pglab) = (new , new 
lab) (hyp.7). We conclude that:

• −→v = r :: _ :: m, −→v ′ = r′ :: _ :: m′, −→σ = σ0 :: σ1 :: σ2, −→σ ′ = σ′0 :: σ′1 :: σ′2, and α = σl
(1) - (hyp.3) - (hyp.7)

• vf = rf = freshlive(σl) and v′f = r′f = freshlive(σl)
(2) - (hyp.3) + (hyp.4) + (hyp.7)

• νf = 〈ν.f, livesf 〉 where livesf = ν.lives [rf 7→ 〈r,m〉] (3) - (hyp.3) + (hyp.7)

• ν′f = 〈ν′.f, lives′f 〉 where lives′f = ν′.lives
[
r′f 7→ 〈r′,m′〉

]
(4) - (hyp.4) + (hyp.7)

• Ξf = 〈Ξ.f,Ξ.lives [rf 7→ σl]〉 and σ0 t σ1 t σ2 v σl (5) - (hyp.5) + (hyp.7)

• Ξ′f = 〈Ξ′.f,Ξ′.lives
[
r′f 7→ σl

]
〉 and σ′0 t σ′1 t σ′2 v σl (6) - (hyp.6) + (hyp.7)

• ν.f �Ξ.f,σ = ν′.f �Ξ
′.f,σ

 and ν.lives �Ξ.lives,σ = ν′.lives �Ξ
′.lives,σ

 (7) - (hyp.2)

• ν.f = νf .f , Ξ.f = Ξf .f , ν′.f = ν′f .f , and Ξ′.f = Ξ′f .f (8) - (3) - (6)

• νf .f �
Ξf .f,σ
 = ν′f .f �

Ξ′
f .f,σ

 (9) - (7) + (8)

There are two cases to consider: either σl v σ or σl 6v σ. Suppose σl v σ (hyp.8):

• rf = r′f (10) - (hyp.2) + (hyp.8) + (2) + Low-equal Allocation

• σ0 t σ1 t σ2 v σ (11) - (hyp.8) + (5)

• r = r′, m = m′, σ′0 = σ0 v σ, σ1 = σ′1 v σ, and σ2 = σ′2 v σ (12) - (hyp.1) + (10)

• livesf �
Ξf .lives,σ
 = lives �Ξ.lives,σ ∪ {(rf , r,m, σl)} (13) - (3) + (5) + (11)

• lives′f �
Ξ′

f .lives,σ

 = lives′ �Ξ
′.lives,σ

 ∪ {(r′f , r′,m′, σl)} (14) - (4) + (6) + (12)

• {(rf , r,m, σl)} = {(r′f , r′,m′, σl)} (15) - (10) + (12)



198 Appendix D. Proofs of Chapter 7

• livesf �
Ξf .lives,σ
 = lives′f �

Ξ′
f .lives,σ

 (16) - (8) + (13) - (15)

• νf �
Ξf ,σ
 = ν′f �

Ξ′
f ,σ

 (17) - (10) + (16)

• vf = v′f and σf = σ′f (18) - (7)

Suppose σl 6v σ (hyp.8):

• livesf �
Ξf .lives,σ
 = lives �Ξ.lives,σ (19) - (hyp.8) + (3) + (5)

• lives′f �
Ξ′

f .lives,σ

 = lives′ �Ξ
′.lives,σ

 (20) - (hyp.8) + (4) + (6)

• νf �
Ξf ,σ
 = ν′f �

Ξ′
f ,σ

 (21) - (hyp.2) + (9) + (19) + (20)

[Live Length] Suppose (pg, pglab) = (length , length lab) (hyp.7). We conclude that:

• −→v = r :: _, −→v ′ = r′ :: _, −→σ = σ0 :: σ1, and −→σ ′ = σ′0 :: σ′1 (1) - (hyp.3) - (hyp.7)

• νf = ν, ν′f = ν′, Ξf = Ξ, and Ξ′f = Ξ′ (2) - (hyp.3) + (hyp.7)

• νf ,Ξf ∼σDOM ν′f ,Ξ
′
f (3) - (hyp.2) + (2)

• vf = |−→r | where: ν.lives(r) = 〈r̂,m〉 and ν.f ` r̂  m
−→r (4) - (hyp.3) + (hyp.7)

• v′f = |−→r ′| where: ν′.lives(r′) = 〈r̂′,m′〉 and ν′.f ` r̂′  m′
−→r ′ (5) - (hyp.4) + (hyp.7)

• σf = σ0 t σ1 t Ξ.lives(r) t σm (6) - (hyp.5) + (hyp.7)

• σ′f = σ′0 t σ′1 t Ξ′.lives(r′) t σm′ (7) - (hyp.6) + (hyp.7)

• Sec(ν.f,Ξ.f, r̂) and Sec(ν′.f,Ξ′.f, r̂′) (8) - (hyp.5) + (hyp.6) + (hyp.7)

• ν.f,Ξ.f ∼σ ν′.f,Ξ′.f (9) - (hyp.2) + (8) + Low-Equality Strengthening (Theorem 7.2)

Suppose that σf v σ (hyp.8):

• σ0 t σ1 t Ξ.lives(r) t σm v σ (10) - (hyp.8) + (6)

• r = r′, σ′0 = σ0 v σ, and σ1 = σ′1 v σ (11) - (hyp.1) + (1) + (10)

• Ξ.lives(r) = Ξ′.lives(r′) v σ and 〈r̂,m〉 = 〈r̂′,m′〉 (12) - (hyp.2) + (10) + (11)

• vf = |−→r | = |−→r ′| = v′f (13) - (hyp.2) + (4) + (5) + (9) + (11) + (12)

[Live Item] Suppose (pg, pglab) = (item , item 
lab) (hyp.7). We conclude that:

• −→v = r :: i, −→v ′ = r′ :: i′′, −→σ = σ0 :: σ1, and −→σ ′ = σ′0 :: σ′1 (1) - (hyp.3) - (hyp.7)

• νf = ν and ν′f = ν′ (2) - (hyp.3) + (hyp.7)

• ν,Ξ ∼σDOM ν′,Ξ′ (3) - (hyp.2) + (3)

• vf = rf = −→r (i) where: ν.lives(r) = 〈r̂,m〉 and ν.f ` r̂  m
−→r (4) - (hyp.3) + (hyp.7)

• v′f = r′f = −→r ′(i′) where: ν′.lives(r′) = 〈r̂′,m′〉 and ν′.f ` r̂′  m′
−→r ′ (5) - (hyp.4) + (hyp.7)

• σf = σ0 t σ1 t Ξ.lives(r) t Ξ.f(rf ).pos (6) - (hyp.5) + (hyp.7)

• σ′f = σ′0 t σ′1 t Ξ′.lives(r′) t Ξ′.f(r′f ).pos (7) - (hyp.6) + (hyp.7)

• Sec(ν.f,Ξ.f, r̂) and Sec(ν′.f,Ξ′.f, r̂′) (8) - (hyp.5) + (hyp.6) + (hyp.7)

• ν.f,Ξ.f ∼σ ν′.f,Ξ′.f (9) - (hyp.2) + (8) + Low-Equality Strengthening (Theorem 7.2)

Suppose that σf v σ (hyp.8):

• σ0 t σ1 t Ξ.lives(r) t Ξ.f(rf ).pos v σ (10) - (hyp.8) + (6)

• r = r′, i = i′, σ′0 = σ0 v σ, and σ1 = σ′1 v σ (11) - (hyp.1) + (1) + (10)



D.3. Noninterference - Live Collections Monitor 199

• Ξ.lives(r) = Ξ′.lives(r′) v σ and 〈r̂,m〉 = 〈r̂′,m′〉 (12) - (hyp.2) + (9) + (10)

• vf = −→r (i) = −→r ′(i′) = v′f (13) - (hyp.2) + (5) + (6) + (9) - (12)

[Core DOM Redirection] Suppose (pg, pglab) = (redirect , redirect lab) (hyp.7). We conclude
that:

• (dplug, dpluglab) = RDOMIF (−→v (0),−→v (1)) (1) - (hyp.3) + (hyp.7)

• (dplug′, dplug′lab) = RDOMIF (−→v ′(0),−→v ′(1)) (2) - (hyp.4) + (hyp.7)

• 〈ν.f,−→v 〉 dplug 〈ff , vf 〉β and 〈Ξ.f,−→σ 〉β dpluglab 〈Ξf , σf 〉 (3) - (hyp.3) + (hyp.5) + (hyp.7)

• 〈ν′.f,−→v ′〉 dplug′ 〈f ′f , v′f 〉β and 〈Ξ′.f,−→σ ′〉β dpluglab 〈Ξ′f , σ′f 〉 (4) - (hyp.4) + (hyp.6) + (hyp.7)

We consider two distinct cases −→v (0) t −→v (1) v σ and −→v (0) t −→v (1) 6v σ. Suppose that −→v (0) t−→v (1) v σ (hyp.8). We conclude that:

• −→v ′(0) = −→v (0) and −→v ′(1) = −→v (1) (5) - (hyp.1) + (hyp.8)

• (dplug, dpluglab) = (dplug′, dplug′lab) (6) - (1) + (2) + (5)

• ff ,Ξf ∼σDOM f ′f ,Ξ
′
f and vf , σf ∼σ v′f , σ′f

(7) - (hyp.1) + (hyp.2) + (3) + (4) + Noninterferent Core DOM API

• 〈ff , ν.lives〉, 〈Ξf ,Ξ.lives〉 ∼σDOM 〈f ′f , ν′.lives〉, 〈Ξ′f ,Ξ′.lives〉
(8) - (hyp.3)-(hyp.6) + (3) + (4) + (7)

Suppose that −→v (0) t −→v (1) 6v σ (hyp.8). We conclude that:

• −→v ′(0) t −→v ′(1) 6v σ (9) - (hyp.1) + (hyp.8)

• ν,Ξ ∼σDOM νf ,Ξf (10) - (hyp.3) + (hyp.5) + (hyp.8)

• ν′,Ξ′ ∼σDOM ν′f ,Ξ
′
f (11) - (hyp.3) + (hyp.5) + (9)

• νf ,Ξf ∼σDOM ν′f ,Ξ
′
f (12) - (hyp.2)-(hyp.6) + (10) + (11)

�


	Introduction
	Securing Information Flow in a Core of JavaScript
	Securing Information Flow in the Browser
	Contributions and Outline
	Publications

	Core JavaScript
	Formal Syntax
	Running Example
	Notation
	Formal Semantics
	Scope Objects
	Function Objects
	Scope Allocation
	Prototype-Chain Inspection
	Method Calls versus Function Calls
	Formal Semantics - Specification

	Related Work
	Discussion
	Modelling the Binding of Variables


	Defining Secure Information Flow in Core JavaScript
	Challenges for IFC in Core JavaScript
	The Attacker Model
	Low-Equality for Values and Sequences of Values

	Noninterferent Allocator
	Related Work
	Discussion
	Toward an Attacker Model for the ECMA Standard
	Further Remarks on the Structure Security Level


	Dynamic Information Flow Control in Core JavaScript
	Monitoring Secure Information Flow in Core JavaScript
	Controlling Implicit Flows and the No-Sensitive-Upgrade Discipline
	The Structure Security Level
	Preventing Security Leaks via Prototype Mutations
	Tracking the Level of the Program Counter
	Monitor Noninterference

	Monitor-Inlining
	Malicious Code
	Formal Specification
	Correctness

	Related Work
	Discussion

	Static to Hybrid Information Flow Control in Core JavaScript
	Security Types for Core JavaScript
	Annotating Core JavaScript
	Syntax of Security Types
	Well-Typed Memories

	The Attacker Model and the Meaning of Security Types
	Noninterference for Typed Programs

	Static Information Flow Control in Core JavaScript
	Soundness of the Static Type System

	Hybrid Information Flow Control in Core JavaScript
	A Program Logic for Reasoning about Local Scope
	Type Sets and Level Sets
	Specification of the Type System

	Related Work

	An Extensible Monitored Semantics for Securing Web APIs
	An Extensible Semantics for Core JavaScript
	A Secure Extensible Monitor for Core JavaScript
	An Attacker Model for External APIs?
	Noninterference for Monitored APIs
	Soundness

	Related Work
	Discussion
	Toward the Inlining of Extensible Information Flow Monitors
	Further Comments on Confinement for APIs


	Monitoring Secure Information Flow in a DOM-like API
	Core DOM
	Core DOM - Formal Model

	Monitoring Secure Information Flow in the Core DOM API
	Challenges for Information Flow Control in Core DOM
	An Attacker Model for the Core DOM API
	Monitor Plugins for the Core DOM API
	Soundness

	Secure Information Flow for Live Collections
	Extending the Formal DOM API with Live Collections
	Information Leaks introduced by Live Collections
	An Attacker Model for Live Collections
	Monitor Plugins for the Core DOM API + Live Collections
	Soundness

	Related Work
	Discussion
	Order Leaks in the DOM API
	A Comparison with the Model of Russo et al. russo:esorics:2009


	Conclusions
	Main Contributions
	Further Work

	Bibliography
	Proofs of Chapter 4
	Noninterference - Security Montior
	Proving Confinement
	Proving Noninterference

	Correctness - Inlining Compiler

	Proofs of Chapter 5
	Soundness of the Static Type System
	Properties of Well-Typed Memories
	Properties of Low-Equal Memories
	Main Properties of the Static Type System

	Soundness of the Hybrid Type System

	Proofs of Chapter 6
	Proofs of Chapter 7
	Noninterference - Basic DOM API
	Proving Low-Equality Strengthening
	Noninterference - Live Collections Monitor


